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Abstract

Modelsof graph-basedreasoninghave typically account-
edfor thevariationin problemsolvingperformancewith
different graphtypes in termsof a task analysisof the
problemrelativeto theparticularvisualpropertiesof each
graphtype (e.g. Lohse,1993; Peebles,Cheng& Shad-
bolt 1999,submitted). This approachhasbeenusedto
explain responsetime andaccuracy differencesin exper-
imental situationswheredataare averagedover experi-
mentalconditions. An experimentis reportedin which
participants’eye movementswere recordedwhile they
weresolvingvariousproblemswith differentgraphtype-
s. Theeye movementdatarevealedfine grainedfixation
patternsthatarenotcapturedbycurrentanalysesbasedon
optimalfixationsequences.It is arguedthatthesepatterns
reveal the effectsof working memorylimitations during
thetimecourseof problemsolving.An ACT-R/PMmod-
el of theexperimentis describedin which a similar pat-
ternof eyefixationsis producedasanaturalconsequence
of thedecayin activationof perceptualchunksover time.

Introduction
A recentdevelopmentin thefield of cognitivemodelling
is the proposalof frameworks to understandinterac-
tivebehaviour with externalrepresentationsandartifact-
s. Gray(2000;Gray& Altmann,2000),for example,has
proposedtheCognition-Task-Artifact triad within which
to characterisebehaviour in human-computerinteraction
tasksin termsof thecomplex interactionof threeprimary
elements:thecognitiveabilitiesof theuser, therepresen-
tational and physicalpropertiesof the artifact, and the
specificrequirementsof the task. This framework has
recentlybeendevelopedby Byrne (in press)to encom-
passthe perceptualand motor capabilitiesof the user.
Similarly, in theareaof graph-basedreasoning,Peebles,
Chengand Shadbolt(1999, submitted)have proposed
theGraph-Based Reasoning (GBR)modelincorporating
thesethreeelementsto accountfor theability of usersto
retrieve andreasonaboutinformationin differenttypes
of Cartesianco-ordinate(x–y) graph.

Theprimarypurposeof theseframeworks is to infor-
m the developmentof detailedcognitive modelsof the
cognitive,perceptualandmotorprocessesinvolvedin the
tasksunderstudy. In contrastwith cognitive task analysis
(Gray& Altmann,2000)whichsimplyspecifiesthecog-
nitivestepsrequiredto performthetask,theconstruction
of cognitive processmodelsthataregroundedin cogni-
tive theoryallows theincorporationandtestingnot only

of relevantcognitive factorssuchastherequireddeclar-
ative andproceduralknowledge,the strategiesadopted,
andthe limitationsof working memorybut alsopercep-
tual/motorfactorssuchasmousemovementsandshifts
in visualattention.

Onesuchmodelin theareaof graph-basedreasoning
is UCIE (Lohse,1993). By addingcognitive parameter-
s to the GOMS classof taskanalysistechniques(Card,
Moran, & Newell, 1983; Olson & Olson, 1990; John
& Kieras, 1994), Lohseproduceda model which sim-
ulatedcertainquestionansweringproceduresusingline
graphs,bargraphsandtablesandpredictedquestionan-
sweringtimesby assumingan optimal sequenceof eye
movementsto scanthegraphicalrepresentationthatmin-
imisedthenumberof saccadesandfixationsto reachthe
targetlocation.

More recently, the GBR model(Peebleset al., 1999,
submitted),employeda similar setof assumptionsto ac-
count for datafrom experimentsinvestigatingthe vari-
ousinteractingfactorsaffectingreasoningwith differen-
t typesof informationally equivalent (Larkin & Simon,
1987)Cartesiangraph. Figure1 shows examplesof the
typesof graphused. Both graphsencodethe sametwo
functionsbetweentime andthe variablesA andB. The
Function graphin Figure1arepresentstime on thex ax-
is andthe A andB variableson the y axis whereasthe
Parametric graphin Figure 1b representsthe A and B
variableson the x andy axesrespectively while time is
plottedasa parameterisingvariablealongthecurve.

