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Abstract

Modelsof graph-basedreasoninghave typically account-
edfor thevariationin problemsolvingperformancewith
different graphtypes in termsof a task analysisof the
problemrelativeto theparticularvisualpropertiesof each
graphtype(e.g.Lohse,1993;Peebles,Cheng& Shadbolt
1999,submitted).Thisapproachhasbeenusedto explain
responsetime and accuracy differencesin experimental
situationswheredataareaveragedoverexperimentalcon-
ditions. A recentexperimentis reportedin which par-
ticipants’eye movementswererecordedwhile they were
solvingvariousproblemswith differentgraphtypes.The
eye movementdatarevealedfine grainedscanningand
fixation patternsthat are not predictedby standardtask
analyticmodels. From theseeye-movementstudiesit is
arguedthatthereis amissinglevel of detailin currenttask
analyticmodelsof graph-basedreasoning.

Introduction
The ability to retrieve and reasonaboutinformation in
graphsanddiagramsis a skill which requiresthe com-
plex interactionof threeprimaryelements:thecognitive
abilitiesof theuser, thegraphicalpropertiesof theexter-
nal representation,andtherequirementsof thetask.Sev-
eralframeworkshavebeenproposedto understandinter-
active behaviour of this sort. In theareaof graph-based
reasoning,Peebles,Cheng& Shadbolt(1999,submitted)
have proposedtheGBR modelincorporatingthesethree
factors. Gray (2000; Gray & Altmann, 2000)haspro-
posedtheCognition-Task-Artifact triad within which to
characteriseinteractive behaviour in the relatedcontex-
t of human-computerinteraction.This latter framework
hasrecentlybeenfurtherdevelopedby Byrne (in press)
to encompasstheperceptualandmotorcapabilitiesof the
user, termedEmbodied Cognition.

The main aim of thesemodelsand frameworks is to
aid the developmentof detailedcognitive modelsof the
cognitive,perceptualandmotorprocessesinvolvedin the
tasksunderstudy. Constructingcognitive processmod-
elsthataregroundedin cognitivetheoryallowstheincor-
porationandtestingof relevantcognitive factorssuchas
the requireddeclarative andproceduralknowledge,the
strategiesadopted,andthe limitationsof working mem-
ory. This approachcontrastswith that of cognitive task
analysis which simply specifiesthe cognitive stepsre-
quiredto performthetask.

In the areaof graph-basedreasoning,Lohse(1993)
developedthe GOMS classof task analysistechniques
(Card,Moran, & Newell, 1983; Olson& Olson,1990;
John& Kieras,1994)by including additionalcognitive
parametersto produceacognitivemodelwhichsimulates
how peopleanswercertainquestionsusing line graph-
s, bar graphsand tables. Lohse’s modelwasbasedon
the assumptionthat graphknowledgeis representedas
graphschemas(Pinker, 1990)which allow the recogni-
tion andinterpretationof differentclassesof graph. In-
cludedin a graphschemaaretask-specificrulesthatde-
fine sequencesof proceduresfor retrieving information
from the graphgiven a particular information-retrieval
task.Lohse’smodelpredictedthetimeto answeragiven
questionby assumingthatpeoplescannedthegraphical
representationin a mannerwhich producedan optimal
sequenceof eye movementsthatminimizedthenumber
of saccadesandfixationsto reachthetargetlocation.

In theGraph Based Reasoning (GBR)model(Peebles
etal., 1999,submitted),asimilar setof assumptionswas
employedto explainseveralresultsof experimentsinves-
tigatingthefactorsaffectingreasoningwith information-
ally equivalent (Larkin & Simon, 1987) graphsof dif-
ferent typesfrom the samegeneralclass;Cartesianco-
ordinate(x–y) graphs.Figure1 showsthetypesof graph
usedin our experiments.Thegraphsareinformational-
ly equivalentasthebothencodethesametwo functions
betweentime andthe variablesA andB. The Function
graphin Figure1arepresentstime on thex axisandthe
A andB variableson they axiswhereastheParametric
graphin Figure1b representsthe A andB variableson
the x andy axesrespectively while time is plottedasa
parameterizingvariablealongthecurve.

