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Abstract

I present a model of expert comprehension performance for
2 x 2 “interaction” graphs typically used to present data from
two-way factorial research designs. Developed using the ACT-
R cognitive architecture, the model simulates the cognitive
and perceptual operations involved in interpreting interaction
graphs and provides a detailed characterisation of the infor-
mation extracted from the diagram, the prior knowledge re-
quired to interpret interaction graphs, and the knowledge gen-
erated during the comprehension process. The model produces
a scan path of attention fixations and a symbolic description
of the interpretation which can be compared to human eye
movement and verbal protocol data respectively, provides an
account of the strategic processes that control comprehension,
and makes explicit what underlies the differences between ex-
pert and novice performance.
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Introduction

Working with graphs is a complex skill that requires specific
knowledge of the representational system being used together
with a set of procedures to map spatially represented infor-
mation in the graph with a set of propositions that specify
quantitative and qualitative relationships between the entities
represented. Providing a detailed account of this skill there-
fore requires one to specify a number of core assumptions
including: what and how information is encoded in the di-
agram, what and when information is obtained from the di-
agram by the user during a task, what and how prior graph
knowledge is stored and utilised, and what new knowledge is
created during the process. In addition, one must also specify
the strategies people employ to carry out different tasks and
how much these strategies use information in the diagram and
in stored internal representations.

There have been several attempts to provide detailed pro-
cess models of different aspects of graph use. Models are
constructed from sets of perceptual and cognitive operators
(e.g., encode the value of an indicator, make a spatial compar-
ison between indicators (Gillan, 1994), compare two digits in
working memory, or make a saccade (Lohse, 1993)), obtained
either from task or verbal protocol analyses. Lohse (1993)
and Gillan (1994) have produced models of question answer-
ing with several different graph types (including line graphs,
bar charts and scatter plots) by constructing sequences of op-
erators (each of which has an associated execution time) to
generate predicted scan paths across the graph and total task
completion times which can be compared to human data.

Other researchers have procedurally analysed graph use
for different purposes. For example, Casner (1991) identi-
fied a set of perceptual and cognitive operators to construct
models of several graph-based tasks which informed an auto-
mated system that generated graphical representations most

suited to the tasks commonly undertaken with them. A simi-
lar method was adopted by Tabachneck-Schijf, Leonardo, and
Simon (1997) in their analysis of an economics expert’s con-
struction of a graph while explaining the principle of sup-
ply and demand which they then used to develop a compu-
tational model incorporating both diagrammatic and proposi-
tional representations.

More recently, the cognitive modelling of reasoning with
information displays has been advanced by the develop-
ment of cognitive architectures; computational theories of
the large-scale structure of the mind providing accounts of
how cognition is controlled and how knowledge is encoded,
stored, retrieved and utilised (e.g., ACT-R (Anderson, 2007),
EPIC (Meyer & Kieras, 1997), and Soar (Laird, Newell, &
Rosenbloom, 1987)).

The first two of these architectures incorporate theories of
visual processing and motor control which allows modellers
to produce more detailed accounts of the information ob-
tained from the display during the task. For example Peebles
and Cheng (2003) used ACT-R to produce a computational
model of question answering using two different types of line
graph. Their model generated saccades and fixations as it an-
swered each question which, together with task completion
times, were compared to human data. In addition, the model
was able to account for human scan paths in terms of the vary-
ing demands on memory imposed by different questions.

The Peebles and Cheng study, as did those by Lohse (1993)
and Gillan (1994), investigated question answering in which
participants were given items of information and were re-
quired to produce associated information using different pro-
cesses, including identification (e.g., “In 1997, what was the
value of gas?” (Peebles & Cheng, 2003)), comparison (e.g.,
“In 1977 did tin cost less than sulphur?” (Lohse, 1993)), and
arithmetic computation (e.g., “What is the sum of A, B, and
C?” (Gillan, 1994)).

While these are important tasks, particularly for investi-
gating sequences of elementary processes, it could be argued
that they do not necessarily reflect how many people normally
work with graphs and that they do not address the important
prior comprehension stage where labels and graphical fea-
tures are encoded, associated, and interpreted (Carpenter &
Shah, 1998).