Our experimentshave revealedsignificantdifferences
in both responsetime anderror ratesbetweenusersof
the two graphtypesfor a wide rangeof questions(Pee-
bleset al., 1999,submitted).TheGBR modelhasbeen
successfulin explainingwhy suchdifferencesoccurwith
thesegraphtypesdespitetheirnumerousvisualandcon-
ceptualsimilarities. Using the graphsin Figure1 asan
example,we foundthatwhenparticipantswereaskedto
retrievethevalueof A whenB equals1,parametricgraph
users’responsesweresignificantlymorerapidandaccu-
ratethanthoseof functiongraphusers.TheGBR model
accountsfor thesedifferencesin termsof theoptimalvi-
sualscanpaththe usersfollow throughthe graph. The
variability in responsesis apparentfrom thesequenceof
hypothesisedsaccadesin the two graphs. In Figure1a,
thesequenceof saccadesis m, n, o, whereasin Figure1b
the processrequiresjust two saccades,asshown by the



line sequencea, b. The higher probability of an erro-
neousresponseusingthe function graphwasexplained
by the additionalnumberof possibleincorrectsaccades
thatthefunctiongraphusersmaymake.
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Figure1: Informationallyequivalentfunctionandpara-
metricgraphs

The optimality assumptionsincorporatedinto the U-
CIE andGBR modelsareusefulasthey allow the pre-
diction of responsetimesandprovide anexplanationof
variationsin meanRT anderrordatafor differentgraph
types.It is clear, however, thatsuchassumptionsdo not
take importantcognitive factorssuchasworking mem-
ory limitations or strategic decisionsinto account. For
example, it is likely that, during the time courseof a
complex graph-basedreasoningproblem,certaininfor-
mationmaybeforgottenandhaveto berescanned.In ad-
dition, giventhatgraphusersareawarethat information
is availablefor rescanningat all times,it is possiblethat
they maytradeoff additionalsaccadesfor a reductionin
workingmemoryload.If this is thecase,thenthecurrent
analysesmaymissoutanimportantlevel of detailwhich
shedslight on thecognitive loadthat thesetasksareim-
posingandthestrategiesby which graphusersoptimise
their retrieval procedures.Furthermore,if thegoal is to
producedetailedcognitive modelsof thesetasks,then
informationat this level of detail will provide valuable
constraintson suchmodels.

In this article we report the resultsof a graph-based
reasoningexperimentdesignedto addresstheseissues.
In theexperiment,participantswereaskedto solve sim-
ple tasksusing function and parametricgraphswhich,
basedon the optimality assumptionsdescribedabove,
would bepredictedto producevaryingresponsepattern-
s by requiringdifferentoptimal fixation sequences.To
determinewhethertheseoptimalityassumptionsarejus-
tified, someof the participants’eye movementswere
recordedasthey solvedtheproblems.We show that,al-
thoughthe RT anderror dataare in line with the GBR
model’s predictions,certainpatternsin the eye move-
ment datado not follow the optimal sequencepredict-
edby themodelwhich maybeinterpretedasindicating
theeffectsof working memorylimitations. We thende-
scribeanACT-R/PM modelof theexperimentin which
a similar patternof eye fixationsis producedasa natu-
ral consequenceof thedecayin activationof perceptual
chunksover time.

Experiment
Oneof themostcommontaskscarriedout whenusinga
graphis to elicit thevalueof onevariablecorresponding
to a givenvalueof another. This taskwaschosenfor the
experimentasit is sowidely performedandbecausethe
proceduresinvolved are relatively simple. The knowl-
edgerequiredto carryout thesetasksis primarily these-
quenceof fixationsrequiredto reachthe given location
in the graphrepresentingthe given value of the given
variableandthenfrom thereto thetarget location repre-
sentingthecorrespondingvalueof therequiredvariable.
In previous research,however, we have discoveredthat
theeffectivenessof a particulargraphicalrepresentation
for retrieving the requiredinformation dependson the
detailsof thetask,i.e.which variableis givenandwhich
is sought(Peebleset al., 1999,submitted).

Method
Participants and materials Forty-nineundergraduate
andpostgraduatepsychologystudentsfrom the Univer-
sity of Nottinghamwerepaid£3to takepartin theexper-
iment. Of these,four werepaidanadditional£2 to have
their eye movementsrecordedwhile they carriedout the
experiment. The experimentwas carriedout usingPC
computerswith 17in displays.Theeyetrackeremployed
in theexperimentwasanSMI iView systemusingaRED
II desktoppupil/cornealreflectancetrackerwith a 50 Hz
samplingraterecordingeye movementsat 20 ms inter-
vals remotelyfrom a position in front of the computer
display. In additionto thesystem’s own automatichead
movementcompensationmechanism,participant’shead-
s wererestrainedin a framefixed to the tableto reduce
recordingerrordueto headmovement,

