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Abstract

We present a computational model of human perfor-
mance on the Sustained Attention to Response Task,
a computer-based task in which people must withhold
responses to infrequent and unpredictable stimuli during
a period of rapid and rhythmic responding to frequent
stimuli. The model, formulated within the ACT-R cog-
nitive architecture, accounts for human performance in
terms of two competing strategies and the dynamic mod-
ification of priorities given competing task demands to
minimise both response time and error. The model sug-
gests that such strategic factors may be responsible for
the observed speed-accuracy trade-off rather than the
alternative proposal based on sustained attention.

Introduction

The Sustained Attention to Response Task (SART;
Robertson, Manley, Andrade, Baddeley, and Yiend,
1997) is a computer-based task designed to measure a
person’s ability to withhold responses to infrequent and
unpredictable stimuli during a period of rapid and rhyth-
mic responding to frequent stimuli. As its name implies,
the creators of the task interpret performance as reflect-
ing the ability to sustain attention, which they define as
“the ability to self-sustain mindful, conscious processing
of stimuli whose repetitive, non-arousing qualities would
otherwise lead to habituation and distraction to other
stimuli” (Robertson et al., 1997, p. 747).

In the standard version of the task, participants are
presented with the digits 1 to 9 in random order at a
rate of one every 1.15 s. Each digit is presented for
250 ms followed by a 900 ms mask and participants are
required to respond to each digit as rapidly as possible
by clicking the mouse, apart from when they see the
number 3 when they must withhold the response. The
task consists of a total of 225 trials (25 of each of the
9 digits) and lasts approximately 4.3 min. Participants
are instructed to respond as quickly as possible while
making as few errors (i.e. incorrectly responding to a 3)
as possible.

The central idea behind this paradigm is that the con-
tinuous performance over 225 trials together with the
long and unpredictable intervals between targets encour-
ages the development of an automatic response to non-
target ‘go’ trials and that vigilant monitoring is required
to withhold this response on the infrequent ‘no-go’ target
trials. This contrasts with previous perceptual detection
paradigms used to test sustained attention which have

typically required participants to respond to the infre-
quent target (e.g., Loken, Thornton, Otto, & Long, 1995;
Parasuraman, Mutter, & Molloy, 1991; Whyte, Polan-
sky, Fleming, Coslett, & Calvallucci, 1995). Robert-
son et al. (1997) argue that in these paradigms, it is
responses to the target stimuli that can become automa-
tised which tends to increase the level of performance
and makes the detection of attention lapses harder.

The main focus of research with the SART has been
to investigate the performance of patients with trau-
matic brain injury (TBI) affecting the frontal lobes, a
region previously associated with the ability to sustain
attention (e.g., Rueckert & Grafman, 1996; Wilkins,
Shallice & McCarthy, 1987). In several studies, Manly,
Robertson, and their colleagues have shown that per-
formance on the SART is diminished following TBI to
the frontal lobes and that SART performance correlates
with other measures of sustained attention (e.g., Manly,
Robertson, Galloway, & Hawkins, 1999; Manly, Davi-
son, Heutink, Galloway, & Robertson, 2000; Manly et
al., 2003; Robertson et al., 1997).

The relationship between response time

and error in the SART

In several studies, Manly and Robertson have found that
individuals’ rates of responding were significantly predic-
tive of the number of errors they made (Robertson et al.,
1997; Manly et al., 1999). In particular, the mean RT
for the four trials prior to an error of commission (i.e. in-
correctly responding to a 3) was found to be significantly
faster than that for the four trials prior to a correct re-
sponse to a no-go trial. This suggests that performance
may be determined to a large extent by an individual’s
particular emphasis when trying to satisfy the compet-
ing task instructions to minimise both response time and
the number of erroneous responses.

To study the relationship between RT and error in
more detail, Manly et al. (2000) pooled data from 109
neurologically healthy participants who had carried out
the SART in a number of different studies. They found
that the mean RT for responses to a go trial was 375 ms
(SD 65) and that subjects made on average 6.36 (SD
4.36) errors of commission and 1.06 (SD 3.41) errors
of omission (incorrectly withholding a response on a go
trial). They also found a significant negative correlation
(r = −0.49) between the mean RT for go trials and the
number of errors of commission made, indicating that,



Table 1: Mean Number of Responses and Mean Response Time (RT in ms) for Trials Immediately Before and After
Correct and Erroneous Responses to the Target Digit 3 in the SART (Manly et al., 2000).

