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Welcome!

Welcome to Manchester and the 9th International Conference on Cognitive Modeling.
We hope you find the next three days enjoyable and stimulating. This year's
conference attracted a large number of high quality submissions on a wide range of
topics, making the task of categorising submissions into talks and posters extremely
difficult for the program committee. After two days of intense deliberation, we settled
on a program of 24 talks and 73 posters. However there was a class of submissions
that we thought were of sufficient quality that, if the schedule had permitted, could
also have been accepted as talks. To acknowledge this fact we have decided to
allocate time before the two poster sessions for the authors of these distinguished
posters to speak briefly and introduce their work.

In addition to the talk and poster sessions, this year's conference also features
invited talks by three leading figures in the cognitive modelling community: Nick
Chater, Dario Salvucci, and Lael Schooler, and two symposia. As usual, the
conference is preceded by a number of tutorials on different approaches to cognitive
modeling. All in all, we believe that this year's conference presents a strong program
of research that reflects a growing, vibrant international cognitive modelling
community. We hope that after participating in the conference you agree with this
assessment.

The efforts of many people have gone into producing this conference. The chairs wish
to thank the three invited speakers, Frank Ritter for organising the tutorials, the
many reviewers for their invaluable comments on the submissions and the
universities of Manchester, Huddersfield and Birkbeck, University of London for their
financial and administrative support. In addition, we wish to thank the following for
their contribution to the success of this conference:

Platinum Sponsors

Defence Science and Technology Laboratory

European Office of Aerospace Research and Development, Air Force Office of
Scientific Research, United States Air Force Research Laboratory

Gold Sponsors

The Society for the Study of Artificial Intelligence and Simulation of Behaviour
LispWorks

Silver Sponsors

The Cognitive Science Society
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Agent-Based Simulation: Social Simulation and Beyond

Bruce Edmonds (bruce @cfpm.org)
Emma Norling (norling@acm.org)
Centre for Policy Modelling
Manchester Metropolitan University
Aytoun Building, Aytoun St, Manchester, M1 3GH, United Kingdom

Abstract

Our interest in agent-based simulation is for social simulation,
where the society-level outcomes emerge from the interaction
of individuals. In this tutorial, we aim to introduce the core
concepts of agent-based social simulation, illustrated by a
range of examples, before walking through a specific example
with the participants so that they can experience these issues
at first hand.

Keywords: social simulation, social theory, agent-based
modelling

What is Agent-Based Simulation?

Agent-based simulation (ABS) represents each individual
with a separate encapsulated object in a simulation. Beyond
this, the definition of an “agent” varies quite widely, but in
general they are seen to be autonomous, pro-active entities.
Simulation outcomes emerge from the interactions between
these entities, and often even quite simple interactions can
give rise to complex system dynamics.

The individuals that agents represent in a simulation need
not be humans, and could be social actors of any type.
Examples of entities that have been represented by agents in
simulations range from individual cells and bacteria through
to multi-national corporations. Typically though in social
simulation we are interested in modelling each individual
person with a single agent. At the same time, we are often
interested in modelling the interactions of large numbers of
individuals, and this forces a trade off between the detail of
the individual models and the number of entities that can be
modelled.

Thus, while it is desirable for the agents to include models
of various aspects of cognition (such as decision making,
learning, belief representation, autonomous goals), it is
necessary to pare them down to the bare minimum required
to model the social interactions of interest. By the standards
of cognitive models many of the programs internal to each
agent might be fairly simple, although some researchers in
this area are investigating ways of including more detailed
models of individuals within this type of simulation.

Simulating Societies

Our interest in ABS is to simulate how humans (or other
social entities) might interact: for example, how complex
coordination might be achieved through the interaction of
essentially selfish agents (Edmonds, 2006). Some of these
models can be very detailed, including many different
aspects of a particular observed social situation. In this case
the result is more like a dynamic description within a

simulation — a distributed representation that may
incorporate many different kinds of evidence.

Emergent Behaviour

At the same time, complexity science has repeatedly
shown how the interaction of fairly simple agents can result
in complex (“emergent”) outcomes. Thus, one stream of
research in ABS is looking at how social systems might be
understood in this way. These tend to be quite abstract
simulations with very simple agents, which are intended to
encapsulate a general social theory, rather than to represent
any particular observed social phenomena.

Applying Social ‘“Rules” to Other Networks

One outcome of the study of emergent behaviour in
human societies has been to transfer these principles to other
social systems. For example, when systems of
independently programmed computers interact in a network,
many of the same issues (trust, reputation, coordination etc.)
that occur in human societies are found to be important.
The previously mentioned work on cooperation between
self-interested individuals, for example, has been used to
develop algorithms for peer-to-peer computing systems that
are robust against “cheaters” (Hales, 20006).

Outline of the Tutorial

This tutorial introduces the main ideas of ABS,
highlighting the difficulties as well as the strength of these
issues, drawing on many examples of ABS, from complex
specific simulations, up to highly abstract simulations that
encapsulate social theories. In the second half of the
tutorial, these ideas will be illustrated through the use of a
concrete example. Depending on the existing skills of the
participants, there will be opportunities to implement their
own realisation of this example.
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Abstract

The Neural Engineering Framework (NEF; Eliasmith and
Anderson, 2003) provides a general methodology for
developing efficient and realistic neural models that perform a
specified task. The framework consists of three quantified
principles, one for each of representation, computation, and
dynamics in neural systems. Adopting these principles
provides a method for generating connection weights between
groups of neurons that represent and transform state variables.
In short, the NEF provides a neural compiler: a method for
taking a high-level description of a neural system and
deriving a plausible organization of realistic neurons that
realize this system. Our tutorial introduces the principles of
the NEF and demonstrates how they apply to cognitive
modeling. This is done through the use of Nengo, a GUI
neural simulation system, which supports an adjustable level
of neural accuracy, Python scripting, and the analysis of the
resulting models.

Keywords: Nengo; neural engineering; neural representation;
control theory; neural cognitive modelling

The Neural Engineering Framework

As cognitive models become more complex, there is an
increased demand for details at both the low and high levels.
Traditionally, focus in cognitive modeling has been on
higher levels of abstraction. As a result, researchers
typically posit a high-level organizational structure which
allows them to consider the information that needs to be
represented and the transformations that are required for
implementing hypothesized algorithms. Ideally, however, a
cognitive model should also make detailed predictions as to
the firing rates of neurons implementing the model, their
tuning curves, connectivity, neurotransmitters, and other
properties.

The Neural Engineering Framework (or NEF; Eliasmith
and Anderson, 2003) provides a novel approach to
addressing this typical gap in cognitive modeling. It is
based on three principles of neural engineering:

1. Neural representations are defined by the
combination of nonlinear encoding (exemplified by
neuron tuning curves) and weighted linear
decoding.

2. Transformations of neural representations are
functions of variables that are represented by
neural populations. Transformations are
determined using an alternately weighted linear
decoding.

3. Neural dynamics are characterized by considering
neural representations as control theoretic state
variables. Thus, the dynamics of neurobiological
systems can be analyzed using control theory.

Each of these principles is considered under the assumption
that neural systems are subject to significant amounts of
noise. Therefore, any analysis of such systems must account
for the effects of noise.

The core idea of the NEF is to consider any cognitive
system as containing a large number of representations
which change over time. How these representations change
is dependent both on the external stimuli and on the other
representations within the system. A particular neural group
can represent (via its spike pattern) a single scalar, a vector,
or even a function. These representations are inherently
noisy, and accuracy will be dependent on various neural
properties (although representational error has been shown
to be inversely linearly related to the number of neurons
used).

To understand how these representations change (i.e.
define a transformation of a representation), the NEF
provides methods for defining weighted axonal projections.
For instance, a given group might represent the product of
the values being represented by two other groups which are
projected to it (i.e. x(t) = y(t)*z(t), where each variable is
represented by a neural population). Importantly, we can
use the NEF to derive the linearly optimal connection
weights to perform a wide variety of linear and nonlinear
transformations. Doing so makes it clear that the accuracy
of these transformations is intimately related to the
observable tuning curves of the neurons involved. This
leads to models that are orders of magnitude more efficient
than other approaches to neural representation, and which
are a closer match to observed neurological data (e.g.
Conklin & Eliasmith, 2005; Fischer, 2005).

Applications

Initially, the main applications of this approach were in the
domains of sensory and motor systems. This has included
the barn owl auditory system (Fischer, 2005), rodent
navigation (Conklin & Eliasmith, 2005), escape and
swimming control in zebrafish (Kuo & Eliasmith, 2005),
and the translational vestibular ocular reflex in monkeys
(Eliasmith et al., 2002). However, these same principles are
now being applied to higher-level cognitive models. A
direct extension of the visual working memory model
(Singh & Eliasmith, 2006) has led to a neural model of the
ACT-R goal buffer (Stewart, Tripp, & Eliasmith, 2008).
More crucially, the use of Vector Symbolic Architectures
(Gayler, 2003) has allowed for the representation and
manipulation of structured symbol trees by these neural
models.  This neurally realistic cognitive architecture
(Stewart & Eliasmith, 2009a) resulted in a model of the
Wason card task (Eliasmith, 2005) and ongoing work
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producing an efficient production system using realistic
neural constraints (Stewart & Eliasmith, 2008; 2009b).

The NEF provides an exciting new tool for cognitive
modelers as it provides a technique for producing direct
neural predictions from a given high-level algorithmic
description of a cognitive model. Furthermore, it leads to
important theoretical results as to the relationships between
neural properties and the high-level algorithms they are
capable of implementing (e.g. the relationship between
neurotransmitter re-uptake rate and the time constant of
neural transformations).

These consequences are also very general, as the NEF
provides techniques that can be applied to any cognitive
model. It provides a structure for organizing the high-level
description of a model, such that it can be implemented by
realistic spiking neurons, providing meaningful data in
terms of the expected spike patterns, time course, and
accuracy. We have made use of it in a wide variety of
contexts, and we have developed tools that support the
creation and analysis of these models. These tools can be
applied to many existing models to incorporate low-level
neural details into existing modeling research.

Software and Simulations

We have developed Nengo <nengo.ca>, a freely available
open-souce Java-based neural simulator that supports the
NEF. This allows for hand-on examples of the theoretical
concepts underlying the NEF. Using a point-and-click
interface, we can create neural group, configure them to
represent scalars and vectors, adjust their neural properties,
and simulate their spiking activity over time. We can also
connect these neural groups via synapses so as to perform
linear and nonlinear transformations on these values, and
store information over time. These are the basic
mechanisms required for a wide range of algorithms, and
form the basis for our models of sensorimotor systems and
working memory. Nengo can also be programmed using a
Python interface, allowing for quick creation of complex
models (Stewart, Tripp, & Eliasmith, 2009).

Furthermore, these basic tools can be used to implement
the theory of Vector Symbolic Architectures (Gayler, 2003)
using NEF. This involves using high-dimensional fixed-
length vectors to represent symbols and symbol trees. The
nonlinear operation of circular convolution is used to
manipulate these symbol trees. This can be seen as a non-
classical symbol system, capable of performing the
operations required for symbolic cognition. The result is a
scalable and efficient neural cognitive architecture,
constructed from these basic neural components.
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Overview A chunkis a ‘familiar pattern’, an item stored in long-term
] . N . . memory. Chunks collect together more basic elements which
This tutorial covers a tradition of symbolic computational 5 strong associations with each other, but weak associ-
modelling known as EPAM/CHREST, with its first member, 4iions with other elements (Chase & Simon, 1973; Cowan,
EPAM (Elementary Perceiver and Memoriser) developed by)go1). Miller observed (Miller, 1956) that short-term mem:-
Edward Feigenbaum in 1959. EPAM was used to constructyy typjcally contains a limited number of pieces of infor-
models of a variety of phenomena, providing the impetus tqnation, but the size of these pieces varies with contexs; thi
develop the chunking theory (Chase & Simon, 1973; Gobeppservation lies behind the chunking theory. Chase and Si-
etal., 2001), which has been an important component of théyon (1973) confirmed the presence of chunks in the recall of
ories of human cognition ever since. ~ chess positions, and the EPAM model provides a means of
The history of computational modelling includes a Va”etylearning, storing and retrieving such chunks.
of approaches to describe human behaviour. The benefits of 1o chunking theory has been extended to formtéme-
encoding a theory as a computational model include a pres|ate theory(Gobet & Simon, 1996, 2000). The extensions
cise definition of how the behaviour is to be explained, andncjude mechanisms to create retrieval structures, whieh u
a means of generating quantitative predictions for testieg  gpecific retrieval cues to store and obtain informationdigpi
theory. Examples include models of single phenomena (suche template is a form of slotted schema, containingre
as Sternberg’s model of STM; (Sternberg, 1966)), integrate o siable information, anlots containing variable informa-
models covering a wide range of different phenomena (sucflon, \where the chunking theory captures much of how the
as Soar (Newell, 1990) and ACT-R (Anderson & L&tsi,  5yerage person learns in tasks such as verbal-learning, the
1998)), and overtarc_hlng pnnmples,_ which guide the depe_l template theory further captures the way in which highly-
ment of models in disparate domains (such as connectionigfained human experts perceive and identify patterns iin the
approaches (McLeod, Plunkett, & Rolls, 1998), or embodiedyymain of expertise.
cognition (Pfeifer & Scheier, 1999)). , A more detailed overview of the chunking and template
The group of models to be studied in this tutorial empha+naories is contained in Gobet et al. (2001).
sise learning phenomena, and learning at a symbolic level.
EPAM was the precursor of the later CHREST (Chunk Hi- I mplementation
erarchy and REtrieval STructures) system, and both are ty
ically developed from large quantities of naturalistic uhp

For example, in modelling expert perception of chess play, |nout/output module, which is responsible for feature ex-

ers, actual chess games are used (Gobet & Simon, 2000). yraction, passing the features to the long-term memory for

Similarly, in modelling the acquisition of syntax, largerco sorting, and guiding the eye movements:

pora of mother-child interactions are employed to develop, Long-term memory, which holds information in the form a

the model’s long-term memory (Freudenthal, Pine, Aguado- discrimination network: and

Orea, & Gobet, 2007). '
The tutorial is structured so that participants will:

REHREST comprises three basic modules:

e Short-term memories, which hold pointers to nodes in the
long-term memory.

