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Abstract

In this chapter we discuss a number of recent studies that demonstrate the use of rational
analysis (Anderson, 1990) and cognitive modelling methods to understand complex interactive
behaviour involved in three tasks: (1) icon search, (2) graph reading, and (3) information re-
trieval on the World Wide Web (WWW). We describe the underlying theoretical assumptions
of rational analysis and the adaptive control of thought-rational (ACT-R) cognitive architec-
ture (Anderson & Lebiere, 1998), a theory of cognition that incorporates rational analysis
in its mechanisms for learning and decision making. In presenting these studies we aim to
show how such methods can be combined with eye movement data to provide detailed, highly
constrained accounts of user performance that are grounded in psychological theory. We argue
that the theoretical and technological developments that underpin these methods are now at
a stage that the approach can be more broadly applied to other areas of Web use.

Introduction

With the rapid increase in Internet use over the past decade there is a growing need for
those engaged in the design of Web technology to understand the human factors involved in
Web-based interaction. Incorporating insights from cognitive science about the mechanisms,
strengths, and limits of human perception and cognition can provide a number of benefits for
Web practitioners. Knowledge about the various constraints on cognition, (e.g., limitations
on working memory), patterns of strategy selection, or the effect of design decisions (e.g., icon
style) on visual search, can inform the design and evaluation process and allow practitioners
to develop technologies that are better suited to human abilities.

The application of cognitive psychology to human-computer interaction (HCI) issues has
a long history going back to Card, Moran, and Newell’s (1983) introduction of the goals,
operators, methods, and selection (GOMS) task analysis technique and model human proces-
sor account of human information processing in the early 1980s. Since then, their cognitive
engineering approach has developed into a family of methods (John & Kieras, 1994; Olson &
Olson, 1990) which are widely used to produce quantitative models of user performance in
interactive tasks.

Another, more recent approach to modelling human performance in interactive tasks has
emerged in the last decade from theoretical and technological advances in research into cog-
nitive architectures. Cognitive architectures are theories of the fundamental structures and
processes that underlie all human cognition, of which there are several currently in existence
including EPIC (executive process / interactive control; Kieras & Meyer, 1997), Soar (Laird,
Newell, & Rosenbloom, 1987; Newell, 1990), and ACT-R (Anderson & Lebiere, 1998; Ander-
son et al., 2004). An important feature of these architectures is that they are all implemented
as computer programming systems so that cognitive models may be specified, executed, and
their outputs (e.g., error rates and response latencies) compared to human performance data.

Originally ACT-R and Soar were theories of central cognition only and did not explicitly
specify mechanisms for perception or motor control. EPIC however, was unique in that from
its inception it incorporated processors for cognition, perception, and motor control. Recent
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adaptations to ACT-R (Byrne & Anderson, 1998) and Soar (Chong & Laird, 1997) have now
ensured that both architectures incorporate perceptual motor components that allow models
to include visual attention processes and manual interactions with a keyboard and mouse.
This is an important development for the study of HCI as cognitive models can now be
embodied (Kieras & Meyer, 1997) in the sense that the architectures are now able to simulate
perceptual-motor contact with computer interfaces and devices and so capture the complex
interactions between the task environment, cognition, and perceptual-motor behaviour.

Modelling interactive behaviour with an embodied cognitive architecture has a number
of advantages over the traditional cognitive engineering approach exemplified by GOMS and
its relatives. Perhaps the most important of these is that computational models can actu-
ally execute the task, allowing a direct test of the sufficiency of the hypothesised processes.
Second, although most cognitive architectures contain built-in timing parameters taken from
the psychological literature, unlike cognitive engineering models, they do not require prior
estimated times for all subcomponents of a task. In addition, some architectures—such as
ACT-R and Soar—contain learning mechanisms which allow them to model various effects of
practice on performance. This allows cognitive architectures to be used to model novel tasks,
novice users, or tasks involving components without prior time estimates.

One of the promises of embodied cognitive architectures is that, once they are equipped
with sufficient knowledge, they will begin to provide a priori predictions of user performance
and eventually evolve into artificial users that can be employed to evaluate novel tasks and
environments (Ritter, Baxter, Jones, & Young, 2000; Young, Green, & Simon, 1989). In this
chapter we will describe one of these architectures, ACT-R, and show how it has been used
to provide detailed and sophisticated process models of human performance in interactive
tasks with complex interfaces. ACT-R is an appropriate choice for this discussion because, in
contrast to other cognitive architectures, ACT-R also embodies the rational theory of cognition
(Anderson, 1990) which analyses cognitive phenomena in terms of how they are adapted to
the statistical structure of the environment. Rational analysis and ACT-R’s mechanisms
have been used recently to provide novel insights into Web-based interactions. The chapter
proceeds as follows: First we describe the basic assumptions and mechanisms of rational
analysis and the ACT-R cognitive architecture. We then show how these have been used
to develop a model of information foraging on the Web and discuss the model in relation
to a rational analysis model of the task and the data from eye-tracking studies of interactive
search. In the final sections of this chapter we briefly outline ACT-R models of two interactive
tasks; graph reading (Peebles & Cheng, 2003) and icon search (Fleetwood & Byrne, 2006).
Although neither of these studies involves a specifically Web-based task, they both describe
user interaction with items commonly found on Web pages. They are also illustrative of
a methodology that combines task analysis, eye tracking, and formal modelling to provide a
detailed account of the cognitive, perceptual, and motor processes involved in the performance
of the task. These studies are also useful because in both cases the model is validated by
comparing the simulated eye movements with those recorded from human subjects. Both
studies, therefore, are clear demonstrations of a novel approach to understanding interactive
behaviour that can be applied to Web-based tasks.