Thestimuli usedin theexperimentwerefour graphs,
shown in Figure2, depictingtheamountof UK offshore
oil andgasproductionbetweentwo decades.Participants
wereseatedapproximately80 cm from the72 ppi com-
puterdisplay. Thegraphswere15.5cm square(includ-
ing axislabels),correspondingto approximately11.1

�
of

visualangle.Thecharactersrepresentingvariablevalues
were0.4 cm high (approximately.21

�
of visual angle)

while thosefor theaxislabelsandquestionswere0.4cm
and0.5 cm high (approximately.29

�
and.36

�
of visual

angle)respectively. Axis ticks werespaced1.5 cm (ap-
proximately1.1

�
of visualangle)apart.

The graphsand datasetswere designedso that the
independentvariable(IV—year)andthe two dependen-
t variables(DVs—oil andgas)all had ten valuesrang-
ing from 0 to 9 and that the full rangeof thesevalues
wasrepresentedby thedatapointsfor oil andgasin both
decades.A setof 120questionswasproducedusingal-
l of the valuesfor the threevariablesin both decades.
Thequestionshadthesamebasicstructure,giving avari-
able’s valueandrequiringa correspondingvariableval-
ue.

Design and Procedure The experimentwasa mixed
designwith onebetween-subjectsvariable,(graphtype)
and two within-subjectsvariables(question type and
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Figure2: FunctionandParametricGraphsUsedin theExperiment

graphnumber).Participantswererandomlyallocatedto
oneof the two graphtype conditions. On eachtrial, a
graphwould be presentedwith a questionabove it. For
example,the questionGAS = 2, OIL = ? requiredthe
valueof oil whengasis equalto 2 to be found. Partic-
ipantswereinstructedto enteronly the final numberof
the target year when a year value was required. Each
elementof the questionwas centeredon a co-ordinate
point which remainedinvariant throughoutthe experi-
mentwith approximately3.5 cm (approximately2.5

�
of

visualangle)betweenthecentresof adjacenttext items.
Togetherwith the graphandquestion,a button labelled
Answer appearedin the top right cornerof the window.
Participantswereinstructedto click on this answerbut-
ton assoonasthey hadobtainedtheanswerto theques-
tion. Responsetimeswererecordedfrom theonsetof a
questionto themouseclick on theanswerbutton. When
thisbuttonwasclickedupon,thebutton,graphandques-
tion wereremoved from the screenanda circle of but-
tons labelledclockwisefrom 0 to 9 appearedcentered
on theanswerbutton. Participantsenteredtheir answer-
s by clicking the appropriatenumberbutton. Whenthe
numberbuttonwasclicked,thenext graph,question,and
answerbuttonappearedon thescreen.This methodwas
devisedso that participantsin the eye movementstudy
would not have to take their eyesaway from the screen
to enteranswers,aswould be the caseif usingthe key-
board.Beforestartingtheexperiment,participantswere
askedto answerthequestionsasrapidlyandasaccurate-
ly as possibleand were given time to becomefamiliar
with thegraphsandpracticeenteringnumbersusingthe
circleof numberbuttonsandmouse.

Results

Response accuracy and latency data Theproportions
of correctresponsesandmeanresponsetimes(RTs) for
eachof thequestiontypesfor thetwo graphsin eachcon-
dition arepresentedin Table. Thedatarevealhigh lev-
elsof accuracy for all threequestiontypesin bothgraph
conditions. An ANOVA on the responseaccuracy da-
ta,however, revealedasignificanteffectof questiontype
F(2, 239) = 28.187,p � 0.01,MSE = 0.123. Although
there is little variability in responseaccuracy between
conditions,RTs vary significantly both betweencondi-

tionsandwithin eachconditionaccordingto thetypeof
questionbeingattempted.An ANOVA on the RT data
revealedsignificanteffectsof questiontype F(2, 239)=
18.447,p � 0.01, MSE = 4974038,andgraphnumber
F(1, 239)= 5.76,p � 0.05,MSE = 1223302andsignif-
icant interactionsbetweengraphtypeandquestiontype
F(2, 239) = 36.314,p � 0.01,MSE = 9791754andbe-
tweengraphtype,questiontypeandgraphnumberF(2,
239)= 3.913,p � 0.05,MSE = 466423.