Pre-correct Pre-error Post-correct Post-error
Response RT Response RT Response RT Response RT

Mean 17.6 384 6.0 333 17.30 351 6.07 364
SD 4.34 68.4 4.03 63.7 4.32 60.6 3.95 95.17

as in the previously reported studies, participants who
responded more rapidly were more likely to make more
errors. This relationship is shown in Figure 1 which plots
the number of errors of commission against mean RT to
non-targets for each participant.
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Figure 1: Plot of errors of commission against reac-
tion time to non-targets in the SART (reproduced from
Manly et al., 2000).

Manly et al. also analysed the within-subjects pat-
tern of RTs relative to no-go trial responses. To do this
they identified four categories of go trial: (a) those im-
mediately prior to a correctly withheld response to the
target digit (pre-correct); (b) those immediately prior to
an incorrect response to the target digit (pre-error); (c)
those immediately after a correctly withheld response to
the target digit (post-correct); (d) those immediately af-
ter an incorrect response to the target digit (post-error).
Their findings are summarised in Table 1. The mean RT
for pre-error trials (333 ms) was significantly faster than
that for pre-correct trials (384 ms). In addition, RTs
for post-error trials (364 ms) were significantly slower
than those for pre-error trials (333 ms), indicating that
after participants had detected an error, they made a
conscious decision to slow down. Finally, the data also
revealed that the mean RT for post-correct trials was
significantly faster than that for the pre-correct trials,
indicating that in general, participants tended to speed
up after correctly withholding a response to 3.

In an attempt to reduce the strength of the relation-
ship between RT and error rates found in their study,
Manly et al. (2000) produced a modified ‘response-
locked’ version of the SART in which subjects were re-
quired to respond in time with an auditory signal pre-
sented 100 ms after stimulus onset. This modification
was designed to reduce the variability in RTs both be-
tween and within subjects by setting a target RT close
to that found in the previous study to be associated with
correct responses to no-go trials (approximately 380 ms).
Manly et al. argued that the modified task should be
able to differentiate between the alternative accounts of
the speed-accuracy trade-off in RTs. For example, if
the main determinant of performance is the ability to
sustain attention, then the number of errors of commis-
sion in the response-locked SART should be the same
as in the standard version, although the amount of vari-
ation within an individual participant’s RTs and also
between participants RTs should be reduced. However,
if participants’ balancing of priorities in relation to the
conflicting task demands is the primary determinant of
performance, then setting the target RT to a value that
has previously been associated with correct responses to
no-go trials should reduce the number of errors of com-
mission as well as the variability in RTs.

In an experiment in which 30 normal participants car-
ried out both response-locked and standard versions of
the SART, Manly et al. (2000) showed that the auditory
signal significantly reduced the variability in individual
participant’s RTs and also between participants’ RTs in
the response-locked condition. They also found that the
modification reduced the correlation between RT and er-
ror in the response-locked condition (r = −0.19). The
comparative results were somewhat less conclusive. In
the previous study, the proportion of erroneous responses
to target trials was 25.44%. In the standard experiment
condition, that proportion increased to 27.67% but in
the response-locked condition it decreased to 22.57%. It
seems, therefore, that introducing an auditory signal in
the response-locked condition reduces the number of er-
rors of commission as well as the variability in RTs, sup-
porting the view that participants’ balancing of priorities
is a strong factor in performance. The difference between
the two experiment conditions was found to be only
approaching statistical significance, F (1, 29) = 3.16,
p = .09. However the standard deviations of the errors
for both the standard SART (M = 8.30, SD = 5.11)
and response-locked SART (M = 6.77, SD = 4.80) are
relatively large so it is possible that this issue may only
be made less equivocal by a further study using a larger
sample size.



A process account of the SART

The principal relationship between RT and error rate
may, therefore, be characterised as a speed-accuracy
trade-off, but as Manly et al. (2000) argue, this merely
describes the relationship but does not provide an ac-
count of it. Manly et al. suggest that this pattern re-
sults from the waning of sustained attention that occurs
during the course of the task. An alternative interpreta-
tion, however, is that observed performance is the result
of strategic factors, in particular the attempt by subjects
to find an appropriate strategy that allows them to sat-
isfy the conflicting demands to minimise both RT and
error. It is an open and interesting question, therefore,
whether a strategy-based interpretation can account for
performance in the SART. The purpose of the modelling
work reported here is to address this question by pro-
ducing and analysing a process model of the task.