Rational analysis

Rational analysis (Anderson, 1990) is a method for understanding the task an agent attempts
to complete. It assumes that humans have evolved cognitive mechanisms that are useful for
completing tasks that we encounter in our environment, and that these mechanisms work
in an efficient way to complete these tasks. Therefore, rather than concerning ourselves
with firstly trying to define the cognitive mechanisms required by the agent to solve the
task, rational analysis suggests that we should consider the structure of the task itself, the
environment in which it is encountered, together with some minimal assumptions about the
computational limitations of the system. From these initial statements the analysis proceeds
by the specification of an optimal solution to the problem and the comparison of human
behavioural data to see how close an approximation it is to the optimal solution.
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Figure 1: The modular structure of ACT-R 6.0

By identifying the best way to complete the task (the optimal strategy) we can often infer
what the cognitive mechanisms of a rational agent must be as although humans do not always
complete tasks in the most optimal way their behaviour is usually similar to the optimal
strategy. That is, humans usually behave in such a way that they appear to be trying to
complete their tasks in the most efficient manner by attempting to maximise their returns
while minimising the cost of achieving their goals.

Rational analysis has been applied to several aspects of human cognition (see e.g., Oaksford
& Chater, 1998), from the original analyses of memory, categorisation, causal inference, and
decision making conducted by Anderson (1990), to more recent analyses of exploratory choice
(Cox & Young 2004; Young, 1998) and the updating of memory during tasks in dynamic
environments (Neth, Sims, Veksler, & Gray, 2004).

The ACT-R cognitive architecture

ACT-R is a theory of human cognition developed over a period of 30 years by John Anderson
and his colleagues (Anderson & Lebiere, 1998; Anderson et al., 2004) that incorporates the
theory of rational analysis. It is a principal effort in the attempt to develop a unified theory
of cognition (Newell, 1990). As a cognitive architecture, ACT-R attempts to specify the basic
cognitive structures and processes that underlie all human cognition.

Figure 1 illustrates the components of the architecture relevant to our discussion. ACT-
R consists of a set of independent modules that acquire information from the environment,
process information, and execute motor actions in the furtherance of particular goals. There
are four modules that comprise the central cognitive components of ACT-R. Two of these are
memory stores for two types of knowledge: a declarative memory module that stores factual
knowledge about the domain, and a procedural memory module that stores the system’s
knowledge about how tasks are performed. The former consists of a network of knowledge
chunks whereas the latter is a set of productions, rules of the form “IF <condition> THEN
<action>”: the condition specifying the state of the system that must exist for the rule
to apply and the action specifying the actions to be taken should this occur. The other two
cognitive modules represent information related to the execution of tasks. The first is a control
state module that keeps track of the intentions of the system during problem solving, and the
second is a problem state module that maintains the current state of the task.

In addition to these cognitive modules there are four perceptual-motor modules for speech,
audition, visual, and motor processing (only the latter two are shown in Figure 1). The speech
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and audition modules are the least well-developed and, at present, simply provide ACT-R with
the capacity to simulate basic audio perception and vocal output for the purpose of modelling
typical psychology experiments. The visual and motor modules are more well-developed and
provide ACT-R with the ability to simulate visual attention shifts to objects on a computer
display and manual interactions with a computer keyboard and mouse.

Each of ACT-R’s modules has an associated buffer that can hold only one chunk of infor-
mation from its module at a time, and the contents of all of the buffers constitute the state
of an ACT-R model at any one time. Cognition proceeds via a pattern matching process
that attempts to find productions with conditions that match the current contents of the
buffers. There then follows a process to select the “best” production from those that match
the conditions, after which the most appropriate production “fires” and the actions (visual or
manual movements, requests for the retrieval of a knowledge chunk from declarative memory,
or modifications to buffers) are performed. Then the matching process continues on the up-
dated contents of the buffers so that tasks are performed through a succession of production
rule firings. As an example, two production rules (written in English rather than in ACT-R
code) that instantiate part of a search task may look something like this:

IF the goal is to find the meaning of “eudaimonia” (control state)
AND there is nothing in declarative memory about “eudaimonia” (declarative)
THEN set the goal to search the WWW for “eudaimonia” (control state)

IF the goal is to search the WWW for “eudaimonia” (control state)
AND the Web browser is open (problem state)
THEN look for the menu labelled “Bookmarks” (visual)
AND update the problem state to “looking for Google” (problem state)

The processing in ACT-R’s modules is serial but the modules run in parallel with each other
so that the system can move visual attention while also moving the mouse and attempting to
retrieve knowledge from declarative memory. ACT-R processes also have associated latency
parameters taken from the psychology literature. For example, it typically takes 50 ms for a
production to fire and the time taken to move the mouse cursor to an object on the computer
screen is calculated using Fitts’ Law (Fitts, 1954).