1. Acquire a complete understanding of the EPAM and ] o
CHREST approach to computational modelling, and their The key feature which distinguishes EPAM/CHREST
relation to the chunking and template theories of cognjtion Models is the discrimination network for storing and refrie

2. Explore some key learning phenomena supporting thing information in long-term memory. Information input to
chunking theory, based around experiments in verbalthe models is assumed to form a list of subobjects, each of
learning, categorisation and the acquisition of expertise Which is either a further list of subobjects or else a primi-

3. Be introduced to an implementation of CHREST whichtive: Once information has been stored within the netwadrk, i

can be used for constructing models of their own data. bec_omes ahunk a ‘familiar pattern’. TeSt.S n t_he d'sc_“"_“.'
nation network check for the presence of individual privati

Further information about CHREST, supporting publicagion objects, or known chunks (which can be large lists of sub-
and implementations can be foundlattt p: / / chrest . i nfo objects). The discrimination network is trained by expgsin
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CHREST to a large set of naturalistic data. A typical networkand how they relate to training the discrimination network.
for an expert in a complex domain will contain on the order
of 100,000 nodes. References
CHREST extends on EPAM by collecting chunks togetherAnderson, J. R., & Lelgire, C. (Eds.). (1998)The atomic
when an internal node meets specific criteria relating to its components of thoughMahwah, NJ: Lawrence Erlbaum.
connections with other nodes within memory. A templateChase, W. G., & Simon, H. A. (1973). Perception in chess.
is then formed from the common information in the linked Cognitive Psychology, 55-81.
chunks, with slots created for the variable informationstJu Cowan, N. (2001). The magical number 4 in short-term mem-
as EPAM was the computational embodiment of key aspects ory: A reconsideration of mental storage capacBghav-
of the chunking theory, CHREST implements essential as- ioral and Brain Science4, 87-114.
pects of the template theory. Feigenbaum, E. A. (1959An information processing theory
Input can be provided to CHREST in one of two ways. As Of verbal learning. The RAND Corporation Mathematics
a single pattern, which is provided in ‘one go’. These pat- Division, P-1817.
terns are input to the network and stored directly. The s¢conFeigenbaum, E. A., & Simon, H. A. (1984). EPAM-like
way is to use the in-built attentional mechanism, by which models of recognition and learningognitive Sciences,
CHREST scans an input array, such as a chess board, and305-336.
stores parts of the input array into memory. Short-term memFreudenthal, D., Pine, J. M., Aguado-Orea, J., & Gobet, F.
ory will then hold a set of chunks, each of which may hold (2007). Modelling the developmental patterning of finite-
information about a different part of the chess board, amd co ness marking in English, Dutch, German and Spanish using
lectively holding information about most of the board. The MOSAIC. Cognitive Science31, 311-341.
attention mechanism in CHREST is described in Lane, GoGobet, F., Lane, P. C. R., Croker, S. J., Cheng, P. C.-H.,
bet, and LI. Smith (2009). Jones, G., Oliver, I, etal. (2001). Chunking mechanisms in
CHREST is implemented in Lisp, and uses Tk to provide Nhuman learningTrends in Cognitive Sciences 236-243.
a graphical interface. A graphical environment enablessuse Gobet, F., Richman, H., Staszewski, J., & Simon, H. A.
to create simple CHREST models by providing data within (1997). Goals, representations, and strategies in a con-
an input data file. The implementation also supports more Cept attainment task: The EPAM modeThe Psychology
complex tailored models which may be developed by writing ©f Learning and Motivation37, 265-290.
special-purpose code using the packages within CHRESTE0bet, F., & Simon, H. A. (1996). Templates in chess mem-
Within the tutorial we will introduce participants to theagth- ory: A mechanism for recalling several boardsognitive
ical environment, walk them through a number of provided Psychology31, 1-40.
examples which will illustrate the workings of the architec Gobet, F., & Simon, H. A. (2000). Five seconds or sixty?
ture and some samples of successful applications, andyfinall Presentation time in expert memoryognitive Science
describe the input data format for applying the environment 24, 651-82.
to new domains. A library and manual is provided to assis¥ones, G. A., Gobet, F., & Pine, J. M. (2007). Linking

users wishing to write more complex models. working memory and long-term memory: A computational
model of the learning of new wordDevelopmental Sci-
App”cations ence 10, 853-873.
. . . . Lane, P. C. R., Gobet, F., & LI. Smith, R. (2009). Atten-
The tutorial will cover a variety of experimental data tadt tion mechanisms in the CHREST cognitive architecture. In

trate the theory and processes. We begin with human verbal-| paletta & J. K. Tsotsos (EdsProceedings of the fifth
learning processes, which were behind the development of jnternational workshop on attention in cognitive science
the first EPAM learning system. The interlinked learning op-  (\p|. LNAI 5395, pp. 183-196). Berlin: Springer-Verlag,
erations, which alternately extend or elaborate inforamati  GmpH.

in the netwrok, are illustrated using applications in vérba \jc| eod, P., Plunkett, K., & Rolls, E. T. (1998troduction
learning (Feigenbaum, 1959; Feigenbaum & Simon, 1984). {4 connectionist modelling of cognitive process@sford,
Further properties of the chunking network will be desalibe k. Oxford University Press.

with reference to results from categorisation (Gobet, Richjjier, G. A. (1956). The magical number seven, plus or
man, Staszewski, & Simon, 1997), implicit learning and 1an- - minys two: Some limits on our capacity for processing in-
guage learning (Freudenthal et al., 2007; Jones, Gobet, & formation. Psychological Revieys3, 81-97.

Pine, 2007). Newell, A. (1990).Unified theories of cognitiarCambridge,
More elaborate models of expertise explore the interaction MA: Harvard University Press.

between the learner and its external environment. We illuspfeifer, R., & Scheier, C. (1999)nderstanding intelligence
trate this aspect of the theory with models of chess exper- \M|T Press.

tise, and in particular look at the recall task, which careedv  Sternberg, S. (1966). High speed scanning in human memory.
many details of expert memory. This application is used to Science153 652—654.
describe CHREST’s attention mechanisms (Lane et al., 2009)
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Abstract

In a recent book, Pew and Mavor and the Committee on
Human-System Design Support for Changing Technology
(2007) proposed a revision to Boehm’s Spiral Model for
system development. This revision encourages considering
the user within a system as a source of risk. Where these
risks are significant, this approach suggests ways to reduce
the risk through appropriate studies of the user. This tutorial
provides a summary of this model and some of the insights
and extensions of this model based on teaching it. These
insights are related to learning: learning by the field through
using this approach to organize methods and techniques,
learning by system development managers that there are
sometimes risks related to humans using their systems (and
implications for how to teach this), learning about designers
as stakeholders, and learning by designers as lessons from one
design are applied to later designs. These insights and
extensions suggest the importance of shared representations
such as cognitive models for educating team members and for
the system development process.

Keywords: models;

representation

Human-system  design;  user

Introduction

In a recent book, Pew and Mavor and the Committee for
Committee on Human-System Design Support for Changing
Technology (2007) propose a revision to Boehm's Spiral
Model for system development. I present here a summary of
this model for system design. This report argues that not
understanding aspects of the user can be a risk in system
design. Thus, where there are no user related risks, system
designers do not need to worry about users. In other cases,
where there are risks, the book presents approaches for
reducing these risks. User models are a way to share
knowledge about users across the design process.

Intended audience. This tutorial will be of interest to
people interested in using models in industry as a shared
representation, modelers interested in applications of
models, and those interested in understanding the
Committee's report as edited by Pew and Mavor.
Prerequisite knowledge: This tutorial does not presume
any prerequisite knowledge. Attendees may wish to have
skimmed the book (which is available on the web page-at-a-
time for free), or have examined other work on system
design.

The Spiral Model

The spiral model is an approach to system design that
encourages increment development of systems in a spiral of
requirements specification, technical exploration, and
stakeholder commitment. The spiral model is shown in

Figure 1, where movement around the spiral represents time
and commitment and work on the project.

At each stage in development, the system development is
accessed for risks to the system’s success. The process is
then targeted at reducing these risks. Some risks may be
technical, can we build it or can we build it for that price?
In these cases, technical work is performed to reduce the
risk through technical understanding. Other risks can arise
from historical events, which are hard to reduce, and from
financial matters, which often can be reduced by setting up
contracts at a known price. Risks can also occur due to not
understanding user, their tasks, or their interaction with the
system, which the report and this tutorial address.

Gumulative Leve! of Understanging, Cost, Time, Product, and
Process Dotai (Risk-Oriven)

STAKEHOLDER |
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proceed, siip
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Figure 1. The basic spiral model (Pew & Mavor, 2007).
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This revised system design model in Pew and Mavor
(2007) has several key features, as noted in the book:
(a) Systems should be developed through a process that
considers and statisfices the needs of stakeholders. This
step is done in the Exploration and Evaluation stages.

(b) Development is incremental and performed iteratively.
These related aspects are shown in Figure 1 by the multiple
loops representing the increasing resources committed to
design and implementation, and through the five stages
(Exploration, Valuation, Architecting, Development, and
Operation). These stages are incremental because
movement from one stage to another depends upon a
successful review

(c) Development occurs concurrently, that is, multiple
steps may be performed simultaneously. Designers may
implement one part of the system while testing another.
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(d) The process is mindful of risks during system
development and deployment. The level of risk is accessed
repeatedly at milestones between stages. Risk is used to
manage the project—the level of effort and level of detail of
work are driven by the level of risk. Where there is no risk
to system development, there is no need for effort to reduce
risk. For example, if the system being developed is similar
to a known product, there may be no reason to explore
further how to support users or how to manufacture it.

Insights

The committee did not set out to create human-system
integration (HSI) teaching materials, but the resulting book
can be used to teach about HSI, human-computer interaction
(HCI), and human factors. In teaching this material, the
students and I found several extensions and insights.

(a) The revised spiral model provides a framework for
organizing much of HCI and HSI. Most HCI methods can
be cast as ways to reduce various types of risks, and most
design processes cast as steps in the spiral.

(b) The revised spiral model is not just normative, it is
also descriptive. That is, managers may already be working
to reduce risk; it is just that they do not see the risks related
to users because they do not understand users. This insight
suggests that it is likely to be more important to create
materials to teach about incipient risks than it is to teach
about the revised spiral model process itself.

(c) Designers are stakeholders too. Tools and approaches
to reduce risks must support their understanding. They are
users of the process and their needs and capabilities are part
of the development process.

(d) One of the major results of using shared
representations and analyses of systems while being
designed may be learning of the design team and application
to later designs. Thus, work on creating shared
representations should not just include integration across the
team and across the design process for a single project
(which the book calls for), but also across designs over
multiple projects.

Summary

The risk-driven incremental concurrent development model,
the later version of the spiral model, provides a useful and
safer way to create systems. As a study aid, the model
provides a new way to view HSI and HCI methods, design
approaches, and development theories, and how to include
them in system design.

So, in this new view, the decision to do user research,
review, or studies is based on system design risks. If the
system development is predicted to be smooth and not
novel, then little or no usability studies are required, and
little or no should be done. Where there is more risk, more
work should be done given the resources. But, the user-
related risk has be balanced against other risks. The
technology may in fact be riskier, and thus require more
resources. Or, as is often the case, the managers understand
the technical risk.

There are several corollaries to this. The managers often
must be educated about user risks, and we will need books
and tutorials like this to help educate system designers about
where and when their theories of users mismatch the world.

We will need improved representations of users (shared
representations) to use in the design process, similar to how
blueprints are used in buildings.
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Human behaviour is the product of two adaptive systems
that generate and select actions beneficial to the organism.
Through one of these systems, genetic selection, the species
has acquired relatively stable psychological mechanisms.
Through the other, learning, individuals acquire the
knowledge that determines behaviour on a moment to
moment basis. Together these systems generate the complex
behaviours that cognitive science seeks to explain.

Focusing on behaviour as the product of adaptation
opens up possibilities for deep explanations that answer
questions not only about how people behave but also why
they behave as they do. These rational explanations are
grounded in theories of the constraints on adaptation,
including constraints derived from the observable structure
of the task environment (either evolutionary or local). They
are also grounded in one, or other, assumption of
rationality, which is sometimes defined in terms of
optimality criteria. The assumption of rationality is the
point of departure for a range of approaches to
understanding cognition and perception, including rational
analysis and related Bayesian approaches (Anderson, 1990;
Anderson & Schooler, 1991; Oaksford & Chater, 2007),
optimal motor control approaches (e.g. Maloney,
Trommershduser, & Landy, 2007), as well as signal
detection theory and ideal observer analysis (Giesler, 2003).
Others, notably Simon (1955) and Gigerenzer, ABC
Research Group and Todd (2000), focus on the adaptive
benefit of heuristics given that rationality is limited by
psychological bounds.

The symposium will encourage discussion of relevant
contributions made over the past 20 or so years and, further,
will seek to expose the key unanswered questions. The
remainder of this abstract provides brief descriptions of
current contributors of the symposium speakers.

Anderson began to pursue the issue of how cognition
might be adapted to the statistical structure of the
environment in the late 1980s and soon published “The
Adaptive Character of Thought" (Anderson, 1990). The
fundamental idea was that to understand human cognition
we do not need to develop a theory of its mechanisms but

only need to understand the statistical structure of the
problems it faces. This effort has had successes in
developing theories of human memory and categorization.
In the memory domain, Anderson and Schooler (1991)
collected statistics on the information-retrieval demands
made on human memory and showed that behavioral
functions mirrored these. In the case of categorization this
lead to a program which accounted for a wide range of
human data and which did well on a number of machine-
learning data sets. The rational analysis work played a
major role in defining a better version of the ACT-R
subsymbolic activation processes. Anderson realized that
while these subsymbolic processes were tuned to the
statistical structure of the environment, one needed an
overall computational structure like ACT to understand
how they interacted.

Furthering his earlier work with Anderson, Schooler is
now pursuing a modeling and empirical effort that, in the
context of David Marr's functional approach to
understanding cognition, bridges two research programs
grounded in an appreciation of the adaptive value of
human cognition: The program on fast and frugal
heuristics explores cognitive processes that use limited
information to make effective decisions; and the ACT-R
research program that strives for a unified theory of
cognition. This work illustrates how a memory system that
is tuned to automatically retrieve information can be
exploited for a different purpose, namely making
inferences about real objects in the world, based on meta-
cognitive judgments about how the memory system
responds to stimuli (Schooler & Hertwig, 2005). This
work provides a good point of departure to discuss the
kinds of cognition that yield to a rational analysis and
those that might not.

Chater has argued that rationality is defined by the
ability to reason about uncertainty. Although people are
typically poor at numerical reasoning about probability,
human thought, shaped through evolution, is sensitive to
subtle patterns of qualitative Bayesian, probabilistic
reasoning. In Bayesian Rationality (Oaksford & Chater
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2007), the case is made that cognition in general, and
human everyday reasoning in particular, is best viewed as
solving probabilistic, rather than logical, inference
problems. The psychology of “deductive” reasoning is
addressed directly: It is argued that purportedly “logical”
reasoning problems, revealing apparently irrational
behaviour, are better understood from a probabilistic point
of view. Data from conditional reasoning tasks, for
example, are explained by recasting these problems
probabilistically. The probabilistic approach makes a
variety of novel predictions which have been
experimentally confirmed.

Brighton’s research, e.g. Brighton and Todd (2008),
focuses on modeling the computational processes that
underlie adaptive behaviour. With Gigerenzer, Brighton
views heuristics as cognitive processes that gain efficiency
by ignoring information. In contrast to the widely held view
that less processing reduces accuracy, the study of
heuristics shows that less information, computation, and
time can in fact improve accuracy. Heuristics are
ecologically rational when deployed in the right
environment. The “adaptive toolbox” provides a systematic
theory of heuristics that identifies their building blocks and
the evolved capacities they exploit. According to this
program, while people have biased minds and ignore part of
the available information, they can handle uncertainty more
efficiently and robustly than an unbiased mind relying on
more resource-intensive and general-purpose processing
strategies.

Lewis and Howes assume that individuals adapt
rationally to a utility function given constraints imposed by
their cognitive architecture and the /ocal task environment
(Howes, Lewis, Vera, accepted). This assumption underlies
a new approach to modelling and understanding cognition
—cognitively bounded rational analysis—that sharpens the
predictive acuity of general, integrated, theories of
cognition and action. Such theories provide the necessary
computational means to explain the flexible nature of
human behaviour, but in so doing introduce extreme
degrees of freedom in accounting for data. The new
approach narrows the space of predicted behaviours
through analysis of the payoff achieved by alternative
strategies, rather than through fitting strategies and
theoretical parameters to data. Analyses of dual-task
performance, and the development and analysis of a new
theory of ordered responses, yield several novel results,

including a new understanding of the role of strategic
variation in existing accounts of dual-task performance,
and the first predictive, quantitative, account showing how
the details of ordered dual-task phenomena emerge from
the rational control of a cognitive system.
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Introduction

Model comparison is becoming an increasingly common
method in computational cognitive modeling. The
methodology is seemingly straightforward: model
comparisons invite the independent development of distinct
computational approaches to simulate human performance
on a well-defined task. Typically, the benchmarks of the
comparison are goodness-of-fit measures to human data that
are calculated for the various models. Although the
quantitative measures might suggest that model
comparisons produce “winners,” the real focus of model
comparison is, or at least should be, on understanding in
some detail how the different modeling “architectures” have
been applied to the common task. And in this respect, the
seemingly straightforward method of model comparison
becomes more complicated.

