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Abstract

Modelsof graph-basedeasoninghave typically account-
edfor thevariationin problemsolving performancevith
different graphtypesin termsof a task analysisof the
problemrelative to the particularvisualpropertiesof each
graphtype (e.g. Lohse,1993; PeeblesCheng& Shad-
bolt 1999, submitted). This approachhasbeenusedto
explain responseime andaccurayg differencesn exper
imental situationswheredataare averagedover experi-
mentalconditions. An experimentis reportedin which
participants’eye movementswere recordedwhile they
weresolvingvariousproblemswith differentgraphtype-
s. The eye movementdatarevealedfine grainedfixation
patternghatarenotcapturedy currentanalysedasecn
optimalfixationsequencedt is aguedthatthesepatterns
reveal the effects of working memorylimitations during
thetime courseof problemsolving. An ACT-R/PM mod-
el of the experimentis describedn which a similar pat-
ternof eyefixationsis producedasa naturalconsequence
of thedecayin activation of perceptuathunksovertime.

I ntroduction

A recentdevelopmentn thefield of cognitive modelling
is the proposalof frameworks to understandnterac-
tive behaviour with externalrepresentationandartifact-
s. Gray(2000;Gray& Altmann,2000),for example has
proposedhe Cognition-Task-Artifact triad within which
to characterisbehaiour in human-computenteraction
tasksin termsof thecomplex interactionof threeprimary
elementsthecognitive abilitiesof theuser therepresen-
tational and physical propertiesof the artifact, and the
specificrequirementf the task. This framewvork has
recentlybeendevelopedby Byrne (in press)to encom-
passthe perceptualand motor capabilitiesof the user
Similarly, in the areaof graph-basedeasoningPeebles,
Chengand Shadbolt(1999, submitted)have proposed
the Graph-Based Reasoning (GBR) modelincorporating
thesethreeelementdo accounfor theability of usersto
retrieve andreasonaboutinformationin differenttypes
of Cartesiarco-ordinate(x—y) graph.

The primary purposeof theseframeworksis to infor-
m the developmentof detailedcognitve modelsof the
cognitive, perceptuahndmotorprocessesvolvedin the
tasksunderstudy In contrastwith cognitivetask analysis
(Gray& Altmann,2000)which simply specifieghecog-
nitive stepsrequiredto performthetask,theconstruction
of cognitive procesanodelsthataregroundedn cogni-
tive theoryallows theincorporationandtestingnot only

of relevantcognitive factorssuchasthe requireddeclar

ative and proceduraknowledge,the stratgiesadopted,
andthe limitations of working memorybut alsopercep-
tual/motorfactorssuchas mousemaovementsand shifts
in visualattention.

Onesuchmodelin the areaof graph-basedeasoning
is UCIE (Lohse,1993). By addingcognitive parameter
s to the GOMS classof taskanalysistechniqueqCard,
Moran, & Newell, 1983; Olson & Olson, 1990; John
& Kieras, 1994), Lohse produceda model which sim-
ulatedcertainquestionansweringproceduregisingline
graphspargraphsandtablesandpredictedquestionan-
sweringtimes by assumingan optimal sequencef eye
maovementdo scanthegraphicakepresentatiothatmin-
imisedthe numberof saccadeandfixationsto reachthe
targetlocation.

More recently the GBR model(Peeblest al., 1999,
submitted) employeda similar setof assumption$o ac-
countfor datafrom experimentsinvestigatingthe vari-
ousinteractingfactorsaffecting reasoningwith differen-
t typesof informationally equivalent (Larkin & Simon,
1987)Cartesiargraph. Figure 1 shavs examplesof the
typesof graphused. Both graphsencodethe sametwo
functionsbetweentime andthe variablesA andB. The
Function graphin Figurelarepresentéime onthex ax-
is andthe A andB variableson the y axis whereashe
Parametric graphin Figure 1b representshe A and B
variableson the x andy axesrespectiely while time is
plottedasa parameterisingariablealongthe curve.

