
Reasoning by Anomaly Detection to Improve Planning Robustness for
Autonomous Robots in Changing Environments

Hadeel Jazzaa, 1 Thomas McCluskey, 2 David Peebles3

University of Huddersfield 1,2,3

hadeel.jazzaa@hud.ac.uk, 1 t.l.mccluskey@hud.ac.uk, 2 d.peebles@hud.ac.uk3

Abstract

The requirement for autonomous robots to exhibit higher-
level cognitive skills by planning and adapting in an ever
changing environment and situation is indeed a great chal-
lenge for the AI community. In robotics task planning, the
typical use of automated planners entails using fixed action
descriptions that neglect the subtle differences that appear
when environment change occurs or where behavioural ca-
pabilities are not adequately captured. Failure of action at ex-
ecution time can be a result of a mismatch between the ac-
tions in the abstract plan and the low-level commands, be-
cause knowledge in the abstract level is incorrect or not suffi-
ciently accurate. The choice of parameters in the low-level
commands corresponding to the abstract actions, and their
related information can strongly affect the success of execu-
tion. Incorrect choices may cause plan execution to fail. For
a more robust robot capable of adapting to the changing envi-
ronment, the goal of this project is to bridge the gap between
abstract plans and robot action execution. Our approach is to
extend a high-level planning platform (ROSPlan) to help cre-
ate more robust planning systems by using theory refinement
(TR) techniques to develop intelligent robot behaviour based
on experience. Refinement will involve reasoning over action
execution failure using Anomaly Detection (AD) techniques.
The general aims of our research are to make it possible for
robot task planning to adapt to changing situations towards
long-term autonomy, but still retaining some abstract theory
of the environment which can be used as an explanation for
behaviour. This paper reports on a crucial step in that theory
refinement process: determination of the cause of failure in
order to drive the changes.

1 Introduction
Autonomous robots in largely unknown environments (e.g.,
exploration robotics) require systems to act deliberately (In-
grand and Ghallab 2017). In a planning system for a dy-
namic world, adapting to changing situations while knowl-
edge gathering is a major demand for robust autonomous
behaviour. One of the biggest drawbacks of robotic control
that embeds a task planner is that the knowledge that the task
planner relies on to solve problems changes, making it diffi-

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cult to imbue this kind of autonomous system with persistent
autonomy (Cashmore et al. 2015b).

The plan execution strategy must account for the ac-
tion/plan failure, which results from ignorance or change
(Cashmore et al. 2015a). The success of plan execution can
only be achieved through a combination of human-specified
knowledge and robot learned knowledge in robot controllers
(Stulp and Beetz 2008), with human designers needing to
assign action abstractions offline. It is unfeasible to pre-
program such robotic applications by predicting, at the de-
sign stage, all possible courses of actions on demand (In-
grand and Ghallab 2017).

Parameterisable actions have been proposed and proven
as an efficient approach to bridge the gap between the ab-
stract plan and action execution. Actions include parameters
that accept changed values to enable the implementation of
the same action in different situations (Stulp and Beetz 2008;
Arkin 1998). For example, it is more flexible to program
the action GoTo(Pos) than GoTo-Centre, where “Pos” is a
parameter that accepts different values, including the centre
(Stulp and Beetz 2008).

However, planners in planning systems treat actions at
a level of abstraction that neglects their subtle differences.
This neglect leads to the producing sub-optimal behaviour
as the planning system is unable to tailor the actions to the
execution contexts (Stulp and Beetz 2008). The reason why
the planning system ignores action details is to manage ac-
tion selection and to make planning tractable (Müller and
Beetz 2006). By ignoring action parameters, task planning
produces an abstract plan that leaves out many of the de-
tails of action execution. This often produces insufficient be-
haviour which can lead to the plan execution failing (Stulp
and Beetz 2008).

Our research aims at moving towards the goal of long-
term autonomy (Kunze et al. 2018). Long-term autonomy
can be achieved by making the system more robust through
experiential learning: failures and successes drive the im-
provement of the pre-programming multi-level representa-
tion. The research is based on a multi-level abstraction plat-
form, outlined in Figure 1. On top is the most abstract level
being the Planning Domain Definition Language (PDDL).
Plans are processed and transformed to low-level commands

Figure 1: HDJ Intelligent Robot Hierarchical Architecture

by the intermediate level and are finally executed by the con-
troller (last level). In this work, we propose the HDJ robotics
planning framework. It is to extend the standard robotic
framework, ROSPlan, by HDJ components, represented in
Figure 2.