The idea that a model comparison might be used to pick a
winning approach resonates with common intuitions about
model validation, namely, that a good fit is good evidence
for the theory the model implements. But to the extent that
model comparisons seek to illuminate general features of
computational approaches to cognition rather than to
validate a single theory of cognition, they depart from the
familiar mode of good fit, good theory. Instead, a model
comparison forces us to think about the science of
modeling. A good fit is thus relegated to a necessary
requirement rather than an end in itself, and the focus shifts
toward a deeper understanding of the modeling approaches
themselves. This shift brings into focus a host of new
questions having to do with the relationship between model
and architecture, theory and implementation, the relative
contributions of the modeler and of the architecture to the
final model, the role of parameter estimation in model
development, the suitability of the simulated task to exercise
features of the various architectures, the extensibility of the
simulated task and the practical considerations that go into
integrating disparate approaches within a common
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simulation environment. In this symposium, we address
these issues in the context of our own model comparison.
Our ultimate goal is to evolve a formal methodology to
ensure the soundness of future comparison efforts and
develop an infrastructure to make such efforts an ongoing
process rather than one-off events.

Requirements

We have direct experience from a number of modeling
comparisons projects, including the AFOSR AMBR
modeling comparison (Gluck & Pew, 2005) and the NASA
Human Error Modeling comparison (Foyle & Hooey, 2008).
We have also entered cognitive models into multi-agent
competitions (Billings, 2000; Erev et al, submitted) and
organized symposia featuring competition between
cognitive models as well as mixed human-model
competitions (Lebiere & Bothell, 2004; Warwick, Allender,
Strater and Yen, 2008). From these endeavors, we have
gained an understanding of the required (and undesirable)
characteristics of a task for such projects. While previous
model comparison efforts did illustrate the capabilities of
some modeling frameworks, the tasks were often ill suited
to that purpose for a number of reasons:

*  Some tasks demand a considerable effort just to model
the details of task domain itself, which often results in a
model whose match to the data primarily reflects the
structure and idiosyncrasies of the task rather than the
underlying cognitive mechanisms. This does not serve
the primary purpose of a model comparison effort,
which is to shed light upon the merits of the respective
modeling frameworks rather than the cleverness and
diligence of their users.

*  Some tasks do not stretch model functionality beyond
the conditions for which human data is available. The
comparison effort can then be gamed by simply
optimizing the model parameters to the data available,
which puts frameworks that emphasize constrained,
principled functionality at a disadvantage over those
that permit arbitrary customization and
parameterization.
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* Likewise, some tasks are too specialized, emphasizing a
single aspect, characteristic or mechanism of cognition
and do not require the broad, integrated functional
capabilities required of a general cognitive framework.

* If no common simulation or evaluation framework is
provided, each team can focus on the aspects of the task
most amenable to their framework, at the cost of
making a direct comparison all but impossible.

* Finally, tasks for which no suitably comparable human
data is available bias the effort toward a purely
functional evaluation of model against model (rather
than against data), which emphasizes performance at
the expense of empirical fidelity.

This experience has taught us that the desirable
characteristics of a task for a model comparison include:

* Lightweight, to limit overhead of integration, task
analysis and knowledge engineering requirements.

* Fast, to allow efficient model development and
collection of large numbers of Monte Carlo runs.

* Open-ended, to discourage over-parameterization and
over-engineering of the model and test its
generalization over a broad range of situations.

* Dynamic, to explore emergent behavior that is not
predictable from the task specification.

* Simple, to engage basic cognitive mechanisms in a
direct and fundamental way.

* Tractable, to encourage a direct connection between
model and behavioral data.

Like other competitive benchmarks of human cognition

(e.g. Robocup), the key is finding the right combination of

simplicity, flexibility and emergent complexity.

Comparison Challenge

We believe the task we have selected, the Dynamic
Stocks and Flows (Dutt & Gonzalez, 2007), meets these
requirements and strikes the right combination between
simplicity and complexity (Lebiere, Gonzalez, & Warwick,
in press). The instructions to participate in this comparison
challenge are on a web site', together with an executable
version of the task, a text-based socket connection for
models, and experimental data for a number of experimental
conditions for model calibration. We collected data on
additional conditions that were used to test the submitted
model’s generalization beyond the available conditions.
Our focus in evaluating models was two-fold: quantitative
measures of the models’ fit to the data in the generalization
conditions, and qualitative assessment of the generality and
constraints of the underlying theories in meeting the
demands of the task. The best entries under each criterion
were invited to describe their model in this symposium.

Conclusion

A number of tests for a general theory of intelligence have
been advanced (e.g. Cohen, 2005; Anderson & Lebiere,
2003). A key common aspect is to enforce generality in

! http://www.cmu.edu/ddmlab/modeldsf
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approach, in order to prevent special-purpose optimization
to narrow tasks and force integration of capabilities. One
can view that strategy as effectively overwhelming the
degrees of freedom in the architecture with converging
constraints in the data. However, precise computational
specifications of those tests have to tread a tight rope
between requiring unreasonable amounts of effort in
modeling broad and complex tasks and falling back into
narrow task specifications that will again favor engineered,
optimized approaches. This model comparison challenge is
our attempt at testing general cognitive capabilities in an
open-ended manner by offering low barriers to entry in
confronting different approaches with specific common
problems that encourage integrated cognitive approaches.
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Abstract this idea in an engineering task by building an artificialrage

situated in a virtual environment, capable of complex sym-
Donald Hebb proposed a hypothesis that specialised groups of P P y

neurons, called cell-assemblies (CAs), form the basis for neu- POliC processing, and implemented entirely using CAs ofsim
ral encoding of symbols in the human mind. It is not clear, ~ulated neurons. Some of the objectives have already been
P:g‘r’g}sfgﬁtg%"ngg: icr?f(‘:lggsrig;fi?ﬁn %%ﬂccgg‘stt"efﬁg t(\)/\;gm%%\’r\: achieved and reported elsewhere (e.g. Huyck & Belavkin,
strate that Hebbian learning of synaptic weights alone is not 2006; Huyck, 2007; Belavkin & Huyck, 2008). The archi-
adequate for all tasks, and that additional meta-control pro- tecture and some of these works will be discussed in the next
cesses should be involved. We describe an earlier proposed section.

architecture (Belavkin & Huyck, 2008) implementing such . . . . . .
a process, and then evaluate it by modelling the probability The work described in this paper is concerned with a partic-

matching phenomenon in a classic two-choice task. The model ular aspect of the project — a stochastic meta-control mech-
and its results are discussed in view of mathematical theory of  5nism that modulates Hebbian learning to allow for re-use

learning, and existing cognitive architectures as well as some S . -
hypotheses about neural functioning in the brain. and combination of CAs into new representations, such as

Keywords: Atrtificial Intelligence, Cognitive Science, Neu- Ie_arning I_ogical implicat_ions (i.e. prpcedural knowlegi_ges

roscience, Decision making, Intelligent agents, Learning, Wwill be discussed in this paper, this cannot be achieved by

Bayesian modeling, Computational neuroscience, Human ex- ysing a Hebbian learning mechanism alone. A unique con-

perimentation tribution of this work is evaluation of the meta-control rhec

| ducti anism in a cognitive model of the probability matching phe-
ntroduction nomenon in a two-choice experiment (Friedman et al., 1964).

There exists a variety of artificial systems and algorithors f  The results suggest that a proposed mechanism is a plausi-

learning and adaptation. Most of them can be classified asle model. Some neurophysiological studies and hypotheses

sub-symbolic (e.g. Bayesian and connectionist networks) oabout the brain circuitry will be discussed supporting the b

symbolic systems (e.g. rule-based systems). Known natwlogical plausibility of the architecture.

ral learning systems use neural networks, and therefore can

be classified as using sub-symbolic computations. A distin-  Cell-Assemblies asthe Basis of Symbols

guishing feature of the human mind, however, is the abitity t

use rich symbolic representations and language.

From an information-theoretic point of view, symbols are
eIemenFs of some finite s_et _that are used to encode discreﬁwral [nformation Pro
categories of sub-symbolic information. They enable com-
munication of information about the environment or a com-It is widely accepted that human cognition is the result ef th
plex problem in a compact form. One obvious benefit is tha@ctivity of approximately 18! neurons in the central nervous
with language, one can learn not only from one’s own expesystem (CNS) that interact with each other as well as with
rience, but also from experiences of others. The benefits dhe outside world via the peripheral nervous system (PNS).
reading a guidebook before going abroad are obvious. Biological neurons are complex systems, and they have been

The duality between sub-symbolic and symbolic ap-modelled with various levels of details. In our system, we us
proaches has been studied in cognitive science. There efatiguing, leaky, integrate and fire (fLIF) neurons.
ists sub-symbolic (i.e. connectionist), symbolic (e.@pA8, The ‘integrate and fire’ component is based on the classical
Newell, 1990) and hybrid architectures (e.gcAR, Ander-  idea that the neuron ‘fires’ (or spikes) if its action potahti
son & Lebiere, 1998) for cognitive modelling. These differ- A, exceeds a certain threshold vakiey=1if A>0; y=0
ent approaches, however, have not yet explained where tt@therwise. The action potentiad, is a function of the in-
symbols are in the human mind, or how the brain implementser product (integrator){x,w) = zik:lxi wi, wherex € R¥ is
symbolic information processing. the stimulus vector (pre-synaptic), awte RK is the synaptic

It was proposed by Hebb (1949) that symbols are repreweight vector of the neuron. HerX is ak-dimensional real
sented in the brain not by individual neurons, but by cor-vector space, whereis the number of synapses to the neu-
related activities of groups of cells, calleell assemblies ron. We use binary signals, and therefgie ak-dimensional
(CAs). The CABOT project set out to test and demonstrate binary vector.

In this section, we outline some of the basic features of the
CABoOT architecture as well as the CA hypothesis.

cessing in CABOT

12



The ‘leaky’ property refers to a more complex (non-linear) are functionally different if they belong to different CAessen
dependenayn o dPcegiorn R eNiAl R A Rk BHRSTEISHIR YA R i, architecturaly. Such speciawals
synaptic activity: observed In many neufgal networks, such as in self-orgamisin
maps (Kohonen, 1982) and particularly in the human brain.

A= A + (X%, W), o= { Note that CAs are not necessarily disjoint sets of cells.nA si

ck gle cell may be a member of several overlapping CAs. This
Thus, the action potential is accumulated over several timéature can be used to encode hierarchies of patterns (Huyck
moments if the neuron does not fire. Paramdter1 allows  2007).
for some of this activation to ‘leak’ away. This is the LIF  An important property of CAs’ dynamics is their persis-

00 if fired (yy = 1)
d>1 otherwise

model (Maas & Bishop, 2001). tence. When enough neurons fire to start the reverberating
The ‘fatigue’ property refers to a dynamic threshold that iscircuit, the CA ignites. Once ignited, the activity withinet
defined as follows: cells in a CA may be sufficient to support itself. Many vari-

ables can contribute to this effect. In particular, thediaé
and recovery rate parameters in our system effect persisten
A CA'’s activity does not only depend on the external pat-
where value$, andF_ represent théatigueand fatiguee-  terns, but also on the activity of other CAs in the system as
coveryrates. Thus, if a neuron fires at tinhgits threshold they can ignite and extinguish each other. Thus, the activ-
increases, and it is less likely to fire at time 1. ity of several CAs can be characterised by different pastern
The fatiguing and leaky properties of the neural model al-of ignition order and so on. It was demonstrated earlier that
low for a non-trivial dynamics of the system. Repetitivarsti  such state transitions in the system of CAs are sufficiently
ulation of excitatory synapses increases the probabifitg o controllable to implement a broad range of tasks simulating
neuron to fire, even if the weights have small (positive) val-symbolic processing that will be discussed below.
ues. On the other hand, if the neuron fires repetitively, its .
threshold increases reducing the chance of itpfiring aéain%’mbdsand Human Cognition
Thus, frequencies of pre- and post-synaptic activitiesrare ~Many models of biological neurons suggest that synaptic
portant factors in our system. weights may represent the memory for statistical and sub-
The weights,w, of a neuron can adapt according to the symbolic information of the stimulus. In particular, in nyan
compensatory learning rule (Huyck, 2007), which is an im-algorithms for training artificial neural networks (e.g. &j
plementation of the Hebbian principle (Hebb, 1949), wherel982), the weight vectow € R¥ corresponds to one of the
W1 depends on the correlation between the pre-synaptic, Principal eigenvectors of the covariance mafEifxx'} of in-
and the post-synaptig;, activities. put vectorsx € R¥ that have been observed. On the other
The above described properties are known characteristidd@nd, human cognition, and human knowledge in particular,
of biological neurons, and our model is a compromise belis encoded using symbolic representations, and the link be-
tween computational efficiency and biological plausipilit tween the symbols and neural models is less clear.

that is important for the emerging dynamics that we discuss. It was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, as discussed

Neural Cell-Assemblies in the previous section, CAs can be easily mapped to some
Networks of neurons can be used as general function approxdiscrete categories of the stimuli, and their activity pats
mators and applied in a variety of tasks including contrat;p can model serial processing typical for symbolic algorishm
tern recognition and classification. Our system, GABuses  Testing this hypothesis experimentally is one of the main ob
recurrent, partially connected networks (a mesh) of fLIEne jectives of the CABT project. However, many challenges
rons with a largely pre-defined topology. The non-linearity had to be overcome to make a purely CA-based system per-
of the cells and the topology of the network leads to a comforming some non-trivial symbol processing task.
plex dynamics of the system similar to that in attractor and Previously, we reported a system performing a counting
recurrent nets (e.g. Hopfield, 1982), where some of thesstatedask that consisted of 7 modules and 40 CAs (Huyck &
are more probable. These more ‘stable’ states can be charaBelavkin, 2006). A more recent system, CAB 2, is an
terised by groups of neurons that remain significantly moreartificial agent functioning in a virtual 3D environment tha
active than the other cells in the system. According to Hebthas a model of visual information processing, and is capable
(1949), we refer to such reverberating groups of cellsals  of natural language processing and action selection (Bilav
assembliegCAs). & Huyck, 2008). One of the advantages of such a CA-based
In our system, the formation of CAs depends on the topol-architecture is that neural CAs, that we associate with sym-
ogy of the network, and it is facilitated by the adaptation ofbolic representations, integrate also all the sensory $ub-
the weights between connected cells. Therefore, CAs can t&ymbolic) information, which can be a natural solution te th
used for pattern classification of sensory stimuli (i.etgrats ~ symbol groundingroblem. An associated phenomenon of
from external connections). This leads to functiosiécial-  symbolic processing igrounding transfe— combination
isation of neurons in the network based on CAs — two cellsand re-use of existing symbols to form new representations.

Fy >0 iffired (y =1)

B1=6+h, Ft{ F_ <0 otherwise
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The re-use of symbols is also important for learning pro-functionu: X x Y — R, while in stochastic setting one con-
ced Rl Knamedaseclidentho agirahipRlalian-did., AYLR safdtiopplipbabilty distributioriu | x) on va
production ru%e) may use combinations of symbols otﬁ Inues o Lﬁﬂltyu € ]ﬁ H!tﬁe utility functionu = u(x,y) or the
the antecedent and the consequent, and generally there goént distribution P(u,x,y) is known (and henc@(u | x,y)),
many more possible combinations than the number of rulethen given input, the optimal outpuy € Y maximises the
that are actually used. Hybrid architectures, such as#,  expected utility:
rely on statistical (sub-symbolic) computations to ‘filteut
the unwanted rules in the process caltamhflict resolution
In CABOT, associations between CAs are learnt due to th;w

Hebbian learning mechanism. However, as will be pointe ribution P (in the deterministic cas&p{u | x,y} coincides

out below, this mechanism alone is not sufficient to imple-_ . .
. ! . with u=u(x,y)). Thegreedystrategy of always choosing the
ment learning of particular associations between CAs rep- () g ys 9y y 9

) 2 ) optimal output can be expressed as follows:
resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderatigy t P(y| x) = { 1 if y:)“/(x) 1)
Hebbian learning, has been introduced (Belavkin & Huyck, 0 otherwise

2008).. Here, we use thl§ mechanllsm to mode! the DfObf’:\b'“ty Information constraints mean that either the utility fuant
match!ng phenomenon ina cla_ls_s_lcal two-choice experiment, _ u(x,y) or the distributiorP(u, x,y) is not known. Instead,
and this way evaluate its plausibility. one has some data from past occurrenceéugt,y) € R x

X x'Y which can be used to estimatéx;y) ~ Ep{u | x,y}.

