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Abstract
This paper reports an experiment investigating learning and re-
tention in a complex task over multiple sessions across an ex-
tended period of time. The primary aim of the experiment is to
evaluate the Predictive Performance Equation (PPE: Jastrzem-
bski & Gluck, 2009) a model of learning and forgetting that
predicts retention based on past performance. The second aim
is to test a taxonomy for knowledge, skills and attitudes and a
competence retention analysis technique developed to improve
competence retention in military training (Cahillane, Launch-
bury, MacLean, & Webb, 2013). Participants were trained over
16 weeks on the Multi-Attribute Task Battery (MATB: Com-
stock Jr & Arnegard, 1992), a computer-based task analogous
to piloting an aircraft. The study reveals significant variation
in learning profiles for the MATB subtasks and demonstrates
the PPE’s ability to make accurate predictions of human per-
formance over intervals ranging from 27 to 111 days.
Keywords: MATB; Predictive Performance Equation

Competence retention and training
Many military personnel are required to maintain high levels
of task knowledge and skill performance and so are subjected
to regimes of regular testing and refresher training to combat
the effects of skill fade. The schedule of retraining is typi-
cally not determined on an individual basis but is standard-
ised (e.g., calendar-based) and the acceptable threshold crite-
rion is either a general numerical measure such as the number
of training hours completed or a qualitative “pass/fail” score.
However, because there are substantial differences in peo-
ple’s ability to learn and retain information, it may be the case
that two individuals with the same training schedules perform
(possibly safety or mission critical) tasks at very different lev-
els of effectiveness.

To complicate matters, there is strong evidence from the
psychological literature that knowledge and different types
of skills decay at different rates (e.g., Wisher, Sabol, & El-
lis, 1999; Stothard & Nicholson, 2001). Together, these two
factors suggest that a more efficient and productive approach
to training and skill maintenance would be to derive per-
sonalised training schedules through detailed analysis of the
knowledge, skills and attitudes involved in the task and from
each individual’s learning and retention profile.

This paper describes an experimental study that aims to in-
vestigate and integrate two approaches to the understanding
and improvement of competence retention and the personal-
isation of learning for Defence. The first involves the appli-
cation of a model of learning and retention called the Pre-
dictive Performance Equation (PPE)—to create personalised
training schedules based on predicted memory retrieval fail-
ure (Jastrzembski & Gluck, 2009). The second approach re-
lates to research conducted by the UK Defence Science and

Technology Laboratory (Dstl) to develop a set of principles
for improving competence retention in military training, to-
gether with a competence retention analysis (CRA) technique
to support competence retention through training (Cahillane
et al., 2013). The paper will proceed by first describing the
two strands of research, then outlining the details of the ex-
periment, and finally discussing some of the key results, im-
plications and limitations of the study.

The Predictive Performance Equation

The acquisition and retention of knowledge are influenced by
three primary factors: the amount of practice (the frequency
effect), the amount of time elapsed since the last practice
session (the recency effect), and the temporal distribution of
practice (the spacing effect). The spacing effect is less intu-
itive than the others but is a ubiquitous occurrence in learn-
ing in which practice sessions which are more widely dis-
tributed over time result in better retention compared to iden-
tical training sessions scheduled closer together. The ben-
eficial effect of increasing the study interval works only up
to a certain point; intervals beyond a certain threshold di-
minish final retention (Benjamin & Tullis, 2010), but it has
been argued that informed use of the spacing effect can have
significant positive implications for education and training
(Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012).

The PPE characterises the combined effects of recency, fre-
quency and spacing on retention and subsequent task perfor-
mance (Jastrzembski & Gluck, 2009; Walsh, Gluck, Gunzel-
mann, Jastrzembski, & Krusmark, 2018). When calibrated
to individual task performance data gathered over a series of
sessions, the PPE is able to account not only for existing per-
formance data but is also able to make precise, quantitative
predictions of an individual’s performance at later points in
time, sometimes many months into the future (Jastrzembski
et al., 2017). It does so by calculating the expected stability
of knowledge and skills on the basis of the previous train-
ing history and using this measure to predict the expected re-
tention of knowledge and skills across periods of non-use or
further practice (Jastrzembski, Portrey, Schreiber, & Gluck,
2013). The PPE is able to provide an accurate estimate of the
time when performance has declined to such an extent that
refresher training is required.