The ACT-R cognitive architecture

ACT-R 5.0 (Anderson et al., submitted) is the most re-
cent version of the ACT-R cognitive architecture (An-
derson & Lebiere, 1998) that adds perceptual and motor
modules to the existing cognitive module. The percep-
tual and motor modules provide ACT-R with rudimen-
tary speech and audition capabilities, visual attention
and processing mechanisms, and elements of motor con-
trol to simulate interaction with a computer keyboard
and mouse.

ACT-R’s cognitive system consists of a module for
maintaining information about goals and two memories:
a procedural memory in the form of a set of production
rules and a declarative memory which is a network of
chunks. The interface between the production rules and
the other modules is through a set of buffers . The buffers
hold information about such things as the current goal,
the item of declarative knowledge that is currently avail-
able to the system, and the current state of the percep-
tual and motor modules. Each buffer may contain only
one chunk of information, and each new request for infor-
mation replaces the current contents of the buffer. Pro-
ductions are rules of the form “IF <conditions> THEN
<actions>,” the conditions specifying a pattern of infor-
mation that must be present in the buffers for the rule to
apply and the action specifying the actions to be taken
should this occur. The actions can be direct modifica-
tions of the buffers’ contents or requests to other modules
to change the buffers, for instance a request of the mem-
ory system to retrieve a chunk or a request to the visual
system to encode a particular stimulus.

ACT-R is able to interact with a computer through its
visual and motor modules. The visual system provides
the model with the ability to detect changes in a com-
puter’s display and to attend to and encode the items
that are there. The manual system allows the model to
click a button on a simulated mouse or press a key on
the keyboard. The timing parameters for those systems
are built in and based on previous research. In particu-
lar the motor system is heavily influenced by the EPIC
architecture (Kieras & Meyer, 1997).

Currently, ACT-R has one explicit attention mech-

anism, the primary purpose of which is to determine
how activation from the current goal is used to retrieve
knowledge in declarative memory. Processing in ACT-R
is driven by the current goal (which is also represented
as a chunk in declarative memory) and elements of the
goal are viewed as the main focus of attention. ACT-
R has a limited quantity of source activation (ACT-R’s
W parameter) which is shared equally between the el-
ements in the goal and subsequently spread to associ-
ated chunks in declarative memory when retrieval re-
quests are made. However, the SART is a very rapid,
stimulus-driven respond-don’t-respond paradigm which
can be modelled in ACT-R with the assumption that
participants are required to retrieve little, if anything,
from declarative memory (the model assumes that the
target number 3 is an element of the goal). As a conse-
quence, this attention mechanism is not utilised in the
model reported here.

A description of the model

An ACT-R model was constructed that was able to in-
teract with the SART through the same interface as the
human participants used—text presented on a computer
screen and a mouse to enter the response. The model
consists of 11 production rules, illustrated in Figure 2.

Incorrect response
to target

double check to target
Correct response

Stimulus
is 3

Stimulus
not 3

Encode
and check

Missed it
don’t click

Missed it
clickand click

Encode

Attend

successfailurefailure success

number

Incorrect response
to target

Correct response
to non−target

Figure 2: Flow of processing in the ACT-R SART model.
Each state in the chart corresponds to one production
rule in the model.

The model comprises two competing strategies, each
represented by one production rule. The first is a faster,
but less accurate method in which the model simply
clicks the mouse after detecting the stimulus (encode-
and-click). The second strategy is more accurate but
slower. In this case, the model first checks the stimulus
to ensure that it should click the mouse (encode-and-
check), and then does so when appropriate.
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Figure 3: Observed and model mean number of re-
sponses for trials immediately before and after correct
and erroneous responses to no-go trials in the SART and
mean errors of commission and omission.

The choice between the two strategies is controlled by
a quantity called utility which ACT-R uses to determine
which production will fire next. The utility, Ui of a pro-
duction i is defined as

Ui = PiG− Ci + σ (1)

where Pi is the probability of successfully achieving the
goal if production i fires and reflects the history of suc-
cesses and failures for the production, G is a global pa-
rameter that represents the cost (measured in time) of
the current goal, and Ci is the measure of cost (also
measured in units of time) associated with the use of
production i until the goal has been achieved. When
choosing from a number of candidate productions to fire,
ACT-R’s conflict resolution mechanism selects the pro-
duction with the highest utility. To introduce an element
of stochasticity to this process, however, a noise value,
σ is added to each production’s utility.

