
INTRODUCTION

The ability to interpret and reason with charts
and graphs is increasingly important in this
information-rich society. Charts, graphs, and
other diagrams are used extensively in science,
engineering, business, and the media. To be able
to reason with charts and graphs effectively re-
quires sophisticated perceptual and reasoning
skills and a broad range of general and specific
knowledge about diagrammatic representations.
Understanding diagrammatic reasoning is an
important goal for cognitive scientists, therefore,
not only because of the ubiquity of diagrammat-
ic representations but also because diagram-
matic reasoning is a process in which behavior
is a function of a complex interaction among

three factors: the cognitive and perceptual skills
of the reasoner, the graphical properties of the
external representation being used, and the spe-
cific requirements of the task being undertaken.
It is also likely that a deeper understanding of
the relationships among these three factors will
have implications for the design of more effec-
tive graphical representations.

In the area of graph-based reasoning, we have
carried out a number of investigations into how
these three factors affect reasoning with differ-
ent types of Cartesian coordinate (x,y) graphs
(Peebles & Cheng, 2001, 2002; Peebles, Cheng,
& Shadbolt,1999) and have proposed the graph-
based reasoning (GBR) model to characterize
the complex interactions and resulting behavior.
The goals of GBR are similar to those of the
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cognition-artifact-task (Gray & Altmann, 2001)
and embodied cognition-artifact-task (Byrne,
2001; Gray, 2000; Gray & Boehm-Davis, 2000)
frameworks proposed to characterize interactive
behavior in human-computer interaction tasks.

Figure1 shows the four graphs used in the ex-
periment reported here. They depict the amount
(in millions of units) of UK offshore oil and gas

production over two decades. In the function
graphs the argument variable (AV: time in years)
is represented on the x axis and the quantity
variables (QV: oil and gas) on the y axis, where-
as in the parametric graphs the quantity vari-
ables are represented on the x and y axes and
time is plotted as a parameterizing variable along
the curve.

Figure 1. Function and parametric graphs used in the experiment depicting values of oil and gas (the quantity
variables, QVs) for each year (the argument variable, AV). The graphs on the left (labeled 1) show years
1970 to 1979, and those on the right (labeled 2), 1980 to 1989. Dashed lines indicate the optimal scan path
required to answer the question, “When the value of oil is 3, what is the value of gas?”
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To evaluate the similarity between function
and parametric graphs, we start with the no-
tions of informational and computational equiv-
alence of representations defined by Larkin and
Simon (1987). According to their definition,
two representations are informationally equiv-
alent if no information can be inferred from
one that cannot be inferred from the other and
if each can be constructed from the information
in the other. Conversely, two representations
are computationally equivalent if they are in-
formationally equivalent and if any inferences
that can be drawn “quickly and easily” from
the explicit information in one can be similarly
drawn from the explicit information in the
other, and vice versa. This latter term requires
that not only the information content of the rep-
resentations be taken into account but also the
nature and speed of the various operators used
to interact with them. According to Larkin and
Simon’s criteria, each pair of function and para-
metric graphs generated from the same data
set for this study can be considered to be infor-
mationally equivalent. The computational equiv-
alence of the graphs, however, is one of the
issues this research seeks to address.

Function and parametric graphs also share
several important properties. They are both
simple line graphs using a two-dimensional
Cartesian coordinate system to relate quanti-
ties and represent magnitudes. Although the
two graph types assign different variables to
their axes, they are similar in that both repre-
sent specific values of plotted variables as
points on the line. Because of these visual and
representational similarities, many of the basic
operators for accessing items of information
are the same for both graph types. It is also
quite likely that these similarities invoke simi-
lar general graph schemas and interpretative
processes (Kosslyn, 1989; Pinker, 1990) and that
inferences from both graph types are influenced
by the same set of biases (Carpenter & Shah,
1998; Gattis & Holyoak, 1996; Shah & Carpen-
ter, 1995).

In previous experiments, however, we have
tested a wide range of tasks with function and
parametric graphs and demonstrated that de-
spite their similarities, consistent and substan-
tial differences do occur in task completion
times, error rates, and patterns of error (Peebles

& Cheng, 2001, 2002; Peebles et al., 1999). The
GBR model explains why many of these differ-
ences occur in terms of the visual scan paths
that users may follow through the graph when
carrying out a task. GBR assumes that given a
particular information retrieval task, experi-
enced graph users will retrieve a procedure for
obtaining that information involving a sequence
of saccades and fixations to the target location.
The resulting scan path will be more or less
optimal depending on the user’s general graph
knowledge, the user’s familiarity with the partic-
ular graph type being used, or the concepts and
procedures required by the task. For example,
the scan path produced by a user less familiar
with graphs in general or with a particular graph
type can be expected to be suboptimal in the
sense that it would be less direct, indicating that
a procedure involving random search or a step-
by-step testing of individual points on the graph
was being employed.

The GBR model’s analysis of the graph-based
reasoning tasks we studied involves the pro-
duction of a cognitive task analysis specifying
the procedural steps required to perform the
task and the scan path that would occur should
these steps be carried out. For each task, the
scan path consists of a sequence of eye move-
ments that minimize the number of saccades
and fixations to obtain the solution or reach
the target location in the graph. This approach
is similar to that adopted in Lohse’s (1993)
understanding cognitive information engineer-
ing (UCIE) model of graphical perception. In
more recent experiments it has also been possi-
ble to predict incorrect task solutions by gener-
ating the scan paths that occur when common
procedural errors are made. Using these opti-
mal and erroneous scan paths, GBR can then
be used to predict which of the graph types
should facilitate fewer errors or more rapid
responses for a particular task.

To illustrate, consider the task of retrieving
the value of gas when the value of oil is 3 using
the function and parametric graphs in Figure 1.
With the function graphs, once the given value
of oil has been located on the y axis, three sac-
cades (indicated by the dashed lines in Figure
1) are required to (a) locate the associated point
on the oil line, (b) identify the corresponding
point on the gas line at the same x coordinate,
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and (c) identify the required value of gas on the
y axis. With the parametric graphs, however,
once the given value of oil has been located on
the y axis, the process requires only two sac-
cades, one to locate the point on the year line at
y=3 and one to identify the corresponding value
of gas on the x axis. According to this analysis,
therefore, users of parametric graphs should be
more rapid and accurate than function-graph
users because of the fewer saccades required by
the parametric graph and the greater number of
possible incorrect saccades that function-graph
users may make. These predictions have been
borne out consistently in our experiments.