Although the two graphsassigndifferentvariablesto
their axes, they would be consideredsimilar in sever-
al important ways identified in the literature. Firstly,
both areCartesian graphsusinga two dimensionalco-
ordinatesystemto relatequantitiesandrepresentmagni-
tudes.It is likely, therefore,thatbothgraphsinvokesim-
ilar generalschemasandinterpretive processes(Pinker,
1990; Kosslyn,1989). Secondly, both are simple line
graphsandconsequentlysharemany of thesamegeneral
interpretiverules.Furthermore,it is likely thatinferences
from bothgraphsareinfluencedby thesamesetof bias-
es (Carpenter& Shah,1998; Gattis & Holyoak, 1996;
Shah& Carpenter, 1995). Finally, the graphsareinfor-



mationallyequivalentasthey have beengeneratedfrom
thesamedataset.
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Figure1: Informationallyequivalentfunctionandpara-
metricgraphs

Despitethesesimilarities, however, in previous ex-
perimentswe have demonstratedthat for a wide range
of questions,parametricandfunctiongraphusersdiffer
substantiallyin both the time it takesto respondandin
their ratesand patternsof errors(Peebleset al., 1999,
submitted).The GBR modelhasbeensuccessfulin ex-
plaining why such differencesoccur with thesegraph
typesdespitetheir many commonproperties.Using the
graphsin Figure1 asan example,we found in our ex-
perimentsthat whenparticipantswereasked to retrieve
thevalueof A whenthevalueof B is 1, responsesfrom
parametricgraphusersweresignificantlymorerapidand
accuratethanthosefrom the function graphusers.The
GBR model explains thesedifferencesin termsof the
optimal visual scanpath the usersfollow through the
graph.Thevariability in responsesis apparentfrom the
sequenceof hypothesisedsaccadesin thetwo graphs.In
Figure1a, the sequenceof saccadesis m, n, o, whereas
in Figure 1b the processrequiresjust two saccades,as
shown by theline sequencea, b. Thehigherprobability
of an erroneousresponseusing the function graphwas
explainedby theadditionalnumberof possibleincorrect
saccadesthatthefunctiongraphusersmaymake.

Although theseoptimality assumptionsare useful in
that they provide an accountof differencesin meanRT
and error datafor the differentgraphconditions,it re-
mains an open question,however, whetherthey gloss
over importantcognitive andstrategic factorsat anindi-
viduallevel. Forexample,graphusersmayberequiredto
re-encodeitemsof informationthathave beenlost from
workingmemoryduringthecourseof processing.In ad-
dition, giventhatgraphusersareawarethat information
is availablefor re-scanningatall times,it is possiblethat
they maymake a strategic decisionto tradeoff addition-
al saccadesfor a reductionin working memoryload. If
this is thecase,thenthecurrentanalysesmaymissoutan
importantlevel of detailwhich shedslight on thecogni-
tive loadthat thesetasksareimposingandthestrategies
by whichgraphusersoptimisetheir retrieval procedures.
Furthermore,informationat this level of detailwill pro-
vide valuableconstraintson cognitive modelsof these
reasoningprocesses.

To addresstheseissues,we devised an experimen-
t in which participantswere asked to solve somesim-
ple tasksusingdifferentgraphtypesof thesamegeneral
classwhich,basedon theoptimality assumptionsabove,
wouldbepredictedto producedifferentresponsepattern-
s. Thesepredictionscanbeelaboratedin termsof anop-
timal sequenceof fixations requiredto solve the given
task. To test theseoptimality assumptionsand predic-
tions,therefore,someof theparticipants’eyemovements
wouldberecordedasthey solvedtheproblems.

Oneof themostcommontaskscarriedoutwhenusing
a graphis to elicit thevalueof onevariablecorrespond-
ing to a given value of another. This task was chosen
for the experimentasit is so widely performedandbe-
causetheproceduresinvolvedarerelatively simple.The
knowledgerequiredto carry out thesetasksis primar-
ily the sequenceof fixations requiredto reachthe giv-
en location in the graphrepresentingthe givenvalueof
thegivenvariableandthenfrom thereto thetarget loca-
tion representingthecorrespondingvalueof therequired
variable.In previousresearch,however, wehavediscov-
eredthattheeffectivenessof aparticulargraphicalrepre-
sentationfor retrieving therequiredinformationdepends
on thedetailsof thetask,i.e.which variableis givenand
which is sought(Peebleset al., 1999,submitted).