Our experimentshave revealedsignificantdifferences
in both responsdime and error ratesbetweenusersof
the two graphtypesfor a wide rangeof questiongPee-
blesetal., 1999, submitted). The GBR modelhasbeen
successfuin explainingwhy suchdifference®ccurwith
thesegraphtypesdespitetheir numeroussisualandcon-
ceptualsimilarities. Using the graphsin Figure1 asan
example,we foundthatwhenparticipantsvereaskedto
retrievethevalueof A whenB equalsl, parametrigraph
users’responsew/eresignificantlymorerapidandaccu-
ratethanthoseof functiongraphusers.The GBR model
accountdor thesedifferencesn termsof the optimalvi-
sualscanpaththe usersfollow throughthe graph. The
variability in responsess apparenfrom the sequencef
hypothesisedaccade# the two graphs.In Figure 1a,
thesequencef saccades m, n, o, whereasn Figurelb
the procesgequiresjust two saccadesasshavn by the



line sequencey, b. The higher probability of an erro-
neousresponsaisingthe function graphwas explained
by the additionalnumberof possibleincorrectsaccades
thatthefunctiongraphusersmay malke.
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Figurel: Informationallyequivalentfunction andpara-
metricgraphs

The optimality assumptionsncorporatednto the U-
CIE and GBR modelsare usefulasthey allow the pre-
diction of responsdimesandprovide an explanationof
variationsin meanRT anderror datafor differentgraph
types. It is cleat however, that suchassumptionslo not
take importantcognitive factorssuchasworking mem-
ory limitations or strateic decisionsinto account. For
example, it is likely that, during the time courseof a
complex graph-basedeasoningproblem, certaininfor-
mationmaybeforgottenandhaveto berescannedin ad-
dition, giventhatgraphusersareawarethatinformation
is availablefor rescanningt all times, it is possiblethat
they maytradeoff additionalsaccadefor areductionin
workingmemoryload. If thisisthecasethenthecurrent
analysesnaymissoutanimportantlevel of detailwhich
sheddight on the cognitive load thatthesetasksareim-
posingandthe stratgiesby which graphusersoptimise
their retrieval proceduresFurthermorejf the goalis to
producedetailedcognitive modelsof thesetasks,then
information at this level of detail will provide valuable
constrainton suchmodels.

In this article we reportthe resultsof a graph-based
reasoningexperimentdesignedo addresgheseissues.
In the experiment,participantsvereaskedto solve sim-
ple tasksusing function and parametricgraphswhich,
basedon the optimality assumptiongdescribedabove,
would be predictedo producevarying responsgattern-
s by requiring differentoptimal fixation sequencesTo
determinewhethertheseoptimality assumptionsirejus-
tified, someof the participants’eye movementswere
recordedasthey solvedthe problems.We shaw that, al-
thoughthe RT anderror dataarein line with the GBR
model’s predictions,certain patternsin the eye move-
mentdatado not follow the optimal sequenceredict-
ed by the modelwhich may be interpretedasindicating
the effectsof working memorylimitations. We thende-
scribean ACT-R/PM modelof the experimentin which
a similar patternof eye fixationsis producedasa natu-
ral consequencef the decayin activation of perceptual
chunksovertime.

Experiment

Oneof themostcommontaskscarriedoutwhenusinga
graphis to elicit the valueof onevariablecorresponding
to agivenvalueof another This taskwaschoserfor the
experimentasit is sowidely performedandbecauséhe
proceduresnvolved are relatively simple. The knowl-
edgerequiredto carryoutthesetasksis primarily the se-
gquenceof fixationsrequiredto reachthe given location
in the graphrepresentinghe given value of the given
variableandthenfrom thereto thetarget location repre-
sentingthe correspondingalueof therequiredvariable.
In previous researchhowever, we have discoseredthat
the effectivenesf a particulargraphicalrepresentation
for retrieving the requiredinformation dependson the
detailsof thetask,i.e. which variableis givenandwhich
is sought(Peeblestal., 1999,submitted).

Method

Participants and materials Forty-nineundegraduate
and postgraduat@sychologystudentdrom the Univer-
sity of Nottinghamwerepaid£3to take partin theexper
iment. Of these four werepaidanadditional£2 to have
their eye movementsecordedwhile they carriedoutthe
experiment. The experimentwas carriedout using PC
computersvith 17in displays.Theeyetrackeremployed
in theexperimentwasanSMI iView systemusingaRED
Il desktoppupil/corneareflectancdracker with a50 Hz
samplingrate recordingeye movementsat 20 ms inter-
vals remotelyfrom a positionin front of the computer
display In additionto the systems own automatichead
movemenicompensatiomechanismparticipants head-
s wererestrainedn a framefixedto the tableto reduce
recordingerrordueto headmovement,