The analyses provided by GBR are useful in
delineating the structure of tasks and generat-
ing general explanations for the relative differ-
ences in errors and completion times for the
same task using different graph types. As it
stands, however, the approach has a number of
limitations. First, it remains an open question
whether the assumption of an optimal scan path
glosses over important cognitive and strategic
factors at an individual level. For example,
graph users may be required to re-encode items
of information that have been lost from work-
ing memory during the course of processing.
In addition, given that graph users are aware
that information is available for rescanning at
all times, it is possible that they may make a
strategic decision to trade off additional sac-
cades for a reduction in working memory load.
If this is the case, then the current analyses may
miss an important level of detail that would
shed light on the cognitive load that these tasks
are imposing and the strategies by which graph
users optimize their retrieval procedures.

A second limitation of the approach is that
GBR’s temporal predictions remain at the level
of statements that a task will, on average, take
longer to complete when using one graph than
when using another. A more powerful model
would produce quantitative predictions of task
completion times. There are at least two ways to
do this. The first involves obtaining previously
documented times for the various steps in the
task-analytic model to generate a predicted total
response time (RT) for each task as the sum of
all the times for each of the component steps in
one’s model. This is the approach employed in
several of the goals, operators, methods, and

selection rules (GOMS) class of task analysis
techniques (Card, Moran, & Newell, 1983; John
& Kieras, 1994; Olson & Olson, 1990) and, in
the area of graph-based reasoning, that adopted
by Lohse (1993) in his UCIE model. By adding
cognitive and timing parameters to a GOMS
analysis of graphical perception, Lohse pro-
duced a model that simulated certain question-
answering procedures using line graphs, bar
graphs, and tables and then predicted question-
answering times by assuming an optimal se-
quence of eye movements to scan the graphical
representation.

This approach has proved useful in predict-
ing execution times for a variety of tasks, but it
has a number of constraints (John & Kieras,
1994). First, it assumes that reliable latency es-
timates are available for all the component tasks
in the model. Second, it assumes that the users
being modeled are well practiced and make no
errors during the task. These constraints can be
difficult to satisfy when modeling novel tasks,
tasks involving components without prior esti-
mates, or users unfamiliar with a particular
graph type, for example.

An alternative method of predicting RTs for
graph-based reasoning tasks is to construct cog-
nitive process models using a programmable
cognitive architecture that has the ability to
represent the environment and capture the
complex interactions among the graphical ob-
ject, cognition, and perceptual-motor behavior.
Several such computational theories of how
these interactions are controlled – termed the-
ories of embodied cognition (Kieras & Meyer,
1997) – have recently been developed: executive-
process/interactive control (or EPIC; see Kieras
& Meyer, 1997), EPIC-Soar (Chong & Laird,
1997), and ACT rational perceptual motor
(ACT-R/PM; (Byrne & Anderson, 1998).

Constructing computational models that are
grounded in cognitive theory enables one to
incorporate and test relevant cognitive factors
(e.g., the required declarative and procedural
knowledge, the strategies adopted, and work-
ing memory limitations) as well as perceptual-
motor factors, such as mouse movements and
shifts in visual attention. Like other cognitive
task-analytic approaches, computational theo-
ries incorporate assumptions about the execu-
tion latencies for component unit tasks and so
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can make precise predictions about the total
time to complete individual tasks. Unlike other
approaches, however, computational models
are able to execute the task, providing an impor-
tant sufficiency proof that the model accounts
for the task. In addition, a number of architec-
tures contain learning mechanisms, enabling
them to model various effects of practice on
performance.

In this article we present the results of a
graph-based reasoning experiment and cogni-
tive process models of the experiment in an
attempt to address these limitations. In the ex-
periment participants were asked to perform
simple tasks using function and parametric
graphs that would be predicted, based on the
optimality assumptions currently employed in
GBR, to produce varying response patterns by
requiring different fixation sequences. To ad-
dress the issue of whether these optimality
assumptions are justified, some participants’ eye
movements were recorded as they solved the
problems. We show that although the RT and
error data are in line with GBR’s predictions,
certain patterns in the eye movement data do
not follow the optimal sequences assumed in
the current GBR model.

We then describe two computational models
of the experiment, created using the ACT-R/PM
cognitive architecture, that account for the
observed patterns of eye fixations and that pro-
duce similar patterns of RTs for the various
experimental conditions. The models are based
on the GBR task analysis and incorporate a
number of assumptions about learning the loca-
tions of graph elements, learning the associa-
tions among them, the limitations of working
memory, and strategic choices. Also, in match-
ing the observed RT data, we show how these
assumptions determine which aspects of the
graphical representation are encoded during
the course of the experiment and which, through
either memory limitations or strategic choice,
are not. Finally, the models are used to provide
detailed explanations of the RT differences be-
tween experimental conditions.

EXPERIMENT

A common task when using a graph is to elic-
it the value of one variable corresponding to a

given value of another. This task was chosen
for the experiment because it is a basic graph-
reading skill that users learn and because the
procedures involved are relatively simple. The
knowledge required to carry out these tasks
concerns primarily the sequence of fixations
required to reach the given location in the
graph, representing the given value of the given
variable, and then to reach the target location,
representing the corresponding value of the
required variable. In previous research, howev-
er, we have discovered that the effectiveness of
a particular graphical representation for retriev-
ing the required information depends on the
details of the task (i.e., which variable is given
and which is sought; Peebles et al., 1999).

Method

Design. The experiment was a mixed design
with one between-subjects variable (graph type:
function or parametric) and two within-subjects
variables: question type (three levels corre-
sponding to the three possible combinations of
given and required variables) and graph type
(two levels representing different decades – the
1970s and 1980s, represented by the graphs
on the left and right of Figure 1, respectively).
Participants were randomly allocated to one of
the two graph type conditions.

Participants. The participants were 44 under-
graduate and postgraduate psychology students
from the University of Nottingham who were
paid £3 to take part in the experiment; an addi-
tional 4 participants were paid £5 to take part
in the eye movement study.

Materials. The experiment was carried out
using two PC computers with 17-inch (43-cm)
displays and an SMI iView eye tracker using a
RED II desktop pupil/corneal reflectance track-
er (SensoMotoric Instruments GmbH, Teltow/
Berlin, Germany) with a sampling rate of 50 Hz.
This system records eye movements at 20-ms
intervals remotely from a position in front of
the computer display. The system has an auto-
matic head movement compensation mecha-
nism, but we also restrained participants’ heads
in a frame fixed to the table in order to reduce
recording error that would be caused by head
movement.