Experiment

Method
Participants and materials Forty-four undergraduate
andpostgraduatepsychologystudentsfrom the Univer-
sity of Nottinghamwerepaid £3 to take part in the ex-
periment.Theexperimentwascarriedout usingtwo PC
computerswith 17 in displays. A further four partici-
pantsfrom the samepopulationwerepaid £5 to partic-
ipate in the eye-movementstudy. The eye tracker em-
ployedin theexperimentwasanSMI iView systemusing
aREDII desktoppupil/cornealreflectancetrackerwith a
samplingrateof 50 Hz. This systemrecordseye move-
mentsat20msintervalsremotelyfrom apositionin front
of theexperimentalcomputerdisplay. Althoughthesys-
temcontainsanautomaticheadmovementcompensation
mechanism,to furtherreducerecordingerrordueto head
movement,participant’sheadswererestrainedin aframe
fixedto thetable.

Thestimuli usedin theexperimentwerefour graphs,
shown in Figure2, depictingtheamount(in millions of
units)of UK offshoreoil andgasproductionbetweent-
wo decades,1970–1979and1980–1989.Thegraphsand
datasetsweredesignedsothat the independentvariable
(IV—year)and the two dependentvariables(DVs—oil
andgas)all hadtenvaluesrangingfrom 0 to 9 andthat
thefull rangeof thesevalueswasrepresentedby thedata
pointsfor oil andgasin bothdecades.

Participantswere seatedapproximately80 cm from
the 72 ppi computerdisplay. The graphswere15.5cm
square(includingaxislabels),correspondingto approxi-
mately11.1

�
of visualangle.Thecharactersrepresenting

variablevalueswere0.4cmhigh (approximately.21
�

of
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Figure2: FunctionandParametricGraphsUsedin theExperiment

visualangle)while thosefor theaxislabelsandquestion-
s were0.4 cm and0.5 cm high (approximately.29

�
and

.36
�

of visualangle)respectively. Axis tickswerespaced
1.5cm(approximately1.1

�
of visualangle)apart.

Thefull rangeof valuesfor eachof thevariableswas
usedto produce120questions.Thesequestionsall had
the samebasicstructureand wereof threetypes;DV–
DV andDV–IV questionsgave the valueof oneof the
dependentvariablesandrequiredthecorrespondingval-
ue of the secondDV or the IV respectively, while IV–
DV questionsgave a valueof the independentvariable
andrequiredthecorrespondingDV valueto beproduced.
Therewere20 of eachof questiontypeandparticipants
wererequiredto answerall 60 for both decadegraphs,
producinga totalof 120questions.

Design and Procedure The experimentwasa mixed
designwith onebetween-subjectsvariable,(graphtype)
and two within-subjectsvariables(question type and
graphnumber).Participantswererandomlyallocatedto
oneof the two graphtype conditionsproducinga total
of 22 participantsper conditionin the main experiment
andtwo participantsperconditionin theeye movement
study. During theexperiment,the two graphswerepre-
sentedalternatelywith the first graphbeingselectedat
random.On eachtrial, a graphwould bepresentedwith
a questionabove it. The questionswerepresentedin a
form so that the minimum amountof text was shown.
For example,thequestionGAS= 2, OIL = ? requiresthe
valueof oil whengasis equalto 2 to be found. When
a yearvaluewasrequired,the final itemsof text in the
questionwould beYEAR = 197? or YEAR = 198? de-
pendingon thecurrentgraphbeingpresentedandpartic-
ipantswereinstructedbeforehandto enteronly thefinal
numberof the target year. Eachelementof the ques-
tion wascenteredonaco-ordinatepointwhichremained
invariantthroughouttheexperimentwith approximately
3.5cm (approximately2.5

�
of visualangle)betweenthe

centresof adjacenttext items. Togetherwith the graph
andquestion,a button labelledAnswer appearedin the
top right cornerof the window. Participantswere in-
structedto click on this answerbutton assoonas they
hadobtainedtheanswerto thequestion.Responsetimes
wererecordedfrom theonsetof a questionto themouse

click ontheanswerbutton.Whenthisbuttonwasclicked
upon,thebutton,graphandquestionwereremovedfrom
thescreenandacircleof buttonslabelledclockwisefrom
0 to 9 appearedcenteredon the answerbutton. Partici-
pantsenteredtheir answersby clicking the appropriate
numberbutton. When the numberbutton wasclicked,
thenext graph,question,andanswerbuttonappearedon
thescreen.This methodwasdevisedsothatparticipants
in theeye movementstudywould not have to take their
eyesaway from thescreento enteranswers,aswould be
thecaseif usingthekeyboard.