Initially, the utility values of the two productions that
instantiate the strategies are equal. During the course
of the task, the history of success and failure for each
production, along with the time taken to produce those
successes or failures, are used by ACT-R’s utility learn-
ing mechanism to tune the P and C values of both pro-
ductions. As a consequence, the model’s preference for
one strategy or the other changes from trial to trial.

In addition to the subsymbolic utility learning mech-
anism, the model also incorporates an explicit symbolic
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Figure 4: Observed and model mean response times for
all go trials and trials immediately before and after cor-
rect and erroneous responses to no-go trials in the SART.

process for modifying its strategy. On each trial, af-
ter applying a strategy, the model verifies that it re-
sponded appropriately. In cases where the model ver-
ifies a correct response (the correct-response-to-target
and correct-response-to-non-target productions) it sim-
ply waits for the next trial. If the model detects that it
incorrectly clicked for a target, however, it can do one of
two things; either just wait for the next trial (incorrect-
response-to-target) or make an explicit choice to use
the more accurate strategy on the next trial (incorrect-
response-to-target-double-check). The production im-
plementing this second option simply creates an addi-
tional element in the new goal to ensure that the encode-
and-check production fires on the next trial, representing
what is essentially an overt decision to be more careful
in subsequent trials, (as evidenced by the significant in-
crease in RTs for the post-error trials relative to pre-error
trials observed by Manly et al., 2000).

There is one other aspect of the model can affect
its performance. Like the EPIC architecture (Kieras &
Meyer, 1997), completion times for ACT-R’s perceptual-
motor operations can be stochastic and one consequence
of this is that the model sometimes fails to encode
the stimulus during the 250 ms presentation period.
On the relatively rare occasion that this happens, the
model must decide whether to click the mouse (missed-
it-click) or not (missed-it-don’t-click). The structure of
the SART implies that clicking the mouse is the more
frequent response so a small preference for this option is



implemented by giving the missed-it-click production a
slightly higher initial utility value.

Applying the model

The ACT-R model was run 150 times to produce a data
set from 150 simulated participants that could be com-
pared with the RT and response data from the human
subjects in the Manly et al. (2000) study. To fit the
model to the data, two parameters which control the
learning of production utilities were adjusted. One is
the s parameter that adjusts the amount of the variance
in the noise added to the calculations. The noise param-
eter was set to a low value (.01) to allow the model to
be sensitive to the changes in the utility values of each
production from trial to trial while still having some vari-
ability in its performance. The other is the G parameter
representing the value of the goal in the utility calcula-
tion. The definition of G is based on the expected time
to complete the goal and, as trial durations in the SART
are very short (1.15 seconds) so is the expected goal com-
pletion time. Hence, the value of G was lowered from its
default value of 20 seconds to 0.45 seconds to reflect this.

The results of the simulation are shown in Figures 3
and 4. The model provides a very close fit to the
observed pattern of responses, accounting for 99% of
the variance in the observed data (R2 = .998, RMSE
= .756). The model makes on average 6.67 errors of com-
mission and 0.95 errors of omission (the latter occurring
on occasion when the model fails to encode the stimu-
lus). The RTs produced by the model are reasonably
close to the observed data (R2 = .665, RMSE = 19.933)
but do not reproduce the pattern of variation between
trial categories. However the mean RT for all go tri-
als produced by the model (367 ms) is very close to the
observed (375 ms).

The discrepancy between the observed and model RTs
may be explicated somewhat by looking at the distribu-
tion of observed RTs in Figure 1, where it can be seen
that the large majority of participants fall within a range
of 340–400 ms. At either end of this range is a smaller
group of participants who either respond very rapidly
(between 250 and 340 ms) and make more errors or re-
spond relatively slowly (between 400 and 650 ms) and
make fewer errors. It is possible that the difference be-
tween the mean pre-correct and pre-error RTs is being
magnified by the responses of these participants at the
extreme ends of the range. The performance of these two
groups of participants may reflect a strong preference for
satisfying one of the task requirements over the other. In
terms of the current model, this would be represented as
a prior preference for a particular strategy, implemented
by increasing the initial utility value for one of the two
relevant productions.