The stimuli used in the experiment were the
four graphs shown in Figure 1. The graphs and



data sets were designed so that the argument
variable (AV, year) and the two quantity vari-
ables (QV, oil and gas) all had 10 values ranging
from 0 to 9, and the full range of these values
was represented by the data points for oil and
gas in both decades. A set of questions was
produced using all the values for the three vari-
ables in each decade. The questions had the
same basic structure, giving one variable’s value
and requiring the value of another correspond-
ing variable. All permutations of variables were
used, producing a total of 120 questions (3 given
variables × 2 required variables × 10 variable
values × 2 graphs). For the analysis these ques-
tions were assigned one of three question type
codes: QV-QV, QV-AV, and AV-QV, according
to which variable’s value was given and which
was required, respectively.

Participants were seated approximately 80 cm
from the 72-ppi computer display. The graphs
were 15.5 cm square (including axis labels),
corresponding to approximately 11.1° of visual
angle. The characters representing variable 
values were 0.4 cm high (approximately 0.21°
of visual angle), and those for the axis labels
and questions were 0.4 and 0.5 cm high (ap-
proximately 0.29° and 0.36° of visual angle),
respectively. Axis ticks were spaced 1.5 cm
(approximately 1.1° of visual angle) apart.

Procedure. During the experiment the two
graphs in a condition were presented alternately
(the first graph being selected at random) so that
participants saw each graph on every other trial.
On each trial a graph was presented with a ques-
tion above it. The questions were presented in a
form requiring a minimum amount of text. For
example, the QV-QV question “gas = 2, oil = ?”
required the value of oil when gas is equal to 
2 to be found, whereas the AV-QV question
“year = 1978, gas = ?” asked the participant to
find the value of gas in 1978.

Participants were required to answer the
same 60 questions twice, once for each decade.
The order of these 120 questions was random-
ized across the set of trials. In QV-AV ques-
tions, which required a year value, the final
digit of the required value was represented by a
question mark (e.g., “gas = 6, year = 197?” or
“oil = 3, year = 198?”), and participants were
instructed to enter only the final digit of the tar-
get year. Each question element was center-

ed on a coordinate point that remained invari-
ant throughout the experiment; approximately
3.5 cm (about 2.5 of visual angle) separated
the centers of adjacent text items.

With the graph and question, a button labeled
“answer” appeared in the top right corner of
the window. Participants were instructed to
click on this answer button as soon as they had
obtained the answer to the question. RTs were
recorded from the onset of a question to the
mouse click on the answer button. When this
button was clicked, the button, graph, and ques-
tion were removed from the screen and a circle
of buttons labeled clockwise from 0 to 9 ap-
peared, centered on the answer button. Partici-
pants entered their answers by clicking the
appropriate number button. When the number
button was clicked, the next graph, question,
and answer button appeared on the screen.
This method was devised so that participants
in the eye movement study would not have to
take their eyes away from the screen to enter
answers, as would be the case if they had used
the keyboard.

Before starting the experiment participants
were directed to answer the questions as rapid-
ly and as accurately as possible, and they were
given time to become familiar with the graphs
and to practice entering numbers using the cir-
cle of number buttons and mouse.

Results

Participants’ graph familiarity. Immediately
after taking part in the experiment, participants
were asked to provide two ratings of their famil-
iarity with the graph type they had been using.
They were required to rate the frequency with
which they normally encountered information
presented in the form just seen (i.e., how often
they had come across this graph type) by choos-
ing high, medium, or low frequency. They were
also asked to rate, on a scale from 1 to 9, how
familiar they considered themselves to be with
the type of graph they had just encountered (1 =
very unfamiliar, 9 = very familiar). The graph
exposure frequency and mean familiarity rat-
ings for the two conditions are displayed in
Table 1.

An analysis of variance (ANOVA) on these
data revealed that the ratings of graph familiar-
ity for the function condition participants were

MODELING A GRAPH READING TASK 33



34 Spring 2003 – Human Factors 

significantly higher than were those of the para-
metric condition participants, F(1, 42) = 14.16,
p < .001. In line with this, the encounter fre-
quency ratings showed that more of the function
condition participants rated their encounters
with the graph type as high and fewer rated
them as low.

If a new or infrequently encountered graph
is observed – even if it shares many properties
with other, more familiar graphs – it is likely
that time must be taken to interpret the partic-
ular representational features of the graph in
addition to the time taken to interpret the rela-
tionships being represented. If this is the case,

then a further indirect measure of the partici-
pants’ relative familiarity with function and
parametric graph types would be the average
amount of time they took to familiarize them-
selves with the two graphs they were using.
Before starting the trials, participants were pre-
sented with the two graphs in random order
and instructed to look at each graph until they
were satisfied that they understood it and what
it represented, at which point they pressed a key
on the keyboard to erase the graph and proceed.
Figure 2 shows the mean time taken by partici-
pants in each condition to become familiar with
the graphs as a function of presentation order.

Figure 2 reveals that familiarization time for
the second graph fell significantly, by about 10 s,
in both conditions, F(1, 80) = 14.51, p < .001,
and that the parametric condition participants
required more time than did function condition
participants to familiarize themselves with both
the first and second graph (on average, 2.4 and
4.2 s, respectively). Although these differences
are not statistically significant, the trend of these
differences is consistent with participants’ famil-
iarity and exposure frequency ratings at the end

TABLE 1: Participants’ Graph Encounter Frequency
and Mean (and SD) Familiarity Ratings for the Two
Graph Conditions

Rating Function Parametric

Low 9 12
Medium 8 9
High 5 1
Familiarity 6.73 (1.58) 4.50 (2.28)

Figure 2. Mean time taken by participants in each graph condition to become familiar with experimental
graphs as a function of presentation order. Error bars indicate standard error. Note that the y axis values do
not start at 0.
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of the experiment. These results indicate that
although undergraduate psychology students
are relatively less familiar with parametric-type
graphs than with function graphs, the amount
of time they take to understand the less familiar
graphs to their satisfaction is not significantly
increased. These factors will be considered
when interpreting the correct response (CR)
and RT data.

Response accuracy and latency data. The
proportions of CRs and mean RTs for each
question type for the two graphs in each condi-
tion are presented in Table 2. Although the data
reveal high levels of accuracy for all three ques-
tion types in both graph conditions, an ANOVA
on the response accuracy data revealed a signifi-
cant effect of question type, F(2, 239) = 28.187,
p < .01, indicating that some question types
were generally more demanding than others. In
both graph conditions, participants made more
errors with the QV-QV task than with the other
two and responded most accurately to the AV-
QV task.

Although there is little variability in the accu-
racy of responses between conditions, the time
participants took to respond varies significantly,
both between graph conditions and within each
condition, according to the type of question
being attempted. An ANOVA on the RT data
revealed significant main effects of question type,
F(2, 239) = 18.447, p < .01, and graph num-
ber, F(1, 239) = 5.76, p < .05, and significant
interactions between graph type and question
type, F(2, 239) = 36.314, p < .01, and among
graph type, question type, and graph number,
F(2, 239) = 3.913, p < .05.