ACT-R implements rational analysis in two ways. The first is its mechanism for retrieving
knowledge chunks from declarative memory which is based on the notion of activation. Each
chunk in declarative memory has a level of activation which determines its probability and
latency of retrieval, and the level of activation for a chunk reflects the recency and frequency
of its use. This enables us to understand how rehearsal of items in a short-term memory
task can boost the activation levels of these chunks and consequently increase the chances of
recall/retrieval from declarative memory. The level of activation of a chunk falls gradually
over time, and without retrieval or activation spreading from chunks in the current goal, it
may fall below a threshold level which then results in retrieval failure. This enables ACT-R
models to forget knowledge without having to explicitly delete chunks from the declarative
memory store.

The second way that ACT-R implements rational analysis is in its mechanism for choosing
between alternative production rules. According to rational analysis, people choose between
a number of options to maximise their expected utility. Each option (i.e., production rule)
has an expected probability of achieving the goal and an expected cost. It is assumed that
when carrying out computer-based tasks people interact with the task environment and choose
actions that will optimise their efficiency (i.e., maximise the probability of achieving the goal
while minimising the cost, usually measured in units of time). At each decision step in the
cycle, therefore, all possible production rules that match against the current goal are proposed
in a choice set, and the one with the highest level of efficiency is chosen and executed.

ACT-R has been used to model a wide range of cognitive phenomena (Anderson & Lebiere,
1998), and in recent years, with the inclusion of the perceptual-motor modules, it has been
applied to a number of complex interactive tasks in the area of HCI and human factors
research, for example, menu selection (Byrne, 2001), cell phone menu interaction (St. Amant,
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Horton, & Ritter, 2004), and driving (Salvucci & Macuga, 2002). Although individually these
models do not yet offer us a virtual “user” which can be sat in front of a Web browser and asked
to complete any goal, together they provide us with insights into how and why users behave
in particular ways, for example, when searching for information on the Web. In this chapter
we will concentrate on three particular areas of work that are relevant to understanding Web
behaviour: icon search, graph reading, and information foraging on the WWW.

Modelling interactive behaviour

In the following section, we will summarise a number of recent studies which employ rational
analysis, cognitive modelling, eye tracking, or a combination of all three, to understand human
performance in Web-based or HCI tasks. We first discuss recent efforts to model information
foraging and interactive search on the WWW. These studies show how ACT-R and rational
analysis can be successfully applied to explain different aspects of people’s behaviour when
conducting interactive search tasks. This can include both high-level behaviours such as
backtracking through Web-pages and low-level behaviours such as patterns of visual attention
obtained from eye-tracking studies. We then describe two studies which combine experimental
data collection, eye movement recording, and cognitive modelling methods using ACT-R to
provide detailed accounts of the cognitive, perceptual, and motor processes involved in the
tasks. These studies were chosen because both develop a detailed process model which not
only captures the human response time data from the experiment, but also provides a close
match to the patterns of visual attention revealed by the eye movement study. This level of
detail in modelling is still relatively uncommon and the strong constraints added by seeking
to match model and human eye movement scan paths during the course of the task provide a
further validation of the models.

Information foraging on the World Wide Web

Information foraging theory (IFT) (Pirolli & Card, 1999) describes an account of information
gathering behaviour based on the ecological behaviours of animals when foraging for food.
The account can be applied to situations in which people are searching for information in
a number of different situations such as in a library or on the WWW. The theory rests
on rational analysis in that it proposes that human behaviour is directed by the objective
to maximise gain and minimise effort, and that this process is sensitive to changes in the
environment. In contrast to animal studies, where the assumption is that animals seek to
reduce the ratio of calorie intake to energy expenditure, the assumption in IFT is that people
attempt to reduce the ratio of information gained to time spent.

The way in which the environment is structured determines the costs of search for infor-
mation. For example, the structure of a Web site will determine how many pages the user has
to navigate through in order to satisfy his/her goal. When searching for information on the
WWW, many people make use of search engines. After entering some key words the user is
presented with a list of search results which are usually ordered in terms of their relevance to
the key words. Each of the results returned can be considered to be a “patch” of information.
The user has to choose to either investigate one of the patches or to redefine their search
criteria. Conducting another search using different key words will result in a change in the
environment. This process is known as enriching the environment as it is hoped that the
result is that the cost of obtaining the required information will be reduced compared to the
perceived cost of obtaining it in the previous environment. Decisions about whether or not
to pursue a particular information patch or to continue enriching the environment are based
on a number of factors such as the perceived value of the information returned, the perceived
costs of acquiring that information, interface constraints, and previous knowledge.

