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Abstract

Modelsof graph-basedeasoninghave typically account-
edfor thevariationin problemsolving performancevith

different graphtypesin termsof a task analysisof the
problemrelative to the particularvisualpropertieof each
graphtype(e.g.Lohse,1993;PeeblesCheng& Shadbolt
1999,submitted).This approachasbeenusedto explain

responsdime and accurag differencesin experimental
situationswvheredataareaveragedver experimentakton-
ditions. A recentexperimentis reportedin which par

ticipants’ eye movementsvererecordedwhile they were
solvingvariousproblemswith differentgraphtypes.The
eye movementdatarevealedfine grainedscanningand
fixation patternsthat are not predictedby standardtask
analyticmodels. From theseeye-mosementstudiesit is

amguedthatthereis amissinglevel of detailin currenttask
analyticmodelsof graph-basedeasoning.

Introduction

The ability to retrieve and reasonaboutinformationin
graphsanddiagramsis a skill which requiresthe com-
plex interactionof threeprimary elementsthe cognitive
abilitiesof theuser the graphicalpropertieof the exter-
nalrepresentatiorgndtherequirementsf thetask. Sev-
eralframenorkshave beenproposedo understandnter-
active behaviour of this sort. In the areaof graph-based
reasoningPeeblesCheng& Shadbol{1999,submitted)
have proposedhe GBR modelincorporatingthesethree
factors. Gray (2000; Gray & Altmann, 2000) haspro-
posedthe Cognition-Task-Artifact triad within which to
characterisénteractive behaiour in the relatedcontex-
t of human-computeinteraction. This latter framework
hasrecentlybeenfurther developedby Byrne (in press)
to encompastheperceptuahndmotorcapabilitiesf the
user termedEmbodied Cognition.

The main aim of thesemodelsand frameworks s to
aid the developmentof detailedcognitive modelsof the
cognitive, perceptuahndmotorprocessesvolvedin the
tasksunderstudy Constructingcognitive processmod-
elsthataregroundedn cognitivetheoryallowstheincor-
porationandtestingof relevantcognitive factorssuchas
the requireddeclaratve and proceduralknowledge, the
stratgyiesadoptedandthe limitations of working mem-
ory. This approackcontrastawith that of cognitive task
analysis which simply specifiesthe cognitive stepsre-
quiredto performthetask.

In the areaof graph-basedeasoning,Lohse (1993)
developedthe GOMS classof task analysistechniques
(Card,Moran, & Newell, 1983; Olson & Olson, 1990;
Johné& Kieras,1994) by including additionalcognitive
parameterto produceacognitve modelwhich simulates
how peopleanswercertainquestionsusing line graph-
s, bar graphsandtables. Lohses modelwas basedon
the assumptiorthat graphknowledgeis representecs
graphschemagPinker, 1990)which allow the recogni-
tion andinterpretationof differentclasseof graph. In-
cludedin a graphschemaaretask-specificulesthatde-
fine sequencesf proceduredor retrieving information
from the graphgiven a particularinformation-retrieval
task.Lohses modelpredictecthetime to answeragiven
questionby assuminghat peoplescannedhe graphical
representation a mannerwhich producedan optimal
sequencef eye movementghat minimizedthe number
of saccadeandfixationsto reachthe targetlocation.

In the Graph Based Reasoning (GBR) model(Peebles
etal., 1999,submitted) a similar setof assumptionsvas
employedto explain severalresultsof experimentsnves-
tigatingthefactorsaffectingreasoningvith information-
ally equivalent (Larkin & Simon, 1987) graphsof dif-
ferenttypesfrom the samegeneralclass;Cartesianco-
ordinate(x—y) graphs.Figurel shavsthetypesof graph
usedin our experiments.The graphsareinformational-
ly equivalentasthe both encodethe sametwo functions
betweentime andthe variablesA andB. The Function
graphin Figure larepresentsime on the x axisandthe
A andB variableson they axiswhereaghe Parametric
graphin Figure 1b representshe A andB variableson
the x andy axesrespectiely while time is plottedasa
parameterizingariablealongthe curve.