In this case, the greedy strategy for choosing the system’s

y(x) = arg mya>Ep{u | Xy}

hereEp{-} denotes the expected value with respect to dis-

Stochastic Meta-Control of L earning

Two-Choice Task output is not optimal. The optimal policy is the following
Let x, y; andy, be three symbols, whererepresents a stim- exponential (‘soft-max’) distribution (e.g. Belavkin, @®):
ulus (antecedent), ang, represent two alternative re- A .

( » amh, ¥ rep By %) = Q| exp(Bi(xy) - W(BX}  (2)

sponses (consequents). Thus, we have a conflict between two
implicationsx — y; andx — y» shown on the diagram below whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), paramefeis related to
X the amount of information available in the data, a3k, x)
/ \ is defined from the normalisation condition (i.&(B3,x) =
InSy Q(y | x) exp{Bl(x,y)}). Distribution (2) is obtained by
Y1 Y2 solving the following variational problem

This is a simplest two-choice task (a more complex two- U(l) =sup(Ep{u} : I(PQ) < I}

choice task may involve a set of different stimuli). The P

choice ofy; ory; is followed by some reinforcement event where I (P,Q) is the Kullback-Leibler divergence of dis-
E that may have different utility values (e.g. a success aftetribution P(u,x,y) from Q(u,x,y) representing information
choosingy, or a failure after choosingy). Learning the as- amountl contained in the data. Paramefir' appears in
sociations between the choices and the utility values, sucthe solution as the Lagrange multiplier related to inforiorat
asu(x — y2) < u(x — 1), leads to a preferencg, < yi, constraint by the derivative ol (1):

and therefore learning rule — y;. If the reinforcement gt —u'() )
event is not deterministic, but occurs with some probapilit

P(E) = e [0,1], then the preference gf to y, may also  The function above is decreasing so tRat — 0 (or § — «)

be stochastic. As demonstrated in many experiments with ar@s information increases. Note that the exponential Histri
imals and human participants, the frequency of chooging tion (2) converges to the greedy strategy (1Bas .

adapts to probabilityt of reinforcement with high utility — Exponential distributions are often used for selecting the
a phenomenon referred to as t@bability matching This  output of a system in machine learning and stochastic optimi
phenomenon can be explained based on the theories of opgation algorithms. It is also used in theeA-R cognitive ar-
mal statistical decisions (Wald, 1950) and informatiorueal chitecture to model some stochastic properties of behaviou

(Stratonovich, 1965). In particular, it was used in the &@—R model of the two-
o o ) choice experiment, discussed below. However, the ‘tempera
Principles of Statistical Learning ture’ parametef 1 is usually set to some constant value or

Let us consider an abstract system with inpat X and out-  determined from some arbitrary ‘annealing’ schedule. The
puty € Y. Any learning system can be characterised by someelation of3 1 to entropy of success in@—R was proposed
optimisation criteria and information constraints (Béley  in (Belavkin, 2002/2003), and it was shown that it improves
2009). Optimisation corresponds to some preference oglati the match between the models and data. The derivation of
on the input-output pairéx,y) € X x Y. In a deterministic  optimal functionB~* = U’(l) can be found in (Stratonovich,
setting, this preference relation can be represented hilitg ut  1965) and more generally in (Belavkin, 2009).
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M eta-Control of Hebbian Learning cording to the application (e.g. using sensory information
The Ruotpetiofea nelEGIMVHepeORis Bimits neightiveat@@iference di € SRS HR pXplore module is to randomise the ac-

1mn . .
which, according to Hebb'’s hypothesis, adapts to the correl'Y o}g)%ﬁe response CAs (ie. CAs in s€). The Explore

lation between the pre- and post-synaptic activitieandy module contains cells that can be active without any externa

in the past. It is attractive to conclude, therefore, thabHe Etlmlulatlon gule 0 sgontgrs(atous a}Ct'VTt'?n' I;rgi;?"‘c’ 'g the
bian learning is a particular implementation of the statt xplore module send excitatory signais 1o a inan

learning. However, the utility is clearly missing in this-de th?_ V_‘;e'gh'f; ofEthelse conrcljetl:tlons (:(_) not chagge.l Thus, the
scription of neural plasticity. What criteria does such a-pro activity in the Explore modulée can trigger randomly any re-

cess of changing the weights optimise? If in a two-choice tas SPONse CA, and this process does not have a memory. The

the system accidentally chooses the ‘incorrect’ cell-Hassg :Ehxplore mOdtl.Jlf dl'mtplt? r?ents the effect of paramdiet in
Y2, then the weights associatimgvith neurons iny, increase € éxponential distrioution.

due to the correlation-based Hebbian learning. This cay onl IThe VE:::UIG mOdt';']Ietienﬁs |?h!:3|to]cr¥hc0\?nlectlor1lls to the EX'
increase the chance of — y» igniting in the future, even plore module, so that high activity of the Value cells maytshu

though the reinforcing eveit following the choice ok — ys down the activity in the Explore module. As a result, any re-

has a low utility (i.e. a failure). Thus, some additional pro sponse CA that has been ignited in Sewill persist longer

cess should be involved to increase the chance of the ‘<1t)rrecbecause itis less likely to be shut down by another CA. Such

combination — y; after the reinforcing everit. Such a pro- a connectivity implements the following learning schenfe: |

cess appears to be especially useful if the CA-based symbolfa particular paif,y) results in a high utility value, then high

representations, formed earlier, are to be re-used. Belew Wact|V|ty of the Value module inhibits the Explore moduledan

describe a neural implementation of such a meta-control oﬁhe responsibl:éx,y) pair is aIIoweq to persist longer, and th?
Hebbian learning based on the utility feedback (Belavkin gX—Y connection increases relative to others due to Hebbian

. S o . learning.
Huyck, 2008) following principles of statistical learning Learging the ‘correct’ rules (subsBIC X x Y) contributes

to a better performance of the system (i.e. higher expected
utility). As a consequence, the average activity of the ®¥alu
Explore module increases with time, while the activity of the Explor
module decreases. This dynamic also corresponds to a de-
crease of paramet@ ! as information increases making the
V1 system less random and more deterministic.

Vi M odelling Probability Matching

To test how adequately the above mechanism can represent
i _ . properties of human cognition, we evaluate its performance
Figure 1: Components and connections of the Value and Exjgainst data from a classic two-choice experiment due to

plore modules controlling Hebbian learning of connectionsgriedman et al. (1964). The choice of this dataset was mo-
between CAs in modulex andY. Solid and dashed arrows  yated not only by its quality and detailed description of

show excitatory and inhibitory connections respectively. the procedures, but also because it was used to ‘calibrate’
) o stochastic properties of other cognitive architecturashsas
The meta-control process involves two specialised modacr—r (Anderson & Lebiere, 1998). The complete descrip-
ules: Value and Explore. Their connections in the sys+jon of the experiment and data can be found in the original

tem are shown on Figure 1. Her¥ = {Xi,....Xm} and  paper (Friedman et al., 1964). Here we give a basic outline.
Y = {y1,...,¥n} are sets of CAs representimg stimuli and

n responses respectively. Initially, there are excitatay-c  EXperiment Description and Previous Work
nections from every CA irX to all CAs inY, which means In this experiment, participants were asked to select one of
that all pairs(x,y) (i.e. all rulesx — y) are equally preferred. two responses on presentation of a stimulus. After the re-
Thus, given inpuk € X, any responsg € Y can be selected. sponse was selected, a reinforcement e#eotcurred with
However, due to Hebbian learning, the connection y is  probability P(E) = t that did not depend on the response.
reinforced if a particular pair of CAs ignite together, gigi  Each participant had to perform this task in three sessions,
the pair a higher chance to ignite together in the future.sThu each session consisting of 8 blocks, each block consisted of
simply by virtue of Hebbian learning, the system can learn48 trials. The probability?(E) = 1t changed between each
eventually to prefer some random pairs. The purpose of thé8—trial block. This paper will report only simulations @f-r
Value and Explore modules is to make this process selectiveults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
according to the utility value of the feedback. 5 and 7 hadP(E) = .5, and blocks 2, 4, 6, and 8 were with
The output activity of the Value module represents the util-P(E) € {.1,.2,.3,.4,.6,.7,.8,.9} that was assigned according
ity valuesu associated with the pafk,y) selected on the pre- to a random pattern. Thus, probabill(E) = 1t was alter-
vious step. The input of the module can be configured acnating between .5 and some value above or below .5 between
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Figure 2: Frequency of response (ordinates) as a functiofigure 3: Comparison of response frequency produced by
of the probability of reinforcing this response (absci3sae the CABOT model with response frequency by participants
Points and error bars represent average response and stam{Friedman et al., 1964). RMSE=8.937%.

dard deviations in 48—trials of two-choice task from 80 jgart

ipants, reported in (Friedman et al., 1964). Dashed lingisho ) ] . o ]
frequency of the reinforcing event itself. Hebbian rule increasing associatioxs— y between active

CAs. The fatigue and leak parameters of Yheetwork were
set in such a way that CAs ignite only when an external stim-
48-trial blocks. The data recorded the number of times Reuli are present. The CAs iviinhibited each other so that only
sponse 1 was chosen in each 48-trial block. one of the CAs irY was active at any moment. The Explore
Figure 2 shows the results of these experiments, reporteshodule had excitatory connections with a small proportion
by Friedman et al. (1964). The charts show frequencies obf cells in moduleY. These connections were distributed uni-
Response 15 (R), and reinforcement event§(E), as func-  formly, and the weights did not adapt. Spontaneous aainati
tions of the control probabilitf?(E) = . One can see thatthe in the Explore module could randomly trigger any of the two
frequency of the reinforcement evetE) approximates the response CAs in module. The activity of the Explore mod-
the control probabilityr (E) ~ P(E). The response frequency ule could be inhibited by the output activity from the Value
F(R) also matches the probabiliB(E), but it differs signifi-  module that was triggered in each trial according to proba-
cantly at the lower and higher ends of the range: WR@h) bility P(E) = mtof the reinforcement event, controlled by the
is low (t= .1), the participants overestimate the probability experimental sequence.
(F(R) > P(E)); whenP(E) is high (t=.9), the participants When the Explore module is inhibited by the reinforcing
underestimate itR (R) < P(E)). Thus, the response appears activity of the Value module, the active pdi,y) is allowed
to be less certain than the reinforcing event. to persist longer, strengthening the connectionsy relative
As suggested by Anderson and Lebiere (1998), this exto other connections. We found that the robustness of this
perimental evidence indicates against using the greedy str effect depends on the time (i.e. number cycles) these CAs
egy (1) for choosing the response. The data was modelled iare allowed to persist. In this model, it takes approximatel
AcCT-R by sampling responses from exponential distributionbetween 10-20 cycles for a response CAito ignite, and
with somef~1 > 0. This agrees with equations (2) and (3), if the Explore module is active, then the response CA may
where~1 — 0 only when informatiorl — supl. We now  change during another 10-20 cycles. In this experiment, the
describe a model of this experiment implemented in @&B  system ran for 100 cycles per trial which was sufficient for
o the control of learning to have a robust effect. The complete
Model Description code of the simulation is available online from the C&B
The model used the architecture shown on Figure 1, wherproject website.
moduleX consisted of CAs representing one or more stimuli,
and moduleY contained two CAs representing two alterna- Results
tive responses. There were excitatory connections with lo’he model was used to simulate Sessions 1 and 2 of eight
weights from modulé& to all CAs in moduleY. The weights  48-trial blocks each with variable control probabilities
on these connections, however, could adapt according to @riedman et al., 1964). The results comparing response fre
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Abstract

The majority of cognitive models support some form of
parameterization, either of the model itself, or through
architectural mechanisms. In order to fully understand these
models, it is important to understand the model’s behavior as
a result of parameter variation across a wide range of values.
Even simple models become difficult to understand without a
systematic method of exploring performance across parameter
combinations, and scientists have turned to iterative methods
to perform sweeps of these spaces. As an alternative to an
exhaustive, homogeneous search, we examined adaptive mesh
refinement (AMR) to explore simple and complex parameter
spaces of several models developed within ACT-R. AMR
allows for fewer model runs with minimal loss of
information. We found that, with appropriate granularity,
AMR methods can provide a sufficient computational
exploration of a performance space with only 1% of the
sampling of conventional, homogeneous parameter sweeps.
The advantages of AMR for computationally efficient
exploration of the performance predictions should be of
benefit and interest to developers and users of cognitive
architectures and cognitive models.

Keywords:  Adaptive mesh refinement; Cognitive
architecture; Cognitive model; ACT-R; Parameter sweeps;
visualization

Introduction

Although many discussions of cognitive modeling focus on
the degree of fit to human empirical data, the point has been
compellingly made that what a cognitive model does outside
of the best-fitting parameter combination is just as important
as what it does at the best-fitting parameter combination,
and perhaps even more so (Roberts & Pashler, 2000).
Information about how a model performs outside the best-
fitting parameter combination provides modelers with
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information about how likely it is that other parameter
combinations result in a comparable fit. It also gives
modelers information about the full range of behavior
possible from the model and how different parameters
interact to generate possibly complex behavioral dynamics.
Both novice users of a cognitive architecture working to
understand model dynamics, and expert users of a cognitive
architecture testing modifications to the theories embedded
in these architectures would stand to benefit enormously
from a rapid analysis and visualization of the model
performance spaces involved. However, cognitive modelers
facing this problem are currently confronted with a lack of
tools that support exploring that space. The de-facto
approach to cognitive modeling is more often a focus on
maximizing fit to human data. This is done through either
hand-tuning based on the intuition and experience of the
modeler or automated optimizing of the fit of a cognitive
model through approaches such as genetic algorithms, the
conjugate gradient methods, or any of a variety of other
alternatives for optimization. Any of these approaches can
be sufficiently successful, but they provide little data about
the performance of the model outside of the ultimate
parameter values used in presenting the final fit.

Cognitive modelers need techniques and tools to support
the rapid exploration of parameter spaces in pursuit of
understanding of both models and architectures, including
methods that support visualization of complex spaces that
illuminate model and architecture behavior in response to
changes in parameters. We will describe an integrated
approach to these explorations that we have developed
across our previous research efforts (e.g., Best, Fincham,
Gluck, Gunzelmann, & Krusmark, 2008). First, however,
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we will turn to a discussion of exploring parameter spaces in
the context of cognitive modeling.

Our goal, in this case, is to understand how the
architecture and model behave generally and at the best
fitting point itself. To get a full understanding of how a
model is behaving outside of the best-fitting parameter
combination, one approach is to define the limits and step-
sizes of a parameter space and then run a model some
number of times at each parameter combination (an
exhaustive, homogeneous search), where the selected
number of runs is intended to provide convergence on the
underlying prediction of the model and architecture. This
method produces an evenly sampled space that describes the
overall behavior of the model. However, resources (time,
computation) are allocated evenly between informative and
uninformative areas of the space. Informative areas are rich
in detail relating the performance of the model or
architecture to the underlying parameters. Uninformative (or
less informative) areas of the space may take on a variety of
different characteristics, such as a degenerate part of the
space where a model produces no responses at all. The
resources spent on uninformative areas are essentially
wasted, as they provide little additional information.
Furthermore, a reduction in granularity (step size) can result
in oversampling of the parameter space; resources are
wasted in this case as well. Even worse, if the model is a
preliminary version or prototype, significant effort could be
expended exploring a space that could quickly be deemed
uninteresting (e.g., a model with a bug that produces
spurious results). Adaptive mesh refinement is one
technique that can be used to circumvent these issues and
focus resources on high information value areas of the
model and architecture space.

Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a method that can
differentially and intelligently allocate resources to areas of
a parameter space that call for finer resolution in the
modeling based on the presence of more local complexity
(Plewa et al. 2005). Briefly, the entire n-dimensional
parameter space, which is defined using some set of finite
bounds, is initially divided into geometrically regular cells
at a very coarse level. The value of each dependent measure
the model produces at the midpoint of each cell is estimated
based on the previously sampled value of the dependent
measures produced at the corners. This estimated or
expected value is then compared to the actual value sampled
at the midpoint. If the expected and observed values at the
midpoint are closer than a predetermined deviation
threshold, changes in the dependent measure are estimated
to change linearly across the parameter range within the
cell, and the dependent values for all target parameter
combinations within that cell are populated with linear
interpolation based on the sampled corners and midpoint.
Alternatively, if the difference between the estimated and
measured values for the dependent measure(s) exceeds the
threshold, the cell is divided more finely and the process is
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repeated with the children cells. Ultimately, this results in
minimal sampling over linear portions of the space and
maximal (bounded) sampling over areas that have more
complex surface characteristics (e.g., curvature, variability).
The stringency of the threshold chosen determines the
amount of space sampled. For example, a small allowable
deviation such as 1% will result in nearly complete
sampling of the space, while a more lax criterion such as
allowing up to 50% deviation before further refinement was
pursued would result in almost none of the space being
sampled. We have found that using AMR with a well
chosen refinement threshold can result in a 100 fold
reduction of resources expended without a corresponding
reduction in the information value of the data gathered from
the model parameter space, allowing for a rapid exploration
of parameter spaces, thereby dramatically shortening the
cognitive model revision cycle (Best et al. 2008).

AMR techniques, because they attempt to sample
minimally, may produce local spikes in the data, especially
when applied to stochastic models such as the ACT-R
spaces described here (i.e., the means are less stable when
using fewer model runs). We have found that the inclusion
of smoothing as a post-process for AMR generally produces
improved results, especially at lower sampling rates, since it
uses information from the local neighborhood to cancel out
noise present in the surface. We implemented smoothing, as
is commonly done in digital image processing, by
combining the AMR determined value of a dependent
measure at a point in some proportion (e.g., /2 was useful in
many of our experiments) with the average of its nearest
neighbors on the AMR surface (Plewa et al. 2005).

As parameter spaces become larger and more complex
(i.e., greater dimensionality and finer granularity), however,
the required resources can prohibit exploration, even with
the gains from AMR. The main reason for this is that the
scaling of a parameter space is exponential, and thus even
relatively simple models may easily exceed the capacity of
available computational resources in a typical lab setting. In
this situation, high performance computing (HPC) must be
leveraged, in combination with AMR, if a timely
exploration is to be performed. HPC computing typically
involves a large network or cluster of computers that can
perform model runs in parallel, resulting in a faster
exploration of complex parameter spaces. This is especially
useful in the case of cognitive model explorations, which
can be described as “embarrassingly parallel”, a term used
in the field of computational complexity that means that the
processes to be parallelized (individual model runs) do not
interact with each other (Dutra et al. 2003).

The remainder of our presentation will focus on applying
AMR to a set of task models of increasing complexity,
demonstrating the utility of AMR and the value of
parameter exploration for understanding cognitive models.
The three tasks we will describe are the Paired Associates
Task (PAT), taken directly from the ACT-R tutorial units
(ACT-R Tutorials, 2009), the Psychomotor Vigilance Test
(PVT; Dinges & Powell, 1985), and the Walter Reed Serial
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Addition and Subtraction Task (SAST; Thorne et al., 1985).
We now turn to these models and an exploration of their
parameter spaces using AMR and HPC.

Parameter Space Descriptions

The Paired Associates Task, as described in Anderson
(1981) is a learning task that involves presentation of 20
nouns associated with the digits 0-9. The pairs are presented
once during a study session and then presented 7 times
during a testing session. The participant is scored on latency
to correct response and proportion of correct responses out
of the 20 pairs for each of the 7 presentations.

This task is used as the target of a modeling unit in the
ACT-R tutorials where the focus is on understanding the
interactions of parameters related to activation in producing
the memory behavior of the ACT-R architecture (and its
corresponding explanation of human memory). However,
the modeling task itself poses a challenge to the novice
cognitive modeler, and prospective modelers may leave the
tutorial unit unsure of the interactions of the parameters, and
possibly even somewhat frustrated. We thus chose this
model as a target to see if the methods we have developed
could be quickly applied to aid in understanding the
behavior of the architecture and model of this task.

In the ACT-R architecture, the latency of a retrieval from
declarative memory is impacted by the activation of chunks,
where that activation is a product of its base level activation
and a noise factor. The activation is also impacted by the
rate of decay in declarative memory, while the ability to
retrieve activated chunks is impacted by the retrieval
threshold, which determines an activation level below which
chunks cannot be retrieved. Of these parameters, the base
level learning parameter is typically left at a default value,
leaving us three parameters to choose from for this
exploration. Their behavior is given by the following
equations. The first equation relates the retrieval time to 4,
the activation of a chunk, and F, the latency factor, while
the second equation relates the probability of recall for a
chunk to the retrieval threshold, z, the activation of the
chunk, 4,and the noise parameter of the system, s.

Time = Fe

o
T-4,
1+e w

P(retrieval) . =

To allow for easy visualization, we chose to focus on only
two of these remaining parameters, fixing the noise
parameter s at 0.5, and exploring the PAT space by varying
the parameters for the retrieval threshold (7) and the latency
factor (F), as suggested in the tutorial instructions (ACT-R
Tutorials, 2009). We explored levels of z from -3 to 0 with a
step size of 0.25 and levels of F from 0 to 0.45 with a step-
size of 0.025, resulting in a space with 13 levels of 7z, 19
levels of F, and a total of 247 parameter combinations.
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Our general approach to understanding the efficiency and
effectiveness of AMR methods, which we also used below
with the PVT and SAST models, is to first collect 100
model runs at each parameter combination, and then divide
these into a “train” and “test” portion of the data. The
comparison of these two halves provides a baseline estimate
of how well the data fit themselves (model stability), which
can be expressed as a baseline Root Mean Square Error
(RMSE). AMR variants can then be compared against this
baseline to see what additional error, if any, they produce.

Our exploration was conducted using software written to
run the ACT-R models and collate the results automatically,
allowing the experimenter to initialize experimental settings
and then leave the software to continue unaided. The
resulting data are then imported into R, which we used, or
an alternative statistical analysis and visualization package.

Our focus is on AMR methods, but to demonstrate the
efficiency gain these methods can produce, we also
conducted an exhaustive homogeneous sweep of the
parameter space for comparison. Our hypothesis is that the
same scientific conclusions would be reached with either
method, one using a fraction of the computational resources,
and thus one source of evidence for this hypothesis will be
in the quality of the conclusions a modeler might come to
viewing the different diagrams. For this purpose, we will
present an exhaustively sampled space, labeled “fully
explored” (figure 1), and a minimally sampled space that
uses AMR to the full extent possible to reduce computation,
labeled “minimally explored” (figure 2). In addition, we
also present a visualization of the results of the smoothing
post-process (figure 3).

Figures 1-3 are of the latency for the 8" simulated recall
trial during the PAT, labeled “t8lat DV”, which we selected
for presentation based on the obvious interaction between
and F. The gray spheres represent parameter combinations
at which models were run.

These figures show that increasing the latency factor
produces a predominantly linear increase in reaction times
when the retrieval threshold is less than approximately -2,
but that higher values of the retrieval threshold (closer to 0)
produce an interaction with the latency factor. In particular,
the latency for retrievals decreases at higher values of z,
since more active chunks are retrieved more quickly or, in
cases when a failure to retrieve a chunk happens, the
recognition that this is the case happens faster.

It is hard to imagine how a novice modeler might come to
understand this space by manually entering parameter
values and attempting to understand the rows of data that
result, and thus for this reason alone we might suppose that
the use of these methods is desirable. Further, the qualitative
conclusion that can be reached comparing the smoothed
AMR results (figure 3) to the exhaustive results (figure 1) is
obvious: the smoothed AMR surface contains much of the
qualitative detail of the exhaustively sampled surface, but at
a fraction of the computational cost, having been produced
using only 1% of the runs present in the exhaustive graph.
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The question, then, is this: What is the gain of using AMR
in terms of computational resources as it relates to any
corresponding loss in fidelity? We will now attempt to
answer that question both  quantitatively and
comprehensively in the context of the three tasks we have
worked with: the PAT, PVT and SAST. First, however, we
will provide a brief background on these two new tasks.

The Psychomotor Vigilance Test involves the
presentation of a stimulus at known locations, but at random
time intervals, and measuring the time it takes the subject to
respond to that stimulus. Responses are binned into 20ms
intervals with false starts defined as reaction times faster
than 150 ms, lapses as reaction times slower than 500 ms,
and sleep attacks as reaction times slower than 30 s. This
task, due to its cognitive simplicity and sensitivity to the
effects of sleep deprivation and circadian rhythm, is
commonly used to assess the impact of fatigue (e.g., Dinges
& Powell, 1985; Van Dongen & Dinges, 2005).

The Walter Reed Serial Addition/Subtraction Task
involves presenting two single-digit numbers in sequence,
followed by an operator — either a plus sign or minus sign.
After performing the operation, participants respond with
the ones digit of the answer, or the answer plus 10 if the
result is negative. Time to correct responses and the percent
of correct responses are measured.

As we did with the PAT, these tasks were evaluated
within the framework of AMR to determine the impact of
AMR methods on accuracy and reduction of computational
demands. All of the AMR methods were compared to a
corresponding exhaustive parameter sweep, where the
exhaustive sweep used 100 model runs at each combination
to establish a baseline: the exhaustive data were split in half
and compared to determine how well the data fit
themselves. This produced a baseline Root Mean Square
Error (RMSE) for the model runs against which AMR runs
were then compared. In addition, this allowed for an
efficiency metric which was simply the percent of the “full
space” that was explored by an AMR variant (% Space
Sampled). The “full space” is one of the baseline halves and
is composed of 50 model runs at each parameter
combination. Finally, we also report the total number of
model runs involved in each of the spaces and AMR
variants. We tested several variations of AMR and
smoothing using this methodology. In particular, we
examined: 1) allowing the number of model runs to vary as
a property of local variation or fixing them at some
particular #n, 2) using local error bounds based on one or all
dependent measures, 3) determining local error in dependent
measure prediction based on absolute, relative, or statistical
criteria, 4) the impact of modifying the smoothing radius
and intensity, and 5) the impact of using 4-neighbors vs. §-
neighbors in smoothing. Here we will only report specific
instances due to space limitations.

The PVT and SAST spaces have been used to explore the
ability of modifications to the ACT-R architecture to
account for the pattern of deficits exhibited by people under
conditions of extended wakefulness (e.g., Gunzelmann et
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al., 2007). These modifications include parameterized
mechanisms, which require careful exploration to provide
an understanding of their potential impacts. The PVT space
was explored using 4 parameters, with the chosen
granularity of these parameters resulting in a parameter
space with 56,511 parameter combinations. Models were
run at each combination for the exhaustive parameter sweep.
Similarly, the SAST space was explored by varying 7
parameters, with a necessarily coarser granularity (to
partially offset the higher dimensionality) that resulted in a
parameter space with a total of 129,600 parameter
combinations. Models were run at each of these
combinations for the exhaustive parameter sweep.

Table 1: Algorithm Performance Summary

Total
0, 0
Data Set A)R(I:\(/)IEEOI S/(; Spellgg Model
mp Runs
PAT 20926%  1.07% 132
~19
Spa/c"e PVT 2645%  132% 37335
Sampled  SAST  533.19%  1.09% 70479
PAT 113.94%  1020% 1,260
~10°
Spac/e“ PVT 154.81%  840% 237350
Sampled  SAST  167.55%  9.72% 630,020
’ PAT 100.00%  100.00% 12,350
100°
Spac"e PVT 100.00%  100.00% 2,825,550
Sampled  SAST  100.00%  100.00% 6,480,000

In general, with only 10% of the space sampled, for the
worst case additional error was only 67.55% beyond the
error in the original data when compared to themselves. The
granularity of the sampling, however, did interact, and the
SAST model, despite having the largest parameter space,
also had the coarsest minimum granularity. That is, the
SAST has only 6 levels per IV, so not much processing can
be skipped, and skipping removes information. The result of
this was that, at very sparse sampling of ~1%, the AMR
algorithm never proceeded much beyond the initial AMR
corners, producing a very rough approximation for SAST.
The PVT space granularity fell in the middle of the PAT
and SAST spaces, and allowed for dramatic compression
with very little loss of accuracy. In particular, in those
spaces the error was approximately only doubled (~200%
RMSE) when compared to baseline at a very minimal
sampling of approximately 1% of the data sampled. This
represents a two order of magnitude gain in time to get an
answer that, while approximate, is most likely extremely
useful (and might, in the case of faulty models, obviate the
need for ever collecting the other 99% of the data).
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Taken as a whole, algorithm performance is fairly similar
across spaces despite dramatic differences in the size of the
model spaces. That is, the SAST space is several orders of
magnitude larger than the PAT space, but the error terms are
within an order of magnitude.

For all three parameter spaces, we explored the effects of
performing the homogeneous sweep with a reduced number
of model runs. These data are not presented due to space
limitations. In all cases, however, AMR methods provided
superior results. For example, running 2 models at each
parameter combination results in reducing the space
sampled to 4%. AMR methods using only 2 model runs
result in less space sampled and are more accurate as well.

We also explored adaptively changing the number of
model runs at each parameter combination based on
measures of local variation. This method ultimately results
in focusing computational resources on portions of the space
where the model returns spurious results. Increased model
runs in these areas does not result in a superior
understanding of the model; AMR methods predict these
noisy areas more efficiently through linear interpolation.

Conclusions

In this paper, we have demonstrated the application of AMR
to a variety of modeling contexts, showing both the
visualizations that can be produced and the gains in
computational efficiency achieved through this method. In
the case of the PAT, the AMR exploration brought out a
nonlinear interaction that would most likely not be obvious
from a set of tabled values, and would almost certainly be
missed by a novice modeler. However, through applying
AMR to this task model, we were quickly able to visualize
and understand the underlying model and architecture
dynamics as a result of examining the impact of varying the
parameters that control the model and architecture. This
simply cannot be achieved by examining the fit of a model
at a particular point in a parameter space.

The PAT could certainly be approached by hand
modifying the models in a desktop environment, as it is
during the ACT-R tutorials, or even through an exhaustive
iterative sweep of the parameter space, but we make the
case here that the AMR methods can produce superior
understanding with little to no extra investment in
computational resources, and thus they are clearly
preferable to the alternatives.

As parameter spaces become larger and more complex
(i.e., greater dimensionality and finer granularity), the
resources required to enumerate or sample from them can
become prohibitive, even with the gains from AMR. The
reason for this is that the scaling of a parameter space is
exponential, and thus even relatively simple models may
easily exceed the capacity of available computational
resources in a typical lab setting. It is evident that the
number of model runs, as reported in Table 1, is a proxy for
time. While Moore's Law was once considered a potential
way out of computing bottlenecks — simply waiting for
faster processors to arrive could solve some issues — that
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simply does not apply to problems that scale exponentially.
Further, though processors are increasing in speed, our
cognitive architectures, models, and the task domains we are
interested in are also increasing in complexity, and these
effects largely cancel each other out. Thus, it is necessary
both to improve the efficiency of our methods through
approaches such as AMR, and also to leverage resources
that combine processors, such as High Performance
Computing (HPC). HPC typically involves a large network
or cluster of computers that can perform model runs in
parallel, resulting in a faster exploration of complex
parameter spaces. This is especially useful in the case of
cognitive model explorations, which can be described as
“embarrassingly parallel”, a term used in the field of
computational complexity that means that the processes to
be parallelized (individual model runs) do not interact with
each other (Dutra 2003).

Fortuitously, these methods also provide a natural
gateway to solving harder computational problems: a
problem formulated for AMR solution and visualization in
the desktop environment is already formulated for HPC
solution and visualization.

The techniques described here demonstrate effective ways
for exploring large parameter spaces. Indeed, the work
described here could not have been conducted without these
techniques. This is not to say, however, that the underlying
exponential nature of cognitive modeling problems has been
tamed. Rather, the methods here provide a significant
amount of leverage to a scientist who has managed to
reduce the effectively infinite space of cognitive models to a
manageable size.
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Abstract

A previously developed ACT-R/threaded cognition model of
dual-task interference (Borst, Taatgen & Van Rijn, 2009) was
used to predict neuroimaging data in four brain areas. These
predictions were tested in an fMRI experiment, which
confirmed the predictions in three of the areas. The fourth
area, the intraparietal sulcus, showed a different pattern than
predicted. To account for this, a new mapping of an ACT-R
module onto a brain area was introduced: It was assumed that
activation in the intraparietal sulcus not only depends on the
problem state module, as is customary, but also on the visual-
location module. The resulting model fit well to the human
data, confirming the model’s assumptions of dual-task
interference.