Comprehension requires knowledge of the conventions
used in the graph to represent data and other facts such as how
labels are to be interpreted based on their location. The output
of the process is assumed to be a set of knowledge structures
that represent the variables and graphical features together
with structures that encode knowledge about the quantitative
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Figure 1: One of the eight line graphs used in the expert study
(Peebles & Ali, in preparation).

or qualitative relationships between the variables depicted.

A prime example of a scenario where people encounter a
graph with the sole aim of comprehending the relationships
between variables (as opposed to identifying trends or indi-
vidual values for example) is the analysis of data from facto-
rial experiments. The simplest form of factorial design is the
two-way factorial design, containing two factors, each with
two levels, and one DV. Statistical analysis of these designs
typically results in a 2 x 2 matrix of mean values of the DV
corresponding to the pairwise combination of the two levels
of each IV. Interpreting the results of even these simplest
of designs accurately and thoroughly is often not straight-
forward however, but requires a significant amount of con-
ceptual understanding—for example the concepts of simple,
main, and interaction effects. As with most other statistical
analyses however, interpretation can be eased considerably
by representing the data in diagrammatic form.

Data from two-way factorial designs are most often pre-
sented as either line or bar graphs—variously called interac-
tion or ANOVA graphs. An examples line graph is shown in
Figure 1. Because the data come from pair-wise combina-
tions of the IV levels, the rules for interpreting interaction
graphs are quite specific however and sufficiently different
from other more frequently encountered line graphs that sim-
ply applying general interpretive rules will not prove particu-
larly helpful (other than for obtaining the DV values of spe-
cific conditions etc.). The key elements of knowledge to be
obtained from interaction graphs are the simple, main and in-
teractions effects of the IVs and these have to be identified in
specific features of the graph.

In a series of studies, Peebles and Ali have observed and
recorded novices (undergraduate psychology students) and
experts (cognitive science professors and postgraduate re-
searchers) interpreting interaction graphs like the one in Fig-
ure 1 (Peebles & Ali, 2009; Ali & Peebles, submitted; Peebles
& Ali, in preparation). These studies have shown that with-
out knowledge of the appropriate interpretive rules, novices’

interpretations are often limited to qualitative descriptions
of differences between conditions and can be skewed by
the different Gestalt principles of perceptual organisation
(Wertheimer, 1938) operating in the graph. In contrast, expert
users are able to employ their knowledge of which graphical
features represent which effects to identify relationships be-
tween variables much more rapidly and accurately with no
prior knowledge of the domain variables being represented in
the graph.

The purpose of the research reported here is to develop a
computational model of graph comprehension that specifies
the processes underlying both expert and novice behaviour
with sufficient detail and comprehensiveness to satisfy all of
the criteria outlined at the beginning of this paper. Specif-
ically, the model aims to provide a precise account of the
minimum information required to interpret interaction graphs
appropriately together with a hypothesis as to the nature of
the processes involved in representing and interpreting that
information. The model is developed within the ACT-R cog-
nitive architecture and therefore embodies assumptions about
the nature of the mental representations and the computations
that form the strategies used to generate new representations.
Finally, the model provides an explanation for the differences
between expert and novice interpretations.

A model of graph comprehension

Space limitations preclude a detailed description of ACT-R
here. However a comprehensive account of the cognitive ar-
chitecture can be found in Anderson (2007). In summary,
ACT-R consists of a set of modules that acquire information
from the environment, process information, and execute mo-
tor actions to achieve goals. ACT-R has memory stores for
declarative and procedural knowledge. The former consists
of a network of knowledge chunks while the latter is a set of
production rules. Cognition proceeds via a pattern matching
process that attempts to find production rules with conditions
that match the current state of the system and tasks are per-
formed through the successive actions of production rules.

ACT-R also incorporates a subsymbolic level of compu-
tations that govern memory retrieval and production rule se-
lection and which allow models to account for widely ob-
served recency and frequency effects on retrieval and forget-
ting. Subsymbolic computations also underlie ACT-R’s dif-
ferent learning mechanisms.

For tasks involving displays and other devices, task envi-
ronments can be defined to be acted upon by the model. The
graphs used in this study are defined as sets of visual objects
(lines, circles, rectangles, and text) with certain features (size,
colour) at specific x-y coordinates on a 2D window.

The graph comprehension model is based on verbal proto-
col data from novice and expert users (Peebles & Ali, 2009;
Ali & Peebles, submitted; Peebles & Ali, in preparation). In
these studies, verbal statements recorded during the compre-
hension task were coded and categorised in terms of their
functional role and content (e.g., “an association between a
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level and its identifier”; “a comparison between the two leg-
end variable levels for one of the levels of the x axis variable”)
to produce a set of common interpretive operations.