The stimuli usedin the experimentwerefour graphs,
shawn in Figure2, depictingthe amountof UK offshore
oil andgasproductionbetweertwo decadesParticipants
were seatedapproximately80 cm from the 72 ppi com-
puterdisplay The graphswere15.5cm square(includ-
ing axislabels),correspondingo approximatelyl 1.1° of
visualangle.Thecharactersepresentingariablevalues
were 0.4 cm high (approximately.21° of visual angle)
while thosefor theaxislabelsandquestionsvere0.4cm
and0.5 cm high (approximately.29* and.36° of visual
angle)respectrely. Axis ticks werespacedL.5cm (ap-
proximatelyl.1° of visualangle)apart.

The graphsand data setswere designedso that the
independenvariable(IV—year)andthe two dependen-
t variables(DVs—oil and gas)all hadten valuesrang-
ing from 0 to 9 andthat the full rangeof thesevalues
wasrepresentetly thedatapointsfor oil andgasin both
decadesA setof 120 questionsvasproducedusingal-
| of the valuesfor the threevariablesin both decades.
Thequestion$radthesamebasicstructure giving avari-
able’s valueandrequiringa correspondingariableval-
ue.

Design and Procedure The experimentwas a mixed
designwith onebetween-subjectgariable,(graphtype)
and two within-subjectsvariables (questiontype and
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Figure2: FunctionandParametricGraphsUsedin the Experiment

graphnumber).Participantswererandomlyallocatedto
one of the two graphtype conditions. On eachtrial, a
graphwould be presentedvith a questionabove it. For
example,the questionGAS = 2, OIL = ? requiredthe
valueof oil whengasis equalto 2 to be found. Partic-
ipantswereinstructedto enteronly the final numberof
the target year when a year value was required. Each
elementof the questionwas centeredon a co-ordinate
point which remainedinvariant throughoutthe experi-
mentwith approximately3.5 cm (approximately2.5° of
visual angle)betweenthe centresof adjacentext items.
Togetherwith the graphand question,a button labelled
Answer appearedn the top right cornerof the window.
Participantswereinstructedto click on this answerbut-
ton assoonasthey hadobtainedthe answetrto the ques-
tion. Respons¢imeswererecordedrom the onsetof a
guestionto the mouseclick on theanswerbutton. When
this buttonwasclickedupon,thebutton,graphandques-
tion wereremoved from the screenanda circle of but-
tons labelled clockwisefrom 0 to 9 appearectentered
on the answerbutton. Participantsenteredheir answer
s by clicking the appropriatenumberbutton. Whenthe
numberbuttonwasclicked,thenext graph,questionand
answerbuttonappearean the screen.This methodwas
devised so that participantsin the eye movementstudy
would not have to take their eyesaway from the screen
to enteranswersaswould be the caseif usingthe key-
board.Beforestartingthe experiment participantswere
asledto answetthe questionsasrapidly andasaccurate-
ly aspossibleand were giventime to becomefamiliar
with the graphsandpracticeenteringnumbersusingthe
circle of numberbuttonsandmouse.

Results

Response accuracy and latency data Theproportions
of correctresponseand meanresponsdimes(RTs) for
eachof thequestiortypesfor thetwo graphsn eachcon-
dition arepresentedn Table. The datarevealhigh lev-
elsof accurag for all threequestiontypesin bothgraph
conditions. An ANOVA on the responseaccuray da-
ta, however, revealeda significanteffect of questiortype
F(2,239)=28.187,p < 0.01,MSE = 0.123. Although
thereis little variability in responseaccurag between
conditions,RTs vary significantly both betweencondi-

tionsandwithin eachconditionaccordingto the type of
questionbeing attempted. An ANOVA on the RT data
revealedsignificanteffectsof questiontype F(2, 239) =
18.447,p < 0.01, MSE = 4974038,and graphnumber
F(1,239)=5.76,p < 0.05,MSE = 1223302andsignif-
icantinteractionsbetweengraphtype andquestiontype
F(2,239)=36.314,p < 0.01,MSE = 9791754and be-
tweengraphtype, questiontype andgraphnumberF(2,
239)=3.913,p < 0.05,MSE = 466423.

