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to increase worldwide, for example in the UK to approxi-
mately 1.6 million people by 2040 [3]. This current and 
predicted trend has raised calls for new research initia-
tives for treatment and diagnosis [4, 5]. One important 
research area is the improvement of dementia pre-diag-
nosis using data-driven techniques. The promise of this 
research is a cost effective, validated, and reliable method 
of dementia screening and prognosis using large datas-
ets and methods grounded in artificial intelligence and 
machine learning.

A primary assessment for determining early dementia 
involves measuring the cognitive abilities that underlie 
routine activities, e.g., remembering, thinking, problem 
solving, decision making, and judgement [6]. Some stud-
ies have reported that a decline in cognitive skills can 
indicate early dementia conditions such as Alzheimer’s 

1  Introduction

Dementia is a condition characterised by difficulties in 
memory, disturbance in language, psychological changes, 
and sometimes impairments in activities of daily living 
[1]. Dementia has significant negative impacts on indi-
viduals, society and the economy [2] with cases predicted 
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Abstract
Purpose  Dementia is a condition with symptoms of memory decline, cognitive impairment, and difficulties in language and 
problem-solving, among others. Early screening of dementia conditions such as Alzheimer’s disease (AD) is fundamental 
for quick intervention and disease management. Currently used neuropsychological assessments are time-consuming as they 
contain many elements and require critical resources which are not always available. Other pathological assessments are 
invasive and not cost effective, hence identifying cognitive features for different dementia sub-groups during progression 
of the condition is crucial for clinicians. This study investigates this problem using a cost-effective data driven approach.
Methods  Using real cases and controls from the Alzheimer’s Disease Neuroimaging Initiative data repository (ADNI) who 
have undergone the Alzheimer’s Disease Assessment Scale-Cognitive 13 (ADAS-Cog), we conduct a feature-feature assess-
ment together with Permutation Feature Importance (PFI) and machine learning algorithms to derive influential cognitive 
features for specific dementia groups from baseline diagnosis up to 36 months.
Results  Feature-feature analysis showed correlations between memory tasks such as Word Recall, Delayed Word Recall, 
and Word Recognition across both CN-MCI and MCI-AD groups. In contrast, low correlations for Naming, Command, and 
Ideational Praxis suggest they tap into distinct DSM-5 domains thus making them ideal for early screening. In addition, PFI 
results showed that Delayed Word Recall emerged as a top cognitive marker of progression in early stages, while Orientation 
gained prominence later thereby reflecting a shift toward executive and attentional decline.
Conclusions  The results of this study identified important relationships between cognitive features in the ADAS-Cog and 
provide a clear example of the value of data-driven machine learning approaches in the identification of markers that indicate 
disease progression in dementia.

Keywords  Dementia · Machine learning · Screening · Cognitive features · Dementia progression

Received: 13 June 2024 / Accepted: 9 July 2025
© The Author(s) 2025

Cognitive feature evaluation for disease progression in dementia and 
its precursors using feature selection

Fadi Thabtah1  · David Peebles2

1 3

https://doi.org/10.1007/s12553-025-01006-1
http://orcid.org/0000-0002-2664-4694
http://orcid.org/0000-0003-1008-9275
http://crossmark.crossref.org/dialog/?doi=10.1007/s12553-025-01006-1&domain=pdf&date_stamp=2025-8-7


Health and Technology

disease (AD) [7] and two requirements for diagnos-
ing dementia or major neurocognitive disorder are (a) a 
substantial decline in one of the six cognitive domains 
defined in the Diagnostic and Statistical Manual of 
Mental Disorders (DSM−5) framework, and (b) that the 
cognitive deficits experienced interfere with the perfor-
mance of everyday activities [8]. The DSM−5 is one of 
the standard references used by diagnosticians and medi-
cal researchers to diagnose and classify mental health 
conditions, including neurocognitive disorders such as 
dementia. It offers detailed diagnostic criteria for differ-
ent types of dementia, including AD, vascular dementia, 
etc., supporting assessment and treatment planning in 
clinical settings.

While many studies have investigated dementia diag-
nosis using cognitive features, identifying which features 
can be used to measure disease advancement has been 
less studied, particularly using machine learning [9]. 
Achieving this involves designing a feature selection 
process to identify features in a dataset that have high 
correlations with the target class in an automated man-
ner [10]. Feature selection can simplify data analysis by 
reducing the input data dimensionality and by pinpointing 
influential items, in the current context, cognitive items 
which can be important signals for clinicians during the 
early clinical evaluation of patients. More importantly, 
it is also imperative to distinguish between influential 
cognitive items for the subgroups of dementia, especially 
pre-dementia conditions like Mild Cognitive Impairment 
(MCI) and mild dementia, as these are more challenging 
than the later stages. Unfortunately, most of the existing 
neuropsychological methods used for dementia pre-diag-
nosis rarely measure the correlations between cognitive 
features that would be useful to clinicians [11–13].