Keywords: fMRI, ACT-R, Problem State, Multitasking.

Introduction

Some tasks can be performed together effortlessly, like
drinking coffee and listening to a talk, while other tasks
interfere with each other, like talking to a colleague while
writing a paper. The challenge for theories of multitasking is
to explain why some tasks interfere with each other and
some do not. Intuitively this is easy to explain: if tasks use
the same cognitive resources they will probably interfere.
This idea was formally implemented in the threaded
cognition theory (Salvucci & Taatgen, 2008). In threaded
cognition, multiple tasks (called ‘threads’) are active at the
same time. Tasks can use several cognitive resources, like
declarative memory and the visual system. These resources
function in parallel (i.e., the visual resource can be used to
perceive an object, while at the same time a fact can be
retrieved from memory), but the resources themselves can
only proceed in a serial fashion (i.e. the visual resource can
only perceive one object at a time). Thus, if multiple tasks
need the same resource, one of the tasks will have to wait
for the other tasks, resulting in interference.

Salvucci and Taatgen (2008) have shown that, in addition
to perceptual and motor resources, two central cognitive
resources cause interference in multitasking: declarative and
procedural memory. Additionally, we have shown that
another central cognitive resource, the problem state, also
causes interference in multitasking (Borst & Taatgen, 2007;
Borst, Taatgen, & Van Rijn, 2009). The problem state is
used to maintain mental representations necessary for
performing a task. For instance, when solving ‘2x-7=6’ the
problem state is used to store the intermediate solution
‘2x=13". In our previous research, we let participants
perform a subtraction and text entry task concurrently. Both
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tasks were presented in two versions: an easy version in
which no problem state was required to perform the task and
a hard version in which it was. When both tasks required a
problem state, significantly more interference was observed
than in all other conditions: response times and error rate
increased. To account for these results a cognitive model
was developed using threaded cognition and ACT-R
(Anderson, 2007).

In the current paper we set out to validate this model
using neuroimaging data. First, the previously developed
model was used to predict brain activation patterns in four
brain regions. Subsequently, these predictions were tested in
an fMRI experiment. Before we discuss these points, we
will first explain how ACT-R models can be used to predict
neuroimaging data.

Using ACT-R to predict the BOLD response

ACT-R (Anderson, 2007) describes human cognition as a
set of independent modules that interact through a central
production system. For instance, it uses a visual module for
perception and a motor module to interact with the world.
Besides these peripheral modules, there are several central
cognitive modules: the procedural module that implements
the central production system, the declarative memory
module, the goal module, and the problem state module
(sometimes called ‘imaginal module’). All modules operate
in parallel, but a module in itself can only proceed serially.

ACT-R models are usually tested on a behavioral level: if
for instance reaction times and error patterns match the
human data, it is concluded that a model gives a plausible
account of the observed behavior. However, to find direct
evidence for non-observable specifics of models, ACT-R
has been extended to predict neuroimaging data (Anderson,
2005). To predict brain activation data, or to be more
precise, the Blood Oxygenation Level-Dependent (BOLD)
contrast, the modules of ACT-R have been mapped onto
small regions in the brain (about 12x12x12mm). The most
important modules and associated brain regions for this
study are listed in Table 1.

The different modules are not constantly in use during the
execution of an ACT-R model, but operate for short periods
of time (in the order of hundreds of ms). It is assumed that
when a module is active, it will drive a BOLD response in
the associated brain region. This response is modeled by a
gamma function, as is customary in fMRI research:

H()= m(z) e
s
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Table 1. ACT-R modules and associated brain regions.

ACT-R Brain Region MNI
Module Coordinates
Manual Precentral gyrus (BA 3) -37,-28, 51
Visual Fusiform gyrus (BA 37) -22,-59, -15
Declarative  Inferior frontal sulcus -42,22,21
Memory (BA 45/46)
Problem State Intraparietal sulcus -23,-67, 36
(BA 7/39/40)

where m determines the magnitude of the BOLD curve, s
the time scale, and a the shape. If D(?) is a 0-1 demand
function that indicates whether a module is active at time ¢,
the BOLD function can be calculated by convolving D(?)
with the gamma function:

B(t) =jD(x)H(t—x)dx
0

It should be noted that we do not assume that modules in
ACT-R exclusively drive activation in these regions, nor
that activation in these regions is only due to the associated
ACT-R modules. However, these regions have been the best
indicators of activation in the ACT-R modules over a series
of studies (see also Anderson, 2007).

Predicting the BOLD response

In this section we will describe how we used the model of
Borst et al. (2009) to generate BOLD predictions. We will
first describe the task in detail, followed by the model and
the predictions.

The task

In the experiment participants had to perform a subtraction
and text entry task concurrently (Fig. 1). Both tasks had two
versions, an easy version in which participants did not have
to maintain a problem state between responses, and a hard
version in which they were required to maintain a problem
state. Participants had to alternate between the tasks: after
entering a number, the subtraction task was disabled,
forcing participants to subsequently enter a letter. After
entering a letter, the text entry task was disabled and the
subtraction task became available again, etc.

In the subtraction task, 6-digit column subtraction
problems had to be solved in right-to-left order. In the easy,
no problem state version, the upper term was always larger
or equal to the lower term; these problems could be solved
without ‘borrowing’. In contrast, the hard version required
participants to borrow 3 times (see Fig. 1). The assumption
is that participants used their problem state resource to keep
track of whether a ‘borrowing’ was in progress. Solved
columns were masked with #-marks to prevent display-
based strategies (i.e. reading previous columns again).

For the text entry task, 6-letter words had to be entered. In
the easy version the words were presented one letter at a
time. Participants had to click the corresponding button on
the keypad, after which the next letter appeared. In the hard
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version, a word appeared at the start of a trial. When a
participant clicked on the first letter, the word disappeared
and had to be entered without feedback (participants could
neither see the word they were entering, nor how many
letters they had entered). It was assumed that participants
needed a problem state to keep track of the word and their
position within the word (‘public, 4th position’).

Before each trial, two colored circles were presented on
the screen, one on the left and one on the right side,
indicating whether the task on that side of the screen was
going to be easy (green circle) or hard (red circle).
Participants were instructed to act both quickly and
accurately. The tasks were performed in all difficulty
combinations: easy subtraction/easy text entry, hard/easy,
easy/hard, and hard/hard.

Three changes were made with respect to the original task
of Borst et al. (2009) to make it suitable for the fMRI
scanner: a) letting participants respond using a mouse
instead of the keyboard, b) changing the length of the
stimuli from 10 to 6 numbers / characters, and c¢) making the
interface more compact to minimize head movement.

The model

We will now describe the ACT-R/threaded cognition model
that Borst et al. (2009) developed to account for the task
above. Of particular importance for the tasks at hand is
ACT-R’s problem state module. This module can hold a
problem state consisting of one chunk of information, which
means that the module’s contents have to be replaced
frequently when it is required by multiple tasks. A problem
state is accessible at no time cost, but replacing a problem
state takes 200 ms. If the problem state is replaced, the
previous problem state is automatically moved to
declarative memory. Thus, the total time to replace a
problem state is 200 ms plus the time it takes to retrieve the
problem state from memory. Therefore, the problem state
resource constitutes a bottleneck in multitasking: switching
problem states incurs a considerable time cost.

The two tasks in the experiment were implemented as two
threads in the model. Both threads use the visual module to
perceive the stimuli and the manual module to operate the
mouse and the keyboard. In the easy version of the

798442
361467 N
Clolo
‘/z\‘ (E\ ,/E\‘
‘/z\‘ ‘/E\( ’/E\‘
f?.

Figure 1. Screenshot of the experiment.
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subtraction task, the model perceives the numbers, retrieves
a fact from memory (e.g., 5-2=3) and enters the difference.
In the hard version the model also starts by retrieving a fact
from memory, if its outcome is negative (e.g., 3-6=-3) the
model adds 10 to the upper term, stores in its problem state
that a ‘borrowing’ is in progress, and retrieves a new fact
(13—6=7). If the problem state indicates that a ‘borrowing’ is
in progress, the model subtracts 1 from the upper term
before the initial retrieval.

In the easy version of the text entry task, the model
perceives the letter and clicks on the corresponding button.
In the hard version, the model has to recall for each
response what the target word is and what the current
position is within the word: it uses the problem state
resource to store the word and the current position (‘public,
4th position’). If it is in the hard condition, the model does
not look at the display, but uses the word and position in its
problem state. However, before it can enter a letter, it first
has to retrieve an order fact to determine what the next letter
is. After entering a letter, the model updates its problem
state to reflect that it is one position further in the word.

Because the model only needs multiple problem states in
the hard/hard condition, and either zero (easy/easy) or one
(easy/hard, hard/easy) in the other conditions, it predicts an
over-additive effect of task difficulty on response times and
accuracy. Constantly replacing the problem state in the
hard/hard condition incurs a time cost, resulting in increased
response times; furthermore, incorrect problem states are
sometimes retrieved, resulting in errors. This model was
used to generate BOLD predictions for the task, which we
will describe next.

A priori BOLD predictions

As explained above, the different modules of ACT-R have
been mapped onto brain regions. After changing the model
to work with the new interface of the experiment (i.e. using
the mouse instead of the keyboard), we generated
predictions for four predefined regions. For these
predictions we set the @ and s parameters in the BOLD
equation to 4 and 1.2, respectively. These are customary
values in the literature, and as we did not fit our model to
the fMRI data but predicted the data beforehand, there was
no reason to alter these values. For the same reason the m-
parameter was not used for scaling, but left at 1. We will
discuss the four most important predictions of our model:
the manual module, the visual module, the problem state
module, and the declarative memory module. The results are
displayed in Figure 2; each panel shows the BOLD response
over a complete trial (entering 6 letters and numbers).

The predictions for the manual area, part of the precentral
gyrus, are displayed in Figure 2A. While in all conditions
the same number of responses has to be given, there are
clear differences in the model predictions. This is caused by
the fact that the individual responses in the more difficult
conditions are spaced further apart in time (i.e., response
times are higher). Consequently, the BOLD response has
more time to decay between each response, resulting in
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longer but lower activation curves. This is in line with the
fact that the area under the curve should be equal in all
conditions, as it is proportional to the total time a module is
active (Anderson, 2005), which is the same in each
condition.

For the visual module a similar pattern can be observed
(Fig. 2B). However, here the hard subtraction/easy text
entry and the easy subtraction/hard text entry conditions are
switched. This is caused by two things: first, when text entry
is hard, the model does not have to look at the screen to see
what it has to enter, but already knows the word it is
entering. Therefore, less visual processing is required in the
hard text entry conditions as compared to easy text entry.
Second, in the hard subtraction conditions, the model does
more visual processing: after noticing that it has to borrow
(by reading the upper and lower terms), it reads the upper
term again to process the borrowing, and afterwards reads
the lower term again to come up with the final response.

Figure 2C shows the predictions for the problem state
module. In the easy/easy condition the model does not use
any kind of problem state, which accounts for the flat line.
In both the easy/hard and the hard/easy conditions an
intermediate activity level is predicted as a problem state
has to be maintained for one of the tasks. In the hard/hard
condition, the problem state has to be replaced on every step
in a trial, because both tasks need to maintain a problem
state. Thus, we expect much more activation in the
hard/hard condition as compared to all other conditions:
resulting in an over-additive interaction effect.

A related interaction effect can be observed for the
declarative memory module (Fig. 2D). In the easy/easy
condition, the model only needs to retrieve simple
subtraction facts, which are extremely fast retrievals,
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resulting in almost no BOLD activity. In the easy
subtraction/hard text entry condition, the model needs to
retrieve both simple subtraction facts and facts about letter
order in words, resulting in higher activation levels. In the
hard subtraction/easy text entry condition the model needs
to retrieve multiple subtraction facts on most of the steps in
a trial, again predicting higher activation levels. In the
hard/hard condition there is by far the most activation
predicted, as not only the subtraction facts and letter order
facts have to be retrieved, but also a problem state on each
step.

To summarize, the model predicts lower but more
persistent activation levels for the harder conditions in the
visual and manual modules, and higher activation levels for
the harder conditions in the problem state and declarative
memory modules. We will now describe the fMRI
experiment we carried out to test these predictions.

The Experiment

Ten students from Carnegie Mellon University participated
in the experiment. Because one of them had abnormal brain
anatomy, 9 datasets are left for analysis (2 female, average
age 22, range 19-24, right-handed). Informed consent as
approved by the Institutional Review Boards at Carnegie
Mellon University and the University of Pittsburgh was
given before the experiment. Participants received $65.

The 6-digit subtraction problems were generated anew for
each participant. In the hard version, each subtraction
problem featured 3 columns in which participants had to
‘borrow’, answers were always 6 digits long. The words in
the hard text entry condition were handpicked from a list of
high frequent 6 letter words (CELEX database) to ensure
that similarities between words were kept at a minimum.
These stimuli were also used in the easy text entry task,
except that the letters within the words were scrambled to
create nonsense letter strings, under the constraint that a
letter never appeared twice in a row.

Each trial started with the presentation of a fixation cross,
followed by two circles indicating the difficulty levels of the
tasks, to avoid measuring ‘surprise-reactions’. The circles
stayed on the screen for 5 seconds, after which the fixation
cross was displayed again for 1 second. Afterwards, the
subtraction and text entry tasks were presented. Participants
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Figure 3. Behavioral results and model predictions.
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had to start with the subtraction task, after which they had to
alternate between the tasks. After entering the last response
in each task, a feedback screen was shown for 3 seconds,
indicating how many letters / numbers were entered
correctly. Between trials there was a 13-17 second break,
sampled from a uniform distribution. The start of the circles
was aligned to the start of a scan, as was the start of the
subtraction and text entry tasks.

The experiment consisted of one practice block and six
experimental blocks. The practice block was administered
during the structural scanning, to familiarize participants
with performing the task in the scanner. All blocks consisted
of 12 trials, 3 per condition, fully randomized. Thus, the
complete experiment consisted of 72 trials. On the day
before the scan day, participants practiced the experiment
for approximately 30 minutes outside the scanner.

Results

Only the data of the experimental phase were analyzed.
Outliers in response times faster than 250 ms and slower
than 9000 ms were removed from the data, after which we
removed data exceeding 3 standard deviations from the
mean per condition per participant (in total, 2.2% of the data
was removed). All F- and p-values are from repeated-
measure ANOV As, all error bars depict standard error.

The left panel of Figure 3 shows the average response
time per condition; black bars depict experimental data, grey
bars model data. Response times are measured as the time
between two mouse-clicks, that is, the time it takes to give a
response after having given the previous response. First
responses of each task were removed. An ANOVA revealed
a significant interaction effect of Subtraction and Text Entry
Difficulty (F(1,8)=6.1, p=.04). A subsequent simple effects
analysis showed significant effects of Subtraction Difficulty
when text entry was easy (F(1,8)=12.04, p<.01), and of
Subtraction Difficulty when text entry was hard (F(1,8) =
29.4, p<.001). The simple effects of Text Entry Difficulty
did not reach significance. Thus, response times increase
with subtraction difficulty, but even more when text entry
was hard as well. The right panel of Figure 3 shows the
accuracy data. No significant effects were observed, which
is probably due to the low statistical power caused by the
small number of participants, as such effects were observed
in previous studies.

The results are in line with our previous findings (Borst,
et al., 2009) and with our hypothesis. However, the effects
are slightly smaller than observed previously.

The modeling results are displayed alongside the data in
Figure 3. The model predicted an over-additive interaction
effect because only one problem state can be maintained at a
time. This was indeed observed in the data. However, the
model predicted a slightly larger effect, as it was fitted on
the data of the previous experiment.