A key premise of the PPE is that learning new information
creates traces in Long-Term Memory (LTM) and that each
trace has a degree of activation, which determines the proba-
bility that it can be subsequently retrieved and the speed with
which that retrieval will be accomplished. The mechanism of



activation to explain the effect of elapsed time and practice
on task performance. According to this account, LTM traces
vary in their base level of activation (often referred to as the
“strength” of the trace) depending on how frequently or re-
cently they have been used and a trace’s strength determines
its general availability. The strength of a trace changes grad-
ually; it decays over time but can be progressively increased
by repeated practice. The availability of a memory trace is
what affects performance.

The PPE equation (Equation 1) predicts the activation of a
memory trace, which is subsequently converted to a perfor-
mance prediction.

Mn = (N +a)c ·T−d (1)

The PPE assumes that performance increases as a power
function (with learning rate c) of the number of practice
episodes N, decreases as a power function (with decay rate
d) of elapsed time (in seconds) since the episodes occurred
T , and that the effects of practice and elapsed time are mul-
tiplicative in nature (although, as described above, this effect
is on the activation, M of a memory trace, n rather than on
performance directly). Finally the a parameter represents an
individual’s prior experience in the task, adding to the number
of practice episodes to increase ease of activation.

In order to incorporate the spacing effect into the equation,
a conception of time is introduced in which T is computed
as the sum of the time (ti represents the time of encounter
i) since each of the previous study or practice events, each
weighted, wi so that the most recent events are given extra
prominence—the older an encounter the smaller the contri-
bution of that encounter to the total time.

T =
n−1

∑
i=1

wi · ti (2)

Weight is an exponential decay function of time accord-
ing to Equation 3. In this equation, shorter time distances
(i.e., more recent encounters with the material) are weighted
more heavily, with the x parameter determining the degree of
prominence given to shorter time delays. The x parameter is
typically set to 0.6 as this provides a good fit to data in many
studies.

wi =
t−x
i

∑
n
j=1 t−x

j
(3)

Equation 4 determines the rate of decay, d for memory
traces and is defined to capture the spacing effect in which
longer delays between practice episodes result in a reduc-
tion in decay rate—and as a consequence produce more sta-
ble knowledge (Jastrzembski & Gluck, 2009; Walsh, Gluck,
Gunzelmann, Jastrzembski, Krusmark, Myung, et al., 2018).

As the interval between study and test increases, the lower
decay rate associated with spaced versus massed repetitions
enhances retention. To capture this effect, the function in-
corporates the history of lags (i.e., time differences) between

successive events and is a linear function of the average of
one over the sum of the natural logarithm of the lags. In this
equation, b and m are parameters that determine the decay
intercept and slope of the function and correspond to an in-
dividual’s overall level of forgetting and their susceptibility
to the spacing effect respectively. When lags are long, the
value inside the brackets approaches zero, reducing decay to
the asymptotic value determined by the b parameter. In con-
trast, when the lags are short the value inside the brackets
approaches one, increasing decay.

dn = b+m ·

(
1

n−1
·

n−1

∑
j=1

1
log(lag j + e)

)
(4)

Finally, the level of activation, Mn, computed in Equation
1 is transformed into a continuous response value that repre-
sents performance, Pn according to Equation 5. Performance
is a logistic (sigmoid) function of activation with range [0,1]
where the τ parameter determines the sigmoid’s midpoint and
the s parameter determines the logistic growth rate (i.e., the
steepness of the curve).

Pn =
1

1+ exp
(

τ−Mn
s

) (5)

The PPE has been tested in several studies to determine
its ability to predict skill fade and when individuals need to
return for retraining on critical tasks (Jastrzembski, Gluck, &
Rodgers, 2009; Jastrzembski et al., 2013; Gluck et al., 2019;
Jastrzembski et al., 2017) and the results so far indicate that
the PPE is able to track and predict performance accurately
at the individual learner level over timescales ranging from
seconds to months.