The decision to forage within a particular patch of information is based on an ongoing
assessment of information scent. Information scent is the perception of the value of the distal
information based on the proximal information available, that is, it is an estimate of the
relevance of the information contained on a yet unseen page based on the cues from the icon
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Figure 2: A simplified scan path of a participant performing an interactive search task

or wording of the link on the page currently viewed. The theory predicts that as more time is
allocated to within-patch foraging, the rate of information return increases but only up to an
optimal point, after which the rate starts to decrease. Therefore, after a particular amount
of within-patch foraging (searching within a Web site) it becomes more profitable to move to
the next patch (select another Web site from the list of search results) even though there are
still pages within the previous patch that have not yet been visited.

SNIF-ACT

Scent-based Navigation and Information Foraging in the ACT architecture (SNIF-ACT) (Pirolli
& Fu, 2003) is a model of human behaviour in an interactive search task. The model makes
use of ACT-R’s spreading activation mechanism so that the information scent of the currently
viewed Web page activates chunks in declarative memory as does the spreading activation
from the goal. Where these two sources of activation coincide there are higher levels of ac-
tivation and this indicates a high degree of relevance between the goal and the page being
attended to. This activation is what ultimately drives the behaviour of the model. The model
includes the use of search engines to provide a set of search results and the processing of the
page that is returned. The links on the page are attended to and eventually one of the links
is selected.

The behaviour of the model is compared to user behaviour and successfully demonstrates
that people tend to select the highest scent item in a list. SNIF-ACT does this by assessing
the information scent of all the links on a page and then choosing the highest one. The model
is also able to explain the point at which a user abandons a particular Web site and returns
to the search results in order to select another item from the list or selects a link that takes
them to another Web site. If the mean information scent of the currently viewed page is lower
than the mean information scent of a page on another site the model selects that action that
takes them to the other site.

Eye-tracking experiments in interactive search

When presented with a list of search results or items on a menu within a Web site (i.e., a patch
of information), the user has to choose between selecting an item which will move him/her
to another patch and doing some assessment on either the currently attended item or some
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other item in the list (i.e., consume the information presented within the current patch). As
has been mentioned previously, IFT proposes that the user will make use of the information
scent of the items to guide their behaviour. If the information scent of a particular item in
the list is higher than the rest (i.e., that item appears to be relevant to the task and the user
believes that clicking it will lead them to better information) then the item will be selected.

Eye-tracking experiments have been used to investigate what people attend to when con-
ducting interactive search tasks (Brumby & Howes, 2004; Silva & Cox, 2005). Participants
were given an information goal and a list of items and asked to select the label that they
thought would lead to the information they required. Brumby and Howes demonstrated that
people often examine only a subset of the list before selecting the target item, and that this
behaviour is affected by the relevance of the other items in the list. When the other items
in the list are more relevant to the goal (i.e., they have high levels of information scent),
people tend to look at more items in the list and also tend to look at individual items on more
occasions than when the items are irrelevant. When there are a number of items with high
scent (i.e., two or more items look like they would lead to relevant information) people need
to consider more items than when only one item looks sensible.

However, one limitation of this work is that the analysis of eye-tracking data is rarely
sensitive enough to determine whether a lack of fixation of the eyes on an item really means
that people have not assessed the relevance of the item. In order to address this, Silva and
Cox (2005) additionally employed a recognition task in their study in order to assess the level
of processing of each item in the list.

Figure 2 represents a simplified scan path of a participant completing one of these tasks.
The items are represented on the y axis with time along the x axis. The highlighted item is
the target item and was selected by the participant. The figure demonstrates how the user
starts at the top of the list and scans down the list fixating items in the list. Some of the items
(3 & 6) are skipped over. The results from Silva and Cox’s (2005) recognition task suggest
that in such cases the lack of fixations of particular items in the menu can be explained by
parafoveal processing. However, parafoveal processing can only explain lack of fixations on up
to two items below the last fixation (i.e., items 8 & 9) and cannot explain why the user does
not attend to other items in the list (i.e., items 10 to 16).

SNIF-ACT would be able to produce a trace that would match the behaviour of users in
these studies in terms of which items from the menus the user selected. However, the model
does not account for the fact that some of the items in the menus were not assessed by the
users as it assumes that users have knowledge about information scent of all the items in
the list and then select the item with the highest level of scent. Consequently, SNIF-ACT is
unable to provide us with any explanation for why users should choose to select an item when
they have not even read the entire list presented to them.

Cox and Young (2004) propose an alternative model to that of SNIF-ACT that is able to
capture this fine-grained level of detail of user behaviour. Their model is a rational analysis
of an interactive search task that provides a rational explanation of why the user would select
an item without first assessing all the items in the list.