Althoughthe two graphsassigndifferentvariablesto
their axes, they would be consideredsimilar in sever-
al importantways identified in the literature. Firstly,
both are Cartesian graphsusinga two dimensionalco-
ordinatesystemto relatequantitiesandrepresenimagni-
tudes.lt is likely, thereforethatbothgraphsnvoke sim-
ilar generalschemasandinterpretive processegPinker,
1990; Kosslyn, 1989). Secondly both are simple line
graphsandconsequentlgharemary of thesamegeneral
interpretverules.Furthermoreit is lik ely thatinferences
from bothgraphsareinfluencedy the samesetof bias-
es(Carpenter& Shah,1998; Gattis & Holyoak, 1996;
Shah& Carpenter1995). Finally, the graphsareinfor-



mationallyequivalentasthey have beengeneratedrom
the samedataset.
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Figurel: Informationallyequivalentfunction andpara-
metricgraphs

Despitethesesimilarities, however, in previous ex-
perimentswe have demonstratedhat for a wide range
of questionsparametricand function graphusersdiffer
substantiallyin boththetime it takesto respondandin
their ratesand patternsof errors (Peebleset al., 1999,
submitted). The GBR modelhasbeensuccessfuin ex-
plaining why such differencesoccur with thesegraph
typesdespitetheir mary commonproperties.Using the
graphsin Figure1 asan example,we foundin our ex-
perimentsthat when participantswere asked to retrieve
thevalueof A whenthevalueof B is 1, responsefrom
parametriggraphusersveresignificantlymorerapidand
accuratehanthosefrom the function graphusers. The
GBR model explains thesedifferencesin termsof the
optimal visual scanpath the usersfollow throughthe
graph. The variability in responsess apparenfrom the
sequencef hypothesisedaccades thetwo graphs.In
Figurela,the sequenc®f saccadess m, n, o, whereas
in Figure 1b the processrequiresjust two saccadesas
shavn by theline sequence, b. The higherprobability
of an erroneousesponsaising the function graphwas
explainedby the additionalnumberof possibleincorrect
saccadethatthefunctiongraphuseramay make.

Although theseoptimality assumptionsare usefulin
thatthey provide an accountof differencesn meanRT
and error datafor the differentgraphconditions,it re-
mains an open question,however, whetherthey gloss
overimportantcognitive andstrateyic factorsat anindi-
viduallevel. For example graphuseranayberequiredo
re-encodeétemsof informationthat have beenlost from
working memoryduringthe courseof processingln ad-
dition, giventhatgraphusersareawarethatinformation
is availablefor re-scanningtall times,it is possiblethat
they may make a stratgic decisionto tradeoff addition-
al saccade$or areductionin working memoryload. If
thisis thecasethenthecurrentanalysesnaymissoutan
importantlevel of detailwhich sheddight on the cogni-
tive load thatthesetasksareimposingandthe stratejies

by which graphusersoptimisetheir retrieval procedures.

Furthermorejnformationat this level of detailwill pro-
vide valuableconstraintson cognitive modelsof these
reasoningprocesses.

To addresstheseissues,we devised an experimen-
t in which participantswere asled to solve somesim-
ple tasksusingdifferentgraphtypesof the samegeneral
classwhich, basedon the optimality assumptionsbove,
wouldbepredictedo producedifferentresponsgattern-
s. Thesepredictionscanbe elaboratedn termsof anop-
timal sequencef fixations requiredto solve the given
task. To testtheseoptimality assumptionsand predic-
tions,therefore someof theparticipantseye movements
would berecordedasthey solvedthe problems.

Oneof themostcommontaskscarriedoutwhenusing
agraphis to elicit the valueof onevariablecorrespond-
ing to a given value of another This taskwaschosen
for the experimentasit is so widely performedandbe-
causethe procedurednvolvedarerelatively simple. The
knowledgerequiredto carry out thesetasksis primar
ily the sequencef fixationsrequiredto reachthe giv-
en location in the graphrepresentinghe given value of
thegivenvariableandthenfrom thereto thetarget loca-
tion representinghe correspondingalueof therequired
variable.In previousresearchhowever, we have discor-
eredthatthe effectivenes®f aparticulargraphicalrepre-
sentatiorfor retrieving therequiredinformationdepends
onthedetailsof thetask,i.e. which variableis givenand
whichis sought(Peeblestal., 1999,submitted).