Our hypothesis is that the gap between the abstract plan
and its execution is one of the main reasons for plan execu-
tion failure and that (a) action abstraction and (b) ignoring
of action parameters are part of this gap. We aim, therefore,
to bridge this gap between operators at the high-level stage
(abstracted actions) and actions at low-level stage (low-level
commands). We think bridging this gap will enable robots
to adapt to changing situations and lead to more robust plan-
ning and efficient behaviour.

Examining the differences between the information re-
lated to a failed action and previous experience could lead
to finding out the cause of that failure. The outcomes will
be used to design a more robust planning execution, by en-
riching the knowledge-base that the task planner relies on to
produce plans, thereby producing robots adaptable to chang-
ing environments.

The novel aspect of our contribution is the addition of
an autonomous reasoning capability performed by our pro-
posed Discrimination Process Algorithm (DPA, section 3.2).
It employs Anomaly Detection (AD) techniques to recognise
items of data that differ from the previous successful execu-
tions. AD techniques have been employed in different fields,
such as in exposing bank fraud or medical problems (Hodge
and Austin 2004) and usually, anomalous items indicate or
reveal the relevant issues, problems, faults or errors (Hodge
and Austin 2004).

Our idea is inspired by human cognitive science. When
an individual fails to execute a frequently performed task,
s/he will try to discover the reason and the first question that
comes to mind is: “What did I do differently this time that
led to failure?”. The human action control is an integration
of feedforward and feedback components (Schmidt 1975;
Glover 2004). For example, picking a pan up does not need
knowing its exact weight in advance; humans can determine
this easily by picking it up and slightly increasing the exerted
force until the pan leaves the surface. For a similar scenario,
the HDJ extending components refine the original domain

Figure 2: Overview of the HDJ framework. A combination
of ROSPLan components (Blue boxes) and HDJ compo-
nents (Green boxes)

model knowledge that is relevant to the differences extracted
by DPA. It employs a learning process to learn new data and
these learned values will be used to update the knowledge
that the planner relies on to produce plans.

The work reported here is carried out as part of the first
author’s PhD thesis and has resulted in the HDJ framework.
Although our method embedded in HDJ is generic, this re-
search is carried out using a real physical NAO robot. NAO
is a small humanoid robot about 60 CM tall, with features
including with 25 degrees of freedom (DOF). Packed with
sensors and it can walk, speak, and recognise faces and ob-
jects. We embedded the NAO with a task planner and soft-
ware which translates generated plans into actions that can
be executed and can generate real states using sensor infor-
mation.

In this paper, we describe how to extend the robotics plan-
ning framework with the HDJ software layer. The current
version implements an algorithm to store planning experi-
ences and uses that to identify failures in operation that re-
quire changes to the planning knowledge in order to make
the system more robust (section 3). Currently, we are ex-
tending this to create a full theory refinement algorithm to
automatically adjust the representation of that knowledge to
fit the robot’s experiences.

The following sections provide further details. The next
section is the HDJ system overview and hierarchical archi-
tecture, while section 3 covers the system mechanism and
algorithms. The evaluation in section 4 demonstrates and
evaluates the method as embedded in the NAO robot’s ar-
chitecture. The last section is the Conclusion.

2 System Overview
The HDJ Intelligent Robot Hierarchical Architecture is in-
spired by previous work on robotics architectures. For ex-
ample, the layering used in the functional architecture within
a UAV (Doherty, Kvarnström, and Heintz 2009). It consists
of three layers (represented in Figure 1) embedded into an
environment that enables the recording of planning and act-
ing experiences, and subsequent adaptation of knowledge.
The top layer is the most abstract level and traditionally con-

tains the aspects of the explicit Knowledge-Base (KB) of
the robot architecture, along with high-level reasoning func-
tions such as planning and high-level tasks. The Interme-
diate layer is a reactive layer consisting of the action dis-
patcher and the HDJ’s components. Action corresponding
parameters are processed here. The last layer is the control
system where actions are transformed into the most low-
level motor commands and skills to be executed, and feed-
back of the effects is returned.