Imaging data: confirmatory analysis

The results in the left precentral gyrus, associated with the
manual module, are shown in Figure 4A. The data resemble
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the model closely: the easier the condition, the higher and
broader the BOLD curve. This is explained by the fact that
the responses are spaced further apart in the harder
conditions, letting the activation decay between responses.

Figure 4B displays the BOLD responses in the fusiform
gyrus, associated with the visual module. Again, higher
activation levels were found for the easier conditions. The
model predicted this, but it also predicted that the hard/easy
and easy/hard conditions would switch position as
compared to the manual module. While they are closer
together, they did not switch completely. Presumably, the
participants make less strict eye-movements than our model,
and do more visual processing in the hard text entry
conditions than predicted.

In Figure 4C the results of the intraparietal sulcus
(associated with the problem state module) are shown. As
the area under the curves is proportional to the total time a
module is engaged (Anderson, 2005), most activation is
observed in the hard/hard condition, as the model predicted.
However, the model obviously predicted a much larger
effect, with a clear interaction effect between conditions.

Finally, Figure 4D shows the activation in an area close to
the inferior frontal sulcus, associated with the declarative
memory module. Because four of our participants showed a
negative BOLD response in the original area, we slightly
changed the region to a nearby area where all our
participants showed a positive BOLD response. This region,
centered at x=-48, y=30, z=30, shows a response that
roughly shows the same effects as our model: almost no
activation in the easy/easy condition, and an increasing
BOLD response with increasing difficulty. However, the
effects were not as large as predicted.

To summarize, we confirmed our main predictions that
there are higher activation levels in the easier conditions in
the visual and manual regions, and that an opposite effect
can be observed in the problem state and declarative
memory regions. However, the BOLD response in the
problem state region was different from the predictions, and
the effect in the declarative memory module was less
pronounced.

Imaging data: exploratory analysis
Besides the confirmatory analysis, we also performed an

Table 2. Results of the exploratory analysis.

Region Size in  MNI coordinates
Voxels (x,y,z)

Hard Subtraction > Easy Subtraction (p <.001)
Right Intraparietal Sulcus 102 36, -36, 33
Right Middle Frontal Gyrus 56 39, 36, 24
Medial Frontal Cortex 113 -3, 18,48
Left Intraparietal Sulcus 41 -45,-42, 39
Right Middle Frontal Gyrus 49 27,12, 57

Hard Text Entry > Easy Text Entry (p <.01)
Medial Frontal Cortex 77 -3,12,57
Left Intraparietal Sulcus 35 -33, -48, 36
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Figure 4. fMRI results for the four regions.

exploratory analysis of the fMRI data. The results are shown
in Table 2. At the top, regions are shown that were more
active in the hard subtraction condition as compared to the
easy subtraction condition (uncorrected p-value < 0.001 and
contiguous voxel size > 20). First of all, we found a region
around the intraparietal sulcus to be active both in the left
and the right hemisphere. This region corresponds to the
horizontal segment of the intraparietal sulcus (HIPS), which
is an important circuit for numeric processing. Next, we
found two regions around the right middle frontal gyrus that
responded more in the hard subtraction condition than in the
easy condition. The more anterior region partly overlaps
with ACT-R’s declarative memory region. These regions
conform to our expectations of more memory retrievals in
the harder subtraction condition. The largest active region
was found in the medial frontal cortex. It is known that this
region is involved in cognitive control and decision making.
Not surprisingly, participants need more extensive cognitive
control in the hard subtraction condition, as they have to
keep track of steps in the borrowing process.

At the bottom of Table 2 regions are shown that are more
active in the hard text entry condition as compared to the
easy text entry condition (uncorrected p-value < 0.01 and
contiguous voxel size > 20). More activation was found in
the medial frontal cortex and the intraparietal sulcus; both
regions partly overlap with the regions we found for the
subtraction task. However, the region in the medial frontal
cortex is more posterior and superior, and the parietal region
is more central and was only found in the left hemisphere.

Posteriori Model Fit

One of the predictions of our model was an interaction
effect in the posterior parietal cortex. However, instead of
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clear differences, the data show quite similar curves. While
the area under the curves does give an indication of more
total activation in the more difficult conditions, the data
look very dissimilar from our model predictions.

From previous ACT-R/fMRI research it is known that
activation in the problem state region often reflects visual
processing (e.g., Kao & Anderson, personal communication;
Sohn, et al., 2005), which is consistent with the literature on
the posterior parietal cortex (e.g., Culham & Kanwisher,
2001). Figure SA shows activation in the left fusiform gyrus
and the left posterior parietal cortex in the predefined
regions of ACT-R during a simple stimulus-response task
(Kao & Anderson, personal communication). In this task
participants had to press a key in response to the appearance
of a stimulus, without any further processing. As can be
seen, activation was observed in the posterior parietal
cortex. Because in this task no problem states are involved,
the activation in the parietal cortex cannot have been caused
by problem state activity. On this basis, we argue that
activation in ACT-R’s parietal region is not only due to
problem state related actions, but also to visual-spatial
actions. This notion was operationalized by assuming that
ACT-R’s visual-location module (which represents spatial
information and was not mapped onto a brain region before)
and the problem state module both cause activation in the
posterior parietal cortex.

To let our model make new predictions for the problem
state region, we first calculated the influence of the visual
system on the posterior parietal cortex in the data of Kao
and Anderson. Linear regression showed that activation in
the parietal cortex caused by the visual system was best
predicted by taking .57 times the BOLD response of the
fusiform gyrus. Next, we let the model predict activation in
the parietal cortex by adding .57 times the activation of the
visual-location module to the activation of the problem state
module. The result can be seen in Figure 5B, showing a
close fit to the data.

Discussion

In the current study we set out to confirm previous modeling
results (Borst, et al., 2009) with an fMRI study. We used an
existing experiment and cognitive model of the problem
state bottleneck to generate a priori fMRI predictions. These
model predictions turned out to be reasonably good
indicators of activation in the visual, manual, and
declarative memory regions of the brain. It should be noted
that we did neither fit the model to the behavioral data, nor
fit the model to the fMRI data. Usually, fMRI predictions
are fitted to a model by calculating the best fitting a, s, and
m parameters, but we thought it more informative to show
our a priori predictions using default values.

In the posterior parietal cortex, associated with the
problem state module, we found a different pattern than
predicted by the model. To account for the BOLD response
in the posterior parietal cortex, we let activation in this
region depend both on activity of the problem state module,
as is customary, and on the visual-location module, which
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Figure 5. Results of a simple stimulus-response experiment
and new problem state predictions.

was not mapped to a brain area before. While it is in
accordance with the literature to assume visual-spatial
influences in the parietal cortex (e.g., Culham & Kanwisher,
2001), the notion that the visual-location module influences
the parietal cortex is tentative, and will have to be confirmed
by new studies. Thus, while the resulting model outcome
resembles the fMRI data, more experiments will be
necessary to confirm the existence of a problem state
bottleneck in the brain.
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Abstract have clear standards of evaluation, we propose a method for
Existing models of group behavior, in a variety of fields, leave evaluafﬂon of |_m|tat|_onal behavior. _The ScT mode_l was eval-
many open Cha”en-g.esl In particu|ar, existing mpde|s often fo_ uated N StUdIeS W|th human SubjeCtS The Sub]eCtS ranked
cus only on a specific phenomenon (e.g. flocking, pedestrian SCT to be a middle-ground between completely individual

movement), and thus must be switched depending on the goals ; ; w o lilea™
of the simulation. In contrast, we investigate a general cogni- behavior, and perfect synchronized (“soldier-like”) beiba

tive model of simulating group behaviors, based on Festinger's Independently, human subjects gave similar rankings tat sho
Social Comparison Theory (SCT), a prominent social psychol-  clips showing human crowds.

ogy theory. In previous work, we have show SCT covers a

variety of pedestrian movement phenomena. In this paper we : ;

present evidence for SCT’s generality by describing the use BaCkground and Motivation

of the SCT model (using the Soar cognitive architecture) in - gqcig| psychology literature provides several views on the
generation of imitational behavior in loosely-coupled groups.

Since the imitational behavior does not have clear standards of €mergence of crowds and the mechanisms underlying its be-
evaluation, we propose a method for such evaluation. Based on haviors. These views can inspire computational models, but

experiments with human subjects, we show that SCT generates 4re ynfortunately too abstract to be used algorithmicatly.
behavior more in-tune with human crowd behavior. : . .
contrast, computational crowd models tend to be simplistic
Introduction and focus on specific crowd behaviors (e.g, flocking). A

. . . . .. common theme in all of them is the generation of behavior
Models of crowd behavior facilitate analysis and predittio ¢4 aggregation of many local rules of interaction, e.g

of the behavior of groups of people, who are in close geo'(ReynoIds 1987; Yamashita & Umemura, 2003)
graphical or logical states, and are affected by each ather’ ’ ' ' '

presence and actions. Existing models of crowd behavior arg¢ial psychology. A phenomenon observed within crowds,
often simplistic, and typically not tied to specific cogwéti and discovered early in crowd behavior research, is that peo

science theories or data. Moreover, existing computer scP!€ in the crowd act similar to one another, often acting in a
ence models often focus only on a specific phenomenon (e_gpordinated fashion which is achieved with little or no \a&rb

flocking, pedestrian movement), and thus must be switcheommunications. _ _ N
depending on the goals of the simulation. There are several psychological theories that explairied th

We propose a novel model of crowd behavior, based on Sgeoordinated behavior. For example, Le Bon (Le Bon, 1895)
cial Comparison TheorySCT) (Festinger, 1954), a popular emphasized a view c_)f_crowd behaviors as "Collective Mind"
social psychology theory that has been continuously evolv?hat transfo_rm an |n(_j|V|du§I who becomgs a part of the crowd
ing since the 1950s. The key idea in this theory is that hyinto bgcomlng identical with the ot.hers in the crowd. Le Bon
mans, lacking objective means to evaluate their state, confXPlains the homogeneous behavior of the crowd by two pro-
pare themselves to others that are similar. Similarity iT®&C Cesses:Imitation and Contagion Allport, (Allport, 1924)
very loosely defined—indeed, much of the literature on SCTStates that crowd behavior is a product of the behavior ef lik
addresses the exploration of different ways in which humanghinded individuals. According to Allport's theory, indoli-
judge similarity. als become.a part of. the crowq bghawor when they. have a

In this paper we describe the implementation and adapté'_common stimulus” Wlth people inside th_e crowq. Additional
tion of SCT the model in the Soar cognitive architecture. SCTEXPlanation of coordinated crowd behaviors (Tajfel & Turne
was implemented as a secondary parallel thread within Soat986; Reicher, 2001) suggest that this coordination erserge
Whereas normally, operators are proposed (and selected) Bgcause people in the crowd share a common social identity.
Soar based on their suitability for a current goal, in oumage Unlike Allport's individualistic behavior of people in orals,
operators were also proposed based on their suitability fopocial Identity theory combines together the society aspec
SCT. We also briefly discuss mechanisms in the architecturdVith an individual aspects.
necessary for enabling SCT: a memory mechanism and a@omputational models. Work on modeling crowd behav-
exploration mechanism. ior has been carried out in other branches of science, in par-

We evaluate the use of SCT in generation of imitationalticular for modeling and simulation. Reynolds (Reynolds,
behavior and show that SCT generates behavior in-tune witth987) simulated bird flocking using simple, individualddc
human crowd behavior. As the imitational behavior does notules, which interacted to create coherent collective move
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ment. There are only three rules: avoid collision with neigh into groups which, in their judgment, hold opinions which
bors, match velocity with neighbors and stay close to the cenagree with their own*.

ter of gravity of all neighbors. Contagion. One implication of SCT is the formation of ho-
Blue and Adler (Blue & Adler, 2000) used Cellular Au- ggeneous groups. Festinger writes (Festinger, 1954 "Th
tomata (CA) in order to simulate collectwg beha}wors, IPa existence of a discrepancy in a group with respect to opnion
ticular pedestrian movement. The focus is again on local ingy gpjjities will lead to action on the part of members of that
teractions: each simulated pedestrian is controlled byuan a roup to reduce the discrepancy”.
tomaton, which decides on its next action or behavior, baseg To be usable by computerized models, social comparison
on its local neighborhoods. theory must be transformed into a set of algorithms that,
Helbing et al. (Helbing & Molnar, 1997; Helbing, Molnar, \when executed by an agent, will proscribe social compari-
Farkas, & Bolay, 2001) also focused on simulating pedestriason behavior. A first step towards this goal has been take

movement. Each entlty moves according to forces of attracby Newe”' who examined the axioms of social Comparison
tion and repulsion. Pedestrians react both to obstacletoand (Newell, 1990), a subset of which appears here:

other pedestrians.

Yamashita and Umemura (Yamashita & Umemura, 2003}. When lacking objective means for evaluation, agents com-
take a different approach in simulating group panic behavio ~Pare their state features to those of others.
While inspired by Reynolds’ model, they propose a mode Agents compare themselves to those who are more similar;
where each simulated person moves using three instincts: An comparison increases with similarity '
escape instinct, a group instinct and an imitational irs$tin '
According to Yamashita and Umemura, when a person is i8. Agents take steps to reduce differences to the objects of
panic, she acts based on these instincts, simplifying the de  comparison.
sion making process. _ o

Our work differs from those described above in that we aim Neéwell argued that these axioms are not social, in the sense
to develop a general cognitive model of simulating group peOf requiring active interaction between the agents. Rather
haviors, one based on psychology. We have already showljey utilize uni-directional observations and actions bg t
that our model covers pedestrian movement phenomena §8MParing agents. _ _ .
was presented in our previous work (Fridman & Kaminka, Ve turn these abstract axioms into a concrete algorithm.
2007), together with initial results on imitational betavi | "€ algorithm is described in (Fridman & Kaminka, 2007),
Here, we present additional evidence for such generality bnd we provide only a brief description here. Each observed
describing implementation in Soar, and evaluation of SCT29ent is assumed to be modeled by a set of features and their
model on imitational behavior in loosely-coupled groupg W associated values. For each such agent, we calculate a simi-

discuss the full set of results, and the evaluation mettazgol larity values(x), which measures the similarity between the
in detail. observed agent and the agent carrying out the comparison

process. The agent with the highest such value is selected.
A Model of Social Comparison If its similarity is between given maximum and minimum

_ . values, then this triggers actions by the comparing agent to
Our research question deals with the development of a comeduce the discrepancy:

puterized cognitive model which, when executed individual
by many agents, will cause them to behave as humans doln For each known agertcalculate similaritys(x)
groups and crowds.

We took Festinger’s social comparison theory (Festingerz,' ¢« argmax S(x), such thanin < S(C) < Smax
1954) as inspiration for the social skills necessary for oug. D «— differences between me and agent
agent. According to social comparison theory, people tend
to compare their behavior with others that are most like thenft- Apply actions to minimize differences .
To be more specific, when lacking objective means for ap- .
praisal of their opinions and capabilities, people compare SCT Implementation in Soar
their opinions and capabilities to those of others thatmme s We implemented SCT in the Soar cognitive architecture
ilar to them. They then attempt to correct any differencegNewell, 1990). Soar was connected to the GameBots virtual

found. environment (Kaminka et al., 2002). Here, multiple agents,
We believe that social comparison theory may account foeach controlled by a separate Soar process (each executing
some characteristics of crowd behavior: SCT) can interact with each other in a dynamic, complex, 3D

virtual world (see Figure 1).
Imitation.  Using social comparison, people may adopt oth- A detailed discussion of Soar’s role as a cognitive architec
ers’ behaviors. Festinger notes (Festinger, 1954): "Thedr ture is beyond the scope of this paper. We provide a very brief
for self evaluation is a force acting on persons to belong taverview here, and refer the interested reader to (Newell,
groups, to associate with others. People, then, tend to movE990) for additional details.
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Figure 1:Soar agents in the GameBots environment. Each
agent has limited field of view and range, and may move
about and turn.