Experiment
Method

Participants and materials Forty-four undegraduate
and postgraduat@sychologystudentsrom the Univer-
sity of Nottinghamwere paid £3 to take partin the ex-
periment.The experimentwascarriedout usingtwo PC
computerswith 17 in displays. A further four partici-
pantsfrom the samepopulationwere paid £5 to partic-
ipatein the eye-movementstudy The eye tracker em-
ployedin theexperimentwasanSMI iView systenusing
aREDII desktoppupil/corneateflectancerackerwith a
samplingrateof 50 Hz. This systemrecordseye move-
mentsat20 msintervalsremotelyfrom apositionin front
of the experimentalcomputerdisplay Althoughthesys-
temcontainsanautomaticheadmovementcompensation
mechanismto furtherreducerecordingerrordueto head
movementparticipantsheadsvererestrainedn aframe
fixedto thetable.

The stimuli usedin the experimentwerefour graphs,
shown in Figure 2, depictingthe amount(in millions of
units) of UK offshoreoil andgasproductionbetweent-
wo decades]970-197%nd1980-1989Thegraphsand
datasetsweredesignedsothatthe independentariable
(IV—year) and the two dependenvariables(DVs—ail
andgas)all hadtenvaluesrangingfrom 0 to 9 andthat
thefull rangeof thesevalueswasrepresentefly thedata
pointsfor oil andgasin bothdecades.

Participantswere seatedapproximately80 cm from
the 72 ppi computerdisplay The graphswere15.5¢cm
squargincludingaxislabels),correspondingo approxi-
mately11.1° of visualangle.Thecharactersepresenting
variablevalueswere0.4 cm high (approximately.21° of
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Figure2: FunctionandParametricGraphsUsedin the Experiment

visualangle)while thosefor theaxislabelsandquestion-
swere0.4 cmand0.5cm high (approximately.29* and

.36° of visualangle)respectiely. Axis tickswerespaced
1.5cm (approximatelyl.1° of visualangle)apart.

The full rangeof valuesfor eachof the variableswas
usedto producel20 questions.Thesequestionsall had
the samebasicstructureand were of threetypes; DV-
DV andDV-IV questionsggave the value of one of the
dependentariablesandrequiredthe correspondingal-
ue of the secondDV or the IV respectiely, while 1V—
DV questionggave a value of the independentariable
andrequiredthecorrespondin@®V valueto beproduced.
Therewere 20 of eachof questiontype andparticipants
wererequiredto answerall 60 for both decadegraphs,
producingatotal of 120 questions.

Design and Procedure The experimentwas a mixed
designwith onebetween-subjectgariable,(graphtype)
and two within-subjectsvariables (questiontype and
graphnumber).Participantswererandomlyallocatedto
one of the two graphtype conditionsproducinga total
of 22 participantsper conditionin the main experiment
andtwo participantsper conditionin the eye movement
study During the experiment,the two graphswerepre-
sentedalternatelywith the first graphbeing selectedat
random.On eachtrial, a graphwould be presentedvith
a questionabove it. The questionawere presentedn a
form so that the minimum amountof text was shavn.
For example thequestionGAS = 2, OIL = ? requireghe
value of oil whengasis equalto 2 to be found. When
a yearvaluewasrequired,the final itemsof text in the
guestionwould be YEAR = 1977 or YEAR = 198? de-
pendingon the currentgraphbeingpresentedndpartic-
ipantswereinstructedbeforehando enteronly thefinal
numberof the target year Eachelementof the ques-
tion wascenteredn a co-ordinatepointwhich remained
invariantthroughoutthe experimentwith approximately
3.5cm (approximately2.5° of visualangle)betweerthe
centresof adjacentext items. Togetherwith the graph
and question,a button labelled Answer appearedn the
top right cornerof the window. Participantswere in-
structedto click on this answerbutton as soonasthey
hadobtainedhe answetto the question.Responséimes
wererecordedrom the onsetof a questionto the mouse

click ontheanswetbutton. Whenthis buttonwasclicked
upon,thebutton,graphandquestionwereremovedfrom
thescreerandacircle of buttonslabelledclockwisefrom
0 to 9 appearedatenteredon the answerbutton. Partici-
pantsenteredtheir answersby clicking the appropriate
numberbutton. Whenthe numberbutton was clicked,
thenext graph,questionandanswerbuttonappearean
thescreen.This methodwasdevisedsothatparticipants
in the eye movementstudywould not have to take their
eyesaway from thescreerto enteranswersaswould be
thecaseif usingthekeyboard.