The framework we suggest, represented in Figure 2, ex-
tends ROSPlan (Cashmore et al. 2015a) by HDJ auto-
nomic components. ROSPlan is a framework for carrying
out task planning in ROS, linking existing ROS components
to planning tools and integrating planners with the ROS sys-
tem. ROSPlan is maintained by KCL-Planning (Planning at
King’s College London) and employs the Planning Domain
Definition Language PDDL 2.1 and POPF, a temporal met-
ric automated planning engine, commonly used in AI plan-
ning. The HDJ combines bottom-up processes from sensors
to meaningful data, with top-down mechanisms such as the
focus of attention, reasoning with sensor models and plan-
ning with sensing actions (Ingrand and Ghallab 2017).

2.1 HDJ Intelligent Robot Hierarchical
Architecture

High Level: planner, Knowledge-Base and task Plan-
ning is the core deliberation functions in autonomous sys-
tems (Ingrand and Ghallab 2017). Plans are produced as a
high-level instruction. The planning system synthesises a
plan and keeps it simple to be traceable by the planner by
abstracting it away from the high-level action parameters
(Müller and Beetz 2006).

Figure 3: Planner output (a simple task plan). The actions:
‘goto’ and ‘grip’ are causally linked and represented while
neglecting their features and attributes.

Figure 3 shows an example of the planner output. It is
a simple task representation that includes only two actions
(‘goto’ and ‘grip’). The actions are listed and causally
linked while neglecting their features and parameters. The
planner produces plans using a domain model (DM) and
problem instance that are stored in the Knowledge-Base
(Cashmore et al. 2015a). It needs to have up-to-date knowl-
edge of action schemes that represents the robot’s knowl-
edge of the effects of its actions as well as knowledge of ob-
jects, their attributes and the immediate environment where
the robot is operating.

The Knowledge-Base stores a PDDL domain file, ob-
ject instances, facts and data that are not part of the PDDL
model. The KB is designed to collate the up-to-date model
of the world and is continuously updated by sensory data.

(Cashmore et al. 2015a). It stores PDDL objects such as
‘redcup’ in (see section 3.2), facts, functions, a model of
the world and goals. In addition, it includes facts and
data that are not part of the PDDL model(Cashmore et al.
2015a). The planner in ROSPlan is permitted to query the
Knowledge-Base for information related to a planning prob-
lem (initial state and goals) or to query the Knowledge-
Base for environment changes (updated model world) that
are relevant to the current task (Ingrand and Ghallab 2017;
EmaroLab 2017). For example, in the kitchen domain (sec-
tion 4) in the operator ‘goto’ , the objects of types ‘way-
point’ and ‘robot’ 0f the predicate (at-robby ?r ?waypoint).
If any instance(of these objects) is updated or removed, the
Knowledge-Base will notify the planner to produce a new
plan.

Figure 4: A segment of DM shows the pre-condition
(at-robby ?r ?table) that implement the plan rule
(27cm>dis>15cm)

Tasks are given to the robot in the form of a PDDL Prob-
lem file to be executed. Operators libraries (DM) consist of
a group of operators that are usually applied within a partic-
ular domain. Figure 4 shows a segment of the kitchen do-
main. For complex task execution, operators are joined and
concatenated by planners. For example, the kitchen domain
(Müller and Beetz 2006) contains a set of operators that are
frequently used in kitchens. The task in Figure 3 is to grip
and move a cup from a table to another one. A navigation
(‘goto’) and grasping (‘grip’ or ‘drop’) operators are em-
ployed in this scenario. For ‘grip the cup’ task, the planner
has to combine two operators (‘goto’ and ‘grip’). Figure (5)
represents the task scenario.

Intermediate Level: Action Dispatcher, Experience, HDJ
Reasoner, and Refinement System Adequate integration
between planning and acting is critical for successful plan
execution (Ingrand and Ghallab 2017). The intermediate
level includes the action dispatcher and action interface, and
the extension components of HDJ (the green boxes Figure
2). The action dispatcher in charge of the transition of the op-
erators into action models, feed-forward process. The HDJ
components process the feedback that comes from the con-
troller (the lowest level) for learning action models and mod-
ifying the state instances in the Knowledge-Base.