Although the main effect of question type
can be accounted for in terms of the number
of procedural steps for each question defined
by the task analysis, explanations for the effect
of graph number are more speculative at the
moment. The data show that responses using
Graph 2 were generally slower than those using
Graph 1, particularly in the function condition.
This may be the result of differences in the
perceptual features of the graphs produced by
the two data sets.

For example, in Graph 1, the two plotted
lines are relatively differentiable, as the line rep-
resenting gas forms a distinct “hill” shape, rising
to a peak and falling again. It may be the case
that the plot lines in Graph 2 are less differen-
tiable, as they are more similar, neither having
such a distinct shape. In the parametric condi-
tions it is only the RTs for the AV-QV questions
that are substantially slower for Graph 2. Be-
cause in this case the given value is the year, this
slowing may be attributable to the fact that the
sequence of years is counterclockwise along
the curve (see Figure 1, Parametric Graph 2).
Currently these accounts are only reasonable
hypotheses and can be tested by a detailed anal-
ysis of the eye movement data at a later date.

The general pattern of errors and RTs is
consistent with the optimal scan path assump-
tion in the current GBR analysis. As this analy-
sis also forms the basis for the ACT-R/PM
models, further explication is required. For this
analysis and the following analysis of the eye
movement data, it is necessary to divide the
experimental display into seven regions. The
regions, shown in Figure 3, were the same for

TABLE 2: Mean (SD) Correct Responses (CR) and Response Times (RT) for Each Graph Condition and
Question Type

Mean CR Mean RT (s)

Question 
Function Parametric Function Parametric

Type Graph 1 Graph 2 Graph 1 Graph 2 Graph 1 Graph 2 Graph 1 Graph 2

QV-QV .911 .898 .925 .891 5.93 6.18 4.89 4.83
(.285) (.303) (.264) (.312) (2.33) (2.11) (2.00) (1.97)

AV-QV .970 .982 .993 .989 5.01 5.07 4.88 5.17
(.170) (.134) (.082) (.106) (1.78) (1.64) (1.57) (1.65)

QV-AV .943 .930 .939 .925 5.51 5.80 4.38 4.41
(.232) (.256) (.240) (.264) (1.89) (2.77) (1.71) (1.54)

Note: Graph 1 and Graph 2 refer to the graphs as illustrated in Figure 1, not to presentation order.
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all four graphs and define the relevant units of
the display: x axis, y axis, graph pattern, answer
buttons, and three regions representing the
three elements of the question – given variable,
given value, and required variable. For several
analyses the three question element regions
were combined to produce a single question
region. This approach is similar to that employ-
ed by Carpenter and Shah (1998) in their inves-
tigation of graph comprehension.

An individual trial in the experiment can be
divided into six basic subgoals: (a) read the
question; (b) identify the start location, deter-
mined by the given variable; (c) identify the
given location, representing the given value of
the given variable; (d) from the given location,
identify the target location, representing the
required variable; (e) identify the target value
at the target location; and (f) enter the answer.
For all the question types in the function graphs
and the QV-QV and QV-AV questions in the
parametric graphs, the start location is an axis
and the given location is a point on this axis
representing the given value. For AV-QV ques-
tions in the parametric graphs, however, the
start location is the plot region of the graph
and the given location is a point on the plotted
line. Once at the given location, the participant
must find the corresponding target location,
and it is at this stage in the process that the main
differences between the question and graph
types exist and, consequently, where variations
in the RTs arise.

For example, when answering QV-QV ques-
tions using a function graph, as illustrated in
Figure 1, in order to reach the target location
one must locate the correct plot point for the
given value, find the associated plot point for the
required variable, and then return to the y axis
to identify the value of this point. To answer the
same questions using the parametric graphs,
however, one is required only to identify the
correct plot point for the given value and then
find the value of this point on the alternative
axis. Consequently, the smaller mean RT for
QV-QV questions in the parametric condition
can be accounted for in terms of the shorter
scan path for parametric graphs (question, x/y
axis, graph, x/y axis, answer) as compared with
that for function graphs (question, y axis, graph,
graph, y axis, answer).

A similar explanation may be provided for
the significantly greater time required to answer
QV-AV questions using the function graphs.
With function graphs, to get to the target loca-
tion one must identify the correct plot point for
the given value and then find the value of this
point on the x axis. Conversely, with parametric
graphs the target values are within the same fix-
ation region as the plot point of the given value,
thereby reducing the number of cognitive and
perceptual steps required to fixate on the target
location. In this case the optimal sequence of
fixations is predicted to be question, x/y axis,
graph, answer; whereas that for the function
graphs is question, y axis, graph, x axis, answer.

Finally, for the AV-QV questions, the relative
rapidity with which function graph users are
able to answer these questions, as compared
with the other question types, is attributable to
the fact that they are able to rapidly identify
the given year on the x axis and then carry out
the two-step process of identifying the target
point on the correct line and retrieving its
value from the y axis. The optimal sequence of
fixations for this procedure is question, x axis,
graph, y axis, answer. The data show that this
procedure takes approximately the same time
as the corresponding procedure for the para-
metric graphs, which require search for the
given year in the graph and then retrieval of its
value from the target axis, the optimal fixation
sequence of this procedure being question,
graph, x/y axis, answer.

Figure 3. Seven regions of the experimental display
defined for the fixation analysis (Gvar = given vari-
able, Gval = given value, Rvar = required variable).
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The experiment demonstrates that despite
the numerous similarities that exist between
function and parametric graphs, the type of
graph used can significantly affect the time it
takes to retrieve the required information and
that this effect is dependent on the nature of the
task. It is also evident that the probability of
retrieving incorrect information depends on
specific details of the task – that is, which vari-
able is given in the question and which variable
value is being sought. The GBR model is able to
explain these differences in terms of a detailed
task analysis using the assumption of an opti-
mal scan path through the graph to the target
location. The eye movement study is designed
to determine whether this assumption is justi-
fied by analyzing the actual scan paths produced
when the tasks are performed.

Eye movement data. The eye movement data
were analyzed by computing the frequency and
duration of fixations in each of the seven regions
defined over the graphical display and record-
ing the pattern of transitions among these
regions during individual trials. For the analysis
we adopt Carpenter and Shah’s (1998) term
gaze to refer to a sequence of consecutive fixa-
tions on a display region that is unbroken by
fixations in other regions. The raw x,y coordi-
nate data were aggregated into gazes with a
minimum duration of 100 ms, a value large
enough to eliminate most saccades, short fixa-
tions, and noise and yet still capture all relevant
fixations. Fixations of 100 ms or more in each
region were recorded, and a scan path consist-
ing of the sequence of gazes for each trial was
produced. From a total of 480 trials in the eye
movement study, 28 were removed because the
analysis produced an unusable scan path.