Beforestartingthe experiment participantsvere giv-
en as muchtime asnecessaryo becomefamiliar with
thetwo graphsin their conditionandwerealsoprovided
with an opportunityto practiceenteringnumbersusing
thecircle of numberbuttonsandthe mouse Participants
wereaskedto answerthe questionsasrapidly andasac-
curatelyaspossible

Results

Response accuracy and latency data Theproportion-
s of correctresponsegnd meanresponsdimes (RTS)
for eachof the questiontypesfor thetwo graphsin each
conditionarepresentedn Figure3. Confirmingtherel-
ative simplicity of the experimentatasks thedatareveal
highlevelsof accurag for all threequestiortypesin both
graphconditions.An ANOVA ontheresponseccurag
data, however, revealeda significanteffect of question
type F(2, 239) = 28.187,p < 0.01, MSE = 0.123indi-
catingthat sometypesof questionweregenerallymore
demandinghanothers. The natureof this effect canbe
clearly seenin Figure 3. In both graphconditions,more
errorsweremadecarryingout the DV-DV taskthanthe
othertwo while thelV-DV taskwasthe mostaccurately
respondedo.

While thereis little variability in the accurag of re-
sponsedetweenconditions,the time taken by partici-
pantsin the two groupsto make theseresponsesaries
significantly both betweenconditionsand within each
condition accordingto the type of questionbeing at-
tempted An ANOVA ontheRT datarevealedsignificant
effects of questiontype F(2, 239) = 18.447,p < 0.01,
MSE = 4974038,andgraphnumberF(1, 239)=5.76,p
< 0.05,MSE = 1223302andsignificantinteractionsoe-
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Figure3: Plotsof meancorrectresponseandRTsfor functionandparametriggraphconditionsfor eachquestiortype

tweengraphtype andquestiontype F(2, 239)= 36.314,
p < 0.01,MSE =9791754andbetweergraphtype,ques-
tion typeandgraphnumber(2,239)=3.913,p < 0.05,
MSE = 466423.Thenatureof theseeffectsandcomple
interactionss apparenin Figure3. In bothconditions,it
takesapproximatelyb sto readthe questionandretrieve
therequiredDV valuefor a givenyear However, to car
ry outthereversetaskandfind theyearcorrespondingo
agivenDV valuetakes,onaveragepverl1 slongerwhen
usingthefunctiongraphthanwhenusingthe parametric
graph. A similar disparityin RT is found whenthe task
is to retrieve a DV value correspondingo a given DV
value.

In both conditions,errorsare evenly distributed over
experimenttrials. The meanproportionof correctre-
sponse®ver thefirst 10 trials for functionandparamet-
ric graphss .91and.94 respectiely. Over the courseof
theexperimentthemeanRT for bothconditionsreduced
by approximately2 s, theratesof thesereductionsbeing
describedy power functionswith similar slopes.

To analysethe resultsof the experiment,the display
wasdividedinto five regionsin a mannersimilar to that
employed by Carpenterand Shah(1998). The region-
s, shavn in Figure4, werethe samefor all four graphs
anddefinethe relevant units of the displayfor the fixa-
tion analysis:question, graph pattern, x-axis, y-axis, and
answer buttons.

Thepatternof RT datafrom the experimentcanbeex-
plainedby the GBR modelusingthe optimality assump-
tionsandfixation predictionsoutlinedabove. Thesignif-
icantincreasdn time to answerDV-IV questionausing
the function graphsis dueto the fact thatin the para-
metricgraphsthetargetvaluesarepositionedhext to the
given location so that the additionalcognitive and per
ceptualprocesserequiredto fixate onthetargetlocation
arenotrequired.In this casethe optimalsequencef fix-

ationsis predictedto be: question, axis, graph, answer
whereaghat for the function graphsis: question, axis,
graph, axis, answer.

The DV-DV questionsareof the sametype asthe ex-
ample questiongiven in the introductionand so the s-
maller meanRT in the parametriccondition canbe ac-
countedfor in termsof the previous explanation,name-
ly, thatto reachthetargetlocationin thefunctiongraphs
requiresanadditionalsaccadeandfixation andthe asso-
ciatedcognitive operatiorto retrieve a furtherstepin the
process.So, the optimal sequencef fixationsfor para-
metric graphsis predictedto be: question, axis, graph,
axis, answer, whereasthat for the function graphsis:
question, axis, graph, graph, axis, answer.