At this level, action parameters corresponding to each ac-
tion are retrieved and processed by the action interface as
part of dispatching. In ROSPLan the dispatcher selects ac-
tions of the current plan (task) and dispatches them to the
low-level action space (in the next layer) to be executed by

Figure 5: Kitchen Scenario Task: “GoTo” and “grip” actions
are combined.

the control system (see Figure 1). Actions are situation de-
pendent. In the control systems of autonomous robots, ac-
tions include parameters that accept changed values which
enables the implementation of the same operator in different
situations (Stulp and Beetz 2008). In ROSPLan each PDDL
operator is linked to a ROS action message to be dispatched
to the lower-level controllers. The action dispatcher extracts
real values from the Knowledge-Base before the action is
sent to the lower controller.

The HDJ’s components implement the refinement pro-
cess. The HDJ reasoner implements DPA (explained in sec-
tion 3) and is in charge of defining the learned values (Vs).
The refinement model uses the learned values to update the
knowledge-Base. Datastores/Experience stores the training
data (TD) which is the history of successful executions and
which typically, this maps actions model parameters and
contains the necessary information and all relevant informa-
tion that is required by the implementation of DPA.

The training data, which is considered as the normal data,
is used by the anomaly detection methodology. If the feed-
back coming from the control system returns ”execution
failed”, the DHJ reasoner combines the information of the
failed execution with the training data and then calls DPA.
The reasoner considers the anomalies as being suspicious of
causing the failure and uses the output of the DPA to learn
new state values and pre-conditions and then passes these
values to the refinement model, which will update the KB.
This avoid future failed execution for the same situation con-
text.

Low level: Control System and Sensorimotor Acting
often has a central role in deliberation for autonomous
systems (Ingrand and Ghallab 2017). Planning systems
translate plans into low-level motor commands to be ex-
ecuted. Actions are passed to the control system as low-
level commands with their function parameters(Stulp and
Beetz 2008). The lower controller uses functioning models
to transform the planning operators into skills (‘procedures’)
that are further refined into commands. It executes actions
and responds re-actively to immediate changes and provides
feedback (Cashmore et al. 2015a).

Perception is also a critical components in robotics. Sys-
tems that reason why execution fails need access to enough
information about the goal and what the robot is doing (sen-
sory data, actions, and their effects). Then it will be possi-

ble to detect and assess why execution failed (Schmill et al.
2007). Moreover, it is critical for identifying objects, states
and chains of events related to the robot’s activity. The val-
ues of parameters for any action are of two types: (a) the cur-
rent state values of variables and (b) their goal values. The
current state values are called ‘observable state variables’.
Observing has to be tightly integrated with planning, act-
ing and monitoring and combines bottom-up processes from
sensors to create meaningful data.

3 HDJ Mechanism and Algorithm
This section presents the Outlier Detection approaches, data
collecting process and a description of our novel Discrimina-
tion Process Algorithm. DPA adapts our hypotheses in rea-
soning by searching for differences in the failed execution.
It searches anomalies in the combination of the information
of the failed execution and the training data (normal data).

3.1 Outlier Detection Approache
Anomaly Detection refers to the problem of searching pat-
terns in data that differs and raises suspicions about a spe-
cific problem or issue (Zimek and Schubert 2017). We use
the same technique to compare the values of the failed ac-
tion execution with the training data by DPA. The purpose
is to discover the suspicious values in the fail action execu-
tion and we suppose that the outlier value is responsible for
failing the action execution.

Several anomaly detection techniques exist, such as
Nearest-Neighbour, Cluster-Based, Classification-Based
and ML Techniques. Selecting the proper technique is
induced by many factors. The main factors are the nature of
the data, availability of labelled data and type of anomalies
to be detected. The nature of the data is based on specific
data categories: point anomalies, contextual anomalies, and
collective anomalies. For example, a point anomaly occurs
at the level of a single feature whereas a contextual anomaly
occurs in a specific context, such as for models that consider
time series. The collective anomaly is a grouping based
anomaly and occurs when a group of points appears far
from the other groups; Each point by itself might not be
an anomaly, but their whole combination as a group seems
isolated (Chandola, Banerjee, and Kumar 2009).