In interactive search, the agent has the goal of selecting the item that will lead to goal
completion. However, as the menu presented is novel, the first thing that the model has to
do is to gain some information about the menu. The model therefore includes two types
of exploratory acts (EAs) (these are the different types of things the model can do): assess
information SCENT and ANTICIPATE the result of selecting this item. The SCENT EA
should be thought of as being an amalgamation of perceiving the label, reading the label (at
a lexical level), and considering the semantic similarity between the label and the current
task. The ANTICIPATE EA should be thought of as some additional cognitive effort that
considers whether the label is likely to lead to the goal. For example, given the goal of finding
an armchair for your living room on a furniture shop Web site, imagine the model considering
the first item in the menu “home”. The SCENT EA would return a moderately high rating
as the label has a moderately high level of information scent given the goal (“home” and
“armchair”). The ANTICIPATE EA models the agent’s consideration of whether the label
home is likely to lead to the home page of the site, or to a list of home furnishings. Each
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of these EA types has a cost associated with it with the ANTICIPATE EA type being more
expensive in mental effort than the first type. There is also a fixed cost of moving attention
from one item in the menu to the next.

Before assessing any items, the model “knows” the number of items in the menu and
considers each of these items to be equally (ir)relevant to completing the task. The scent
ratings of the items in the menu are used as the basis for determining the new relevance (R)
value of an item following an assessment. On each page, the set of relevancies Ri are mapped
into a set of probabilities Pi by the transformation Pi = odds(Ri)/Σodds(Rj), where odds(R)
is defined in the standard way as odds(R) = R/(1 − R). Note that ΣPi = 1, reflecting the
fact that exactly one option on the page leads to the goal.

When the model is run on a set of menus it demonstrates how different patterns of infor-
mation scent result in different behaviours. As Brumby and Howes (2004) demonstrated, the
levels of information scent of both the goal item and the distractors affect behaviour. However,
it is also interesting to note that the model predicts that just the change in position of the
goal item relevant to the distractors results in different patterns of behaviour: Sometimes the
model predicts that users will scan to the bottom of the menu before selecting the target item,
and other times they will select the item immediately after assessing the item leaving other
items in the menu unassessed. To explain how this occurs we will compare the behaviour of
the model when the high scent item is in position two (as an example of occurring early in the
menu) and in position 12 (as an example of occurring late in the menu) in more detail. In both
examples, initially, all 16 menu items are rated equally and all have an R value of 0.06. The
relevance values are translated into efficiencies (E) which are then used to determine which of
the EAs is most likely to lead to the goal and therefore which EA is executed in each cycle.
In the first cycle, the EA that proposes assessing the scent of the first item in the menu is
rated as having the highest E value due to it having the lowest cost. Consequently, the model
assesses the first item which gets rated as very low scent. As a result, the new R value of this
item is set at 0. On the next cycle, the EA that proposes SCENT assessment on the second
item in the list is the most efficient (due to the lower cost) so this item gets assessed. This
behaviour continues until the model assesses the high scent item.

In menus where the high scent item occurs early on in the menu, the second item in the
menu gets an R value of 0.5097 which raises the probability that this item will lead to the
goal to 0.6220. On the following cycle the R value of the high scent item leads to an E value
of 0.008 while the second best item (an item yet to be assessed) has an R value of 0.06 which
results in an E value of 0.006. Although the E values of the two EAs are very similar, one is
larger than the other, and this is what determines which EA is chosen.

In our example of a menu where the high scent item occurs later on in the menu, the
relevance of each of the low scent items that have already been assessed falls to 0. When the
model assesses the twelfth item its R value is 0.5097, which raises the probability that this
item will lead to the goal to 0.6220. On the following cycle the R value of the high scent
item only has an E value of 0.005 while the item with the best efficiency (an item yet to
be assessed) has an R value of 0.05 which results in an E value of 0.006. The result is that
the model continues to assess each item in the menu until it reaches the bottom because the
efficiency of conducting a SCENT assessment of a new item is greater than the efficiency of
conducting the ANTICIPATE assessment on the high scent item in position 12. This has the
effect of slowly increasing the probability of the item in position 12 leading to the goal.

The detail of the model explains that the reason the behaviour is different for the two
types of menus is because the detail of the mathematics of the rational analysis. Comparisons
of the traces of the model with the empirical data suggest that the model provides a good
explanation of the cognitive processes involved in this task. This suggests that participants
make an assessment of the relevance of a label to the current goal and then, together with the
estimated relevance of previous items, choose to either (1) select that item as the one that
will lead to the goal, (2) conduct some further assessment of the current item, or (3) move
on to another item and assess that. Which of these EAs is chosen is driven by the pattern of
information scent that has been experienced so far.