For the IV-DV questions,the relative rapidity with
whichfunctiongraphusersareableto answettheseques-
tions comparedo othersis dueto the factthatthey are
ableto rapidly identify the givenyearon the x axisand
thencarryoutthetwo stepprocesof identifyingthetar-
getpointonthecorrectline andretrieving its valuefrom
they axis. Theoptimalsequencef fixationsfor this pro-
cedureis: question, axis, graph, axis, answer. The data
shaw that this proceduretakes approximatelythe same
time asthe correspondingprocedurefor the parametric
graphswhich requireshe searctof thegivenyearin the
graphandthe retrieval of its value from the target ax-
is, the optimalfixation sequencef this proceduréeing:
question, graph, axis, answer.

The resultsof the main experimentshow that, despite
thenumerousimilaritiesthatexist betweerfunctionand
parametrigraphsthetypeof graphusedcansignificant-
ly affect thetime it takesto retrieve the requiredinfor-
mationandthatthis effectis dependenbn the natureof
task. Theexperimentalsoshovedthatthe probability of
retrieving incorrectinformationdepend®n specificde-
tails of the task,i.e. which variableis givenin the ques-



tion andwhich variablevalueis beingsought. The GBR
model explains thesedifferencesn termsof a detailed
taskanalysisandthe assumptiorof anoptimalscanpath
throughthe graphto thetargetlocation.

Eye movement data To analyse¢heeye movementda-
ta, theraw x andy co-ordinatedatafrom the eye track-
er were aggrayatedinto gazes—sequencesf consecu-
tive fixationson a display region unbroken by fixations
in otherregions (Carpenterand Shah,1998). The min-
imum durationof a gazewas definedas 100 ms asthis
valuewas sufficiently large to eliminatemostsaccades,
shortfixationsandnoisein the datawhile still capturing
all therelevantfixations. The datafrom eachparticipant
were analysedso that gazesof 100 ms or morein each
region wererecordedanda scanpath consistingof the
sequencef gazedor eachquestionwasproduced.

Severalinterestingpatternsemepge from the analysis
of thesegazesequences.Firstly, the averagenumber
of transitionsbetweenregions for all questionstypes,
shavn in Table 1, is consistentlygreaterthanthe opti-
mal numberpredictedby the GBR model. For all of the
guestiontypes,andirrespectve of the type of graphbe-
ing used,participantsmade,on average,betweenthree
andfour additionaltransitionsin orderto reachthe solu-
tion. In the majority of casestheseadditionaltransitions
were betweenthe axes and the graphand the question
andthe graphasparticipantsrarely fixateduponthe an-
swerregion until enteringan answer In 31% of all tri-
als, participantamadeat leastoneadditionalgazeon an
axis after having previously fixated upon that axis and
thenthegraph.A detailedvisualanalysisof theraw eye
movementdatafor thesetrials revealedthatin mostcas-
es, participantshadfixatedupona given axis valueand
thenproceededo the plot pointin thegraphcorrespond-
ing to thatvalue.Uponreachinghis point, anadditional
saccadaevasthenmadeto theaxisto checkthatthevalue
wasin line with the point.

uestion
Q Answer

Y Axis

Graph Pattern

X Axis

Figure4: Five regionsof thedisplaydefinedfor thefixa-
tion analysis

Fromthe eye movementdataanalysis,it is clearthat,
althoughthe participantsdid, in general,solve the vari-
ousproblemsby following the optimal gazepathschar
acterisedby the GBR model, they made considerably
more gazesthan is predictedby the model. Although
it is likely thatmary of theseadditionaltransitionsare

dueto checkingprocedure®f thesortoutlinedabove, it
is possiblethat commonpatternsin the gazesequences
indicatelimitationsof working memoryor problemsolv-
ing stratgies adoptedby graphusers. For example,in
62.7%of all trials andirrespectve of the questiontype
beingattemptedparticipantsnadeat leastoneaddition-
al gazeon the questionafter having initially gazedupon
the questionand subsequentlthe graph. This pattern
suggestswo possibleexplanations.Thefirst is thatpar
ticipantshaveinitially encodedhethreeelementof the
questionbut arerequiredto re-encodeertainpartsof it
thatareunableto beretrievedfrom workingmemorydue
to the cognitive load involvedin carryingout the prob-
lem solving proceduresThe secondexplanationis that
participantshave adopteda stratgyy by which only the
initial partof thequestionis encodedandthe secondpart
is encodednly whenrequired.Accordingto this expla-
nation, in the majority of trials, participantseffectively
breakthe probleminto two sectionsthefirst to getto the
givenlocationin the graph,the secondo move from the
givenlocationto thetargetlocationcorrespondingo the
solution. It is also possiblethat the obsened gazepat-
ternsmay resultfrom a combinationof thesefactorsif,
during the courseof the experiment,participantsadop-
t the above stratgy in orderto minimisethe numberof
questiorelementretrieval failures.