Beforestartingtheexperiment,participantsweregiv-
en as much time asnecessaryto becomefamiliar with
thetwo graphsin their conditionandwerealsoprovided
with an opportunityto practiceenteringnumbersusing
thecircle of numberbuttonsandthemouse.Participants
wereaskedto answerthequestionsasrapidlyandasac-
curatelyaspossible

Results

Response accuracy and latency data Theproportion-
s of correct responsesand meanresponsetimes (RTs)
for eachof thequestiontypesfor thetwo graphsin each
conditionarepresentedin Figure3. Confirmingtherel-
ativesimplicity of theexperimentaltasks,thedatareveal
highlevelsof accuracy for all threequestiontypesin both
graphconditions.An ANOVA on theresponseaccuracy
data,however, revealeda significanteffect of question
type F(2, 239) = 28.187,p � 0.01, MSE = 0.123indi-
catingthat sometypesof questionweregenerallymore
demandingthanothers.Thenatureof this effect canbe
clearlyseenin Figure3. In bothgraphconditions,more
errorsweremadecarryingout theDV–DV taskthanthe
othertwo while theIV–DV taskwasthemostaccurately
respondedto.

While thereis little variability in the accuracy of re-
sponsesbetweenconditions,the time taken by partici-
pantsin the two groupsto make theseresponsesvaries
significantly both betweenconditionsand within each
condition accordingto the type of questionbeing at-
tempted.An ANOVA ontheRT datarevealedsignificant
effectsof questiontype F(2, 239) = 18.447,p � 0.01,
MSE = 4974038,andgraphnumberF(1, 239)= 5.76,p

� 0.05,MSE = 1223302andsignificantinteractionsbe-
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Figure3: Plotsof meancorrectresponsesandRTsfor functionandparametricgraphconditionsfor eachquestiontype

tweengraphtypeandquestiontypeF(2, 239)= 36.314,
p � 0.01,MSE = 9791754andbetweengraphtype,ques-
tion typeandgraphnumberF(2, 239)= 3.913,p � 0.05,
MSE = 466423.Thenatureof theseeffectsandcomplex
interactionsis apparentin Figure3. In bothconditions,it
takesapproximately5 s to readthequestionandretrieve
therequiredDV valuefor a givenyear. However, to car-
ry out thereversetaskandfind theyearcorrespondingto
agivenDV valuetakes,onaverage,over1 s longerwhen
usingthefunctiongraphthanwhenusingtheparametric
graph.A similar disparityin RT is foundwhenthetask
is to retrieve a DV valuecorrespondingto a given DV
value.

In both conditions,errorsareevenly distributedover
experimenttrials. The meanproportionof correct re-
sponsesover thefirst 10 trials for functionandparamet-
ric graphsis .91and.94respectively. Over thecourseof
theexperiment,themeanRT for bothconditionsreduced
by approximately2 s, theratesof thesereductionsbeing
describedby power functionswith similar slopes.

To analysethe resultsof the experiment,the display
wasdividedinto five regionsin a mannersimilar to that
employed by Carpenterand Shah(1998). The region-
s, shown in Figure4, werethe samefor all four graphs
anddefinethe relevant units of the displayfor the fixa-
tion analysis:question, graph pattern, x-axis, y-axis, and
answer buttons.

Thepatternof RT datafrom theexperimentcanbeex-
plainedby theGBR modelusingtheoptimalityassump-
tionsandfixationpredictionsoutlinedabove. Thesignif-
icant increasein time to answerDV–IV questionsusing
the function graphsis due to the fact that in the para-
metricgraphs,thetargetvaluesarepositionednext to the
given locationso that the additionalcognitive andper-
ceptualprocessesrequiredto fixateonthetargetlocation
arenot required.In thiscasetheoptimalsequenceof fix-

ationsis predictedto be: question, axis, graph, answer
whereasthat for the function graphsis: question, axis,
graph, axis, answer.

TheDV–DV questionsareof thesametypeastheex-
amplequestiongiven in the introductionand so the s-
maller meanRT in the parametricconditioncanbe ac-
countedfor in termsof thepreviousexplanation,name-
ly, thatto reachthetargetlocationin thefunctiongraphs
requiresanadditionalsaccadeandfixation andtheasso-
ciatedcognitiveoperationto retrievea furtherstepin the
process.So, theoptimal sequenceof fixationsfor para-
metric graphsis predictedto be: question, axis, graph,
axis, answer, whereasthat for the function graphsis:
question, axis, graph, graph, axis, answer.