The model provides us with an explanation of how and why the position of the goal
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and the quality of the distractor items affect the behaviour of the participants on the task.
Regardless of the pattern of scent of the menu, the model predicts that the agent will tend
to stop exploring the menu as soon as it comes across a menu item that has high information
scent (self-terminates) if this is encountered early in the menu. On menus where there is one
high scent item among a set of low scent items and the high scent item occurs later in the
menu, the agent continues to assess the other items in the menu before conducting further
assessment of the high scent item and finally selecting it. The model enables us to explain
why we see these different patterns of behaviour on menus which have such similar patterns of
information scent. This is due to the effect of the interdependence of the probability that each
of the items will lead to the goal. The actual point on the menu at which the model swaps
from one behaviour to the other is sensitive to a number of factors such as the length of the
menu and the costs of the EAs. It would appear therefore that it is in the nature of interactive
search that there are close calls which suggest that people can rationally do either behaviour
and that a number of factors have an effect on the behaviour of participants exploring real
menus.

Together the two models described previously provide us with a good understanding of
how people perform search tasks on the WWW. SNIF-ACT and the rational model explain
different aspects of the interaction: SNIF-ACT demonstrates the higher level, page by page,
link following behaviour seen in such tasks, whereas the rational model explains the lower
level interactions with just one page. Given information about the information scent of the
items on a new Web site both models are able to make predictions about user behaviour on
the site.

Modelling Graph Reading

Peebles and Cheng (2003) conducted an experiment, eye movement study and cognitive mod-
elling analysis to investigate the cognitive, perceptual, and motor processes involved in a
common graph-reading task using two different types of Cartesian graph. The purpose of
the study was to determine how graph users’ ability to retrieve information can be affected
by presenting the same information in slightly different types of the same class of diagram.
The two types of graph, shown in Figure 3, represent amounts of UK oil and gas production
over two decades. The only difference between the two graph types is in which variables are
represented on the axes and which are plotted. In the Function graphs, the argument variable
(AV: time in years) is represented on the x axis and the quantity variables (QV: oil and gas)
on the y axis whereas in the Parametric graphs, the quantity variables are represented on the
x and y axes and time is plotted on the curve.

In the experiment, participants were presented with the value of a “given” variable and
required to use the graph to find the corresponding value of a “target” variable, for example,
“when the value of oil is 2, what is the value of gas?” This type of task has typically been
analysed in terms of the minimum sequence of saccades and fixations required to reach the
location of the given variable’s value and then from there to the location of the corresponding
value of the target variable (Lohse, 1993; Peebles & Cheng, 2001, 2002; Peebles, Cheng, &
Shadbolt, 1999). Experiment participants (some of whom had their eye movements recorded)
completed 120 trials, each participant using only one graph type. The 120 questions were
coded into three classes (QV-QV, QV-AV, and AV-QV) according to which variable’s value
was given and which was required (QV denotes a quantity variable, oil or gas, and AV denotes
the argument variable, time). On each trial, a question (e.g., “GAS = 6, OIL = ?”) was
presented above the graph and participants were required to read the question, find the answer
using the graph on the screen and then enter their answer by clicking on a button labelled
Answer in the top right corner of the window which revealed a circle of buttons containing
the digits 0 to 9. RTs were recorded from the onset of a question to the mouse click on the
Answer button.

The RT data from the experiment, displayed in Figure 4, showed that the graph used and
the type of question asked both had a significant effect on the time it took for participants to
retrieve the answer. This was all the more surprising because, for two of the three question
types, participants were faster using the less familiar parametric graphs by nearly a second.
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Figure 3: Function and parametric graphs used in Peebles and Cheng (2003) depicting values of
oil and gas production for each year. NB. The graphs on the left (labelled 1) show years 1970
to 1979 while those on the right (labelled 2) show years 1980 to 1989. Dashed lines indicate the
optimal scan path required to answer the question, “when the value of oil is 3, what is the value
of gas?”

The results of the eye movement study were also surprising. It was found that in 63%
of trials (irrespective of the graph used or question type being attempted), after having read
the question at the start of a trial, participants redirected their visual attention to elements
of the question at least once during the process of problem solving with the graph. This was
not predicted by the simple minimal fixation sequence account outlined previously but two
possible explanations may be provided: (1) participants initially encode the three question
elements but are unable to retain all of them in working memory and retrieve them by the time
they are required to do so, or (2) to reduce the probability of retrieval failure, participants
break the problem into two sections, the first allowing them to reach the given location and
the second to then proceed to the target location corresponding to the solution.

Peebles and Cheng constructed two ACT-R models of the experiment (one for each graph
type) that were able to interact with an exact replica of the experiment software. The models
consisted of a set of productions to carry out the six basic subgoals in the task; (1) read the
question; (2) identify the start location determined by the given variable; (3) identify the
given location on the graph representing the given value of given variable; (4) from the given
location, identify the target location representing the required variable; (5) identify the target
value at the target location; and (6) enter the answer. Many of the productions were shared by
the two models, the main difference between them being the control structure that sequences
the execution of the productions. Figure 4 shows that the mean RTs from the parametric
and function graph models are a good fit to the observed data (R2 = .868, RMSE = 0.123,
and R2 = .664, RMSE = 0.199 respectively). Perhaps more importantly however, were the
insights into the observed eye movement data that came from the modelling process itself.
When ACT-R focuses attention on an object on the screen, representations of the object and
its location are created in the system’s visual buffers which can be accessed by productions.
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Figure 4: Mean response times for experimental participants and ACT-R models for each question
type (Peebles & Cheng, 2003)

Eventually these representations go into declarative memory with initial activation values
and, as long as these values are above a certain threshold, they can be retrieved by the
cognitive system and replaced in a buffer. However, ACT-R includes a mechanism by which
the activation of representations in declarative memory decreases over time which allows it
to simulate processes involved in forgetting. These mechanisms played a crucial role in the
ACT-R models’ ability to capture the eye movement data observed in the experiment.

