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Abstract

Models of graph-based reasoning have typically accounted for the variation in problem solving performance with different
graph types in terms of a task analysis of the problem relative to the particular visual properties of each graph type [e.g.,
Human Computer Interaction 8 (1993) 353; Proceedings of the Twenty-first Annual Conference of the Cognitive Science
Society. Lawrence Erlbaum Associates, Mahwah, NJ (1999) 531]. This approach has been used to explain response time and
accuracy differences in experimental situations where data are averaged over experimental conditions. An experiment is
reported in which participants’ eye movements were recorded while they were solving various problems with different graph
types. The eye movement data revealed fine grained fixation patterns that are not captured by current analyses based on
optimal fixation sequences. It is argued that these patterns reveal the effects of working memory limitations during the time
course of problem solving. An ACT-R/PM model of the experiment is described in which a similar pattern of eye fixations
is produced as a natural consequence of the decay in activation of perceptual chunks over time.  2002 Elsevier Science
B.V. All rights reserved.

Keywords: Graph-based reasoning; Cognitive modelling; ACT-R/PM

1. Introduction Altmann, 2001), for example, has proposed the
Cognition-Task-Artifact triad within which to char-

A recent development in the field of cognitive acterise behaviour in human–computer interaction
modelling is the proposal of frameworks to under- tasks in terms of the complex interaction of three
stand interactive behaviour with external representa- primary elements: the cognitive abilities of the user,
tions and artifacts. Gray (Gray, 2000; Gray & the representational and physical properties of the

artifact, and the specific requirements of the task.
This framework has recently been developed by
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capabilities of the user. Similarly, in the area ofE-mail address: djp@psychology.nottingham.ac.uk (D. Pee-

bles). graph-based reasoning, we have proposed the Graph-
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Based Reasoning (GBR) model incorporating these More recently, the GBR model (Peebles et al.,
three elements to account for the ability of users to 1999) employed a similar set of assumptions to
retrieve and reason about information in different account for data from experiments investigating the
types of Cartesian co-ordinate (x–y) graph (Peebles, various interacting factors affecting reasoning with
Cheng, & Shadbolt, 1999). different types of informationally equivalent (Larkin

The primary purpose of these frameworks is to & Simon, 1987) Cartesian graph. Fig. 1 shows
inform the development of detailed cognitive models examples of the types of graph used. Both graphs
of the cognitive, perceptual and motor processes encode the same two functions between time and the
involved in the tasks under study. In contrast with variables A and B. The Function graph in Fig. 1(a)
cognitive task analysis (Gray & Altmann, 2001) represents time on the x axis and the A and B
which simply specifies the cognitive steps required to variables on the y axis whereas the Parametric graph
perform the task, the construction of cognitive in Fig. 1(b) represents the A and B variables on the x
process models that are grounded in cognitive theory and y axes, respectively, while time is plotted as a
allows the incorporation and testing not only of parameterising variable along the curve.
relevant cognitive factors such as the required de- Our experiments have revealed significant differ-
clarative and procedural knowledge, the strategies ences in both response time and error rates between
adopted, and the limitations of working memory but users of the two graph types for a wide range of
also perceptual-motor factors such as mouse move- questions (Peebles et al., 1999). The GBR model has
ments and shifts in visual attention. been successful in explaining why such differences

One such model in the area of graph-based occur with these graph types despite their numerous
reasoning is UCIE (Lohse, 1993). By adding cogni- visual and conceptual similarities. Using the graphs
tive parameters to the GOMS class of task analysis in Fig. 1 as an example, we found that when
techniques (Card, Moran, & Newell, 1983; Olson & participants were asked to retrieve the value of A
Olson, 1990; John & Kieras, 1994), Lohse produced when B equals 1, parametric graph users’ responses
a model which simulated certain question answering were significantly more rapid and accurate than those
procedures using line graphs, bar graphs and tables of function graph users. The GBR model accounts
and predicted question answering times by assuming for these differences in terms of the optimal visual
an optimal sequence of eye movements to scan the scan path the users follow through the graph. The
graphical representation that minimised the number variability in responses is apparent from the se-
of saccades and fixations to reach the target location. quence of hypothesised saccades in the two graphs.