Theresultsof this experimentarein line with predic-
tionsof theGBRmodelwhichexplainsthesedifferences
in termsof a detailedtaskanalysisand the assumption
of differentoptimalscanpathsthroughthegraphsto the
target location. However, asthe main focusof this arti-
cle is theeyemovementdataandtheACT-R/PM model,
no analysisof thesedatawill be provided here. A full
descriptionof theGBR model,its predictionsandanal-
ysesof theseandsimilar taskscanbefound in previous
articles(Peeblesetal., 1999,submitted).

Eye movement data To analysetheeyemovementda-
ta,thedisplaywasdividedinto threeregionsin amanner
similar to thatemployedby CarpenterandShah(1998).
The regions, shown in Figure 3, were the samefor al-
l four graphsanddefinetherelevantunitsof thedisplay
for thefixationanalysis:question, graph pattern, andan-
swer buttons.Dividing thedisplayin thismannerallows
ananalysisof thefrequency anddurationof fixationson
the questionandthe graphandalsothe patternof tran-
sitionsbetweentheseregionsduring the time courseof
an individual trial. For the analysis,we adoptCarpen-
terandShah’s (1998)termgaze to referto asequenceof
consecutive fixationson a displayregion that is unbro-
ken by fixations in other regions. The raw x andy co-
ordinatedatafrom the eye tracker wereaggregatedinto
gazes,the minimumdurationof which, basedon a pre-
liminary studyof thedata,wasdefinedas100ms. This
valuewassufficiently large to eliminatemostsaccades,
shortfixationsandnoisein thedatawhile still capturing
all therelevantfixations.Thedatafrom eachparticipan-
t wereanalysedso that fixationsof 100 ms or more in
eachregion wererecordedanda scanpathconsistingof
thesequenceof gazesfrom questionto graphto answer
buttonregionsfor eachtrial wasproduced.Froma total



Table1: CorrectresponseproportionsandmeanRTs for eachquestiontypein FunctionandParametricconditions

CorrectResponse ResponseTime(s)
Function Parametric Function Parametric

QuestionType Graph1 Graph2 Graph1 Graph2 Graph1 Graph2 Graph1 Graph2
DV–DV .911 .898 .925 .891 5.93 6.18 4.89 4.83
IV–DV .971 .982 .993 .989 5.01 5.07 4.88 5.17
DV–IV .943 .930 .939 .925 5.51 5.80 4.38 4.41

of 480trialsin theeyemovementstudy, 28wereremoved
dueto theanalysisproducinganunusablescanpath(e.g.
containingonly onegazerecordedbeforereachingthe
answerregion). The rest of the trials were placedin-
to four categoriesaccordingto thenumberof transitions
from questionto graphregions.Of thesetrials,37.1%in-
volvedonly onetransitionfrom thequestionto thegraph,
48%involvedtwo suchtransitions,11.9%involvedthree
transitionsand2.8% involved four or more transitions.
An analysisof thedatashowedthatthesecategorieswere
not relatedto specificgraphtypeor questiontypecondi-
tions. Figure4 shows the averagegazedurationon the
questionandgraphregionsfor thefirst threecategories,
(thefourth wasremovedfrom theanalysisdueto its rel-
ative rarity).

Figure4 shows that participantstook on averagejust
over 400 ms to readthe threeelementsof the question.
Thefact that this time is consistentacrossall threetran-
sitiongroupsis strongevidencethatthecategoriesdonot
indicatedifferentproblemsolvingstrategies. If thetran-
sition categoriessimply reflectedthe useof differents-
trategies,(e.g.to switchbetweenthequestionandgraph,
readingindividual questionelementsandthenidentify-
ing their locationsin turn), thenit is likely that the first
gazedurationonthequestionwouldbedifferentfor each
category. In the 1 transitiontrials, participantstook ap-
proximately2.28s to scanthe graphbeforeenteringan
answerwhereasin theothertrials,participantslookedat
the graphfor a shortertime beforelooking againat the
questionfor approximately300ms. In the2 and3 transi-
tion trials,participantsthenlookedat thegraphagainfor
over a secondbeforeenteringan answeror looking for
a third time at thequestion,respectively. Participantsin
the 3 transitiontrials thenscannedthe graphfor a third
timebeforeenteringananswer.