In this study we aim to demonstrate the process of 
identifying key cognitive features, if any, during AD pro-
gression, using a dataset from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (​h​t​t​p​​s​:​/​​/​a​d​n​​i​.​​l​o​
n​​i​.​u​s​​c​.​e​​d​u​/​​d​a​t​​a​-​s​​a​m​p​l​​e​s​​/​a​d​n​i​-​d​a​t​a​/). The data are records 
from cases and controls who underwent an Alzheimer’s 
Disease Assessment Scale-Cognitive 13 (ADAS-Cog) 
assessment [14]. The feature associations were identified 
by performing feature-feature assessment and PFI using 
machine learning algorithms on the cognitive features for 
two dementia groups from baseline diagnosis up to 36 
months:

1.	 Cog-CN-MCI – participants with a baseline diagno-
sis of Cognitively Normal (CN) who then progressed 
to MCI.

2.	 Cog-MCI-AD – participants with a baseline diagno-
sis of MCI who then progressed to AD.

To accomplish this, we conducted several analyses of the 
‘ADNI-Merge-ADAS-Cog’ dataset in the ADNI reposi-
tory and established a set of analysis criteria to ascertain 
potential cognitive features that could be used as signs of 
the progression of dementia. The research questions that 
this study aims to answer are:

1.	 How can the important neuropsychological features, 
at each dementia stage during progression, be deter-
mined using feature selecction analysis?

2.	 Do cognitive features vary when the dementia stage 
changes?

In the rest of this paper we contextualise our work in the 
previous relevant research conducted by ourselves and 
others and then discuss the methods and data used in our 
study. Finally, we describe the results of our study and 
discuss its implications.

2  Related work

Previous studies have sought to identify cognitive fea-
tures in the ADNI dataset. For example [9], studied cogni-
tive elements in the Clinical Dementia Rating Scale Sum 
of Boxes (CDR-SB) [15]. The authors developed a data 
process to assess CDR-SB cognitive features and demo-
graphics, and identified the top-ranked features using 
classification techniques to predict CDR-SB scores. The 
authors demonstrated that most classification techniques 
produced models with acceptable predictive power, but 
that probabilistic and Decision Tree (DT) (C4.5) algo-
rithms were more appropriate to predict CDR-SB scores 
using the considered baseline data.

A number of studies have used machine learning to 
determine which functional activities are related to 
dementia progression and indicate AD. For example, 
using feature selection with classification algorithms on 
data from the Functional Activity Questionnaire (FAQ) 
[16] in the ADNI database [17], Thabtah et al., [18], 
derived highly predictive models and revealed that func-
tional activities such as ‘Shopping’ and ‘Administration’ 
showed good association with dementia and possible 
progression. Expanding on this functional assessment 
[19], sought to identify influential cognitive elements of 
the ADAS-Cog using a data-driven approach consisting 
of feature selection and classification. The authors used 
three feature selection methods, including Information 
Gain, ReliefF, and Chi-square testing along with various 
classification algorithms including DTs (C4.5), Bayes-
ian Networks, and Logistic Regression on data from the 
ADNI database. The results showed that processing only 
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three cognitive elements by the classification algorithms, 
particularly C4.5, revealed high predictive classifica-
tion models. Overall, the results of [18, 19] showed that 
cognitive elements are more indicative of early dementia 
progression than functional activities. However, these 
studies did not consider dementia sub-groups during the 
process of learning or feature selection or how features 
could change during the progression stages of the disease.

Other studies have evaluated previously designed 
dementia tests to determine the most predictive cogni-
tive and functional factors. For example [6], investigated 
quality issues (clinical relevance, validity) in the Cog-
nitive-Functional Composite (CFC), a composite battery 
test for mild dementia comprising multiple cognitive 
tests and one functional ability questionnaire [20]. Ana-
lysing a dataset of 184 subjects with different dementias 
and pre-dementia conditions (MCI, AD, Lewy body), 
the authors showed that the CFC’s main components 
(executive functions, episodic memory, and Amsterdam 
Instrumental Activities of Daily Living (A-IADL) score) 
were more highly correlated with disease severity than 
conventional cognitive tests such as CDR-SB score and 
ADAS-Cog13 score.

Several researchers have compared different versions 
of the ADAS-Cog. For example [21], conducted a review 
which found the ADAS-Cog13 [22] to be better at iden-
tifying disease progression in patients with AD than 
ADAS-Cog11. In another study [23], used ADNI data to 
compare the performance of the 3-, 5-, 11-, and 13-item 
ADAS-Cog variants on their ability to detect cognitive 
decline. While the original 11-item ADAS-Cog was able 
to measure cognition in patients with mild to moderate 
AD, it was unable to detect change or measure cognitive 
domains known to cause impairment in early-stage AD. 
The additional tests such as digit cancellation and delayed 
word recall have given the 13-item ADAS-Cog improved 
ability for early AD screening. Overall, the authors con-
cluded that the impact of expansion or reduction of the 
ADAS-Cog was subtle, but noted that in mild AD, adding 
rather than removing items was more beneficial.