The verbal protocols indicate that comprehension is typi-
cally carried out in two main phases: (a) a variable identifica-
tion stage followed by (b) a pattern recognition and descrip-
tion stage. The protocols also reveal that experts and a large
proportion of novices rarely report specific DV values, but
typically produce qualitative descriptions of the differences
between conditions.

In the first stage, the three variables are identified, cate-
gorised as dependent or independent according to location,
and the latter associated with their levels, which in turn are
associated with identifiers (left or right position for the x axis
variable and colour for the legend variable).

In the second stage, distances between plot points are ob-
served and compared, with the results being used to probe
long-term declarative memory for interpretive knowledge. If
this is successful, the retrieved knowledge is used to provide
an interpretation. If there is no interpretation available how-
ever, the model will simply describe the identification or com-
parison process being carried out. Interpretive operations are
carried out until either a full interpretation is produced or until
no other operations are available or identified.

Representing and encoding information in the graph

The key information that the model must encode and utilise
from the graph representation is a set of four x-y coordi-
nate points and the spatial distances between them. Although
the model processes symbolic representations, it assumes
that spatial information is initially encoded quantitatively and
subsequently categorised into qualitative descriptions. The
perceptual processes by which the information is obtained
or represented are not specified in detail, although it is as-
sumed that it is via a set of prior elementary perceptual tasks
(Cleveland & McGill, 1984). Cleveland and McGill (1984)
identified ten such tasks (e.g., length, direction, area, and po-
sition on a common scale) as the “perceptual building blocks”
of graph comprehension that encode quantitative information
from graphical elements.

At least two such elementary perceptual tasks are assumed
to be required for these graphs. The first is position on a
common scale and this is the primary comparison that takes
place. It is assumed that readers initially encode the spatial
distance between plot points into a quantitative representa-
tion (the proportion, p, of the distance to the overall length
of the y axis) and then categorise this ratio according to size.
For this model six categories were assumed: “no” (p = 0),
“very small” (0 < p < 0.2), “small” (0.2 =< p < 0.4), “mod-
erate” (0.4 =< p <0.6), “large” (0.6 =< p < 0.8), and “very
large” (0.8 =< p =< 1.0). Although it is an assumption of
the model that distances are categorised in this way, the ex-
act processes by which these final categories are produced are
not specified in detail.

The second process that is assumed readers can perform
is to compare the magnitude of two distances and produce a

symbolic description of the difference. The elements formed
for this comparison are assumed to be the result of Gestalt
processes of perceptual organisation (Ali & Peebles, submit-
ted) which allow users to group objects by colour or prox-
imity. This comparison also allows users to perceive and
compare the directions of the two differences (i.e., the rela-
tive sizes of the variables’ level values). These relative values
produce the various patterns such as crossed, parallel and di-
verging lines which are recognised and interpreted by expert
users.

Prior graph knowledge

Two forms of declarative knowledge are used during the task:
prior knowledge relating to how the graph represents infor-
mation and knowledge of the variables and their relationships
generated during the comprehension process itself.

There are three core items of knowledge required to inter-
pret interaction graphs. Two are common to many Cartesian
graphs and concern (a) the typical allocation of the dependent
and independent variables to the graph axes and legend and
(b) the principle that the distance between two graphical ele-
ments is directly related to the magnitude of the relationship
between the conceptual entities that the elements represent.

The third set of facts required are specific to the graph type
and concern the graphical and spatial indicators of the three
key important interpretive facts; simple effects, main effects,
and interactions. The three indicators are (a) the distance be-
tween two plot points which indicates the size of the simple
effect of the level jointly represented by those points, (b) dif-
ferences in the y-axis location of the midpoints between two
pairs of plot points which indicate the size of the main effect
of the variable, and (c) differences in the inter-point distances
between levels, combined with information about their point
ordering, which indicates the size, and type of any interac-
tions that may exist.

This knowledge is represented as symbolic structures in
the model’s long term memory and is currently the minimum
required to indicate that the interpretative process has suc-
ceeded. It is possible however to add further causal knowl-
edge relating to the various effects to allow the model to pro-
vide more detailed explanations of the relationships identi-
fied.