To illustrate the range of behaviour covered by the
model, Figure 5 plots the number of errors of commis-
sion against mean RT to non-targets for the 150 runs
in the simulation. Although the range of RTs produced
by the model is smaller than the observed, the model
does produce a similar relationship between error and
RT with faster means correlating with more errors. The
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Figure 5: Plot of errors of commission against RT to
non-targets for 150 runs of the ACT-R SART model.

correlation between mean RT on go trials and the num-
ber of errors of commission by the model is significant
(r = −0.788, p < .01).

Discussion

Although there is little doubt that the ability to sustain
attention is an important factor affecting performance in
many tasks, it remains an open question to what extent
performance in the SART is determined by sustained at-
tention or by the subject’s attempt to satisfy conflicting
task demands.

The model presented here questions the explanatory
role of sustained attention in the SART by providing a
plausible alternative account of performance in terms of
strategy choice. The main process underlying this ac-
count is ACT-R’s utility learning mechanism which in-
creases the likelihood of a strategy being used if it has
been successfully used before. As both strategies lead
to a majority of successful trials, if the model starts to
prefer one over the other, it will continue with that pref-
erence, but this choice of strategy will effect the number
of errors and the mean RT produced by the model. The
additional factor in the model is the explicit symbolic
process for modifying its strategy after detecting that it
has incorrectly clicked for a target. This has the effect
of biasing the model in the direction of the encode-and-
check strategy after an error of commission, resulting in
the greater number of model runs producing slower RTs
but fewer errors in the bottom right corner of Figure 5.

The RT and error data produced by the model provide
a close fit to the observed data and, although the range
of RTs currently captured by the model is limited to a
range within the main section of the distribution, it does
reproduce the error profile and the relationship between
error and RT observed in Manly et al. (2000), which was



the primary aim of the current effort. One proposal for
future work under consideration is to use the current
version of the model as a basis for analysing the perfor-
mance of individuals at the extreme ends of the RT and
error scales, possibly due to preferences in response se-
lection (i.e. ACT-R’s G parameter), small variations in
strategy, or overall response speed (e.g., related to the
speed parameters of ACT-R’s motor module).

The phenomenon of speed-accuracy trade-off is com-
monly observed in human behaviour. In ACT-R, speed-
accuracy trade-off is typically addressed by the conflict
resolution mechanism for selecting the next production
rule to fire—more specifically, the G parameter in Equa-
tion 1 (Anderson & Lebiere, 1998, p. 60). Changing the
value of G affects the balance between speed and ac-
curacy; a lower value of G places greater emphasis on
the time cost of a production, C, resulting in a model
that will be more likely to choose the rapid but less accu-
rate option over the more successful, but slower strategy.
Conversely, a higher G will increase the emphasis on suc-
cessfully achieving the goal, even though this might take
longer. This mechanism enables ACT-R models to ac-
count for a range of RT and error data along the trade-off
spectrum. This model, however, is able to account for
a range of behaviour in the SART with a fixed value
of G. In addition, by incorporating an explicit symbolic
level strategy to correct for detected errors in the model’s
responses, that range of behaviour was found to corre-
spond to that of the human participants. The use of the
utility learning mechanism to govern both the speed and
accuracy of the model’s behaviour is, to our knowledge,
an original feature of this model.

It may be the case that Manly et al’s (2000) first study
can be completely accounted for in terms of the dynamic
modification of priorities in relation to the conflicting de-
mands of the task, without any reference to attention.
However, an alternative conception of the model is also
possible, one that views the differences in the amount of
effort required to process a trial between the two strate-
gies in terms of attention to the task. In this sense,
the encode-and-click production represents the inatten-
tive automatic response while the encode-and-check pro-
duction embodies the additional ‘attention’ required to
check the identity of the stimulus to successfully with-
hold the response to 3. This attentional interpretation
of production rules has recently been adopted by other
researchers attempting to model attention at the sym-
bolic rule level (Wang, Fan, & Johnson, 2004), although
it remains to be seen whether—and how far—this in-
terpretation can be utilised in accounting for attention
processes in executive control, particularly as production
rules have traditionally been interpreted as representing
unconscious, automatic, procedural knowledge. In terms
of the new modular ACT-R 5.0 architecture, it is unclear
whether a simple interpretation of attention at the pro-
duction rule level will be adequate or whether an addi-
tional attention module and buffer may be necessary. It
is clear, however, that the issue of how to understand and
model attentional phenomena in cognitive architectures
such as ACT-R is a pressing one that must be addressed.
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