More recent studies have further evaluated the reliabil-
ity and interpretability of ADAS-Cog13 [24]. conducted 
a systematic review of minimal clinically important 
differences (MCIDs) for ADAS-Cog, concluding that 
changes of + 2 to + 3 points in MCI and + 3 points in mild 
AD should be interpreted as clinically meaningful. These 
thresholds provide crucial benchmarks for interpreting 
progression and evaluating treatment effects in clinical 
trials [25]. used a latent state–trait model with autore-
gressive effects to assess whether ADAS-Cog13 items 
reflected state-specific, trait-like, or accumulated features 
over time. They found that while some language and 

memory items (e.g., naming and word recall) had high 
reliability and reflected gradual accumulation of cogni-
tive dysfunction, most items showed poor psychomet-
ric reliability, complicating the interpretation of change 
scores in longitudinal analyses. In addition [26], applied 
Bayesian latent class modelling to assess the diagnos-
tic performance of ADAS-Cog13, MMSE, and MoCA. 
ADAS-Cog13 outperformed the other tests in both sensi-
tivity and specificity when detecting both MCI and AD, 
confirming its continued relevance for clinical screening 
and research.

[27] used ADAS-Cog13 and other clinical variables 
in a machine learning process to predict 2-year cogni-
tive decline in early AD patients. Their model achieved 
significant accuracy, demonstrating the value of baseline 
cognitive data for forecasting progression trajectories 
and their potential benefit for clinical trial enrichment 
and the monitoring of individual patient trajectories 
[28]. developed a multimodal multitask deep learning 
model trained on ADNI data to predict ADAS-Cog13 and 
MMSE scores along with diagnostic status. Their model 
achieved higher accuracy and lower error than previous 
approaches, reinforcing the usefulness of ADAS-Cog13 
in multimodal machine learning models.

Finally [29], assessed whether cognitive measures 
could be used to reduce the number of neuropsychologi-
cal tests required. Using both computational and human 
expert feature reduction approaches, they found that 
three ADAS-Cog13 items were sufficient to build high-
accuracy classifiers using support vector machines. Their 
results reinforce the potential of ADAS-Cog13 not just as 
a total score but as a structured set of features with dif-
fering diagnostic values. Also worth noting is a study by 
[30], which mapped cognitive dysfunction across ADAS-
Cog, CDR-SB, and MMSE [14, 15, 31] using item 
response theory (IRT) [32]. The results indicated that 
ADAS-Cog and CDR-SB yielded consistent estimates of 
dysfunction across various stages, further validating their 
use in parallel for tracking progression. Together, these 
studies demonstrate that although ADAS-Cog13 has 
some limitations, particularly in its aggregate scoring, 
it remains a crucial tool for detecting cognitive decline 
and tracking Alzheimer’s disease progression, especially 
when its individual items and psychometric properties 
are properly modelled.
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where n is the number of observations, x and y are 
feature values, and →− x and →− y are their respective 
means. Higher absolute values of r indicate stronger lin-
ear dependence between features.

We also applied Permutation Feature Importance (PFI) 
[36] to quantify the influence of each ADAS-Cog item. 
PFI estimates the drop in model accuracy when a feature 
is randomly shuffled, revealing its predictive value. We 
implemented PFI using two classifiers: DT (C4.5) and 
LR, both chosen for their differing learning approaches 
and interpretability in medical research. To complement 
PFI, we used Mutual Information (MI) [37], a measure 
of non-linear dependence between each cognitive feature 
and the class label. MI is calculated as:

MI(X, Y ) =
∑

x,y
p(x, y) · log

(
p(x, y)

p (x) · p (y)

)
� (2)

where p(x, y) is the joint distribution of features X and 
Y. Higher MI values indicate stronger relevance for clas-
sification. All analyses were implemented in Python via 
Google Colab using the Scikit-learn library for model 
construction, PFI, and MI experiments. This computa-
tional setup ensured reproducibility and scalability across 
multiple dementia progression cohorts.

3.2  Data and Preparation

This study used data from the ADNI data repository [38], 
specifically the ADNI-Merge and ADAS-Cog-13 datas-
ets. ADNI-Merge aggregates data across several ADNI 
phases (ADNI-1, GO, 2, and 3), and includes a wide 
range of participant data such as demographics, clinical 
diagnoses, neuropsychological assessments, functional 
questionnaires, genetic markers (e.g., APOE status), and 
biomarker data from structural MRI and PET imaging. 
The ADAS-Cog-13 dataset contains scores for 13 indi-
vidual cognitive tasks measuring memory, language, 
praxis, and orientation. Table 1 displays the basic statis-
tics related to the ADNI-Merge, and ADAS-Cog datas-
ets. There is one target class in the ADNI-Merge dataset, 
which is the diagnosis of the last examination visit (DX); 
another attribute that can be considered important is the 
baseline diagnosis (DX_bl), which denotes the initial 
diagnosis given to the patient at the first visit.

3  Methods, data & experimental platform

3.1  Methods

This study used the ADAS-Cog−13, a standard clinical 
tool for assessing cognitive dysfunction [14], compris-
ing 13 tasks spanning memory, language, praxis, and ori-
entation. It is scored from 0 to 85, with higher scores 
indicating greater impairment. While its sensitivity in 
early dementia is debated [20], it remains widely used. 
Prior work identified a cut-off score ≥ 12 as optimal for 
AD detection, with 89.2% sensitivity and 88.5% speci-
ficity [33]. To evaluate cognitive item relationships, we 
performed a feature-to-feature correlation analysis using 
Pearson’s r, excluding the target class. This approach has 
been successfully applied in previous dementia-related 
studies [e.g., 34, 35, 18, 19] and highlights redundant 
features by identifying items with high intercorrelations 
(r near ± 1), allowing us to focus on distinct contributors 
to dementia progression. Results were mapped to DSM-5 
cognitive domains to ensure broad domain coverage dur-
ing feature selection.