At the start of each trial, the models read the three question elements and during the
problem solving these elements are placed in declarative memory. As a consequence, at least
one question element must be retrieved from memory at each stage of the problem in order
to continue. However, as soon as a question element is placed in declarative memory its
activation starts to decay and, as a consequence, the probability that it cannot be retrieved
increases. Typically, if a retrieval failure occurs, an ACT-R model will halt as it does not have
the appropriate information to solve the problem. During the process of model development
it was found that on a significant proportion of trials the model was not able to retrieve
question elements at the later stages of the trial because their activation had fallen below the
retrieval threshold. As a consequence new productions had to be added to allow the model to
redirect attention to the question in order to re-encode the element and then return to solving
the problem. This was precisely the behaviour observed in the eye movement study. This is
illustrated in Figure 5 which compares screen shots of the model scan path and eye movements
recorded from one participant for the same question using the 1980’s parametric graph. The
numbered circles on the model screen shot indicate the sequence of fixations produced by the
model. The pattern of fixations in both screenshots is remarkably similar.

Modelling icon search

Fleetwood and Byrne’s study of icon search (2002, 2006) is a another demonstration of how
an ACT-R cognitive model can provide a detailed account of the cognitive and perceptual
processes involved in a common HCI task that closely matches people’s response times (RTs)
and patterns of eye movements. Fleetwood and Byrne’s model differs from that of Peebles and
Cheng in that it incorporates eye movements and movement of attention (EMMA; Salvucci,
2001), a computational model of the relationship between eye movements and visual attention.
EMMA can be easily integrated into the ACT-R architecture, allowing models to make more
detailed predictions of actual eye movements, rather than simple shifts of visual attention.

One of the main aims of Fleetwood and Byrne’s study was to investigate the notion of icon
“quality” (defined in terms of an icon’s distinctiveness and visual complexity) and to examine
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Figure 5: Screen shots showing an experimental participant’s eye movement data (left) and the
ACT-R model’s visual attention scan path (right) for the QV-QV question “oil = 6, gas = ?”
using the 1980’s parametric graph. NB. In the model screen shot, numbered circles on the scan
path indicate the location and sequence of fixations.

the effect that differences in quality may have on identification performance. They created
three classes of icon (examples of which are shown in Figure 6). “Good” quality icons were
designed to be easily distinguishable from others based on the primitive features of colour and
shape. All icons in this set were a combination of one colour (from six) and one shape (from
two).

In contrast, “poor” quality icons were designed to be distinguishable only by a relatively
careful inspection but to be relatively indistinguishable in a large distractor set. These poor
quality icons were all of the same basic shape and colour (a combination of black, white,
and shades of grey). An intermediate class of “fair” quality icons was also designed with
shapes more distinctive than the poor quality icons but more complex than the good quality
icons, and with the same range of greyscale colours as the poor quality icons. The main
effect of the manipulation was to produce a different similarity structure for each class of
icons. Good quality icons could be identified as a single combination of features, for example,
“yellow triangle”. In contrast, fair quality icons were defined by more than one combination
of features (typically three, for example: “grey rectangle; black square; black diagonal-right”),
some of which were shared with other icons. In the poor quality group, icons were defined
by an average of four feature combinations and many more of these were shared by several
other icons in the group. From the visual search literature, it can be predicted that search
time will increase as icon distinctiveness decreases. An additional factor in Fleetwood and
Byrne’s study also known to affect search time (at least for certain stimuli) is the number of
distractors in the display, with search time increasing with the number of distractors in the
search set. In their experiment, Fleetwood and Byrne had search sets of 6, 12, 18 and 24
icons.

In the experiment, participants were required to find, as rapidly as possible, different
quality target icons in search sets of differing sizes. On each trial, a target icon and file name
were presented followed 1500 ms later by a button labelled Ready for the participant to click
when he/she felt ready to continue. When this button was clicked, the target icon was replaced
by the search set and the participant had simply to look for the target icon and click on it
as quickly as possible; when an icon was clicked upon, the next trial started. Participants
completed a total of 144 trials, involving all levels of the search set and icon quality variables,
and on each trial the participant’s RT (the duration between clicks on the Ready button and
an icon in the search set) was recorded. The results of the experiment (shown in Figure 7)
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Figure 6: Examples of icons of good, fair, and poor quality used in the experiment of Fleetwood
and Byrne (2006)

revealed that, as predicted, both icon quality and search set size had a significant effect on
search time.