Generated knowledge

Several declarative knowledge structures are also generated
during comprehension. The first is a set of related chunks that
represent each variable, the levels associated with it, and the
identifiers of each level. Three other knowledge structures are
generated to accumulate and associate items of graph and in-
terpretive information during a specific sub-task. In the expert
model all knowledge retrieval requests will succeed, resulting
in knowledge structures that associate qualitative descriptions
of differences and their interpretation. These structures could
then be used to produce verbal explanations.

For example one structure records the processing of an in-
dividual level which could produce the explanation: “The



difference between the two values for high plant density is
very large so there’s a very large simple effect of high plant
density” while another records the information accumulated
when comparing the average values of two levels of one vari-
able (e.g., “There is a large difference between the fasting lev-
els; high fasting generally resulted in greater glucose uptake
than low fasting, which indicates a large main effect of fast-
ing”). The third stores the results of comparing the lengths
and point ordering of two levels (e.g., “Although the effect
size of the cement type levels is the same, the direction of
their effects is different so that means there is an interaction
between the two independent variables™.)

Finally, a representation is produced when a simple com-
parison between points is made which does not associate an
interpretation (e.g., “When the nitrogen level is high, maize
yield is much greater for compact plants than for sparse
plants™.).

The comprehension process

In the Appendix is an output trace produced by the model as
it carries out the comprehension task using the graph in Fig-
ure 1, with each line in the trace representing one or more
steps in the process (variable names have been shortened to
allow the lines to fit the format of this paper). The text in
square brackets is information currently being processed that
has either been obtained from the graph or retrieved from
declarative memory'.

In the trace, numbers in square brackets represent the per-
ceptual difference between two objects on the screen. These
are subsequently translated into qualitative size judgements
according to the categories described above. Other text in the
output is simply to indicate other events (e.g., goal setting
or memory retrieval failures) or to clarify what a particular
knowledge element represents.

As previously intimated, the model assumes that compre-
hension proceeds after an initial phase of variable identifica-
tion, a process usually initiated by reading the title. Currently
when the model reads the title the three words that name vari-
ables are identified by retrieving previously defined word cat-
egory information from declarative memory. This mechanism
is undoubtedly simplistic and currently substitutes for a more
complex knowledge retrieval process that is assumed to take
place.

The model then seeks items of text at the left, right and
lower regions of the display. When each variable label is
identified, the model identifies it as a particular type accord-
ing to its location and then, associates the independent vari-
ables with their level labels by identifying nearby text. The
model also associates each of the four levels with its physi-
cal attribute; left, right, blue and green and uses these labels
when processing the graph. This is consistent with verbal
protocol and eye movement data from our studies showing
that graph readers often produce an interpretation and then

IA video of the model interpreting all eight graphs from the
expert study (Peebles & Ali, in preparation) can be viewed at
http://youtu.be/z2kAwrOr jIM

must re-read the appropriate label in order to identify which
particular level is being processed.

When the three variables have been processed, the model
then attends to the pattern produced by the four coordinate
points in the plot region and then selects a particular feature
or pair of features to process. The probability of selecting
a particular feature to process may depend on a number of
factors, including visual salience and pattern familiarity. For
example, a large difference between objects, or parallel or
crossing lines may draw the user’s attention and lead them to
attempt to interpret the feature first. Although it is possible to
incorporate these processes for the model to select features in
any order, for simplicity, the current model selects features in
the order: simple, followed by main, and finally interaction
effects.

These three effects are identified by different indicators in
the graph. The size of the simple effect of a level is indicated
by the distance between the level’s two plot points while the
main effect of a variable is indicated by the difference in the
y-axis location of the midpoints between the variable’s two
pairs of plot points. Finally, the nature and size of interaction
effects are indicated by differences in the inter-point distances
between levels, combined with information about their point
ordering.

The model represents the interpretation process by a set of
production rules for each indicator type. When the appropri-
ate condition occurs (i.e., the model is directing attention to
the plot region), individual production rules fire to draw atten-
tion to specific indicators. The indicator (a spatial distance,
difference or order comparison), is extracted from the pattern
and (together with information about what the indicator is)
used to probe declarative memory for an interpretation con-
sisting of the name and size of the effect. For example on line
29 of the trace the model identifies that there is no difference
between the plot points on the left of the display and then re-
trieves the knowledge that this indicates that there is no sim-
ple effect of sparse plant density (these labels being obtained
by seeking the text below the points being observed).

