The effective communication of risk:

Insights from cognitive science

David Peebles

December 18, 2023

University of Huddersfield

Centre for Cognition and Neuroscience

Cognitive science

- Multidisciplinary scientific study of the mind
- Whole spectrum of phenomena from neuroscience to social cognition
- Key assumption: Information processing underlies intelligent behaviour

Effective risk communication saves lives, reduces harm

Fukushima, 2011: Delay and ambiguity in risk communication led to public confusion, panic, and lack of trust Covid-19: US CDC's "Flatten the curve" message and infographic conveyed complex information effectively

- Understanding human factors crucial when designing effective communication of risk
- Three examples:
 - ▶ How people interpret different representations of risk
 - Probabilities v natural frequencies
 - Relative v absolute risk
 - How people's attitude to risk depends on their perception of the situation
- Level: General audience no assumption of familiarity with ideas

The danger of talking about probabilities

The problem with probabilities

- People misinterpret risks presented as percentages or probabilities (Gigerenzer et al., 2005)
- People prescribed prozac interpreted "30-50% chance of developing a sexual problem" as that something would go awry in 30-50% of their sexual encounters
- ▶ People interpret "a 30% chance of rain tomorrow"
 - ▶ It's going to rain for 30% of the time
 - It's going to rain in 30% of the area
 - Correct interpretation: when weather conditions are like today, in 3 out of 10 cases there will be (at least a trace of) rain tomorrow

Gigerenzer et al. (2007) tested 160 gynaecologists

- ▶ p(woman has breast cancer) = 1%
- ▶ Woman **has** breast cancer, p(positive test) = 90%
- ▶ Woman **does not** have breast cancer, p(positive test) = 9%
- What is the probability that a woman who tested positive has cancer?
 - Almost 50% of gynaecologists said 90% (.9)
 - Only 21% correctly said 10% (.1)

Why the confusion?

- Left: Conditional probabilities and Bayes' rule
- ▶ Right: Natural frequencies requires easier calculation

Presenting risk information using natural frequencies

Early detection of breast cancer by mammography screening

Numbers for women aged 50 years or older* who either did or did not participate in mammography screening for approximately 11 years.

	1,000 women without screening	1,000 women with screening
Benefits	<u> </u>	
How many women died from breast cancer?	5	4
How many women died from all types of cancer?	22	22
Harms		
How many women experienced false alarms and had additional testing or tissue removed (biopsy)?	-	100
How many women with non-progressive breast cancer had unnecessary partial or complete removal of a breast?	-	5
*Where no data for women above 50 years of age are available	le, numbers refer to women above 4	0 years of age.
Short summary: Mammography screening reduced t 1,000. However, it had no effect on the number of we part in screening, some with non-progressive cancer of	he number of women who died men who died of cancer overal were overdiagnosed and unnece	from breast cancer by 1 in I. Among all women taking essarily treated.
Source: Gøtzsche & Jørgensen. Cochrane Database Syst Rev 2	013(6):CD001877.	
Letztes Update: November 2017	www.hardin	g-center.mpg.de/de/faktenboxe

Take home message

- When communicating risk, avoid using probabilities
- Better to use natural frequencies instead

The danger of talking about relative risk

Relative and absolute risk

- 'Careless pork costs lives' (Riesch & Spiegelhalter, 2011)
- Absolute risk: The odds of something happening
 - e.g., AR of developing bowel cancer for average UK diet including meat = 6%
 - i.e., 6 in every 100 people with this diet develop bowel cancer during their lives
- Relative risk: Compares odds between two scenarios
 - e.g., 50g extra processed meat a day = 18% increase in bowel cancer
 - 18% increase sounds a lot!
 - ▶ **But!** An increase of 18% of 6% = 7% absolute risk
 - So the **absolute risk** increased by only 1 in 100

In 1995, UK Committee on Safety of Medicines warned that 3rd Gen contraceptive pill "doubled thrombosis risk"

Consequences

- Oral contraception use fell generally and from 40% to 27% of under 16s
- ▶ 13,000 additional abortions following year
- Additional cost to NHS (Furedi, 1999)
 - ▶ £21M additional maternity care
 - ▶ £46M million for abortion provision

What were the absolute risks?

- Risk of thrombosis greater in pregnancy or abortion than with 3rd Gen pill
- ▶ Risk associated with 2nd Gen pill = 1 in every 7,000
- ▶ Risk associated with 3nd Gen pill = 2 in every 7,000
- ▶ So the **absolute risk** increased by only 1 in 7,000
- Take home message
 - When communicating risk, be aware how relative risk can mislead
 - Better to translate RR into differences in AR

People's attitude to risk depends on context

- Individuals vary in terms of their attitude to risk
- Attitudes are not fixed but depend on how a situation is perceived
- People's risk preferences can be changed by reframing the problem

- Imagine preparing for a deadly disease outbreak that is predicted to kill 600 people (Tversky & Kahneman, 1981)
- Two programmes proposed to combat the disease:
 - ▶ **A**, *p*(1.0) 200 people will be saved
 - **B**, p(.33) 600 people saved, p(.66) nobody saved
- Which programme would you choose?

- Two programmes proposed to combat the disease:
 - ▶ **A**, *p*(1.0) 200 people will be saved 72%
 - ▶ **B**, *p*(.33) 600 people saved, *p*(.66) nobody saved 28%
- Framed as gain ("saved from death"), safe option preferred
- > People are risk averse certain gains better than gamble

- Imagine preparing for a deadly disease outbreak that is predicted to kill 600 people (Tversky & Kahneman, 1981)
- Two programmes proposed to combat the disease:
 - ▶ **C**, *p*(1.0) 400 people will die
 - ▶ **D**, p(.33) nobody will die, p(.66) 600 people will die
- Which programme would you choose?

A matter of life and death - scenario 2

- Two programmes proposed to combat the disease:
 - ▶ **C**, *p*(1.0) 400 people will die 22%
 - ▶ **D**, *p*(.33) nobody will die, *p*(.66) 600 people will die 78%
- Outcomes of scenarios same ($A \equiv C, B \equiv D$)
- Framed as loss ("condemned to die"), risky option preferred
- Take home message
 - Choices involving gains are often risk averse
 - Choices involving losses are often risk taking
 - The way you communicate situations can significantly affect behaviour

- Cognitive science has uncovered many heuristics and cognitive biases that affect how people interpret information, including risk
- Other factors: emotion, prior knowledge (mental models), cultural differences, infographic design etc.
- Experts can't just assume their messages will be interpreted as intended
- For communication to be effective, it must be informed by our knowledge of how people process information

References i

Furedi, A. (1999).Social consequences. The public health implications of the 1995 "pill scare". Human Reproduction Update, 5(6), 621–626. doi: 10.1093/humupd/5.6.621.

- Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., & Woloshin, S. (2007). *Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest*, 8(2), 53–96. doi: 10.1111/j.1539-6053.2008.00033.x.
- Gigerenzer, G., Hertwig, R., Van Den Broek, E., Fasolo, B., & Katsikopoulos, K. V. (2005). "a 30% chance of rain tomorrow": How does the public understand probabilistic weather forecasts? Risk Analysis, 25(3), 623–629. doi: 10.1111/j.1539-6924.2005.00608.x.
- Riesch, H., & Spiegelhalter, D. J. (2011). 'Careless pork costs lives': Risk stories from science to press release to media. Health, Risk & Society, 13(1), 47–64. doi: 10.1080/13698575.2010.540645.

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453–458. doi: 10.1126/science.7455683.