Thesegazepatternsbecomeclearerwheninterpreted
in the light of theGBR modeltaskanalysisof theprob-
lem solving procedure. After readingthe three items
of information in the question,(the given variable,giv-
en valueand required variable),in order to answerthe
questions,theusermustcarryout severalgraphlocation
tasksin a specificorder: (1) find the start location de-
terminedby the given variable,(2) find the given loca-
tion representingthe given value, (3) find the required
location representingthe requiredvariable,(4) readoff
the required value which is the answerto the question.
Thesefour stepsrequirethe threeitemsof information

in the questionto be utilised at different stagesof the
problemsolvingprocess.It is likely therefore,thatonce
thequestionhasbeenread,theprobabilitythateachitem
can be recalledwhen requireddecreasesas processing
proceedsandthat the item mostlikely to beforgottenis
at thefinal stageof theprocess.

Answer
Question

Graph Pattern

Figure 3: Threeregions of the display definedfor the
fixationanalysis

Accordingto this analysis,therefore,the37.1%of tri-
als requiringonly 1 transitionsuggeststhat participants
wereableto retainall threequestionitemswhile solving
theproblemin thesetrials, whereasin the48%of trials
requiring2 transitionsandthe 11.9%of trials requiring
3 transitions,participantshadfailed to retrieve oneand
two questionitemsrespectively. A detailedanalysisof
the raw eye movementdatafor individual trials andthe
durationof thefirst gazeon thegraphfor eachtransition
groupin Figure4 supportthis account. In the 2 transi-
tion trials, participantstook 1.71 s to identify the start
location,find thegivenlocationbeforehaving to look a-
gainat therequiredvariablein thequestionto find there-
quiredlocationandsolvetheproblem.In the3 transition
trials,however, participantswerelookingatthegraphfor
only 860msin orderto identify thestartlocationbefore
having to look againat thegivenvaluein thequestionto
find the given locationandthenhaving to look againat
therequiredvariablein thequestionto find therequired
locationandsolvetheproblem.It followsfrom thisanal-
ysis that the probability of recallingeachquestionitem
canbe computedfrom the data. The probability of re-



calling thegivenvariableis .972,thatfor thegivenvalue
is .852while that for the requiredvariablefalls sharply
to .372.
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The ACT-R/PM Model
Oneof themainaimsof thisresearchis to constructmod-
els of graph-basedreasoningthat aregroundedin cog-
nitive theory and incorporatecognitive factorssuchas
memorydecayandinterferencetogetherwith perceptu-
al/motorcomponentsthatproviderealisticinteractivebe-
haviour. With theseadditionalfactors,it is expectedthat
theoptimalanalysesprovidedby theGBRmodelmaybe
extendedto accountfor detailedexperimentaldatasuch
aseye movementsandgazedurations. ACT-R/PM has
the requiredcognitive andperceptualmechanismswith
which to developsuchmodels.More specifically, ACT-
R’s declarativememoryhasanactivation-basedretrieval
processand includesa mechanismby which the base-
level activationof a chunkdecreasesover time. In addi-
tion, thevision moduleof ACT-R/PM allows theactiva-
tion of a chunkto be increasedwhenvisual attentionis
refocuseduponthevisualobjectthatit represents.Space
limitationsprecludefurtherelaborationof thesemecha-
nismsherebut detaileddiscussionscanbefoundin An-
derson& Lebiére(1998)andByrne& Anderson(1998).

An ACT-R/PM model of the experiment was con-
structedwhich wasableto interactwith anexactreplica
of the softwareusedto run the experiment. The model
consistsof productionsto readthethreequestioncompo-
nentsandasetof productionsto locatethegivenvariable,
givenvalueandrequiredvariablein thecorrectorder. A
furthersetof productionswascreatedto allow themodel
to enteran answerusingthe mouseandanswerbuttons
oncetherequiredvaluehadbeenobtained.