Fig. 1. Informationally equivalent function and parametric graphs.
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In Fig. 1(a), the sequence of saccades is m, n, o, is produced as a natural consequence of the decay in
whereas in Fig. 1(b) the process requires just two activation of perceptual chunks over time.
saccades, as shown by the line sequence a, b. The
higher probability of an erroneous response using the
function graph was explained by the additional 2. Experiment
number of possible incorrect saccades that the func-
tion graph users may make. One of the most common tasks carried out when

The optimality assumptions incorporated into the using a graph is to elicit the value of one variable
UCIE and GBR models are useful as they allow the corresponding to a given value of another. This task
prediction of response times and provide an explana- was chosen for the experiment as it is so widely
tion of variations in mean RT and error data for performed and because the procedures involved are
different graph types. It is clear, however, that such relatively simple. The knowledge required to carry
assumptions do not take important cognitive factors out these tasks is primarily the sequence of fixations
such as working memory limitations or strategic required to reach the given location in the graph
decisions into account. For example, it is likely that, representing the given value of the given variable
during the time course of a complex graph-based and then from there to the target location represent-
reasoning problem, certain information may be for- ing the corresponding value of the required variable.
gotten and have to be rescanned. In addition, given In previous research, however, we have discovered
that graph users are aware that information is that the effectiveness of a particular graphical repre-
available for rescanning at all times, it is possible sentation for retrieving the required information
that they may trade off additional saccades for a depends on the details of the task, i.e., which
reduction in working memory load. If this is the variable is given and which is sought (Peebles et al.,
case, then the current analyses may miss out an 1999).
important level of detail which sheds light on the
cognitive load that these tasks are imposing and the 2.1. Method
strategies by which graph users optimise their retri-
eval procedures. Furthermore, if the goal is to 2.1.1. Participants and materials
produce detailed cognitive models of these tasks, Forty-nine undergraduate and postgraduate psy-
then information at this level of detail will provide chology students from the University of Nottingham
valuable constraints on such models. were paid £3 to take part in the experiment. Of these,

In this article we report the results of a graph- four were paid an additional £2 to have their eye
based reasoning experiment designed to address movements recorded while they carried out the
these issues. In the experiment, participants were experiment. The experiment was carried out using
asked to solve simple tasks using function and PC computers with 17 inch displays. The eye tracker
parametric graphs which, based on the optimality employed in the experiment was an SMI iView
assumptions described above, would be predicted to system using a RED II desktop pupil /corneal reflect-
produce varying response patterns by requiring dif- ance tracker with a 50-Hz sampling rate recording
ferent optimal fixation sequences. To determine eye movements at 20-ms intervals remotely from a
whether these optimality assumptions are justified, position in front of the computer display. In addition
some of the participants’ eye movements were to the system’s own automatic head movement
recorded as they solved the problems. We show that, compensation mechanism, participant’s heads were
although the RT and error data are in line with the restrained in a frame fixed to the table to reduce
GBR model’s predictions, certain patterns in the eye recording error due to head movement.
movement data do not follow the optimal sequence The stimuli used in the experiment were four
predicted by the model which may be interpreted as graphs, shown in Fig. 2, depicting the amount of UK
indicating the effects of working memory limitations. offshore oil and gas production between two de-
We then describe an ACT-R/PM model of the cades. Participants were seated approximately 80 cm
experiment in which a similar pattern of eye fixations from the 72 ppi computer display. The graphs were
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Fig. 2. Function and parametric graphs used in the experiment.

15.5 cm square (including axis labels), corresponding peared in the top right corner of the window.
to approximately 11.18 of visual angle. The charac- Participants were instructed to click on this answer
ters representing variable values were 0.4 cm high button as soon as they had obtained the answer to the
(approximately 0.218 of visual angle) while those for question. Response times were recorded from the
the axis labels and questions were 0.4 and 0.5 cm onset of a question to the mouse click on the answer
high (approximately 0.298 and 0.368 of visual angle), button. When this button was clicked upon, the
respectively. Axis ticks were spaced 1.5 cm (approx- button, graph and question were removed from the
imately 1.18 of visual angle) apart. screen and a circle of buttons labelled clockwise