We conducted a feature-to-feature assessment (exclud-
ing the target class) to explore inter-item relationships 
among ADAS-Cog-13 cognitive tasks. This analysis 
identifies highly correlated items that may convey redun-
dant information regarding disease progression, allowing 
for dimensionality reduction. When two features exhibit 
strong correlation, their contribution to classification is 
likely similar, and one may be omitted without loss of 
predictive value. Cognitive items were also mapped to 
DSM-5 domains to ensure broad diagnostic coverage 
during feature selection.

We computed Pearson correlation coefficients between 
features, summarised in matrix form. This highlights 
similarities across tasks and supports identification of 
distinctive, diagnostically relevant items. The correlation 
coefficient r, which ranges from − 1 to + 1, was calculated 
as:

r =
∑ n

i=1 (xi − x) (yi − y)√∑ n
i=1(xi − x)2

√∑ n
i=1(yi − y)2 � (1)

.

Table 1  General statistics of the datasets before Pre-processing
Dataset Name # of Features # of Patients # of Data Observations 

(visits)
Missing Values in Key 
Attributes

ADNIMERGE 113 2,260 14,627 Class DX: 4,243 missing values
ADAS-Cog 121 1,751 6,770 100 missing values: 91 across 

ADAS tasks and 9 in VIS-
CODE2 attribute
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R [40] with k = 5 nearest neighbours. SMOTE generates 
synthetic examples of minority class instances (i.e., those 
showing progression) based on feature space similarity, 
resulting in more balanced datasets suitable for machine 
learning analysis. After resampling, the CN to MCI 
cohort included 3,198 observations, with approximately 
49.3% progression cases, while the MCI to AD cohort 
included 5,982 observations, with 48.7% progression 
cases. Table  2 displays the statistics of the participant 
groups for 36 months from the baseline visit and for dif-
ferent dementia stages.

During dataset preparation, we identified a small num-
ber of regression cases, in which participants appeared 
to revert to a less severe diagnosis over time (e.g., MCI 
to CN or AD to MCI). Specifically, 20 regression cases 
were found in the CN to MCI cohort and 16 in the MCI 
to AD cohort (labelled ‘-1’). These were excluded from 
analysis because they represent atypical patterns that fall 
outside the scope of this study, which focuses exclusively 
on forward disease progression. These balanced cohorts 
provided the basis for the feature correlation, importance 
ranking, and classification analyses reported in the fol-
lowing sections.

3.3  Analysis method

The analyses were conducted using Python [41] using 
hyperparameters of the feature selection method that 
were unchanged. We assessed the feature-to-feature cor-
relation within the datasets and identified highly corre-
lated items in order to derive influential features from the 
‘ADNI-Merge-ADAS-Cog’ dataset. Feature-feature cor-
relation matrices with coefficients indicating the strength 
between two items were created to identify highly cor-
related features by calculating the largest mean absolute 
correlation between each item to remove any redundant 
features. Pearson correlation was used to generate a 
correlation matrix of the data’s features as a vector of 
integers to reduce independent attributes’ correlations. 
When two attributes are highly correlated, the function 

To investigate cognitive changes during the progres-
sion of dementia, we created two longitudinal sub-cohorts 
by merging the ADAS-Cog-13 scores with diagnostic 
data from ADNI-Merge:

	● The CN to MCI cohort consists of participants who 
were diagnosed as cognitively normal (CN) at their 
baseline visit but later progressed to mild cogni-
tive impairment (MCI) within a 36-month follow-up 
period.

	● The MCI to AD cohort includes participants who 
were diagnosed with MCI at baseline and subsequent-
ly progressed to Alzheimer’s disease (AD) over the 
same timeframe.

To construct these sub-cohorts, we first unified the ADAS 
Sub-Scores and Total Scores datasets from the various 
ADNI phases to ensure full coverage of ADAS-Cog-13 
items. We then left-joined this cognitive data with the 
ADNI-Merge dataset based on unique participant IDs 
(RID) and visit codes (VISCODE). Visits were excluded 
if either the diagnosis or ADAS-Cog scores were miss-
ing. Importantly, we only retained participants who dem-
onstrated diagnostic progression (from CN to MCI or 
from MCI to AD) and excluded all visits that occurred 
after the progression point to avoid conflating pre- and 
post-progression cognitive data.