To provide an explanation of their data, Fleetwood and Byrne produced an ACT-R model
of the task that was able to interact with the same experiment software as the participants.
As described previously, each experiment trial is comprised of two stages, the first where the
target icon and its file name are encoded and the second in which it is sought. The model has
a set of seven productions to carry out the first stage: locate the target icon and encode an
attribute pair (e.g., “grey rectangle”), look below the icon and encode the associated file name,
and finally locate and click on the Ready button. In the second stage, the model locates and
attends to an icon with the previously encoded target feature and then shifts visual attention
to the file name below it. If the file name matches the target file name, visual attention is
returned to the icon and the mouse clicks on it. If the file name is not the target, however, the
model continues the search by locating another icon at random with the same target features.
This sequence of events requires four productions and takes 285 ms to complete.

Figure 7 reveals a close correspondence between the mean RTs produced by the model and
those of the experiment participants (R2 = .98, RMSE = 126ms) and shows that an ACT-
R model based on the similarity structure of the search set and the strategy of identifying a
single combination of features and random search can provide a reasonable account of the data.
However, Byrne, Anderson, Douglass, and Matessa (1999) had shown in an earlier study of
visual search in a menu selection task that alternative strategies can produce similar aggregate
RTs, necessitating the incorporation of eye movement data to add further constraints on the
proposed theory. As a result, Fleetwood and Byrne carried out an eye movement study to test
their model further and found two major discrepancies between the observed eye movements
and the patterns of visual attention produced by their model. First, they found that, although
the model successfully reproduced the patterns of visual attention across the icon quality and
set size conditions, for all conditions the number of saccades per trial produced by the model
was significantly greater than those recorded in the experiment. Second, when analysing
the eye movement data, Fleetwood and Byrne found that patterns of icon search were not
random as their model predicted, but were systematic, in the sense that participants sought
to minimise the distance between successive fixations, typically looking at target icons closest
to their current fixation point. This produced a search pattern that revealed a systematic
scanning of areas of the display.

Both of the discrepancies between the model and human data are explained by Salvucci’s
(2001) EMMA model. It is been demonstrated previously that the relationship between eye
movements and visual attention is not direct, and that people often do not move their eyes to
their focus of attention (e.g., Henderson, 1992; Rayner, 1995). EMMA attempts to capture
this relationship by providing an account of if and when eye movements occur, and if they do
occur, the location of their landing relative to their targets. Integrating EMMA into ACT-R
allows models to simulate actual eye movements rather than just visual attention shifts and
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Figure 7: Response time by set size and icon quality for Fleetwood and Byrne’s (2006) revised
model and the experiment data.

provides a more realistic output to be compared with human eye movement data. In addition,
EMMA predicts that efficient search strategies minimise average saccade distance, resulting
in search patterns in which objects nearest to the current fixation point are examined soonest.
Fleetwood and Byrne modified their model’s search strategy according to the EMMA account
and incorporated EMMA’s eye movement computations into their model, resulting in a greatly
improved fit (shown in Figure 8) to the human eye movement data (R2 = .99, RMSE = 0.58).

Conclusion

In this chapter we have presented a number of recent examples of research that we believe
clearly demonstrate the value of rational analysis and cognitive modelling in the study of
complex interactive behaviour. Such tasks typically involve the complex interaction of three
elements: (1) the perceptual and cognitive abilities of the user; (2) the visual and statistical
properties of the task environment; and (3) the specific requirements of the task being carried
out. The use of rational analysis and an embodied cognitive architecture such as ACT-R
allows all three of these elements to be brought together in an integrated theoretical account
of user behaviour. Rational analysis provides a set of assumptions and methods that allow
researchers to understand user behaviour in terms of the statistical structure of the task
environment and the user’s goal of optimising (i.e., reducing the cost/benefit ratio of) the
interaction. Developing cognitive models of interactive behaviour in a cognitive architecture
such as ACT-R allows researchers to specify precisely the cognitive factors (e.g., domain
knowledge, problem-solving strategies, and working memory capacity) involved. In addition,
the recent incorporation of perceptual-motor modules to cognitive architectures allows them to
make predictions about users’ eye movements during the entire performance of the task, which
can be compared to observed eye movement data a highly stringent test of the sufficiency
and efficacy of a model. The use of these methods has increased rapidly over the last 5
years, as has the range of task interfaces being studied. Although we are still a long way
from achieving the goal of an artificial user that can be applied “off the shelf” to novel tasks
and environments, the models of interactive behaviour described here demonstrate a level of
sophistication and rigour still relatively rare in HCI research. As these examples illustrate,
developing more detailed accounts of interactive behaviour can provide genuine insights into
the complex interplay of factors that affect the use of computer and Web technologies, which
may inform the design of systems more adapted to their users.
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Figure 8: Mean number of shifts of visual attention per trial made by Fleetwood and Byrne’s
(2006) revised model relative to the mean number of gazes per trial made by participants.
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