Several interesting patterns emerge from the

analysis of these gaze sequences. First, the aver-
age number of transitions between regions for
all question types, shown in Table 3, is consis-
tently greater than the optimal number predicted
by GBR. For all question types, and irrespective
of the graph type being used, participants made
an average of three to four additional transi-
tions to reach the solution. In the majority of
cases these additional transitions were between
either the axes and the graph or the question
and the graph; participants rarely fixated on the
answer region until entering an answer. In 31%
of all trials, participants made at least one
additional gaze on an axis after having previ-
ously fixated on that axis and then the graph.
More detailed examination revealed that in the
majority of cases, participants had fixated on
an axis value, proceeded to the plot point cor-
responding to that value, and then made an ad-
ditional saccade back to the axis to check that
the value was in line with the point.

A second interesting pattern involves the
encoding of the question elements. In 62.7% of
all trials, and irrespective of the graph used and
question type being attempted, participants
made at least one additional gaze on the ques-
tion after having initially gazed on the question
and subsequently the graph. Of these, 48.0%
involved one further transition, 11.9% involved
two additional transitions, and 2.8% involved
three or more transitions.

Examination of the gazes on individual ques-
tion elements shows that these patterns are the
result of a combination of strategies adopted by
the participants. For all questions, participants
scanned the question elements from right to
left as their point of regard moved from its cur-
rent position at the answer buttons from the
previous trial. The eye movement data show that

TABLE 3: Mean Number of Gaze Transitions Between Display Regions for
Function and Parametric Graphs Observed for Each Question Type, and the
Optimal Number Predicted by the GBR Model

Function Parametric

Question Type Observed Optimal Observed Optimal

QV-QV 7.66 5.0 8.21 5.0
AV-QV 7.86 5.0 8.90 4.0
QV-AV 8.05 5.0 8.05 4.0
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participants either read the required variable,
the given value, and then the given variable or
scanned past the required variable to read the
given value first and then the given variable,
reading the required variable only later in the
problem-solving process, when the given loca-
tion had been reached. This suggests two expla-
nations for the re-encoding of question elements.

In the first case, participants initially encode
the three elements of the question but are re-
quired to re-encode certain parts of it that can-
not be retrieved from working memory because
of the cognitive load involved in carrying out
the problem-solving procedures (see Peebles &
Cheng, 2001, for a more detailed discussion).
In the second case, participants effectively break
the problem into two sections, the first to get to
the given location in the graph and the second
to move from the given location to the target
location corresponding to the solution. It is also
possible that the observed gaze patterns may
result from a combination of these factors if,
during the course of the experiment, participants
adopt the latter strategy in order to minimize the
number of question element retrieval failures.

The eye movement data also show that if
the given variable is a year value, participants
typically do not then scan to the given variable
location (as it is always a year), whereas if the
given value is not a year value, then they always
scan to the given variable to determine whether
it is oil or gas.

ACT-R/PM MODELS OF 
THE EXPERIMENT

One of the main aims of this research is to
construct models of graph-based reasoning that
are grounded in cognitive theory and incorpo-
rate cognitive factors such as memory decay and
interference together with perceptual-motor
components that provide realistic interactive
behavior. ACT-R/PM has the required cogni-
tive and perceptual mechanisms with which to
develop such models. The goal is to use the task
analysis provided by GBR to provide the basic
set of constraints for construction of the ACT-R
cognitive model, a methodology that has been
previously employed to produce models of sever-
al tasks (see Anderson, 1993). We then use the
eye movement and response time data from

the experiment to provide an empirical test of the
cognitive model as well as an additional source
of hypotheses concerning the strategic and
cognitive factors assumed in the model. In this
way we go beyond the optimal analysis that
has been assumed in the current GBR model
to produce a detailed and testable account of
the eye movements, gaze durations, and task
completion times.

ACT-R/PM (Byrne & Anderson, 1998), an
extension of the ACT-R cognitive architecture
(Anderson, 1993; Anderson & Lebiere, 1998),
adds perceptual-motor modules to the central
ACT-R cognitive module. Three modules, based
on the corresponding modules of EPIC (Kieras
& Meyer, 1997), provide ACT-R with rudimen-
tary speech and audition capabilities as well as
elements of motor control to simulate manual
interaction with a computer keyboard and
mouse. ACT-R/PM’s visual module is the most
developed perceptual component. An extension
of the original ACT-R visual interface, the visual
module allows the modeling of visual attention
shifts to objects on a computer display. In a re-
cent development these perceptual-motor mo-
dules have been fully integrated into the ACT-R
5.0 architecture. This is the version of the archi-
tecture used for the models presented here.

Space limitations permit only a brief outline
of the most relevant aspects of ACT-R/PM
here, but detailed discussions can be found in
Anderson and Lebiere (1998) and Byrne (2001).
ACT-R contains two memory systems: a proce-
dural memory consisting of a set of produc-
tions and a declarative memory in the form of
a network of chunks. The system also contains
five buffers that store information about such
things as the current goal, the item of declara-
tive knowledge that is currently available to
the system, and the current state of the percep-
tual and motor modules. Each buffer may con-
tain only one item of information, as each new
request for new information replaces the cur-
rent contents of the buffer. Productions are rules
of the form “IF <condition> THEN <action>,”
the condition specifying chunks that must be
present for the rule to apply and the action
specifying the actions to be taken should this
occur. The conditions of productions are typi-
cally tests of the contents of the various buffers,
whereas on the action side these contents can
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be modified, the current goal terminated and a
new goal set, or a request made for the retrieval
of a chunk from declarative memory.

ACT-R/PM combines serial and parallel pro-
cessing, the cognitive and perceptual-motor
modules of ACT-R/PM being for the most part
serial, with the modules running in parallel with
each other. The various processes also have
associated latency parameters. For example, the
default time of a production to fire is 50 ms,
whereas the time taken to move the mouse cur-
sor to an object on the computer screen is calcu-
lated using Fitts’ law (Fitts, 1954). ACT-R/PM’s
visual modules represent the display image
(which is constructed in the LISP programming
language) as a visual icon, and productions are
able to direct visual attention to elements of
this icon. When attention is focused on an ob-
ject in the icon, declarative chunks representing
that object and its location are created and
placed in the system’s visual and visual location
buffers, respectively. While they are the current
contents of buffers, these chunks can be ac-
cessed by productions. Each chunk is created
with an initial activation value so that when a
chunk is not in a buffer, as long as this value is
above a certain threshold value, it can be re-
trieved by the cognitive system and placed in 
a buffer.