Theresultsof this experimentarein line with predic-
tionsof the GBR modelwhich explainsthesedifferences
in termsof a detailedtask analysisand the assumption
of differentoptimal scanpathsthroughthe graphsto the
targetlocation. However, asthe main focusof this arti-
cle is the eye movementdataandthe ACT-R/PM model,
no analysisof thesedatawill be provided here. A full
descriptionof the GBR model, its predictionsandanal-
ysesof theseandsimilar taskscanbe foundin previous
articles(Peebletal., 1999,submitted).

Eye movement data To analyséheeye movementda-
ta, thedisplaywasdividedinto threeregionsin amanner
similar to thatemployed by Carpenteand Shah(1998).
The regions, shavn in Figure 3, were the samefor al-
| four graphsanddefinethe relevantunits of the display
for thefixationanalysis:question, graph pattern, andan-
swer buttons.Dividing the displayin this mannerallows
ananalysisof the frequeny anddurationof fixationson
the questionandthe graphandalsothe patternof tran-
sitions betweentheseregionsduring the time courseof
an individual trial. For the analysis,we adoptCarpen-
terandShahs (1998)termgaze to referto a sequencef
consecutre fixationson a display region thatis unbro-
ken by fixationsin otherregions. The raw x andy co-
ordinatedatafrom the eye tracker were aggrayatedinto
gazesthe minimum durationof which, basedon a pre-
liminary studyof the data,wasdefinedas100ms. This
valuewas sufficiently large to eliminatemostsaccades,
shortfixationsandnoisein the datawhile still capturing
all therelevantfixations. The datafrom eachparticipan-
t were analysedso that fixations of 100 ms or morein
eachregion wererecordedanda scanpathconsistingof
the sequencef gazesfrom questionto graphto answer
buttonregionsfor eachtrial wasproduced.Fromatotal



Tablel: Correctrespons@roportionsandmeanRTs for eachquestiontypein FunctionandParametricconditions

CorrectResponse Responsdime (s)
Function Parametric Function Parametric
QuestionType Graphl Graph2 Graphl Graph2 Graphl Graph2 Graphl Graph2
DV-DV 911 .898 .925 .891 5.93 6.18 4.89 4.83
IV-DV 971 .982 .993 .989 5.01 5.07 4.88 5.17
DV-IV .943 .930 .939 .925 5.51 5.80 4.38 4.41

of 480trialsin theeyemovementstudy 28wereremoved
dueto theanalysiproducinganunusablescanpath(e.g.
containingonly one gazerecordedbeforereachingthe
answerregion). The rest of the trials were placedin-
to four categgoriesaccordingto the numberof transitions
from questiorto graphregions. Of thesetrials, 37.1%in-
volvedonly onetransitionfrom thequestiorto thegraph,
48%involvedtwo suchtransitions,11.9%involvedthree
transitionsand 2.8% involved four or more transitions.
An analysiof thedatashovedthatthesecateyorieswere
notrelatedto specificgraphtype or questiontype condi-
tions. Figure4 shaws the averagegazedurationon the
guestionandgraphregionsfor thefirst threecateories,
(thefourth wasremovedfrom the analysisdueto its rel-
ative rarity).

Figure 4 shaws that participantstook on averagejust
over 400 msto readthe threeelementsf the question.
Thefactthatthis time is consistenaicrossall threetran-
sition groupsis strongevidencethatthe categoriesdo not
indicatedifferentproblemsolving stratgies. If thetran-
sition categoriessimply reflectedthe useof differents-
trategies,(e.g.to switchbetweerthe questionandgraph,
readingindividual questionelementsandthenidentify-
ing their locationsin turn), thenit is likely thatthe first
gazedurationonthequestionvould bedifferentfor each
catgyory. In the 1 transitiontrials, participantstook ap-
proximately2.28s to scanthe graphbeforeenteringan
answetwhereasn the othertrials, participantdooked at
the graphfor a shortertime beforelooking againat the
questiorfor approximateh800ms. In the 2 and3 transi-
tion trials, participantdhenlookedatthe graphagainfor
over a secondbeforeenteringan answeror looking for
athird time at the question respectiely. Participantsin
the 3 transitiontrials thenscannedhe graphfor a third
time beforeenteringananswer

Thesegazepatternsbecomeclearerwheninterpreted
in the light of the GBR modeltaskanalysisof the prob-
lem solving procedure. After readingthe threeitems
of informationin the question,(the given variable,giv-
en valueandrequired variable),in orderto answerthe
guestionsthe usermustcarry out severalgraphlocation
tasksin a specificorder: (1) find the start location de-
terminedby the given variable,(2) find the given loca-
tion representinghe given value, (3) find the required
location representinghe requiredvariable,(4) readoff
the required value which is the answerto the question.
Thesefour stepsrequirethe threeitems of information

in the questionto be utilised at different stagesof the
problemsolving processlt is likely therefore thatonce
thequestiorhasbeenread theprobabilitythateachitem
can be recalledwhen requireddecreasess processing
proceedsaindthatthe item mostlik ely to be forgottenis
atthefinal stageof the process.