For each indicator, if the memory retrieval attempt fails,
the model simply describes the difference being attended to.
This is demonstrated in lines 37 and 38 of the trace which
compare the levels of the legend variable for each of the x axis
variable levels and which correspond to the statement “when
plant density is sparse, low and high nitrogen levels are the
same but when plant density is compact, the high nitrogen
level is greater than the low nitrogen level”. This form of
statement is very common in novice graph users.

Once a recognition production rule fires to initiate the pro-
cess, a chain of subsequent productions is triggered which
obtains further information from the graph and declarative
memory until an interpretation is produced. The current pro-
duction set is sufficient to process any 2 x 2 data set of three
variables to produce an appropriate interpretation similar to
the trace in the Appendix.



Discussion

Comprehending and reasoning with graphs requires a wide
range of perceptual and cognitive operations sequenced to-
gether in various combinations to perform specific tasks. The
type and sequence of operators involved in a task may differ
depending on a number of factors, including the graph or do-
main knowledge of the user, the type of graph being used, or
individual cognitive factors such as working memory capac-
ity (which may determine the relative frequency of memory
retrieval requests and saccades to graph labels etc.).

Graph comprehension is a valuable area to study there-
fore because it provides an opportunity to investigate how
environmental and internal factors interact to produce be-
haviour. In addition, graph-based tasks can be analysed using
behavioural measures such as eye movements and concurrent
verbal protocols to provide insights into what and when infor-
mation is being processed during the course of the activity.

Many of the factors remain hidden however and producing
a precise specification of the information being used, how it
is represented, and how it is processed is a challenge. Com-
putational modelling is a valuable tool for developing and
testing hypotheses about these factors as it provides a for-
malism for characterising them, requires one to be explicit
about the boundaries of the model in terms of which pro-
cesses are being defined precisely and which are not, and al-
lows one to explore the consequences of particular assump-
tions (McClelland, 2009).

Developing models within a cognitive architecture such as
ACT-R provides the additional benefit of allowing the model
to incorporate a large number of assumptions regarding is-
sues such as knowledge representation, cognitive control, vi-
sual attention, learning and forgetting etc., all of which are
supported by previous empirical research. In addition, ACT-
R’s vision module includes mechanisms that allow models
to simulate certain Gestalt principles of perceptual organisa-
tion, which are regarded as playing a crucial role in the vi-
sual processing of graphical representations (Kosslyn, 1989;
Pinker, 1990). Specifically, the comprehension model asso-
ciates variables and their levels, and levels with their colour
identifiers using mechanisms that are functionally equivalent
to the Gestalt laws of proximity and similarity respectively.

The model described above represents an initial attempt
to specify at a detailed algorithmic level the representations,
cognitive processes, and strategies involved in comprehend-
ing interaction graphs. It provides a precise account of the
graph knowledge required and the spatial information neces-
sary to interpret the graph accurately and specifies a control
structure that determines the flow of information during the
task to generate a set of knowledge representations, saccades
and fixations over the graph, and a sequence of output state-
ments which are largely consistent in terms of order, function
and content with verbal protocols produced by expert users.

The assumptions of the model imply that to interpret inter-
action graphs accurately, novices must acquire three forms of
graph-specific knowledge: an understanding of what effects

the different distances and spatial differences in the graph
indicate, the relationship between distance and effect size,
and how the various combinations of distance differences and
point orders can be interpreted in terms of the interactions be-
tween the IVs. The model provides a precise specification of
the relatively small amount of knowledge required and a clear
demonstration of its sufficiency to interpret the graphs.

The current model can be considered a first approximation
to a more detailed model that incorporates additional factors
to broaden the scope of behaviour accounted for. Previous
studies have shown that comprehension performance varies
quite widely, even between experienced users (Peebles & Ali,
2009; Ali & Peebles, submitted; Peebles & Ali, in prepara-
tion). For example, the order in which effects were identi-
fied varied, often as a result of the relative visual salience of
the graphical features being displayed (e.g., very large main
effects were often identified rapidly). Also, explicitly iden-
tifying simple effects was uncommon and other effects were
sometimes overlooked by experienced users.