After these exclusions, the resulting CN to MCI data-
set consisted of 141 participants contributing 744 obser-
vations (visits), while the MCI to AD dataset comprised 
385 participants and 1,765 observations. However, in 
both datasets the majority of observations represented 
no change in diagnosis. For example, only 73 of the 
1,695 visits in the CN to MCI dataset (about 4.3%) indi-
cated progression, while 207 of 3,275 visits in the MCI 
to AD dataset (6.3%) reflected diagnostic change. This 
large class imbalance posed a risk of biased model train-
ing and reduced classification performance. To address 
this, we applied the Synthetic Minority Over-Sampling 
Technique (SMOTE) [39], using the UBL package for 

Table 2  General statistics for the groups of participants within 36 months from the baseline and for different dementia stages
Dataset Name # of Patients before 

sampling
# of Data Observa-
tions (visits)

DX Progress - Class Distribution before 
Data Balancing

DX Progress 
- Class Distribu-
tion after Data 
Balancing

ADNI-Merge-ADAS-
Cog CN to MCI

287 1,695 Total observations: 1,695
‘0’: 1,622 (majority 95.70%)
‘1’: 73 (4.30%)
−1:20

Total observations: 
3,198
‘0’: 1,622 (50.71%)
‘1’: 1,576 (49.28%)

ADNI-Merge-ADAS-
Cog MCI to AD

651 3,275 Total observations: 3,275
‘0’: 3,068 (majority 93.68%)
‘1’: 207 (6.32%)
−1:16

Total observations: 
5,982
‘0’: 3,068 (51.29%)
‘1’: 2,914 (48.71%)

1 3
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cognitive items for the CN-MCI and MCI-AD groups 
from baseline diagnosis up to 36 months. Feature-to-fea-
ture correlation matrices (Figs. 1 and 2) revealed strong 
associations between Word Recall and Delayed Word 
Recall in both cohorts (r = 0.69 and 0.59, respectively), 
as well as moderate correlations with Word Recognition. 
These overlaps suggest shared variance among memory 
tasks. For example, correlations between Delayed Word 
Recall and Word Recognition were 0.41 (CN–MCI) 
and 0.51 (MCI–AD), demonstrating consistent interde-
pendence during progression. In contrast, Command, 
Naming, Ideational Praxis, and Word-finding Difficulty 
showed weak or negative correlations with other items 
in the CN–MCI group, suggesting that they assess dis-
tinct cognitive domains. These features map onto DSM-5 
domains: language, perceptual motor function, learning 

evaluates the correlation of the mean absolute value for 
each attribute and drops the one with the greatest value. 
The suggested Cut-off = 0.60 [42]. For data balancing 
the SMOTE algorithm was used to sample the minority 
class labels in the dataset. SMOTE is a data sampling 
technique that adjusts the class distribution by taking the 
entire dataset as input, thereby increasing the minority 
class using K Nearest Neighbours (KNN) [43].

4  Results and analysis

4.1  Correlation analysis

We performed feature ranking using feature selection 
methods alongside feature-feature assessment on the 

Fig. 1  Feature-Feature Correlation Matrix of Cognitive Items for CN to MCI Group
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key cognitive markers. The increased importance of Orien-
tation (temporal/spatial awareness) suggests a shift toward 
complex attention and executive function deficits alongside 
ongoing memory decline. Delayed Word Recall remains 
critical across both stages but is more dominant in early 
transitions, whereas Orientation is more significant in later 
progression. Further, Number Cancellation (linked to Atten-
tion) and Naming Objects (linked to Language) appear in 
both stages in DT models with differing rankings represent-
ing progressive cognitive decline across the AD trajectory.

4.3  Mutual information (MI)

Figures  5 and 6 display MI rankings. For CN-MCI 
(Fig.  5), memory tasks (Word Recall, Delayed Word 
Recall, Word Recognition) dominated, reinforcing their 

and memory, and executive function/complex attention, 
making them potentially valuable for early-stage screen-
ing. In the MCI–AD group, inter-feature correlations 
increased among memory and comprehension tasks, thus 
reflecting more global cognitive decline.

4.2  Permutation feature importance (PFI)

Figures 3A and 4A display PFI rankings using DT and LR 
classifiers for the CN-MCI cohort. Delayed Word Recall 
consistently ranked highest, thus aligning with its role in 
learning and memory. Word Recognition and Word Recall 
also appeared as top features, at least for DT models predict-
ing CN-to-MCI progression. Figures 3B and 4B show PFI 
results for the MCI-AD cohort in which Orientation, Word 
Recognition, and Delayed Word Recall were identified as 

Fig. 2  Feature-Feature Correlation Matrix of Cognitive Items for MCI to AD Group
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5  Conclusions

Identifying cognitive markers of dementia progression, 
especially in early and intermediate stages, is crucial for 
timely diagnosis. This study evaluate cognitive features 
from the ADAS-Cog-13 by focusing on their relevance 
to disease progression from CN to MCI and from MCI to 
AD cohorts.

Using correlation analysis and two feature selection 
methods: PFI and MI, we identified distinct patterns of 
cognitive decline. In the CN-MCI cohort, memory-related 
features such as Word Recall, Delayed Word Recall, and 
Word Recognition emerged as the most informative, thus 

early diagnostic value, while language and praxis items 
contributed less. These results reflect episodic memory 
deficits that typically occur during the transition from CN 
to MCI. In the MCI-AD group (Fig. 6), Word Recognition 
again ranked highest, but Commands and Comprehension 
became more predictive, consistent with deterioration in 
executive and attentional functions. Across both methods 
and cohorts, Word Recognition consistently emerged as 
a strong predictor of progression. The differing profiles, 
especially the reduced relevance of Delayed Word Recall 
and increased importance of Commands in later stages, 
highlight evolving cognitive signatures across dementia 
progression.