The graphs and data sets were designed so that the from 0 to 9 appeared centered on the answer button.
independent variable (IV — year) and the two Participants entered their answers by clicking the
dependent variables (DVs — oil and gas) all had 10 appropriate number button. When the number button
values ranging from 0 to 9 and that the full range of was clicked, the next graph, question, and answer
these values was represented by the data points for button appeared on the screen. This method was
oil and gas in both decades. A set of 120 questions devised so that participants in the eye movement
was produced using all of the values for the three study would not have to take their eyes away from
variables in both decades. The questions had the the screen to enter answers, as would be the case if
same basic structure, giving a variable’s value and using the keyboard. Before starting the experiment,
requiring a corresponding variable value. participants were asked to answer the questions as

rapidly and as accurately as possible and were given
2.1.2. Design and procedure time to become familiar with the graphs and practice

The experiment was a mixed design with one entering numbers using the circle of number buttons
between-subjects variable (graph type) and two and mouse.
within-subjects variables (question type and graph
number). Participants were randomly allocated to one 2.2. Results
of the two graph type conditions. On each trial, a
graph would be presented with a question above it. 2.2.1. Response accuracy and latency data
For example, the question GAS52, OIL5? required The proportions of correct responses and mean
the value of oil when gas is equal to 2 to be found. response times (RTs) for each of the question types
Participants were instructed to enter only the final for the two graphs in each condition are presented in
number of the target year when a year value was Fig. 3. The data reveal high levels of accuracy for all
required. Each element of the question was centered three question types in both graph conditions. An
on a co-ordinate point which remained invariant ANOVA on the response accuracy data, however,
throughout the experiment with approximately 3.5 revealed a significant effect of question type F(2,
cm (approximately 2.58 of visual angle) between the 239)528.187, p,0.01, MSE50.123. Although
centres of adjacent text items. Together with the there is little variability in response accuracy be-
graph and question, a button labelled Answer ap- tween conditions, RTs vary significantly both be-
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Fig. 3. Plots of mean correct responses and RTs for function and parametric graph conditions for each question type.

tween conditions and within each condition accord-
ing to the type of question being attempted. An
ANOVA on the RT data revealed significant effects
of question type F(2, 239)518.447, p,0.01,
MSE54 974 038, and graph number F(1, 239)5

5.76, p,0.05, MSE51 223 302 and significant in-
teractions between graph type and question type F(2,
239)536.314, p,0.01, MSE59 791 754 and be-
tween graph type, question type and graph number
F(2, 239)53.913, p,0.05, MSE5466 423.

The results of this experiment are in line with
predictions of the GBR model which explains these
differences in terms of a detailed task analysis and

Fig. 4. Three regions of the display defined for the fixationthe assumption of different optimal scan paths
analysis.through the graphs to the target location. However,

as the main focus of this article is the eye movement
data and the ACT-R/PM model, no analysis of these fixations on the question and the graph and also the
data will be provided here. A full description of the pattern of transitions between these regions during
GBR model, its predictions and analyses of these and the time course of an individual trial. For the
similar tasks can be found in previous articles analysis, we adopt Carpenter and Shah’s (1998) term
(Peebles et al., 1999; Peebles & Cheng, 2001). gaze to refer to a sequence of consecutive fixations

on a display region that is unbroken by fixations in
2.2.2. Eye movement data other regions. The raw x and y co-ordinate data from

To analyse the eye movement data, the display the eye tracker were aggregated into gazes, the
was divided into three regions in a manner similar to minimum duration of which, based on a preliminary
that employed by Carpenter and Shah (1998). The study of the data, was defined as 100 ms. This value
regions, shown in Fig. 4, were the same for all four was sufficiently large to eliminate most saccades,
graphs and define the relevant units of the display for short fixations and noise in the data while still
the fixation analysis: question, graph pattern, and capturing all the relevant fixations. The data from
answer buttons. Dividing the display in this manner each participant were analysed so that fixations of
allows an analysis of the frequency and duration of 100 ms or more in each region were recorded and a
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scan path consisting of the sequence of gazes from the question and graph, reading individual question
question to graph to answer button regions for each elements and then identifying their locations in turn),
trial was produced. From a total of 480 trials in the then it is likely that the first gaze duration on the
eye movement study, 28 were removed due to the question would be different for each category. In the
analysis producing an unusable scan path (e.g., 1 transition trials, participants took approximately
containing only one gaze recorded before reaching 2.28 s to scan the graph before entering an answer
the answer region). The rest of the trials were placed whereas in the other trials, participants looked at the
into four categories according to the number of graph for a shorter time before looking again at the
transitions from question to graph regions. Of these question for approximately 300 ms. In the two- and
trials, 37.1% involved only one transition from the three-transition trials, participants then looked at the
question to the graph, 48% involved two such graph again for over a second before entering an
transitions, 11.9% involved three transitions and answer or looking for a third time at the question,
2.8% involved four or more transitions. An analysis respectively. Participants in the three-transition trials
of the data showed that these categories were not then scanned the graph for a third time before
related to specific graph type or question type entering an answer.
conditions. Fig. 5 shows the average gaze duration These gaze patterns become clearer when inter-
on the question and graph regions for the first three preted in the light of the GBR model task analysis of
categories (the fourth was removed from the analysis the problem solving procedure. After reading the
due to its relative rarity). three items of information in the question (the given