For the IV–DV questions,the relative rapidity with
whichfunctiongraphusersareableto answertheseques-
tions comparedto othersis dueto the fact that they are
ableto rapidly identify the givenyearon the x axisand
thencarryout thetwo stepprocessof identifying thetar-
getpointon thecorrectline andretrieving its valuefrom
they axis.Theoptimalsequenceof fixationsfor thispro-
cedureis: question, axis, graph, axis, answer. Thedata
show that this proceduretakesapproximatelythe same
time asthe correspondingprocedurefor the parametric
graphswhich requiresthesearchof thegivenyearin the
graphand the retrieval of its value from the target ax-
is, theoptimalfixationsequenceof thisprocedurebeing:
question, graph, axis, answer.

Theresultsof themainexperimentshow that,despite
thenumeroussimilaritiesthatexist betweenfunctionand
parametricgraphs,thetypeof graphusedcansignificant-
ly affect the time it takesto retrieve the requiredinfor-
mationandthat this effect is dependenton thenatureof
task.Theexperimentalsoshowedthattheprobabilityof
retrieving incorrectinformationdependson specificde-
tails of thetask,i.e. which variableis givenin theques-



tion andwhich variablevalueis beingsought.TheGBR
modelexplains thesedifferencesin termsof a detailed
taskanalysisandtheassumptionof anoptimalscanpath
throughthegraphto thetargetlocation.

Eye movement data To analysetheeyemovementda-
ta, the raw x andy co-ordinatedatafrom the eye track-
er were aggregatedinto gazes—sequencesof consecu-
tive fixationson a displayregion unbrokenby fixations
in otherregions(CarpenterandShah,1998). The min-
imum durationof a gazewasdefinedas100 ms asthis
valuewassufficiently large to eliminatemostsaccades,
shortfixationsandnoisein thedatawhile still capturing
all therelevantfixations.Thedatafrom eachparticipant
wereanalysedso that gazesof 100 ms or morein each
region wererecordedanda scanpathconsistingof the
sequenceof gazesfor eachquestionwasproduced.

Several interestingpatternsemerge from the analysis
of thesegazesequences.Firstly, the averagenumber
of transitionsbetweenregions for all questionstypes,
shown in Table1, is consistentlygreaterthan the opti-
mal numberpredictedby theGBR model.For all of the
questiontypes,andirrespective of thetypeof graphbe-
ing used,participantsmade,on average,betweenthree
andfour additionaltransitionsin orderto reachthesolu-
tion. In themajorityof cases,theseadditionaltransitions
were betweenthe axesand the graphand the question
andthegraphasparticipantsrarelyfixateduponthean-
swerregion until enteringan answer. In 31% of all tri-
als,participantsmadeat leastoneadditionalgazeon an
axis after having previously fixatedupon that axis and
thenthegraph.A detailedvisualanalysisof theraw eye
movementdatafor thesetrials revealedthatin mostcas-
es,participantshadfixatedupona givenaxis valueand
thenproceededto theplot point in thegraphcorrespond-
ing to thatvalue.Uponreachingthispoint,anadditional
saccadewasthenmadeto theaxisto checkthatthevalue
wasin line with thepoint.

Graph Pattern

Answer
Question

Y
 A

xi
s

X Axis

Figure4: Fiveregionsof thedisplaydefinedfor thefixa-
tion analysis

Fromtheeye movementdataanalysis,it is clearthat,
althoughthe participantsdid, in general,solve the vari-
ousproblemsby following theoptimalgazepathschar-
acterisedby the GBR model, they madeconsiderably
more gazesthan is predictedby the model. Although
it is likely that many of theseadditionaltransitionsare

dueto checkingproceduresof thesortoutlinedabove, it
is possiblethat commonpatternsin the gazesequences
indicatelimitationsof workingmemoryor problemsolv-
ing strategiesadoptedby graphusers. For example,in
62.7%of all trials andirrespective of the questiontype
beingattempted,participantsmadeat leastoneaddition-
al gazeon thequestionafterhaving initially gazedupon
the questionand subsequentlythe graph. This pattern
suggeststwo possibleexplanations.Thefirst is thatpar-
ticipantshave initially encodedthethreeelementsof the
questionbut arerequiredto re-encodecertainpartsof it
thatareunableto beretrievedfrom workingmemorydue
to the cognitive load involved in carryingout the prob-
lem solving procedures.The secondexplanationis that
participantshave adopteda strategy by which only the
initial partof thequestionis encodedandthesecondpart
is encodedonly whenrequired.Accordingto this expla-
nation, in the majority of trials, participantseffectively
breaktheprobleminto two sections,thefirst to getto the
givenlocationin thegraph,thesecondto movefrom the
givenlocationto thetargetlocationcorrespondingto the
solution. It is alsopossiblethat the observed gazepat-
ternsmay result from a combinationof thesefactorsif,
during the courseof the experiment,participantsadop-
t the above strategy in orderto minimisethe numberof
questionelementretrieval failures.