Competence Retention Analysis
Competence retention analysis (Cahillane et al., 2013) is a
novel approach developed by the UK Ministry of Defence
(MoD) aimed at formulating a set of generic principles and
guidance for the optimisation of competence retention in mil-
itary training. To achieve this, a new classification of the
knowledge, skills and attitudes (KSA) was developed that
was consistent with the current psychological literature on
mechanisms underlying competence retention and their dif-
ferential rates of decay.

The primary aim of the CRA is to be a framework grounded
in psychological evidence that can provide generic advice and
guidance for training designers. Once tasks have been anal-
ysed in terms of their cognitive components, designers can
consult the CRA to determine the likely retention profiles for
the individual components and the task as a whole and then
plan refresher training schedules accordingly.

The CRA is based on a three-level categorisation of reten-
tion, defined on a criterion value of 50% competence after a
given period of time since the last training session. Accord-
ing to this classification, a “high” level of retention is greater
than 50% competent after 12 months non-practice, a “moder-
ate” level is 50% competent after 5 months non-practice, and



a “low” level of retention is 50% competent after two months
non-practice.

In addition, the relationship between psychological com-
ponents and retention categories can be moderated by the
frequency with which they are applied when performing a
given task. The CRA defines three frequency levels: “very
frequent” (more than once every two months), “moderately
frequent” (between once every two months and once every
five months), and “infrequent” (once in a period greater than
five months). The resulting taxonomy consists of a knowl-
edge domain and four types of skill:

• Explicit knowledge. Knowledge required to conduct a
task, such as facts, concepts and theories. Retention: High,
Frequency: Infrequent.

• Continuous psychomotor skills. Tasks requiring the abil-
ity to perform well-trained and practiced motor actions that
do not have distinct beginnings or endings (e.g., driving,
flying an aircraft and target tracking). Retention: High,
Frequency: High/Moderate.

• Discrete psychomotor skills. Physical tasks with dis-
crete beginnings and endings that rely on both procedural
and perceptual motor skills (e.g., disassembling a weapon
or other weapon handling tasks). Retention: High, Fre-
quency: High/Moderate.

• Procedural skills. Tasks requiring working memory to re-
member a sequence of steps and their order nature (e.g., us-
ing a Battlefield Information Management System (BIMS)
to create map overlays (Cahillane & Morin, 2012)). Reten-
tion: Low, Frequency: High/Moderate/Infrequent.

• Decision making skills. Tasks involving the application
of cognitive processes such as, judgement, problem solv-
ing and analysis in order for an individual to arrive at a de-
cision (e.g., troubleshooting faulty equipment). Retention:
Moderate, Frequency: Infrequent.

Experiment
To reiterate, the experiment has two aims. The first is to deter-
mine whether the retention profiles of individuals engaged in
a complex task can be captured by the PPE to allow accurate
prediction of future performance. The second is to investi-
gate the learning and retention profiles of tasks involving the
different psychological domains identified by the CRA.

To achieve both aims, the task selected for the experiment
was the Air Force Multi-Attribute Task Battery (AF-MATB;
Comstock Jr & Arnegard, 1992; Miller, Schmidt, Estepp,
Bowers, & Davis, 2014). MATB is a computer-based interac-
tive multitasking environment consisting of a set of four sub-
tasks designed to be analogous to those performed during air-
craft piloting. It has been widely used to study the effects of
various factors (e.g., automation, priorities, instructions, task
difficulty, etc.) on a range of behavioural measures, includ-
ing multitasking, attention management, vigilance, decision

making, ocular behaviour, prospective memory and subjec-
tive mental workload. Crucially for this study, MATB is rele-
vant to Defence and consists of multiple components involv-
ing different skill domains where performance can be quanti-
tatively measured. In addition, it has been demonstrated that
people learn and improve over time during the task (e.g., Fair-
clough, Venables, & Tattersall, 2005; Kee et al., 2019).