Fig. 5 shows that participants took on average just variable, given value and required variable), in order
over 400 ms to read the three elements of the to answer the questions, the user must carry out
question. The fact that this time is consistent across several graph location tasks in a specific order: (1)
all three transition groups is strong evidence that the find the start location determined by the given
categories do not indicate different problem solving variable, (2) find the given location representing the
strategies. If the transition categories simply reflected given value, (3) find the required location represent-
the use of different strategies (e.g., to switch between ing the required variable, (4) read off the required

value which is the answer to the question. These four
steps require the three items of information in the
question to be utilised at different stages of the
problem solving process. It is likely, therefore, that
once the question has been read, the probability that
each item can be recalled when required decreases as
processing proceeds and that the item most likely to
be forgotten is at the final stage of the process.

According to this analysis, therefore, the 37.1% of
trials requiring only one transition suggests that
participants were able to retain all three question
items while solving the problem in these trials,
whereas in the 48% of trials requiring two transitions
and the 11.9% of trials requiring three transitions,
participants had failed to retrieve one and two
question items, respectively. A detailed analysis of
the raw eye movement data for individual trials and
the duration of the first gaze on the graph for each
transition group in Fig. 5 support this account. In the
two-transition trials, participants took 1.71 s toFig. 5. Mean gaze duration on Question (Qstn) and Graph (Grph)
identify the start location, find the given locationregions as a function of the number of transitions required to

answer the question. before having to look again at the required variable
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in the question to find the required location and solve memory consisting of a set of productions and a
the problem. In the three-transition trials, however, declarative memory in the form of a network of
participants were looking at the graph for only 860 chunks. The system also contains five buffers that
ms in order to identify the start location before store information about such things as the current
having to look again at the given value in the goal, the item of declarative knowledge that is
question to find the given location and then having to currently available to the system, and the current
look again at the required variable in the question to state of the perceptual and motor modules. Each
find the required location and solve the problem. It buffer may contain only one item of information as
follows from this analysis that the probability of each new request for new information replaces the
recalling each question item can be computed from current contents of the buffer. Productions are rules
the data. The probability of recalling the given of the form ‘IF kconditionl THEN kactionl’, the
variable is 0.972, that for the given value is 0.852 condition specifying chunks that must be present for
while that for the required variable falls sharply to the rule to apply and the action specifying the actions
0.372. to be taken should this occur. The conditions of

productions are typically tests of the contents of the
various buffers while on the action side these

2.3. The ACT-R /PM model contents can be modified, the current goal terminated
and a new goal set, or a request for the retrieval of a

One of the main aims of this research is to chunk from declarative memory may be made.
construct models of graph-based reasoning that are ACT-R/PM combines serial and parallel process-
grounded in cognitive theory and incorporate cogni- ing, the cognitive, perceptual and motor modules of
tive factors such as memory decay and interference ACT-R/PM being for the most part serial, with the
together with perceptual-motor components that pro- modules running in parallel with each other. The
vide realistic interactive behaviour. With these addi- various processes also have associated time parame-
tional factors, it is expected that the optimal analyses ters. For example, the default time of a production to
provided by the GBR model may be extended to fire is 50 ms and the time taken to scan across an
account for detailed experimental data such as eye area of a computer display is calculated using Fitt’s
movements and gaze durations. ACT-R/PM has the Law (Fitts, 1954). ACT-R/PM’s visual modules
required cognitive and perceptual mechanisms with represent the display image (which is constructed in
which to develop such models. the LISP programming language) as a visual icon