The main assumption in the Nearest-Neighbour technique
is that anomalies are take place far from the closest neigh-
bour of normal data instances (Tan, Steinbach, and Kumar
2016). The Cluster-Based technique is based on grouping
similar data instances into clusters. In the Classification-
Based techniques, a classifier model is learned from the la-
belled data the anomalies are detected if not matching the
feature space of the learned model. The ML technique can
be useful for non labelled data models(Chandola, Banerjee,
and Kumar 2009).

A standard approach for anomaly detection in datasets is
to create a model of normal data and compare/test records
against normality (Zimek and Schubert 2017). First, we need
to define normality for the given data. Because the training
data represents the values of successful executions, we as-
sume that historical records of successful execution are the

Figure 6: Failed execution with anomaly detection. The out-
lier ‘distance’ value appears far a way from its nearest neigh-
bour in TD

normal data. The record of the failed execution is compared
and tested against the normal data by extracting the anoma-
lous values of the parameters. Figure 6 shows the draw pro-
file of the history of the distance values where the outlier
point represents the value of the distance instance of the
failed execution.

3.2 Data Collection
This section covers two types of data collection: First:
Learning object specification which is part of the KB infor-
mation and second, the training-data collection, stored: The
datastores, and which is necessary for processing DPA (sec-
tion 3.2).

Learning Goal Specification In planning architecture, the
KB includes DM and all information related to the domain.
Learning the domain objects is critical for plan execution as
the robot needs to be able to attach meaning by coupling
symbols to objects. This sensor(actuator)-to-symbol inter-
pretation is called as Anchoring Problem (Escudero-Rodrigo
and Alquézar 2016). For example, in the kitchen scenario
(section 4) NAO needs to learn the object ‘redcup’. We used
Choregraphe 2.1.4 to process sensory visual information on
the NAO robot (Aldebaran b). The ‘ALVisionRecognition’
vision module allows the NAO to identify and recognise ob-
jects that are previously learned and whose information is al-
ready stored in the robot database. The NAO robot has two
video cameras, with 1280 × 960 resolution, located in its
forehead and mouth, and these cameras can capture up to 30
frames/images per second (Aldebaran d).

The learning method which allows NAO to recognise
objects is explained in the Choregraphe documentation.
The video monitor panel, provided in Choregraphe, enables
the robot to learn objects to be recognised where the vi-
sion recognition information is stored in the robot database
(Aldebaran e) (see Figure 7). NAOqi Trackers API (Alde-
baran a) enables the NAO robot to track different objects and
targets. Figure 8 shows the python code for setting Trackers
API and defining the targeted object.

The ‘ALTracker’ module uses different means such as

Figure 7: The Choregraphe video monitor panel: The NAO
robot learns the object ‘Red cup’. The window in the right
shows the camera vision of NAO robot detecting the cup

Figure 8: Python code: using Trackers API

head and whole body (Aldebaran a) and can identify the po-
sition of the object recognised by the robot’s vision and give
that position based on the desired reference frame. Refer-
ence frames are in three types: robot frame, torso frame and
world frame (Aldebaran a) (see Figure 9).

Figure 9: Frames Types
Source: (Aldebaran c)

The control system of the NAO robot needs specific infor-
mation to detect the target and then to enhance the gripping
motion. As a first step, the robot has to learn the targeted
object ‘red cup’ The ‘getTargetPosition’ function returns the
[x, y, z] position of the target in the desired frame. We col-
lected our data by employing the torso frame (shown in Fig-

ure 9). FRAME TORSO: attached to the robot’s torso refer-
ence that makes sense in the orientation of the torso frame.
The standard axis orientation: x forward, y left and z up. The
distance calculation is done based on the average target size
by using ‘ALMath’ library (Aldebaran c).

Training Data The training-data can be defined as a his-
tory record of all previous successful executions. For exam-
ple, when the robot can reach the cup and grip it, as repre-
sented in Figure 10.