Question

Answer

Graph Pattern

Figure 3: Threeregions of the display definedfor the
fixation analysis

Accordingto this analysisthereforethe 37.1%of tri-
alsrequiringonly 1 transitionsuggestshat participants
wereableto retainall threequestiontemswhile solving
the problemin thesetrials, whereasn the 48% of trials
requiring 2 transitionsandthe 11.9%of trials requiring
3 transitions,participantshadfailed to retrieve oneand
two questionitemsrespectiely. A detailedanalysisof
the raw eye movementdatafor individual trials andthe
durationof thefirst gazeon the graphfor eachtransition
groupin Figure4 supportthis account. In the 2 transi-
tion trials, participantstook 1.71 s to identify the start
location,find the givenlocationbeforehaving to look a-
gainattherequiredvariablein thequestiorto find there-
quiredlocationandsolve theproblem.In the 3 transition
trials, however, participantsverelooking atthegraphfor
only 860msin orderto identify the startlocationbefore
having to look againatthe givenvaluein the questiono
find the givenlocationandthenhaving to look againat
therequiredvariablein the questionto find therequired
locationandsolve theproblem.lt followsfrom thisanal-
ysis that the probability of recallingeachquestionitem
canbe computedfrom the data. The probability of re-



callingthegivenvariableis .972,thatfor thegivenvalue
is .852while that for the requiredvariablefalls sharply
to.372.
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The ACT-R/PM Model

Oneof themainaimsof thisresearchis to construcimod-
els of graph-basedeasoninghat are groundedin cog-
nitive theory and incorporatecognitive factorssuchas
memorydecayandinterferenceogetherwith perceptu-
al/motorcomponentshatproviderealisticinteractve be-
haviour. With theseadditionalfactorsit is expectecthat
theoptimalanalysegrovidedby the GBR modelmaybe
extendedto accountfor detailedexperimentaldatasuch
as eye movementsand gazedurations. ACT-R/PM has
the requiredcognitive and perceptuaimechanismsvith
which to develop suchmodels. More specifically ACT-
R’s declaratve memoryhasanactivation-basedetrieval
processand includesa mechanismby which the base-
level activationof a chunkdecreaseevertime. In addi-
tion, the vision moduleof ACT-R/PM allows the activa-
tion of a chunkto be increasedvhenvisual attentionis
refocusediponthevisualobjectthatit representsSpace
limitations precludefurther elaborationof thesemecha-
nismsherebut detaileddiscussionganbe foundin An-
derson& Lebiére(1998)andByrne& Anderson(1998).
An ACT-R/PM model of the experimentwas con-
structedwhich wasableto interactwith anexactreplica
of the software usedto run the experiment. The model
consistof productiongo readthethreequestioncompo-
nentsandasetof productiongo locatethegivenvariable,
givenvalueandrequiredvariablein the correctorder A
furthersetof productionsvascreatedo allow themodel
to enteran answerusingthe mouseand answerbuttons
oncetherequiredvaluehadbeenobtained.