ACT-R/PM (Byrne & Anderson, 1998) is an and productions are able to direct visual attention to
extension of the ACT-R cognitive architecture (An- elements of this icon. When attention is focussed
derson, 1993; Anderson & Lebiere, 1998) that adds upon an object in the icon, declarative chunks
perceptual-motor modules to the central ACT-R representing that object and its location are created
cognitive module. These modules are based on the with an initial activation value that, as long as this
corresponding modules of EPIC (Kieras & Meyer, value is above a certain retrieval threshold value, can
1997) and allow the modelling of visual attention then be accessed by the cognitive system. ACT-R’s
shifts to objects on a computer display and manual declarative memory has an activation-based retrieval
interaction with a computer keyboard and mouse. In process and includes a mechanism by which the
a recent development, these perceptual-motor mod- activation of chunks decreases over time. However,
ules have been fully integrated into the ACT-R the activation of a visual object or visual location
architecture. It is this current version of the architec- chunk is increased when visual attention is refocused
ture that is used for the model presented here. upon the visual object that it represents.

Space limitations permit only a brief outline of the ACT-R has been used to model a wide range of
most relevant aspects of ACT-R/PM here but de- cognitive phenomena (Anderson & Lebiere, 1998)
tailed discussions can be found in Anderson and and, in recent years with the inclusion of the
Lebiere (1998) and Byrne and Anderson (1998). perceptual-motor modules, has been applied to a
ACT-R contains two memory systems, a procedural number of complex interactive tasks in the area of
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human–computer interaction and human factors re- using the mouse and the answer buttons. When the
search (e.g., Byrne, 2001; Savucci, 2001; Schoelles answer has been entered, the next trial begins.
& Gray, 2000).

An ACT-R/PM model of the experiment was 2.3.1. Simulation
constructed which was able to interact with an exact An initial test of the model in the parametric graph
replica of the software used to run the experiment. condition has been conducted. In this test, the model
The model consists of productions to read the three was run through the entire experiment five times and
question components and a set of productions to the number of times the question elements were
locate the given variable, given value and required reread was recorded for each run. Of the total of 600
variable in the correct order. A further set of trials, the given variable was never reread as the
productions was created to allow the model to enter activation of the given variable chunk was always
an answer using the mouse and answer buttons once highly active at the start of a trial, while the given
the required value had been obtained. value had to be reread 59 times and the required

Given a top level goal to do a trial of the variable 314 times. As with the eye movement data,
experiment, the model sets a subgoal to read the the probability of recalling each question item can be
question. When each question component has been computed from these scores. The probability of
read, a chunk representing that component is created recalling the given variable is 1, whereas that for the
in declarative memory. When all three elements of given value is 0.9 while that for the required variable
the question have been read, the model carries out a is 0.48. Fig. 6 shows these probabilities against those
sequence of three main operations: (1) to identify the computed from the data and reveals a close similarity
starting location (x axis, y axis, or plot region) between the patterns of recall probabilities.
corresponding to the given variable, (2) to find the An analysis of the model’s behaviour revealed that
given location (x axis tick label, y axis tick label, or the large decrease in the recall probability between
plot symbol label) corresponding to the given value, the given value and the required variable is due not
(3) to find the required location (x axis tick label, y
axis tick label, or plot symbol label) representing the
required variable’s value. The sequence of these
operations is determined by the state of the problem
represented by the current location of visual attention
in the graph which is a slot in the top level goal. At
each of these main steps in the problem solving
procedure, the production initiating the step must
retrieve the declarative chunk representing the rel-
evant question element created when the question
was read. As the base-level activation of these
chunks is decreasing over time, however, the prob-
ability that the chunk will be retrieved reduces as
problem solving proceeds. If the production fails to
retrieve the chunk, a second production fires which
stores the current location of attention, sets a subgoal
to reread the appropriate question element, thereby
increasing the activation of the associated chunk, and
then returns the focus of attention to its previous
location. With this chunk now sufficiently active, the
first production is able to fire and the problem Fig. 6. Probability of recall for the three question elements, Given
solving process continue. When the model locates the Variable, Given Value, and Required Variable, computed from the
required value, a subgoal is set to enter the answer eye movement data and the ACT-R/PM model.
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only to the time interval between the recall of the tive factors underlying reasoning with external repre-
two question elements, but also because when the sentations that were commonly overlooked by opti-
given value was not recalled, the additional time mal task analytic models and also how a cognitive
required to reread the question element ensured that model such as ACT-R/PM can account for these
the required variable was also not recalled. data.
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