ACT-R’s declarative memory has an activation-
based retrieval process and includes a mecha-
nism by which the activation of chunks decreases
over time. However, the activation of a visual
object or visual location chunk is increased
when visual attention is refocused on the visual
object that it represents. ACT-R has been used
to model a wide range of cognitive phenomena
(Anderson & Lebiere, 1998), and in recent
years, with the inclusion of the perceptual-
motor modules, it has been applied to a num-
ber of complex interactive tasks in the area of
human-computer interaction and human factors
research (e.g., Byrne, 2001; Savucci, 2001b;
Schoelles & Gray, 2000).

A Description of the Models

ACT-R/PM models of the experiment’s two
graph conditions were constructed that were
able to interact with an exact replica of the soft-
ware used to run the experiment. The models
consist of two sets of productions to carry out

the six subgoals outlined earlier: one set to
carry out the four subgoals related to answering
the questions and another set of general pro-
ductions to read the question at the start of a
trial and enter the answer when the required
value has been obtained. The main diagram-
matic operators embodied in the productions
are the same for both models (e.g., searching
for specific axis labels and values, reading and
comparing graphical and textual elements with
the contents of various buffers, scanning from
axis values to plotted points and vice versa).
The primary difference between the two models
is the control structure that sequences the exe-
cution of these operators. The productions for
reading the question and entering the answer
are shared by both models.

The processing of individual questions in-
volves three main operations: (a) a series of mem-
ory retrieval requests for the elements of the
question and the location of these elements in
the graph, (b) search procedures, and (c) visual
attention processes directed by the current goal
of the system. As these sequences determine
the output of the models for each graph and
question condition, we now describe in detail
the six subgoals involved in the process.

Read the question. Both models contain the
same set of productions to read the question
elements from right to left at the start of each
trial. The number of question elements read by
a model can vary. A model may opt to read the
required variable at the start of a trial or scan
straight to the given value. In addition, if the
given value is a year, the model will not read
the given variable.

Identify the start location. When the question
elements have been read, a new goal is set to
identify the starting location determined by the
given variable. If the system can remember
which axis represents it, a retrieval request is
made to recall the given value and a new goal
is set to identify its location. If the axis cannot
be remembered, however, then the model must
search the graph to find the appropriate axis
label. This also occurs in the parametric model
when the given value is a year. If the system is
unable to retrieve the year’s location in the
graph from declarative memory, a systematic
search for the year is initiated in the plot region
of the graph until it is found. This leads to some
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important effects on the RTs for the AV-QV
questions, which will be discussed further.

Identify the given location. Before the goal
to identify the given location can be carried
out, the given value must be remembered. Be-
cause a certain amount of time has elapsed
since the given value was read, the activation of
the chunk – and consequently the probability
that it can be retrieved – will be less (Peebles
& Cheng, 2001). If it cannot be retrieved from
declarative memory, the question element is
reread and the focus of attention returned to its
previous location. With the chunk now suffi-
ciently active, the original goal can be pursued
and a search for the given axis value carried
out. Once the given location is identified, a new
goal is set to identify the target location.

Identify the target location. As with previ-
ous goals, the appropriate question element (in
this case the required variable) must be in the
system’s buffer before the target location can be
identified. If the strategy adopted by the model is
to skip reading the required variable until this
stage of the process, the question element is read
for the first time. If, however, the required vari-
able was read at the start of the trial, because
even more time has elapsed there will be a high-
er probability that its chunk cannot be retrieved
and must be re-encoded.

Once the chunk is in the buffer, what hap-
pens next depends on the graph and question
type. In the function graph condition the sys-
tem obtains the symbol associated with a QV
and then directs visual attention to the appro-
priate symbol having the same coordinate value
as the current location on the current axis. In
the QV-QV questions, an additional step is re-
quired whereby visual attention is then direct-
ed to the alternative symbol having the same
coordinate value on the x axis as the current
symbol. In the parametric graph condition,
given that there is only one kind of plot symbol,
for the QV-QV and QV-AV questions visual
attention is simply directed to the symbol with
the same coordinate value as the current axis
location. For AV-QV questions, however, visu-
al attention is at a year value in the graph, and
so attention is directed to the plot point near-
est to the current location.

Identify the target value and enter the an-
swer. For QV-AV questions in the parametric

condition, the target value is the year label
nearest the currently attended symbol. For all
other question and graph conditions, when the
target location has been reached, the target
value is an axis tick label at the same x or y
coordinate as the currently attended symbol.

When the target value has been identified,
visual attention and the mouse cursor are moved
to the answer button and the button is clicked.
As in the experiment, task completion time is
recorded at this point. When the response but-
tons appear, the correct one is identified and
clicked, at which time the next trial starts.

How Learning Affects the Models’
Behavior over Time

Although we have not focused on the issue
of learning here, it is clear that the mechanisms
provided in ACT-R allow for learning to take
place and that this may be used to account for
the characteristic decrease in task completion
time found over the course of the experiments.

In particular, the learning of symbol-variable
associations and the locations of graph ele-
ments, such as the axis representing individual
variables and the locations of axis values, are
captured by the mechanisms of the models. For
example, during the early stages of the experi-
ment, when the models do not know which
axis represents which variable, they are required
to scan the axis labels. Later, when the axis
label chunks have been strengthened sufficiently
by repeated visiting, retrieval requests are fre-
quently successful and the models are able to
remember consistently the correct axis for a
given variable.

A similar situation occurs in the function
graph condition concerning the identification
of the plot symbol representing each of the QVs.
During each trial a retrieval request is made for
the plot symbol that represents a QV. If it can-
not be retrieved, a goal is set to look for a plot
symbol label in the graph region, and when one is
found, the associative chunks representing each
variable-symbol pair are strengthened. Over
time these chunks are sufficiently active to be
recalled consistently.

In relation to the locations of axis values, the
models are provided with prior knowledge of
the general region where values are located on
x and y axes. This knowledge guides the search
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for a particular value, but if another value is
found, its location is stored and the search
reinitiated in the same region, providing an ele-
ment of stochasticity to the search procedure.
Eventually, however, during the course of the
experiment the precise location of each value
on the x and y axes can be retrieved, and the
search time is thus reduced.

This learning mechanism is a significant fac-
tor in the RT predictions produced by the
models. For example, the learning of question
element locations is crucial to the parametric
graph model’s account of the increased RT for
the AV-QV questions, as compared with RTs
for the other questions. For the QV-QV and
QV-AV questions, by the last half of the trials,
the axis representing each QV has been learned,
as has the location of the individual values on
the axis. Although the location chunk of each
year value is strengthened each time it is
attended to, the frequency of these strengthen-
ings is not sufficient to keep them active enough
to be recalled. Hence in the majority of cases
for AV-QV questions, a memory retrieval re-
quest for the year value fails and a search must
be made, increasing the time to complete the
task. It is possible that this may result from a
strategic decision not to attempt to retrieve the
location of a year, but the resulting behavior
would be virtually identical.