Givenatop level goalto do a trial of the experimen-
t, the modelsetsa subgoalto readthe question. When
eachquestioncomponentasbeenread,a chunkrepre-
sentingthatcomponents createdn declaratve memory
Whenall threeelementf the questionhave beenread,
the model carriesout a sequencef three main opera-
tions: (1) to identify the startinglocation(x axis,y axis,
or plot region) correspondingo thegivenvariable,(2) to
find thegivenlocation(x axistick label,y axistick label,
or plot symbollabel) correspondingo the givenvalue,
(3) to find therequiredlocation(x axistick label,y axis
tick label,or plot symbollabel)representingherequired
variablesvalue. The sequencef theseoperationss de-
terminedby the stateof the problemrepresentedby the
currentlocationof visualattentionin the graphwhich is
aslotin thetop level goal. At eachof thesemain steps
in the problemsolving procedure the productioniniti-
ating the stepmustretrieve the declaratve chunkrepre-
sentingthe relevant questionelementcreatedwhen the
questionwasread. As the base-lgel activation of these
chunksis decreasingvertime, however, the probability
thatthe chunkwill beretrievedreducesasproblemsolv-
ing proceedslf theproductionfailsto retrievethechunk,
a secondproductionfires which storesthe currentloca-
tion of attention,setsa subgoato rereadthe appropriate
questiorelementtherebyincreasingheactivationof the
associated¢hunk,andthenreturnsthe focusof attention
to its previouslocation. With this chunknow sufficiently
active, thefirst productionis ableto fire andtheproblem
solving processcontinue. Whenthe modellocatesthe
requiredvalue,a subgoals setto entertheanswerusing
themouseandtheanswerbuttons.Whenthe answethas
beenenteredthe next trial begins.

Simulation An initial testof themodelin theparamet-
ric graphconditionhasbeenconducted.In this test,the
modelwasrun throughthe entire experimentfive times
andthe numberof timesthe questionelementswerer-
ereadwasrecordedor eachrun. Of the total of 600tri-
als,the givenvariablewasnever rereadasthe activation
of the givenvariablechunkwasalways highly active at
thestartof atrial, while the givenvaluehadto bereread
59 timesandthe requiredvariable 314 times. As with
the eye movementdata,the probability of recallingeach
questionitem can be computedfrom thesescores. The
probability of recallingthe givenvariableis 1, whereas
thatfor the given valueis .9 while that for the required
variableis .48. Table2 showns theseprobabilitiesagainst
thosecomputedfrom the dataandrevealsa closesimi-
larity betweerthe patternof recallprobabilities.

An analysisof themodel's behaiour revealedthatthe
large decreasén therecall probability betweerthe giv-
envalueandthe requiredvariableis duenot only to the
time interval betweenthe recall of the two questionel-
ements but alsobecausavhenthe given valuewas not
recalled the additionaltime requiredto rereadthe ques-
tion elementensuredhatthe requiredvariablewasalso
notrecalled.



Table 2: Probability of recall for the threequestionel-
ementscomputedfrom the eye movementdataandthe
ACT-R/PM model

QuestionElement Data Model
GivenVariable  .972 1.00
GivenValue .852 .902
Requiredvariable .372 AT7

Discussion

Reasoningvith Cartesiargraphsinvolvesa complecin-
teractionbetweenthe perceptuabnd cognitive abilities
of the reasonerthe visual propertiesof the graph,and
specifictask requirements.Models of graph-basedea-
soninghave largely focussedn providing detailedtask
analysesn relationto the the visual propertiesof the
graphandexplainingdifferencesn performancén terms
of the interactionof thesetwo elements. By incorpo-
rating cognitive factorsasthe users knowledge, strate-
giesandworking memorycapacityandperceptual/motor
componentsnto graph-basedeasoningnodels,the ex-
planatoryand predictive power of thesemodelscanbe
increase@ndgreaterinsightsinto theprocesseandfac-
torsaffectingthesecomplex interactionsanbeobtained.

In suchavisualdomainasgraph-basedeasoningeye
movementsare an importantsourceof information re-
gardinghow peopleacquireandprocesgraphicalinfor-
mationduring problemsolving. The experimentandthe
eye movementstudyreportedhereshov how eye move-
mentdatacanbe usedto make hypothesesbouteffects
of working memorylimitations on problemsolvingwith
graphs. The scanpathsrevealedby the eye movemen-
t studyshav that the optimality assumption®f current
modelsseneasanapproximatiorthatobscureshecom-
plex sequencesf saccademadeby individuals.

In contrast,the ACT-R/PM model of the experimen-
t providesa detailedexplanationof thesescanpathsin
terms of the decayof base-lgel activation of percep-
tual chunksduring the time courseof problemsolving.
Accordingto the model,participantsnitially encodeal-
| threeelementsof the questionbut are requiredto re-
encodepartsof it asthe problemprogresseswith the
probability of re-encodingncreasingovertime.

This researctshows thateye movementdatacanpro-
vide importantinformationconcerninghecognitive fac-
tors underlyingreasoningwith externalrepresentations
thatwerecommonlyoverlookedby optimaltaskanalytic
modelsand also how a cognitve model suchas ACT-
R/PM canaccounfor thesedata.
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