Figure 1: The AF-MATB task interface.

A detailed description of the AF-MATB can be found in
Miller et al. (2014) but to summarise, the display consists of
four task windows and two information windows (shown in
Figure 1). The four tasks and their performance measures are:

• System monitoring (SYSMON). Participants monitor
gauges and warning lights and must respond to changes by
pressing an appropriate key within a time interval. Perfor-
mance is measured as the proportion of correct responses.

• Tracking (TRACK). Participants must use a joystick to
keep a randomly moving cursor inside a target area. Per-
formance is measured as the root mean square deviation
(RMSD) distance between the central crosshair and target.

• Communication (COMM). Participants must respond to
specific auditory messages by adjusting radio and fre-
quency values based on the message. Performance is mea-
sured as the proportion of correct adjustments.

• Resource management (RESMAN). Participants must
maintain the fuel tank levels within target ranges by turning
on or off a set of pumps. Performance is measured as the
root mean square deviation (RMSD) between actual and
target fuel levels.

For the purposes of this study, three of the subtasks were
associated with CRA skill domains: the TRACK task with the
continuous psychomotor (high retention) domain, the RES-
MAN task with the decision making (moderate retention) do-
main, and the COMM task with the procedural (low retention)
domain. To the extent that these subtasks require the use of
a particular CRA cognitive domain, it is expected that their
retention profiles will differ. Specifically, the TRACK task
should be retained better than the RESMAN task which in
turn should be retained better than the COMM task.



(a) COMM (CM-P) (b) RESMAN (RM-P) (c) TRACK (TR-P)

(d) SYSMON Gauge (SG-P) (e) SYSMON Light (SL-P) (f) Performance ranges

Figure 2: 2a–2e: Learning profiles for the three training schedule conditions over the four training sessions. 2f: Range of
performance (P) and task completion times (RT) values for each subtask. Error bars indicate standard deviation.

Participants and materials
Participants were 27 staff, faculty and students from the Uni-
versity of Huddersfield. All participants were 18 years old
or over, had normal or corrected to normal eyesight, and
were paid £10 per session. The experiment was conducted
on PCs running Microsoft Windows 10 with 24-inch displays
at 1080p resolution. Participants interacted through the com-
puter keyboard and a Logitech G Extreme 3D PRO joystick.

Design and procedure
The experiment lasted 16 weeks and consisted of four train-
ing sessions followed by two assessment sessions1. There
were three training schedule conditions. Participants in the
“massed” condition (9 in total) attended once a day for 4 con-
secutive days in Week 4. Participants in the “spaced” condi-
tion (8 in total) attended once a week (on the same day) for 4
consecutive weeks, while participants in the “mixed” condi-
tion (10 in total) attended twice a week for 2 alternate weeks.

For all conditions, the fifth and sixth testing sessions were
approximately 42 days (Week 10) and 84 days (Week 16)
after the last training session. The aim of creating differ-
ent scheduling conditions was to provide variation in training
spacing as this is a key determinant of the PPE model’s pre-
dictions. Because the spacing effect is a very well-established
result however (e.g., Latimier, Peyre, & Ramus, 2021), this

1The study was preregistered with the Open Science Framework
(osf.io/uc4fy) and was approved by the Research Ethics Commit-
tees of the Ministry of Defence and the University of Huddersfield
School of Human and Health Sciences

experiment was not designed to include statistical analysis of
any effects of spacing on human performance.

MATB event schedules were created to define three 10-
minute trials which were different in terms of their event
scheduling but equal in difficulty (i.e., number of events and
the degree of multitasking required to process them). The
trials were designed to be challenging to enable continued
performance improvements over the sessions and minimise
the likelihood of performance reaching ceiling. A previ-
ous MATB study of learning found that sustained learning
was only observed in trials where the task demand was high
(Fairclough et al., 2005).