Comparing the Models with the
Experimental Data

From the foregoing discussion, it is clear
that the behavior of the models is a result of a
number of assumptions regarding the complex
interplay of memory retrieval requests, search
procedures, and visual attention processes. As
with all cognitive models, the ACT-R/PM mod-
els of these tasks require, and allow, the speci-
fication of these component cognitive and
perceptual-motor steps at a much finer grain
size than that required by GBR. The behavior
of the ACT-R/PM models is also dependent on
assumptions about how much of the question
is remembered during a trial and how much of
the diagram is remembered during the course
of the experiment. Whether these assumptions
fit with the experimental data is an important
question, which we now address.

Modeling task completion times. One of our

primary aims in constructing these cognitive
models is to move beyond the qualitative pre-
dictions of relative task completion times pro-
duced by GBR to make precise and testable
quantitative RT predictions for different types
of graph and task. Our initial concern when
evaluating the models, therefore, is to deter-
mine whether the RT predictions of the models
are comparable to those of relatively well prac-
ticed individuals who are familiar with both
the task and their respective graphs. To this
end, the mean RT for the second half of the
experiment (a total of 60 trials) was computed
for each question condition. To produce a data
set that could be compared with that from the
experimental participants, the function and
parametric models were both run 20 times and
the mean RT for the last 60 trials was comput-
ed. These mean observed and model RTs for
function and parametric graphs are presented
in Figure 4.

When running the models we set the vari-
ous free parameters to their default values,
except for the base-level learning parameter,
which controls the rate of learning and decay
for the base-level activation of declarative
chunks. This parameter affects the rate of for-
getting of the question and graph elements and,
consequently, the number of re-encodings that
are required during a trial. The default value of
this parameter (.5) resulted in the models’ learn-
ing too slowly, increasing the number of re-
encodings and consequently the overall task
completion times. To improve the fit of the
mean RTs to those from the experimental data,
the value of this parameter was gradually
incremented until the value of .93 was found
to increase the learning rate and reduce the
number of re-encodings sufficiently to provide
an acceptable fit.

In general, the RTs from the models for in-
dividual question conditions are close to those
from the experiment, and the overall pattern of
relative task completion times resembles that of
the observed data, although the differences be-
tween the question conditions for the function
graphs are smaller for the model than for the ob-
served differences. Both parametric and function
graph models provide reasonable fits to the data,
accounting for 87% (R2 = .868, RMSE = .123)
and 66% (R2 = .664, RMSE = .199) of the
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variance in the observed RT data, respectively.
The condition in which the data from the mo-
del diverge most from the observed data is for
AV-QV questions in the function graph condi-
tion. Although the model does predict that the
mean RTs for these graphs are the smallest in
this condition – because (a) the number of ini-
tial question elements that need to be read is
fewer than for the other conditions, and (b) at
the stage when the target location is identified,
a memory retrieval request is not required,
whereas it is for the other question types – the
predicted RT is greater than that of the ob-
served data.

Explaining eye movement data. The eye
movement data reveal two principal reasons for
the encoding of question elements during the
course of a trial. The first involves a strategic
choice to delay encoding the required variable
until it is required, and the second involves
encoding the three question elements at the
start of a trial and the subsequent rereading of
individual elements during the trial. The ACT-
R/PM models are able to capture both these
processes by different means. The first is mod-
eled by productions that encode each question
element at the appropriate stage. The second
process is captured by the decay of base-level
activation of perceptual chunks during the
time course of problem solving.

On these trials the models initially encode
all three question elements. At each stage of
the problem, however, at least one element must
be retrieved from memory in order for the
model to proceed. From the time of their initial
encoding, the question element chunks’ activa-
tion is decaying, and consequently the proba-
bility that they cannot be retrieved increases.
As the trial progresses the probability that a
question element will not be retrieved and
must be re-encoded increases. Because the re-
quired variable is most often the one retrieved
near the end of a trial, this may account for the
48% of trials requiring a further gaze to the
question region and the adoption of the strate-
gy delaying the required variable encoding. A
more detailed account of this process can be
found in Peebles and Cheng (2001, 2002).

To illustrate this point, Figures 5 and 6 com-
pare screen shots of model scan paths and eye
movements recorded from one participant for
two questions using the1980s parametric graph.
The participant screen shots are taken from a
viewer application in which the eye movement
data are displayed over a bitmap of the display
where all the answer buttons are displayed
simultaneously and the locations of the ques-
tion elements are represented by variables (QM
stands for question mark). Each arrow on the
eye movement scan path represents a data point

Figure 4. Response times for experimental participants and ACT-R/PM models for each question type aver-
aged over the last 60 trials of the experiment. Note that the y axis values do not start at 0.
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recorded at 20-ms intervals. The model screen
shot is taken immediately after visual attention
has shifted to the answer button once the
required value has been found. The numbered
circles on the scan path indicate the sequence
of fixations produced by the model.

The two model screen shots illustrate the sit-
uation described earlier in which the required
value is read near the end of the trial. In both ex-
amples the model starts from the answer region,
looks directly to the given value (Fixation 1)
and then the given variable (Fixation 2), checks

Figure 5. Screen shots showing an experimental participant’s eye movement data (left) and the ACT-R/PM
model’s visual attention scan path (right) for the QV-QV question “oil = 6, gas = ?” using the 1980s para-
metric graph. In the model screen shot, numbered circles on the scan path indicate the location and sequence
of fixations.

Figure 6. Screen shots showing an experimental participant’s eye movement data (left) and the ACT-R/PM
model’s visual attention scan path (right) for the QV-AV question “gas = 9, year = 198?” using the 1980s
parametric graph. In the model screen shot, numbered circles on the scan path indicate the location and
sequence of fixations.



44 Spring 2003 – Human Factors 

that the given variable is represented on the axis
(Fixation 3), and then proceeds to the given
value (Fixation 4) and the given location (Fixa-
tion 5). As the model now needs to know what
the required variable is, it looks for it (Fixation 6),
returns to the given location (Fixation 7), and
then proceeds to identify the associated required
value (Fixation 8) and the answer button (Fix-
ation 9). In both cases the pattern of eye move-
ments produced by the participant is strikingly
similar to that of the model.

DISCUSSION

The research reported here has several im-
portant implications for the design of visual
displays and graphical user interfaces. It also
provides a clear illustration of the value of eye
movement data and computational modeling
techniques in the analysis of complex interac-
tive behavior. We now discuss each of these
issues in turn.