Fig. 3  (A) Feature Importance in Permutation % using PFI with a DT classifier on CN-MCI Cohort. (B) Feature Importance in Permutation % 
using PFI with a DT classifier on MCI-AD Cohort
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further confirmed the dominance of memory tasks during 
early progression while attention and comprehension fea-
tures became more relevant in later stages. These evolv-
ing patterns highlight the diagnostic value of tracking 
item-level changes to detect preclinical AD transitions.

While these findings support the use of targeted cog-
nitive assessments for tracking disease progression, the 
study has limitations. We relied solely on cognitive data 
from ADAS-Cog-13 and did not incorporate neuroimag-
ing, biomarker, or genetic information. Moreover, the 
data were limited to the ADNI sample, which may not 
fully represent the diversity found in clinical popula-
tions. Finally, although we used longitudinal data, we 

aligning with early-stage deficits in learning and mem-
ory as defined by DSM-5. The MCI-AD cohort showed 
a broader profile with increased relevance of Command 
and Comprehension, indicating deterioration across mul-
tiple cognitive domains, including complex attention, 
executive function and language.

A consistent finding across both groups was the central 
role of Word Recognition, which maintained high predic-
tive value throughout disease progression. Meanwhile, 
the declining importance of Delayed Word Recall and 
the rising importance of Orientation highlight a cognitive 
shift from specific memory impairment to multi-domain 
decline as dementia advances. PFI and MI rankings 

Fig. 4  (A) Feature Importance in Permutation % using PFI with a LR Classifier on CN-MCI Cohort. (B) Feature Importance in Permutation % 
using PFI with a LR Classifier on MCI-AD Cohort
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Fig. 6  Feature Ranking Using MI feature selection method on MCI-AD data cohort

 

Fig. 5  Feature Ranking Using MI feature selection method on CN-MCI data cohort
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be important in capturing trajectories of decline. Future 
work should incorporate more data sources and consider 
broader cohorts to enhance generalizability. Incorporat-
ing temporal modelling techniques could also help iden-
tify more nuanced patterns of progression and improve 
clinical decision-making.

Acknowledgements  Data collection and sharing for this project was 
funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health Grant U01 AG024904) and DOD ADNI 
(Department of Defense award number W81XWH-12-2-0012).

Author contributions  Conceptualization, Thabtah & Peebles; Meth-
odology, Thabtah; Formal analysis, Thabtah; Investigation, Thabtah; 
Writing – original draft, Thabtah & Peebles; Writing – review & edit-
ing, Thabtah & Peebles; Supervision, Peebles.

Funding  This research received no external funding.

Data availability  Data are available at: https://adni.loni.usc.edu/.

Code Availability  No specialist code was used in this study.

Declarations

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical approval  This study does not involve humans or animals and 
so ethical approval is not required.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

References

1.	 Kim H-J, Min J-Y, Min K-B. The association between longest-
held lifetime occupation and late-life cognitive impairment: 
Korean longitudinal study of ageing (2006–2016). Int J Environ 
Res Public Health. 2020;17(17):6270. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​9​0​​/​i​j​​e​
r​p​h​1​7​1​7​6​2​7​0

2.	 World Health Organization. (2020, September). Dementia. ​h​t​t​p​​s​:​
/​​/​w​w​w​​.​w​​h​o​.​​i​n​t​/​​n​e​w​​s​-​r​​o​o​m​​/​f​a​​c​t​-​s​​h​e​​e​t​s​/​d​e​t​a​i​l​/​d​e​m​e​n​t​i​a

3.	 Wittenberg R, Hu B, Barraza-Araiza L, Rehill A. Projections 
of older people with dementia and costs of dementia care in the 
United Kingdom, 2019–2040. The London School of Economics 
and Political Science, Care Policy and Evaluation Centre. 2019. ​h​

1 3

https://www.alzheimers.org.uk/sites/default/files/2019–11/cpec_report_november_2019.pdf
https://www.alzheimers.org.uk/sites/default/files/2019–11/cpec_report_november_2019.pdf
https://doi.org/10.1186/s13195-019-0500-5
https://doi.org/10.1186/s12877-020-01926-9
https://doi.org/10.1186/s12877-020-01926-9
https://www.psychiatry.org/psychiatrists/practice/dsm
https://www.psychiatry.org/psychiatrists/practice/dsm
https://doi.org/10.3390/app13063612
https://doi.org/10.3390/app13063612
https://doi.org/10.1007/978-3-642-15314-3_30
https://doi.org/10.1007/s13755-020-00114-8
https://doi.org/10.1007/s13755-020-00114-8
https://doi.org/10.5535/arm.2018.42.1.26
https://doi.org/10.5535/arm.2018.42.1.26
https://doi.org/10.1159/000338233
https://doi.org/10.1159/000338233
https://doi.org/10.1176/ajp.141.11.1356
https://doi.org/10.1176/ajp.141.11.1356
https://doi.org/10.1192/bjp.140.6.566
https://doi.org/10.1093/geronj/37.3.323
https://doi.org/10.1093/geronj/37.3.323
https://adni.loni.usc.edu/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph17176270
https://doi.org/10.3390/ijerph17176270
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.alzheimers.org.uk/sites/default/files/2019–11/cpec_report_november_2019.pdf