Before the first session, participants were introduced to the
MATB task via a video which explained the four subtasks and
how to interact with the software. Training and assessment
sessions consisted of three 10-minute trials (in random order)
separated by rest intervals of up to 5 minutes. After each
trial, the experimenter would restart the software and ensure
that participants had a break and were ready to continue.

Results
Space limitations preclude a full account of the analyses here
but further details and data are provided on the study’s OSF
web page. The sections below will first describe the results of
applying the PPE to predicting individual performance in the
two test sessions and then report the learning profiles for the
MATB subtasks over the four learning sessions.

PPE predictions of human performance While it is pos-
sible to apply the PPE to predict performance on the individ-

https://osf.io/uc4fy
https://osf.io/uc4fy
https://osf.io/uc4fy


Table 1: Comparison between human performance and model predictions, sessions 5 and 6

Session 5 Session 6
P Schedule Human Model R2 RMSE Days 4-5 Diff Human Model R2 RMSE Days 5-6 Diff
1 Mixed 0.654 0.644 0.931 0.024 42 -0.031 0.627 0.618 0.881 0.031 42 0.016
2 Mixed 0.620 0.581 0.887 0.032 42 0.003 0.623 0.580 0.857 0.036 42 -0.022
3 Mixed 0.645 0.636 0.155 0.034 43 -0.059 0.583 0.601 0.010 0.052 48 -0.071
4 Mixed 0.568 0.589 0.518 0.026 42 0.004 0.583 0.589 0.428 0.028 42 -0.011
5 Mixed 0.613 0.672 0.959 0.019 42 0.117 0.624 0.662 0.938 0.023 43 0.100
6 Mixed 0.856 0.846 0.949 0.008 63 -0.036 0.855 0.844 0.895 0.012 28 0.000
7 Spaced 0.553 0.610 0.920 0.025 42 0.084 0.545 0.585 0.842 0.030 42 0.015
8 Spaced 0.495 0.620 0.923 0.017 42 0.080 0.543 0.553 0.695 0.031 42 0.018
9 Mixed 0.673 0.735 0.932 0.019 42 0.035 0.694 0.702 0.822 0.028 41 0.007

10 Mixed 0.702 0.695 0.949 0.021 41 -0.037 0.693 0.688 0.934 0.023 43 0.024
11 Mixed 0.754 0.751 0.863 0.016 41 -0.026 0.760 0.734 0.720 0.021 43 -0.051
12 Spaced 0.729 0.731 0.918 0.025 56 -0.002 0.746 0.712 0.847 0.034 27 -0.014
13 Spaced 0.772 0.809 0.844 0.016 42 0.028 0.781 0.788 0.724 0.020 42 0.028
14 Mixed 0.719 0.728 0.911 0.020 41 0.071 0.778 0.721 0.887 0.022 43 -0.031
15 Spaced 0.761 0.769 0.970 0.014 42 0.026 0.757 0.761 0.943 0.019 42 0.030
16 Spaced 0.797 0.777 0.954 0.014 42 0.007 0.749 0.769 0.913 0.019 42 0.033
17 Spaced 0.820 0.746 0.512 0.026 42 -0.111 0.786 0.752 0.431 0.031 42 -0.022
18 Spaced 0.552 0.576 0.855 0.027 42 0.003 0.551 0.568 0.823 0.030 42 0.036
19 Massed 0.756 0.732 0.877 0.021 50 -0.043 0.708 0.728 0.857 0.022 41 0.041
20 Massed 0.786 0.784 0.623 0.020 42 0.026 0.790 0.787 0.648 0.020 42 0.026
21 Massed 0.679 0.775 0.896 0.025 42 0.087 0.734 0.711 0.740 0.036 42 -0.036
22 Massed 0.783 0.803 0.946 0.017 49 0.008 0.778 0.775 0.916 0.020 35 0.005
23 Massed 0.605 0.666 0.899 0.027 47 0.044 0.615 0.616 0.846 0.032 37 0.012
24 Massed 0.784 0.803 0.738 0.011 42 0.007 0.809 0.794 0.723 0.011 42 0.000
25 Massed 0.748 0.769 0.834 0.026 42 0.041 0.729 0.750 0.817 0.026 42 0.063
26 Massed 0.785 0.811 0.693 0.015 42 0.027 0.791 0.806 0.664 0.016 35 0.051
27 Massed 0.771 0.787 0.935 0.015 35 0.004 0.756 0.743 0.838 0.023 111 0.002