This variation in performance is no doubt due to a number
of factors including the different effects of visual salience and
Gestalt principles of perceptual organisation operating (Ali &
Peebles, submitted), and varying levels of graph knowledge
and working memory capacity etc. In addition, previous stud-
ies compared expert and novice performance on both bar and
line graph formats and showed that the interpretations of all
users (but novices in particular) were affected by the format
used. Specifically, line graphs users are influenced to attend
to the legend variable while bar graph users attend to the two
IVs more equally (Peebles & Ali, 2009; Ali & Peebles, sub-
mitted; Peebles & Ali, in preparation). Broadening the scope
of the model further, other factors such as domain knowledge
and the number of variable levels (Shah & Freedman, 2011)
should also be addressed.

The current model provides a solid basis from which to ex-
plore hypotheses concerning the mechanisms underlying this
broader range of behaviour. These hypotheses will take the
form of enhanced or reduced declarative graph or domain
knowledge, additional recognition productions, and mecha-
nisms to represent visual salience. A more comprehensive
model must also bring ACT-R’s subsymbolic mechanisms
that govern memory retention, retrieval, and learning pro-
cesses into play as these no doubt have a significant effect
on strategy choice and eye movement patterns (Peebles &
Cheng, 2003).

Finally, the current model does not attempt to provide a
detailed account of the perceptual processes by which spa-
tial information is encoded or represented during the exe-
cution of elementary perceptual tasks. There are currently
several attempts to develop mechanisms for spatial repre-
sentation and processing within cognitive architectures—
including ACT-R—however (a number of which are pre-
sented in (Gunzelmann, 2011)) and it may be possible for
the current functions to be replaced in a future model by ones
more conforming with theory and empirical evidence.



Beyond the goal of developing the model to account for the
full range of observed behaviour with an increasing number
of interaction graph formats, lies the larger aim of construct-
ing a model of comprehension for a broader class of graphs.
As discussed earlier, interaction graphs embody a specific set
of interpretive rules that are not shared by other graphs. The
current model clearly identifies and characterises these rules
and distinguishes them from the knowledge and procedures
that can be applied to other graphs. It is hoped that in so
doing, the model will simplify the task of identifying graph-
specific operators and form a basis upon which to develop
and explore a range of graph comprehension models for other
graphical formats. As it stands however, the model provides a
valuable demonstration that the assumptions it currently em-
bodies are sufficient to produce an expert interpretation of the
relationships depicted in 2 x 2 interaction graphs.

Appendix: Model output for the graph in Figure 1

1 seek text at top of display. ..
2 [m-yield] = [variable]
3 [as] [a] [function] [of] [p-density] = [variable]
4 [and] [n-level] = [variable]
5 seek text at far right of display. ..
6 [n-level] at [far right] = [independent] variable
7 look to nearest text. . .
8 [low] = level of [n-level]
9 [high] = level of [n-level]
10 seek objects in plot region. ..
11 [blue] [line]
12 no memory for [blue] look to legend
13 [blue] [rectangle]. looking for nearest text. . . [blue] = [low]
14 [green] [rectangle]. looking for nearest text. .. [green] = [high]
15 seek text at far left of display. ..
16 [m-yield] at [far left] = [dependent] variable
17 seek text at bottom of display. . .
18 [p-density] at [bottom] = [independent] variable
19 look to nearest text. ..
20 [compact] = level of [p-density]. [compact] = [right]
21 [sparse] = level of [p-density]. [sparse] = [left]
22 identify legend levels. . .
23 [0.0] diff [blue] so [no] [simple] effect [low] [n-level]
24 [0.5] diff [green] so [moderate] [simple] effect [high] [n-level]
25 compare [blue] & [green] levels. ..
26 [small] diff. [high] [n-level] > [low] [n-level]
27 [small] [main] effect [n-level]
28 identify x axis levels. ..
29 [0.0] diff [left] so [no] [simple] effect [sparse] [p-density]
30 [0.5] diff [right] so [moderate] [simple] effect [compact] [p-density]
31 compare [left] & [right] levels. ..
32 [small] diff. [compact] [p-density] > [sparse] [p-density]
33 [small] [main] effect [p-density]
34 compare left and right patterns. ..
35 [0.5] diff in distance between points. [right] bigger
36 [moderate] diff & [same] point order so [moderate] [interaction]
37 for [sparse] [p-density] [low] [n-level] = [high] [n-level]
38 for [compact] [p-density] [high] [n-level] > [low] [n-level]
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