Health and Technology

impairment classification: A machine learning study. Behavioural 
Neurology, 2017, Article 1850909. 2017.​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​5​5​​/​
2​0​​1​7​/​1​8​5​0​9​0​9

30.	 Balsis S, Benge JF, Lowe DA, Geraci L, Doody RS. How do 
scores on the ADAS-Cog, MMSE, and CDR-SOB correspond? 
Clin Neuropsychol. 2015;29(7):1002–9. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​8​0​​/​
1​3​​8​5​4​​0​4​6​​.​2​0​1​​5​.​​1​1​1​9​3​1​2

31.	 Folstein M, Folstein SE, McHugh P. Ini-mental state. A practical 
method for grading the cognitive state of patients for the clini-
cian. J Psychiatr Res. 1975;12(3):189–98. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​
/​0​0​​2​2​-​3​9​5​6​(​7​5​)​9​0​0​2​6​-​6

32.	 Wright BD. IRT in the 1990s: which models work best? Rasch 
Meas Trans. 1992;6(1):196–200.

33.	 Monllau A, Pena-Casanova J, Blesa R, Aguilar M, Bohm P, Sol 
JM, Hernandez G. Diagnostic value and functional correlations 
of the ADAS-Cog scale in alzheimer’s disease: data on NORMA-
CODEM project. Neurologia. 2007;22(8):493–501.

34.	 Pereira T, Ferreira F, Cardoso S, Silva D, de Mendonca A, Guer-
reiro M, Madeira S. Neuropsychological predictors of conversion 
from mild cognitive impairment to alzheimer’s disease: A feature 
selection ensemble combining stability and predictability. BMC 
Med Inf Decis Mak. 2018;18(2018):Article137. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​1​8​6​​/​s​1​​2​9​1​1​-​0​1​8​-​0​7​1​0​-​y

35.	 Zhu F, Li X, Haipeng T, He Z, Zhang C, Hung G-U, Chiu P-Y, 
Zhou W. Machine learning for the preliminary diagnosis of 
dementia. Sci Program. 2020. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​5​5​​/​2​0​​2​0​/​5​6​2​9​
0​9​0

36.	 Fisher A, Rudin C, Dominici F. All models are wrong, but many 
are useful: learning a variable’s importance by studying an entire 
class of prediction models simultaneously. J Mach Learn Res. 
2019;20(177):1–81. ​h​t​t​p​​:​/​/​​j​m​l​r​​.​o​​r​g​/​​p​a​p​e​​r​s​/​​v​2​0​​/​1​8​-​7​6​0​.​h​t​m​l

37.	 MacKay DJC. Information theory, inference, and learning algo-
rithms. Cambridge University Press; 2003.

38.	 Alzheimer’s Disease Neuroimaging Initiative [ADNI]. (2021). 
http://adni.loni.usc.edu

39.	 Chawla N, Bowyer K, Hall L, Kegelmeyer P. SMOTE: Synthetic 
Minority Over-sampling Technique. In International Conference 
of Knowledge Based Computer Systems. 2000:46–57. National 
Center for Software Technology, Mumbai, India, Allied Press.

40.	 Branco P, Ribeiro RP, Torgo L. UBL: an R package for utility-
based learning, arXiv Prepr. arXiv1604.08079 (2016) [Online]. 
Available: ​h​t​t​p​​:​/​/​​a​r​x​i​​v​.​​o​r​g​​/​a​b​s​​/​1​6​​0​4​.​​0​8​0​7​9

41.	 Van Rossum G, Drake FL Jr. Python reference manual. Centrum 
voor Wiskunde en Informatica Amsterdam; 1995.

42.	 Akoglu H. User’s guide to correlation coefficients. Turkish J 
Emerg Med. 2018;18(13):91–3. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​t​j​e​m​.​2​0​
1​8​.​0​8​.​0​0​1

43.	 Aha D, Kibler D, Albert MK. Instance-based learning algorithms. 
Mach Learn. 1991;6:376–6. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​0​​​0​7​/​​B​F​0​0​1​5​3​7​5​9

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

19.	 Thabtah F, Ong S, Peebles D. (2022) Examining cognitive factors 
for alzheimer’s disease progression using computational intelli-
gence. Healthcare 2022, 10, 2045. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​9​0​​/​h​e​​a​l​t​h​
c​a​r​e​1​0​1​0​2​0​4​5

20.	 Jutten RJ, Harrison JE, de Jong FJ, Aleman A, Ritchie CW, Schel-
tens P, Sikkes SAM. A composite measure of cognitive and func-
tional progression in alzheimer’s disease: design of the capturing 
changes in cognition study. Alzheimer’s Dement. 2017;3(1):130–
8. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​t​r​c​i​.​2​0​1​7​.​0​1​.​0​0​4

21.	 Kueper J, Speechley M, Montero-Odasso M. The alzheimer’s 
disease assessment Scale–Cognitive subscale (ADAS-Cog): 
modifications and responsiveness in pre-dementia populations. A 
narrative review. J Alzheimer’s Disease. 2018;63(2):423–44. ​h​t​t​p​​
s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​2​3​3​​/​J​A​​D​-​1​7​0​9​9​1

22.	 Mohs RC, Knopman D, Petersen RC, Ferris SH, Ernesto C, 
Grundman M, Sano M, Bieliauskas L, Geldmacher D, Clark C, 
Thal LJ. Development of cognitive instruments for use in clini-
cal trials of antidementia drugs: additions to the alzheimer’s 
disease assessment scale that broaden its scope. The alzheim-
er’s disease cooperative society. Alzheimer Dis Assoc Disord. 
1997;11(2):S13–21.