Visual Display and Graphical User
Interface Design

The consequences of this research for the de-
sign of visual displays and graphical user inter-
faces can be distilled into three guidelines to be
considered when selecting an appropriate rep-
resentation for a specific communicative goal.

First, designers of graphical interfaces should
consider not only alternative representational
formats but also how different quantities are
encoded within any chosen format. Previous
studies of display design have compared repre-
sentations with distinct formats (e.g., Casner,
1991; Kosslyn, 1989; Zhang, 1996, 1997) or have
analyzed the impact of different graphical rep-
resentations of quantities (e.g., distance, shade,
shape) on graph reading (e.g., Cleveland & Mc-
Gill, 1984). In contrast, the representations in
our study not only were informationally equiva-
lent but also were similar forms of graphical
representation requiring many of the same basic
procedures to read. The primary difference
between function and parametric graphs is in
the way the quantity and argument variables
are encoded using the Cartesian coordinate
system. Nevertheless, significant computational
differences, as evidenced by the RT data, were
found between the two informationally equiva-
lent (Larkin & Simon, 1987) graphs. This em-

phasizes the fundamental role and impact that
representations have on cognition, as marked
differences were found in the effectiveness of
graphs that apparently have only small differ-
ences in representational terms.

Second, when selecting a graphical display, it
is not sufficient to consider only the form of the
representation in relation to a typical task (e.g.,
the AV-QV task in our study). The designer
should address the full range of alternative
varieties of the task (e.g., the QV-QV, QV-AV
tasks). In the experiment the different encod-
ings of quantities in the two graph types did
not produce a uniform effect across all three
types of question, as shown by the significant
interaction between graph type and question
type. This provides a clear illustration that
when using graphical displays for apparently
homogeneous tasks, such as reading off values,
the fine-grained details of the task can affect
performance.

Third, when choosing a representation, de-
signers should not always select the one most
familiar to target users but should attempt to
balance the cost of familiarization with the
computational advantages of less familiar rep-
resentations. It may be the case that once an
unfamiliar format has been comprehended, the
computational advantages may be significant
and may outweigh the cost of familiarization,
particularly if the tasks are to be performed
frequently or rapidly. In our experiment the
magnitude of the effect arising from the partic-
ular combination of graph type and question
type was not only significant but substantial.
On two of the three question types, participants
performed better using the parametric graphs
by nearly a second in a task lasting about 5 s.
This is particularly noteworthy, given that the
participants were more familiar with the func-
tion graph. Hence for the task of reading off
quantities, it appears to be better to use the less
familiar parametric graph than a function graph.
This challenges the common practice of using
time series function graphs to present process
data (e.g., Tufte, 1983).

Eye Movement Data

In a highly visual domain, such as graph-
based reasoning, eye movements are an im-
portant source of information regarding the
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acquisition and processing of visual informa-
tion during problem solving and the strategies
people adopt when interpreting and working
with graphs. This has been demonstrated pre-
viously by Carpenter and Shah (1998) in their
analysis of eye movements in graph comprehen-
sion tasks, which revealed the cyclic nature of
the pattern recognition and cognitive processes
involved in graph comprehension.

GBR’s eye movement predictions consist of
an optimal sequence of fixations to achieve the
goal based on the task analysis. When GBR is
used, it can account for variations in aggregate
RT data between users of different graph types
(Peebles et al., 1999). By revealing the primitive
actions of users at a very fine (20 ms) grain size,
the eye movement study reported here, howev-
er, showed GBR’s assumption of an optimal
scan path to be an approximation that glosses
over important cognitive and strategic factors
at an individual level. The eye movement data
also provide two additional constraints on the
structure of the models, first by revealing behav-
ior that can be interpreted as arising from work-
ing memory limitations or strategic decisions,
and second by generating scan paths with which
the model scan paths can be compared.

Cognitive Modeling

This research also clearly demonstrates the
value of cognitive modeling in the analysis of
complex interactive behavior. The diagrammat-
ic reasoning tasks we have studied involve a
complex interaction among three elements: the
perceptual and cognitive abilities of the reason-
er, the visual properties of the graph, and the
individual requirements of the task. The GBR
model of graph-based reasoning (Peebles et al.,
1999) explains performance differences pri-
marily in terms of the interaction between the
latter two elements of this triad. Implementing
the task analysis in a cognitive architecture has
for the first time allowed us to take all three
elements into consideration. By constructing
computational process models incorporating
cognitive factors (domain knowledge, prob-
lem-solving strategies, and working memory
capacity) and perceptual-motor capabilities,
we have been able to conduct a stringent test
of the sufficiency and efficacy of the model by

simulating every aspect of participants’ behav-
ior when carrying out the entire experiment.

The response latencies produced by the mod-
els provide reasonable fits to the data, and the
overall pattern of relative task completion times
resembles that of the observed data. This repre-
sents a major step forward from the account
provided by GBR, which is limited to state-
ments that the mean time to complete a given
task will be greater for one graph type than for
another. Moreover, the models’ eye movement
protocols and RTs emerge as a consequence of
the learning mechanisms embodied in ACT-R –
in particular the activation-based retrieval of
declarative memory elements. This mechanism
allows the model to capture various effects of
practice on performance, such as the learning
of symbol-variable associations and the loca-
tions of graph elements, and the subsequent for-
getting of this information during a trial. This
represents a critical aspect of the models’ ability
to capture the eye movement and RT data, and
it is perhaps worth noting that this would not
be possible using one of the GOMS class of
task analysis techniques, such as CPM-GOMS
(CPM stands for both critical path method and
cognitive-perceptual-motor; John, 1990; John
& Kieras, 1994) or UCIE (Lohse, 1993).

The cognitive models make a novel and sig-
nificant contribution to the literature, therefore,
by providing a precise and plausible account of
the detailed sequences of saccades made by in-
dividuals in terms of strategic choice and the de-
cay of base-level activation of perceptual chunks
during the time course of problem solving.
This level of detail in modeling visual attention
in interactive tasks is still relatively uncommon
(although see Byrne, 2001, Ehret, 2000, and Sa-
vucci, 2001a, for other examples using ACT-R/
PM; and Doane and Sohn, 2000, using Kintsch’s,
1988, 1998, construction-integration model).

This research provides a clear example of
the theoretical benefits that can be obtained by
combining computational modeling using a
cognitive architecture with detailed eye move-
ment analysis. Specifically, this approach can
begin to address issues regarding the cognitive
factors underlying reasoning with external rep-
resentations and make testable predictions of
eye movements and individual task completion
times. The current models represent a significant
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step toward the goal of integrating the three
elements of the cognition-artefact-task triad in
understanding complex interactive behavior
and provide a basis on which to build models
of more complex reasoning tasks with a broad-
er range of diagrams.
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