Figure 10: Success execution: The NAO robot can reach the
cup

Discrimination Process Algorithm This algorithm relies
on the feedback coming from the control system after each
execution. As described in section 2.1, the control system
sends feedback to the Knowledge-Base; The feedback is ei-
ther that the execution was successful or failed. In the case
of “failed”, the information of the failed execution will be
tested to extract the differences (anomalies). The output is
a report of the extracted differences that are considered as
the potential cause of failure. It will be used to learn success
values and will then refine the PDDL model by updating the
knowledge-Base. Any detected anomaly is a value that indi-
cates parameters or pieces of information in the Knowledge
Base, such as pre-conditions and states. Future failure can
be avoided by updating the knowledge of the task’s planner.

The human mind inspires the main idea behind this algo-
rithm. According to Schmidt (Schmidt 1975), human action
control is a hybrid model that combines both feed-forward
and feedback components. Schmidt argued that humans set
a motion schema by specifying the relevant attributes of that
motion but leave free parameters to be specified online while
collecting environmental information. Schmidt’s argument
is supported by neuroscience evidence (Glover 2004). This
indicates the integration of the off-line action planning with
the online sensorimotor specification (see the pseudo-code
of the algorithm).

4 Evaluation
The HDJ extension system has been implemented as de-
scribed, utilising ROS and ROSPlan software, and is used to
control the NAO robot. The goal of this section is to evaluate
the system by exploring its behaviour within a real kitchen

1 while plan execution do
2 if not (Feedback.Success) then
3 TD: = Training-Data
4 FD: = Failed-Data
5 Anomaly Detection(FD, TD)
6 if QueryResult.count > 0 then

// If Outliers exists

7 Return Out
8 Learning-Processing (Out)

// Learn new success values

9 Return LV
10 Refinement-model(LV);
11 end
12 else
13 SD: = Successful action Data
14 Add-Training-Data (SD);
15 end
16 end

Discrimination Process Algorithm (DPA): Detail of
differences detection, learning success values and refine-
ment process. If action execution failed (FD), then call
AD. Anomaly Detection (FD, TD) extracts differences
(Out) from the failed action. Learning-Processing (Out)
learns new success values(LV) based on the detected
anomaly/ies. Refinement-model(LV) refines KB by ex-
changing the LV with (Out). Otherwise, if the execution
was successful(SD), Add-Training-Data adds SD to the
Traning-data.

scenario (Müller and Beetz 2006), as represented in Figure
5. Here, the task given to the robot is to grip and move a cup
from a table to another one. The distance between the robot
to the table is the main factor of our experiment. The envi-
ronment is not changed for each execution (episode), but the
initial position of the robot to the table is randomly changed.

The HDJ software reasons about the cause of the failure
and then refines the PDDL model based on the reasoning
outcome. In this section we test the efficiency of the HDJ
system reasoning function with failed plans to identify the
cause of execution failure.

The Artificial Intelligence and Machine learning fields
aim to create human-like intelligence and cognitive func-
tions associated with the human mind, such as learning and
reasoning (Russell Stuart and Norvig 2009). For this rea-
son, the evaluation of this system is a comparison of the pre-
dictions made by the robot against the researcher’s predic-
tions (‘human predictions’). The predictions are to answer
the question why has the execution failed? When execution
fails to execute the given task, the robot needs to realise why
it has happened. Then, to avoid any future failure, an update
to the Knowledge-Base should be made by the refinement
model. We evaluate the efficiency of the HDJ software based
on its predictions, which are the detected anomalies by the
DPA. For each failed execution, we check the output report
of the HDJ (see Table 1). If the distance is included as a po-
tential cause of failing the execution, then we consider the
HDJ results are correct. Otherwise, we consider that it failed

to recognise the cause of failure.

Action Cause-Value Attribute
grip 24 maxdis

Table 1: Report on the outlier detected output of DPA

4.1 Experiment Implementation
In the kitchen domain, the distance between the robot and
the table is a free parameter that falls within a range of val-
ues. A distance rule ‘dis’ defines this range (23cm > dis
>15cm). Figure (4) shows part of our domain model. The
predicate ‘(at robby ?r ?table)’ is the pre-condition of the
‘grip’ action and it is related to the rule ‘dis’. It is true, as
long as the distance to the robot meets the condition.

The ‘distance’ feature is the main factor of our experi-
ment. For each episode, we change the initial position of the
robot to the table. We set the robot position to the table in a
way that leads to failing the execution. We intentionally set
a wrong range of values in the ‘dis’ rule so that instead of
(23cm > dis > 15cm), we set it to (27cm> dis > 15cm).