Mean 0.703 0.720 0.829 0.021 43.7 0.013 0.703 0.701 0.764 0.026 43.1 0.009
StDev 0.095 0.080 0.186 0.006 5.4 0.050 0.091 0.084 0.202 0.009 14.3 0.036

ual MATB subtasks, for this study the subtask measures were
transformed onto a common scale and then averaged for each
participant to create a single, global MATB score.

The PPE’s predictions were tested on sessions 5 and 6, ap-
proximately 43 and 86 days respectively after a participant’s
fourth training session. For each test, the model was fitted to
the individual’s performance data from the previous sessions
by adjusting five free parameters: b and m, representing the
intercept and slope of the decay function (Equation 4) respec-
tively, τ and s which determine the intercept and slope of the
activation transformation function (Equation 5) respectively,
and a representing an individual’s prior experience (Equation
1). The fitted model was then used to predict performance at
the date and time of the first trial of the test session.

Table 1 displays the results of the modelling, showing par-
ticipants’ performance, model predictions, and the difference
in participants’ performance from the last trial of the previ-
ous session and the first trial of the current session. Partici-
pants’ performance varies widely in both sessions (e.g., com-
pare participants 6 and 8) but there was typically little change
in performance between sessions, despite a mean interval of
approximately 43 days, indicating that, in general, retention
remained stable. With a few notable exceptions (e.g., partic-
ipants 3 and 17 who showed little decay in performance or,
somewhat counterintuitively, performance improvements, af-
ter time delays), the PPE was able to provide a close fit to the
data and make accurate predictions beyond the training set.

Subtask learning profiles Figure 2 shows the learning pro-
files for the MATB subtasks over the 12 trials of the four

learning sessions. All performance measures are scaled to
the range [0,1] to allow comparison. Figure 2f depicts the
range of performance scores and task completion times pro-
duced by each schedule condition for the different subtasks.
For example, the low performance range for the TRACK task
reflects the relatively shallow learning curves, in contrast to
the much greater changes found in the SYSMON gauge task.

Although the relatively small number of participants limits
comparison of the schedule conditions, interesting features
can seen in the individual subtask data for all three. First,
there was a general level of consistency in performance be-
tween the three training schedules, not only in the ranges of
values produced but also in the performance profiles across
the training phase. Performance differences were also evi-
dent in the four subtasks. For example, participants in all
three conditions quickly achieved and maintained very high
levels of accuracy in the COMM task, whereas in the RES-
MAN task, performance increased more gradually by approx-
imately 30% to 40% during the course of training.

These differences are likely due to the nature of the inter-
actions required. For example, the time constraints of the
COMM task demand immediate attention and a rapid se-
quence of actions to encode, retain, and then enter informa-
tion into the system, a task that participants cannot complete
much faster than 4.5 seconds. Performance improvements
in the other subtasks are likely to be due to, amongst other
things, the refinement of local and global strategies, for ex-
ample revising priorities when balancing different resources
in the RESMAN task and more efficiently allocating attention



when managing competing demands from subtasks.

Discussion
This experiment has generated a rich dataset of individual
learning and forgetting in a complex task involving multiple
sub-tasks which is yet to be fully analysed. The main anal-
ysis reported here however provides additional support for
the PPE by demonstrating its ability to predict performance
accurately over retention intervals ranging from 27 to 111
days. While the limited number of participants precludes rig-
orous statistical analysis of the training schedule conditions,
the different subtask learning profiles do provide valuable ini-
tial pointers for further investigation. While the pattern of
differences in learning are not consistent with the classifi-
cation provided by the CRA, additional analysis of the data
from sessions 5 and 6, combined with a detailed task analy-
sis, may provide further insight into differences in retention
over longer intervals.
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