Givena top level goal to do a trial of the experimen-
t, the modelsetsa subgoalto readthe question.When
eachquestioncomponenthasbeenread,a chunkrepre-
sentingthatcomponentis createdin declarativememory.
Whenall threeelementsof thequestionhave beenread,
the model carriesout a sequenceof threemain opera-
tions: (1) to identify thestartinglocation(x axis,y axis,
or plot region)correspondingto thegivenvariable,(2) to
find thegivenlocation(x axistick label,y axistick label,
or plot symbol label) correspondingto the given value,
(3) to find therequiredlocation(x axistick label,y axis
tick label,or plot symbollabel)representingtherequired
variable’svalue.Thesequenceof theseoperationsis de-
terminedby the stateof the problemrepresentedby the
currentlocationof visualattentionin thegraphwhich is
a slot in the top level goal. At eachof thesemainsteps
in the problemsolving procedure,the productioniniti-
ating thestepmustretrieve thedeclarative chunkrepre-
sentingthe relevant questionelementcreatedwhen the
questionwasread. As thebase-level activationof these
chunksis decreasingover time,however, theprobability
thatthechunkwill beretrievedreducesasproblemsolv-
ingproceeds.If theproductionfailsto retrievethechunk,
a secondproductionfires which storesthe currentloca-
tion of attention,setsa subgoalto rereadtheappropriate
questionelement,therebyincreasingtheactivationof the
associatedchunk,andthenreturnsthefocusof attention
to its previouslocation.With thischunknow sufficiently
active,thefirst productionis ableto fire andtheproblem
solving processcontinue. When the model locatesthe
requiredvalue,a subgoalis setto entertheanswerusing
themouseandtheanswerbuttons.Whentheanswerhas
beenentered,thenext trial begins.

Simulation An initial testof themodelin theparamet-
ric graphconditionhasbeenconducted.In this test,the
modelwasrun throughthe entireexperimentfive times
and the numberof timesthe questionelementswerer-
ereadwasrecordedfor eachrun. Of thetotal of 600tri-
als,thegivenvariablewasnever rereadastheactivation
of the givenvariablechunkwasalwayshighly active at
thestartof a trial, while thegivenvaluehadto bereread
59 timesand the requiredvariable314 times. As with
theeye movementdata,theprobabilityof recallingeach
questionitem canbe computedfrom thesescores.The
probability of recallingthe given variableis 1, whereas
that for the given valueis .9 while that for the required
variableis .48. Table2 shows theseprobabilitiesagainst
thosecomputedfrom the dataandrevealsa closesimi-
larity betweenthepatternsof recallprobabilities.

An analysisof themodel’sbehaviour revealedthatthe
largedecreasein the recall probabilitybetweenthegiv-
envalueandtherequiredvariableis duenot only to the
time interval betweenthe recall of the two questionel-
ements,but alsobecausewhenthe given valuewasnot
recalled,theadditionaltime requiredto rereadtheques-
tion elementensuredthat the requiredvariablewasalso
not recalled.



Table2: Probabilityof recall for the threequestionel-
ementscomputedfrom the eye movementdataand the
ACT-R/PM model

QuestionElement Data Model
GivenVariable .972 1.00
GivenValue .852 .902

RequiredVariable .372 .477

Discussion

Reasoningwith Cartesiangraphsinvolvesa complex in-
teractionbetweenthe perceptualandcognitive abilities
of the reasoner, the visual propertiesof the graph,and
specifictaskrequirements.Modelsof graph-basedrea-
soninghave largely focussedon providing detailedtask
analysesin relation to the the visual propertiesof the
graphandexplainingdifferencesin performancein terms
of the interactionof thesetwo elements. By incorpo-
rating cognitive factorsasthe user’s knowledge,strate-
giesandworkingmemorycapacityandperceptual/motor
componentsinto graph-basedreasoningmodels,theex-
planatoryandpredictive power of thesemodelscanbe
increasedandgreaterinsightsinto theprocessesandfac-
torsaffectingthesecomplex interactionscanbeobtained.

In suchavisualdomainasgraph-basedreasoning,eye
movementsare an importantsourceof information re-
gardinghow peopleacquireandprocessgraphicalinfor-
mationduringproblemsolving. Theexperimentandthe
eye movementstudyreportedhereshow how eye move-
mentdatacanbeusedto make hypothesesabouteffects
of working memorylimitationsonproblemsolvingwith
graphs. The scanpathsrevealedby the eye movemen-
t studyshow that the optimality assumptionsof current
modelsserveasanapproximationthatobscuresthecom-
plex sequencesof saccadesmadeby individuals.

In contrast,the ACT-R/PM modelof the experimen-
t providesa detailedexplanationof thesescanpathsin
terms of the decayof base-level activation of percep-
tual chunksduring the time courseof problemsolving.
Accordingto themodel,participantsinitially encodeal-
l threeelementsof the questionbut are requiredto re-
encodepartsof it as the problemprogresses,with the
probabilityof re-encodingincreasingover time.

This researchshows thateye movementdatacanpro-
vide importantinformationconcerningthecognitivefac-
tors underlyingreasoningwith external representations
thatwerecommonlyoverlookedby optimaltaskanalytic
modelsand also how a cognitive model suchas ACT-
R/PMcanaccountfor thesedata.
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