We developed a function that measures and validate the
distance It sets the instance of the state (at robby ?r ?ta-
ble) according to the validation process. When the execution
fails, DPA extracts the differences and learns the success val-
ues; then it sends the learned values to the refinement model.
In this case, we use the Nearest-Neighbour anomaly detec-
tion approach. Each attributes’ value, of the failed execution,
is compared to the distribution of alternative attributes in the
training data. It considers rules of form X where X attribute
taking on particular value. It seeks the value of X of the fail-
ing record that is not observed in the training data.

The detected anomaly is passed to the learning process
to learn new values. The learned values V, which we called
as success value, is selected in a way that bridges the gap
between the training data and the failed value. The refine-
ment model is in charge of updating the KB. Rosplan pro-
vides services to update the knowledge-Base (Cashmore et
al. 2015a). It removes the fail values to be exchanged with
the learned values.

Figure 11: Problem File

4.2 The Results
To evaluate the success rate of our learning system, we
tested 65 failed executions. The system correctly predicted
63 causes of failure. Table 2 shows the confusion matrix
of the performance evaluation of 65 predictions. P= correct
predictions while N= false predictions. For the overall eval-
uation results see Table 3.

Predictions
n=65 P N

P TP=61 FN=2 63
N FP=2 TN=0 2

63 2 65

Table 2: The Confusion Matrix to evaluation the Perfor-
mance of HDJ

This real application brings the complications that action
learning systems tend to ignore. One of those is the hard-
ware specifications, for example the accuracy of the robot
vision. In this empirical test, the robot vision fails to calcu-
late accurately the distance between the robot and the table,
which means the values of the distance in the edges can be
miss-counted, as seen in Figure 12.

TP TF Precision Accuracy FNR TPR
61 2 96.8% 93.8% 3.17% 96.8%

Table 3: The overall evaluation results

Figure 12: Overlapped Edges: Orange dotes represent the
successful range of distance (Training data). The blue dots
represent the values of failing distances.

For example: with 13cm distance, the robot can reach the
cup, but at 13.5cm it fails to touch it. The robot vision counts
the distance as 13cm in both cases, and this leads to 13CM
appearing in the training data as successful values. But it is
possible that the robot may succeed or fail in cases at the
boundaries of operation. So, there will be no differences in
the distance to be captured by the DPA. Figure 13 represents
the predictions made by human and robot

This issue can be overcome by improving the hardware
specifications of the robot vision. (Zhang et al. 2019) also
highlighted this issue, which is the low resolution of the

Figure 13: Graphical representation of the right Predictions
made by human vs. robot

NAO robot’s camera, and they agreed the need to use a high-
definition depth camera, such as Kinect, to help the NAO
robots to achieve such tasks. Also, (Müller, Frese, and Röfer
2012) used a NAO with a stereo vision head that was explic-
itly designed for their ‘Grab a Mug’ experiment.

5 Conclusions
In this work, we propose a reasoning method to predict the
cause of action failure, that may occur during the lifetime of
a cognitive robot in a changing environment. The reasoning
process is based on using anomaly detection techniques. The
framework is for refining the PDDL model by enriching the
Knowledge-Base that the task planner relies on to produce
the plans.

The real-world application brings complications related to
the real environment and sensors issues. This problem can be
overcome by improving the hardware specifications. The ex-
periment’s results show the accuracy of our system is 93.8%.
Accordingly, we can conclude that our proposed system is
efficient and can contribute to bridging that gap between ac-
tions at a high-level stage (abstracted actions) and actions at
a low-level stage (low-level commands). The system’s out-
put can contribute to improving planning quality using auto-
mated learning and adaptation models based on experience
and online sensory data in changing environments.

Selecting the AD technique is critical and vital for the suc-
cess of our reasoning method. However, it offers a level of
flexibility, because it is not limited to a single AD approach
and we can implement more than one approaches. The ex-
perimental work has proved our concept that examining the
differences in the failed execution is for the benefit of auto-
mated refinement process towards long-term autonomy. The
existence of a variety of AD techniques adds extra benefits
to our methodology. It opens the door for a variety of im-
plementations of different action models and problems and
it increases the automation aspects of our reasoning method-
ology. Significantly, most of these techniques are connected
to the fast developing approach that is ML.