Table1: Meannumberof gazetransitionsbetweendis-
play regions for Function and Parametricgraphsob-
served(Obs)for eachquestiontype,andtheoptimal(Op-
t) numberpredictedby theGBRmodel

Question Function Parametric
Type Obs Opt Obs Opt

DV–DV 7.66 5.0 8.21 5.0
IV–DV 7.86 5.0 8.90 4.0
DV–IV 8.05 5.0 8.05 4.0

Discussion
Reasoningwith Cartesiangraphsinvolvesa complex in-
teractionbetweenthe perceptualandcognitive abilities
of thereasoner, thevisualpropertiesof thegraph,andthe
specifictaskrequirements.Modelsof graph-basedrea-
soning(e.g. Lohse,1993;Peebleset al., 1999,submit-
ted)have largely focussedonproviding adetailedanaly-
sisof thetaskin relationto thethevisualpropertiesof the
graphandexplainingdifferencesin performancein terms
of the interactionof thesetwo elements.Thesemodels
have beensuccessfulin accountingfor variationsin ag-
gregateRT databetweenusersof differentgraphtypes
by characterisinganoptimalsequenceof fixationsbased
on thetaskanalysisthatwill achievethegoal.Errordata
is alsoexplainedby hypothesisingsetsof plausibledevi-
ationsfrom theseoptimalsequences.

To producedetailedcognitive modelsof graph use
groundedin cognitive theory, however, then the third,



cognitiveelementof thetriadmustbefully incorporated
into theseaccounts.Theexplanatoryandpredictivepow-
er of cognitive modelsin complex interactive domain-
s comparedto cognitive taskanalyseshasbeendemon-
strated(e.g.Gray, John,& Atwood,1993). By incorpo-
ratingsuchcognitive factorsastheuser’s knowledge,s-
trategiesandworkingmemorycapacityinto graph-based
reasoningmodels,theexplanatoryandpredictive power
of thesemodelscanbeincreasedandgreaterinsightsinto
the processesandfactorsaffecting thesecomplex inter-
actionscanbeobtained.

Although the standardexperimentalvariablesof RT
and error ratesprovide someinformation upon which
to formulateand test cognitive hypotheses,much rich-
er data is obtainedwhen eye movementsare recorded
duringtheexperiment.In suchavisualdomainasgraph-
basedreasoning,eyemovementsareanimportantsource
of information regardinghow peopleacquireand pro-
cessgraphicalinformationandthestrategiesthey adop-
t wheninterpretingandworking with graphs. This has
beendemonstratedby CarpenterandShah(1998)in their
analysisof eyemovementsin graphcomprehensiontasks
which revealedthe cyclic natureof the patternrecogni-
tion andcognitive processesinvolved in graphcompre-
hension.

In contrast,thepresentexperimentprovidesanexam-
ple of how eye movementdatacanbeusedin theanaly-
sisof moregoaldirectedgraph-basedreasoningtasksin
which the aim of the interactionis not to simply under-
standthegraphbut to retrieve specificinformationfrom
it. The resultsof the main experimentshowed that the
ability of peopleto retrieve the sameinformation from
computationallyinequivalentbut visually similar Carte-
siangraphscanbe significantlyaffectedby the type of
graphused.A plausibleexplanationof thesedifferences
canbeprovidedby theGBR modelin termsof ananal-
ysis of the taskandan assumptionof the optimal scan
path throughthe graphto the target locationrepresent-
ing the problemsolution. Theseresultssupportandex-
tendthefindingsof previousexperiments(Peebleset al.,
1999,submitted)andprovidefurtherevidencethattheG-
BR modelcanaccountfor datathatcannotbeexplained
solelyin termsof thevisualpropertiesof thegraphs.

The actualscanpathsrevealedby the eye movement
studyshow, however, that theseoptimality assumption-
s serve asan approximationthat canbe appliedto data
aggregatedover experimentalconditionsbut which tend
to obscurethe detailedsequencesof saccadesmadeby
individuals. It is clear that further researchis required
to investigatethecognitive factorsunderlyingthesesac-
cadepatternsin greaterdetail. It is also clear, howev-
er, thatcognitive modelsof graph-basedreasoningmust
incorporatemoresophisticatedcognitive mechanismsin
orderto accountfor thesefindings.
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