23.	 Podhorna J, Krahnke T, Shear ME, Harrison J, for the Alzheimer’s 
Disease Neuroimaging Initiative. Alzheimer’s disease assessment 
Scale – Cognitive subscale variants in mild cognitive impairment 
and mild alzheimer’s disease: change over time and the effect of 
enrichment strategies. Alzheimer’s Res Therapy. 2016;8(8). ​h​t​t​p​​s​
:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​8​6​​/​s​1​​3​1​9​5​-​0​1​6​-​0​1​7​0​-​5

24.	 Muir C, et al. Minimal clinically important difference in alzheim-
er’s disease: rapid review of the literature and implications for 
clinical trial design. Alzheimer’s Dement. 2024;20(1):123–35. ​h​t​
t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​2​​/​a​l​​z​.​1​3​5​6​7

25.	 Cogo-Moreira H, et al. State, trait, and accumulated features of 
the alzheimer’s disease assessment Scale-Cognitive subscale in 
mild alzheimer’s disease: A dynamic structural equation mod-
eling approach. Alzheimer’s Dementia: Translational Res Clin 
Interventions. 2023;9(1):e12453. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​2​​/​t​r​​c​2​.​1​2​
4​5​3

26.	 Wang X, et al. Bayesian Estimation for the accuracy of three neu-
ropsychological tests in detecting alzheimer’s disease and mild 
cognitive impairment: A retrospective analysis of the ADNI data-
base. Eur J Med Res. 2023;28:427. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​8​6​​/​s​4​​0​0​0​
1​-​0​2​3​-​0​1​2​6​5​-​6

27.	 Devanarayan V, et al. Predicting clinical progression trajectories 
of early alzheimer’s disease: A latent trajectory analysis of ADNI 
data. Alzheimer’s Dement. 2023;19(2):389–403. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​0​0​2​​/​a​l​​z​.​1​2​8​4​6

28.	 Seshadri N, Shah R, McCalla S. (2021). Early prediction of 
alzheimer’s disease with a multimodal multitask deep learning 
model. J Student Res, 10(1). ​h​t​t​p​​s​:​/​​/​j​s​r​​.​o​​r​g​/​​i​n​d​e​​x​.​p​​h​p​/​​p​a​t​​h​/​a​​r​t​i​c​​l​e​​
/​v​i​e​w​/​1​4​7​1

29.	 Battista P, Salvatore C, Castiglioni I. Optimizing neuropsycho-
logical assessments for cognitive, behavioral, and functional 

1 3

https://doi.org/10.1155/2017/1850909
https://doi.org/10.1155/2017/1850909
https://doi.org/10.1080/13854046.2015.1119312
https://doi.org/10.1080/13854046.2015.1119312
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1186/s12911-018-0710-y
https://doi.org/10.1186/s12911-018-0710-y
https://doi.org/10.1155/2020/5629090
https://doi.org/10.1155/2020/5629090
http://jmlr.org/papers/v20/18-760.html
http://adni.loni.usc.edu
http://arxiv.org/abs/1604.08079
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1007/BF00153759
https://doi.org/10.3390/healthcare10102045
https://doi.org/10.3390/healthcare10102045
https://doi.org/10.1016/j.trci.2017.01.004
https://doi.org/10.3233/JAD-170991
https://doi.org/10.3233/JAD-170991
https://doi.org/10.1186/s13195-016-0170-5
https://doi.org/10.1186/s13195-016-0170-5
https://doi.org/10.1002/alz.13567
https://doi.org/10.1002/alz.13567
https://doi.org/10.1002/trc2.12453
https://doi.org/10.1002/trc2.12453
https://doi.org/10.1186/s40001-023-01265-6
https://doi.org/10.1186/s40001-023-01265-6
https://doi.org/10.1002/alz.12846
https://doi.org/10.1002/alz.12846
https://jsr.org/index.php/path/article/view/1471
https://jsr.org/index.php/path/article/view/1471

	﻿Cognitive feature evaluation for disease progression in dementia and its precursors using feature selection
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Related work
	﻿3﻿ ﻿Methods, data & experimental platform
	﻿3.1﻿ ﻿Methods
	﻿3.2﻿ ﻿Data and Preparation
	﻿3.3﻿ ﻿Analysis method

	﻿4﻿ ﻿Results and analysis
	﻿4.1﻿ ﻿Correlation analysis
	﻿4.2﻿ ﻿Permutation feature importance (PFI)
	﻿4.3﻿ ﻿Mutual information (MI)

	﻿5﻿ ﻿Conclusions
	﻿References