References
Aldebaran, R. Altracker. http://doc.aldebaran.com/2-1/
naoqi/trackers/altracker.html. Accessed: 2019-10-09.

Aldebaran, R. Alvisionrecogni-
tion. http://doc.aldebaran.com/2-
1/naoqi/vision/alvisionrecognition.htmlalvisionrecognition.
Accessed: 2019-10-09.
Aldebaran, R. Cartesian control. http://doc.aldebaran.com/
2-1/naoqi/motion/control-cartesian.html#motion-cartesian-
effectors. Accessed: 2019-10-09.
Aldebaran, R. Nao - video camera. http://doc.aldebaran.
com/2-1/family/robots/video robot.html?highlight=camera.
Accessed: 2019-10-09.
Aldebaran, R. Recognizing ob-
jects. http://doc.aldebaran.com/2-
1/software/choregraphe/tutos/recognizeobjects.html.Accessed :
2019− 10− 09.

Arkin, R. C. 1998. Behavior-based robotics. MIT press.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015a. Rosplan: Planning in the robot operating system. In
ICAPS, 333–341.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; De Carolis, V.; and Maurelli, F. 2015b. Dynamically ex-
tending planning models using an ontology. In Proceedings
of the ICAPS Workshop on Planning and Robotics, 79–85.
Citeseer.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR)
41(3):1–58.
Doherty, P.; Kvarnström, J.; and Heintz, F. 2009. A tem-
poral logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems 19(3):332–377.
EmaroLab. 2017. Emarolab/owl-rosplan. Emaro-
Lab(online). https://github.com/EmaroLab/OWL-ROSPlan.
Escudero-Rodrigo, D., and Alquézar, R. 2016. Study of the
anchoring problem in generalist robots based on rosplan. In
CCIA, 45–50.
Glover, S. 2004. Separate visual representations in the plan-
ning and control of action. Behavioral and brain sciences
27(1):3–24.
Hodge, V., and Austin, J. 2004. A survey of outlier detection
methodologies. Artificial intelligence review 22(2):85–126.
Ingrand, F., and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artificial Intelligence 247:10–
44.
Kunze, L.; Hawes, N.; Duckett, T.; Hanheide, M.; and
Krajnı́k, T. 2018. Artificial intelligence for long-term robot
autonomy: A survey. IEEE Robotics and Automation Letters
3(4):4023–4030.
Müller, A., and Beetz, M. 2006. Designing and implement-
ing a plan library for a simulated household robot. In Cog-
nitive Robotics: Papers from the AAAI Workshop, Technical
Report WS-06-03, 119–128.
Müller, J.; Frese, U.; and Röfer, T. 2012. Grab a mug-
object detection and grasp motion planning with the nao

robot. In 2012 12th IEEE-RAS International Conference on
Humanoid Robots (Humanoids 2012), 349–356. IEEE.
Russell Stuart, J., and Norvig, P. 2009. Artificial intelli-
gence: a modern approach. Prentice Hall.
Schmidt, R. A. 1975. A schema theory of discrete motor
skill learning. Psychological review 82(4):225.
Schmill, M.; Josyula, D.; Anderson, M. L.; Wilson, S.;
Oates, T.; Perlis, D.; and Fults, S. 2007. Ontologies for rea-
soning about failures in ai systems. In Proceedings from the
Workshop on Metareasoning in Agent Based Systems at the
Sixth International Joint Conference on Autonomous Agents
and Multiagent Sytems.
Stulp, F., and Beetz, M. 2008. Refining the execution of
abstract actions with learned action models. Journal of Ar-
tificial Intelligence Research 32:487–523.
Tan, P.-N.; Steinbach, M.; and Kumar, V. 2016. Introduction
to data mining. Pearson Education India.
Zhang, L.; Zhang, H.; Yang, H.; Bian, G.-B.; and Wu, W.
2019. Multi-target detection and grasping control for hu-
manoid robot nao. International Journal of Adaptive Con-
trol and Signal Processing 33(7):1225–1237.
Zimek, A., and Schubert, E. 2017. Outlier detection. In Liu,
L., and özsu, M. T., eds., Encyclopedia of Database Systems,
1–5. New York, NY: Springer New York.