Table1: Meannumberof gazetransitionsbetweendis-
play regions for Function and Parametricgraphsob-
sened(Obs)for eachquestiortype,andtheoptimal(Op-
t) numberpredictedby the GBR model

Question  Function Parametric

Type Obs Opt Obs Opt

Dv-Dv 7.66 5.0 8.21 5.0

Iv-DV  7.86 5.0 8.90 4.0

DV-IV 8.05 5.0 8.05 4.0
Discussion

Reasoningvith Cartesiargraphsinvolvesa complex in-
teractionbetweenthe perceptuabnd cognitive abilities
of thereasonetthevisualpropertiesf thegraph,andthe
specifictaskrequirements.Models of graph-basedea-
soning(e.g. Lohse,1993; Peeblest al., 1999, submit-
ted)have largely focussedn providing a detailedanaly-
sisof thetaskin relationto thethevisualpropertieof the
graphandexplainingdifferencesn performancén terms
of the interactionof thesetwo elements.Thesemodels
have beensuccessfuln accountingfor variationsin ag-
gregateRT databetweenusersof differentgraphtypes
by characterisingn optimal sequencef fixationsbased
onthetaskanalysighatwill achiesethegoal. Error data
is alsoexplainedby hypothesisingetsof plausibledevi-
ationsfrom theseoptimalsequences.

To producedetailed cognitive modelsof graph use
groundedin cognitive theory however, then the third,



cognitive elemenbf thetriad mustbefully incorporated
into theseaccountsTheexplanatoryandpredictive pow-
er of cognitive modelsin comple interactve domain-
s comparedo cognitive taskanalysedhasbeendemon-
strated(e.g.Gray, John,& Atwood, 1993). By incorpo-
rating suchcognitive factorsasthe users knowledge,s-
trategiesandworking memorycapacityinto graph-based
reasoningnodels,the explanatoryandpredictive power
of thesemodelscanbeincrease@ndgreateiinsightsinto
the processesndfactorsaffecting thesecomplex inter-
actionscanbe obtained.

Although the standardexperimentalvariablesof RT
and error ratesprovide someinformation upon which
to formulate and test cognitive hypothesesmuch rich-
er datais obtainedwhen eye movementsare recorded
duringthe experiment.In suchavisualdomainasgraph-
basedeasoningeye movementsareanimportantsource
of information regardinghow peopleacquireand pro-
cessgraphicalinformationandthe strat@iesthey adop-
t wheninterpretingandworking with graphs. This has
beendemonstratetly CarpenteandShah(1998)in their
analysiof eye movementsn graphcomprehensiotasks
which revealedthe cyclic natureof the patternrecogni-
tion and cognitive processe#volvedin graphcompre-
hension.

In contrastthe presenexperimentprovidesan exam-
ple of how eye movementdatacanbe usedin the analy-
sisof moregoal directedgraph-basedeasoningasksin
which the aim of the interactionis not to simply under
standthe graphbut to retrieve specificinformationfrom
it. The resultsof the main experimentshaved that the
ability of peopleto retrieve the sameinformation from
computationallyinequivalentbut visually similar Carte-
siangraphscan be significantly affectedby the type of
graphused.A plausibleexplanationof thesedifferences
canbe provided by the GBR modelin termsof ananal-
ysis of the taskand an assumptiorof the optimal scan
paththroughthe graphto the targetlocationrepresent-
ing the problemsolution. Theseresultssupportand ex-
tendthefindingsof previousexperimentgPeeblestal.,
1999,submittedandprovidefurtherevidencethatthe G-
BR modelcanaccountfor datathatcannotbe explained
solelyin termsof the visual propertiesof thegraphs.

The actualscanpathsrevealedby the eye movement
study show, however, that theseoptimality assumption-
S sene asan approximationthat can be appliedto data
aggrejatedover experimentalconditionsbut which tend
to obscurethe detailedsequencesf saccadesnadeby
individuals. It is clearthat further researchs required
to investigatethe cognitive factorsunderlyingthesesac-
cadepatternsin greaterdetail. It is also clear howev-
er, thatcognitive modelsof graph-basedeasoningnust
incorporatemore sophisticateadognitve mechanismn
orderto accountor thesefindings.
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