Figure 2: The Soar sense-think-act decision cycle, SCT

Soar has two components: A graph-structured workingProcess highlighted.
memory, and a set of user-defined production rules that test
and modify this memory. Efficient algorithms maintain the for Soar’s decision cycle: At every cycle, for each observed
working memory by executing rules that match existing con-agent and for each difference, the SCT process would propose
tents. All the agent’'s knowledge, sensor readings, and dean operator that would minimize the difference. Then, a set
cisions are recorded in the working memory. Soar operatesf preference rules is triggered that ranks the proposalsta
in a classic sense-think-act cycle, which includes a dewisi on feature weight. Additional rules prefer the most similar
phase in which all relevant knowledge is brought to bear taagent (that is still not sufficiently similar). Thus at theden
propose, and then select, eperator, that will then carry out  only one SCT operator is supported.
deliberate mental (and sometimes physical) actions. Orcet Here additional cognitive components became necessary.
operator finishes its actions, it is automatically de-del#c Suppose an agedt decided to turn towards the same angle
(terminated), and the cycle repeats. Unlike simple producas an agent that is next to it. Due to the limited field-of-view
tion rules, whose effects on working memory are temporarypf X, it would lose track ofY once it makes the turn. From
operator-induced the actions of rule firings on working mem-+hat point on, it could no longer keep track ¥f to mini-
ory (and in turn, on physical actions) are persistent, eftem a mize additional differences. This would cause it to become
the operator has been de-selected. Overall, a Soar agent’s lpverly reactive, turning about immediately to séélagain,
havior is the result of the sequential selection of opesator or to select a different operator altogether (now thatould
each performing an action on the environment and/or internano longer be imitated).
memory. We thus found it necessary to utilize two mechanisms: (i)
For our experiments, several basic task-oriented operatom memory mechanism that keeps track of the whereabouts
were implemented, to allow the agents to move about, turn toef agents, once seen; and (ii) an exploration mechanism that
wards each other, measure distances to others, etc. Thus oosecasionally would turn towards remembered agents, to pro-
thread of control, always running, is in control of the agent vide an update on their state (for the purpose of comparison)
actions towards whatever tasks it was given. Both of these mechanisms (memory and exploration) are of
SCT was implemented as a secondary parallel threadourse present in many cognitive architectures, and are not
within Soar (Figure 2). Whereas normally, operators are pronecessarily linked to SCT. We thus leave discussion of such
posed (and selected) by Soar based on their suitability for mechanisms outside of this paper.
current goal (e.g., through means-end analysis), in ountage ] o .
operators were also proposed based on their suitability for Modeling Imitational Behavior
SCT. In other words, at every cycle, a Soar agent would conAn attractive feature of social comparison is its hypotbedi
sider operators that advance it towards its goal. In our imprevalence in human group behavior, i.e., its generalityssc
plementation, it would also consider operators that seek tdifferent behaviors. Indeed, we believe that the SCT model
minimize perceived differences to other agents. we present in this paper is sufficiently general to account fo
Thus SCT-proposed operators compete with the taska wide variety of group behaviors. This is in contrast to many
oriented operators for control of the agent. This may ap-existing computational models, that typically focus on-spe
pear to contradict Festinger’'s theorizing that social camp cific tasks.
ison comes into play only when people are at an impasse. In previous work (Fridman & Kaminka, 2007) we eval-
However, this is not the case. By setting Soar’s decisioft pre uated the use of the SCT model in generation of pedes-
erences to prefer SCT-proposed operators only when no taskian movement phenomena like bidirectional movement and
oriented operators are available, one gets the behavier prenovement in groups with and without obstacles. The SCT
dicted by Festinger's theory. Further exploration of tsislie  model accounts for group formation in pedestrians that are
is beyond the scope of this paper. inter-related, a phenomenon not addressed by previous mod-
The SCT thread proposed operators by following the algoels. And where previous techniques apply, SCT shows im-
rithm described previously, though in a way that is adoptedproved results.
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Here, we discuss in detail the implementation in Soar, and We propose a method for evaluation of imitational behav-
the evaluation methodology, providing additional evidenc ior. We propose a questionnaire composed of general ques-
for such generality by describing the application of the SCTtions and specific tasks related questions. The generat ques
model to the problem of generating imitational behaviors intions can be used as a common method for evaluation of all
loosely-coupled groups. Unlike individual imitation, whe kinds of imitational behaviors. We rely on experiments with
one agent imitates a role model, crowd imitational behaviohuman subjects, which judged the human crowd behavior and
spreads across a group of individuals who dynamically sethe resulting SCT behavior in comparison to completely-indi
lect role models for imitation, from the level of observable vidual behavior (i.e., arbitrary decisions by each agemnte+
actions to the level of unobservable internal mental attitu  pendent of its peers), and to completely synchronized behav
(e.g., goals). Here, imitation occurs more loosely, as the r ior (i.e., all agents act in complete unison).
models do not necessarily intend to play their role, and in- The first hypothesis underlying the experiments was that
deed may not even know that they are being imitated. Alsogroups controlled by SCT would generate behavior that
the imitators potentially switch their role-model targétsm  would be ranked somewhere in-between the individual and
one moment to the next. Psychology literature describds sugerfect-coordination models, i.e., that SCT would germerat
imitational behavior as one of the keystones of crowd behavbehavior that would be perceived as coordinated, but net per
iors (Le Bon, 1895). fectly so. Another hypothesis is that human crowd behavior

In order to simulate imitational behavior we used positionwould also be ranked somewhere in-between the individual
and direction as the agents’ feature set. For each observeédd perfect-coordinated behaviors.
agent and for every difference found, the SCT process pro- To examine the first hypothesis, we created three screen-
poses a corrective operator to be performed in order to mineapture movies of 11 Soar agents in action. All movies were
imize the difference in the selected feature. In this tas&, t shot from the same point of view, and showed the agents in
corrective operators were ‘'move-to’ (minimizing distatoe the same environment. In all screen-capture movies there is
the observed agent, correcting position differences)amd-  one blue agent that stands in front and turns up tol&fd or
to’ (imitating angle of the observed agent). right. All others are red agents that act according to one of

In addition to the proposed SCT operators, Soar also prothe models.
poses operators based on their suitability for the curreat,g In one movie ipdividual), the red agents act completely
and based on an exploration mechanism which proposes optdependently of each other, randomly choosing an angle and
erators seeking new information. In this task, goal opesato turning to it. In anotherynisor), the red agents act in almost
were 'turn-to’ (a random angle); the exploration mechanismperfect coordination, turning towards the same angle as the
operators turned towards previously seen agents. blue agent almost instantaneously (small timing diffeesnc

We used Soar preference rules to rank the feature weight§sult from asynchronous responses of the simulated emviro
such that the position feature gets higher priority thapair Ment). Finally, in thesSCTmovie, the red agents act according
tion. This means that a closest agent is considered to be mof@ our model as described above.
similar, however the chosen feature for correction is direc  These experiments were carried out using 12 subjects
tion. TheSnax value was unbounded, which means that therd@ges: 18-40, mean: 28; male: 6; additional 4 subjects
is no such thing as too similar. In our case Soar can prodropped due to technical reasons). Each subject was given
pose corrective operator with value equal to zero if there i§ brief description of the appearance of the environment and
no correction to make with respect to the observed agent. Wagents, sometimes aided by a snapshot from a movie (e.g., as
used additional Soar preference rules to give higher pyiori in Figure 1). The subjects were told that the purpose of the
to exploration mechanism operators than to goal operator§XPeriment was to evaluate the use of perception models em-
Thus, each agent prefers the SCT operators (‘turn to’) angedded in the agents; that there was a red dot—visible to the
in the case when there are no seen agents (i.e. there is Rg€nts but not to the subjects—that moves about on the walls
proposed SCT turn-to operator) an agent will prefer the exsurrounding the group. The agents’ goal is to individuadly |
ploration mechanism operators, and only afterwards the go&ate this dot, and then track it in place by turning arounde Th
operators. The resulting simulated behavior has the agen&rpose of the cover story was to focus the attention of the
standing in their initial locations, turning to some diieator ~ Subjects away from group behavior and imitation, so as to not

doing nothing. bias the results. After the description, the movies werevsho
to the subject.
Evaluation of imitational behavior After each movie, the subjects were asked to fill a short

. _questionnaire (described below) based on what they saw.
We conducted experiments to evaluate whether SCT can ieach movie was shown only once. The order of presentation
deed generalize to account for imitational behavior in ggu  of movies was randomly selected for each subject, to control

Unlike the pedestrian movement domain, where clear me&or learning and order effects. The questionnaire inclutied
sures are available for objective measurement of the ssiccef|lowing questions:

of a model (e.g., flow, lane changes), imitational behavior
does not have clear standards of evaluation. 1. If there is only one red dot in the room, to what degree did
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all agents see it? (1 - nobody saw the red dot; 6 - all agents The results clearly demonstrate that the SCT model lies
saw it) in between the individual and perfect-unison model. While
in some questions it appears to be somewhat closer to the
2. Towhat degree were the movements of the agents randonifdividual model, it is significantly different from it at ¢h
(1 - not random at all; 6 - very random) a = 0.05 significance level (t-test, one-tailed).
. Figure 4(a) shows the results for the question on the num-
3. Towhat degree was there cooperation be_tween the agentggr of leaders. The median result for the individual was 11
(1 - no cooperation at all; 6 - full cooperation) (i.e., every agent is a leader, or in other words, no leader).
4. To what degree was there agreement between the agenfcf?)r the unison model, the median result. was 1. _For the SCT
(1 - no agreement at all; 6 - full agreement) model, the m_edlan result was 3. Iq this question the S_CT
model result is very close to the Unison model. According

5. To what degree were the agents coordinated in terms of tH8 t-test (one-tailed) the SCT model significantly differsmh

direction of their movements? (1 -no coordination at all; 6the Individual model ¢ = 0.02). However, in comparison to
- fully coordinated) Unison model there is no significance fourp 0.3).

We conducted an additional experiment, in which static
6. How quickly did the agents find the red dot? (1 - dot notimages—snapshots from the movies—were shown to sub-
found at all; 6 - immediately found) jects who were then asked how many red dots were present,
based on the number of different directions in which agents
7. To what degree were the agents related to each other? (lyere watching. The results of this experiment are summa-
no relation at all; 6 - tight relation) rized in Figure 4(b). Again the categories in the X-axis eerr
spond to question given to the subjects. The Y-axis measures
8. Do you see any leaders? If so, how many? (1-11) (1- ONfhe average of median results that belong to each model.

leader; 11 - all agents are leaders, i.e., no leader). Again the results demonstrate that the SCT model lies in

In this experiment, the subjects were asked to grade thgfa_tween the individual apd .pgrfect—unison model and it sig-
movies on an ordinal scale of 1-6, with 1 being a low s,coremf'c"’m.tly differs from the mdmdgal mode(=0.011, t-test,
(typically associated with more individual behavior), abd one-ta!led) and from perfect-unison modpk( 0.012, t-test,
being a high score (typically associated with perfect umiso one-tailed).

In order to keep consistency in presentation of results, the
scale of the second question (Non-Random) was reverse *
The results of the last question (Number of leaders) are pre
sented separately due to inconsistency in scale with othe * 8
guestions.

‘El Individual BSCT OUnison

O Individual ®SCT DUnison‘

S

Median # Leaders

Agents results

8
3
4
2
0

In general, the responses to the questions in this expetime
have placed SCT between the individual and unison models. )
Results are summarized in Figure 3(a) and 3(b). The queé%)re':ﬁ?ggg{ug nL%?/?eesr_s n (b) Screen snapshot results.
tions in Figure 3(a) are associated with agents’ performanc

on a given task. In the presented questionnaire the number of Figure 4: Additional results for the simulated agents.
guestions are 1, 3, 4 and 6. Figure 3(b) refers to more general
guestions (i.e. the same gquestions that were used in hum&rlnu
crowd movie). In questionnaire the relevant numbers of guesAnother hypothesis underlying the experiments is that luma
tions are 2, 5, and 7. The categories in the X-axis corresponegrowd behavior would also be ranked somewhere in-between
to questions given to the subjects. The Y-axis measures th#e individual and unison models. To examine this, we search
median result. Each bar correspond to compared model arfdr a human crowd movie where individuals perform the same
as explained above we compare SCT model to Individual angction as in simulated agents movies. We used a news clip
Unison models. movie which shows people, grouped together, standing and
waiting for some event to occur. The only action they perform
in the movie is to turn occasionally.

This experiment was carried out using 12 subjects differ-
ent than in the screen-capture movies experiments. Eaeh sub
ject, after viewing a human crowd movie (Figure 5(a)) was
asked to fill the same questionnaire as in previous experi-
ments. However, since in the human crowd movie there was
no cover story about red dot, there were some irrelevantques

# Leaders # Dots

man crowd experiment

‘ O lndividual ESCT OUnison ‘

Median Grade

Median Grade

7
6
5
4
3
2
1
o

Cooperation?  Agreement? Dot see? Dot find?
Relationship? ~ Coordinaled?  Non-Random?

(@) (b)

Figure 3: Results of questionnaire on agents performance.
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tions that were dropped out. The remaining questions arbavior. The subjects ranked SCT to be a middle-ground be-
more general and not tied to a specific task. tween completely individual behavior, and perfect synehro

! nized (“soldier-like”) behavior. Independently, humarbsu
jects gave similar rankings to a short news clip showing hu-
man crowds.

Median Grade
o -~ N o A o o
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Abstract

This paper brings together work in modeling episodic
memory and reinforcement learning. We demonstrate that is
possible to learn to use episodic memory retrievals while
simultaneously learning to act in an external environment. In
a series of three experiments we investigate learning what to
retrieve from episodic memory and when to retrieve it,
learning how to use temporal episodic memory retrievals, and
learning how to build cues that are the conjunctions of
multiple features. Our empirical results demonstrate that it is
computationally feasible to learn to use episodic memory in
all three experiments, and furthermore, that learning to use
internal  episodic memory accomplishes tasks that
reinforcement learning alone does not. These experiments
also expose some important interactions that arise between
reinforcement learning and episodic memory.

Keywords: Artificial Intelligence; Cognitive Architecture;
Episodic Memory; Intelligent Agents; Reinforcement
Learning.

Introduction

In this paper, we study possible mechanisms for learning to
use the retrieval of knowledge from episodic memory. This
unifies two important related areas of research in cognitive
modeling. First, it extends prior work on the use of
declarative memories in cognitive architecture where
knowledge is accessed from declarative memories via
deliberate and fixed cued retrievals (Wang & Laird, 2006;
Anderson, 2007; Nuxoll & Laird, 2007) by exploring
mechanisms for learning to use both simple and conjunctive
cues. Second, it extends work on using reinforcement
learning (RL) (Sutton & Barto, 1998) to learn not just
control knowledge for external actions, but also to learn to
control access to internal memories.

Earlier work has investigated increasing the space of
problems applicable to RL algorithms by including internal
memory mechanisms that can be deliberately controlled:
Littman (1994) developed an RL agent that learned to
toggle internal memory bits; Pearson et al. (2007) showed
that an RL agent could learn to use a simple symbolic long-
term memory; and Zilli & Hasselmo (2008) developed a
system that learned to use both an internal short-term
memory and an internal spatial episodic memory, which
could store and retrieve symbols corresponding to locations
in the environment. All three cases demonstrated a
functional advantage from learning to use memory.

Our work significantly extends these previous studies in
four ways: first, our representation is fully relational, which
complicates both the structure of episodic memory and RL;
second, our episodic memory system automatically captures
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all aspects of experience; third, our system learns not only
when to access episodic memory, but also learns
conjunctive cues and when to use them; and fourth, it takes
advantage of the temporal structure of episodic memory by
learning to advance through episodic memory when it is
useful (this property is also shared by the Zilli & Hasselmo
system, but for simpler task and episodic memory
representations).

Our studies are pursued within a specific cognitive
architecture, namely Soar (Laird, 2008), which incorporates
all of the required components: perceptual and motor
systems for interacting with external environments, an
internal short-term memory, a long-term episodic memory,
an RL mechanism, and a decision procedure that selects
both internal and external actions. In comparison, ACT-R
(Anderson, 2007) has many similar components but does
not have an episodic memory. Its long-term declarative
memory stores only individual chunks, and it does not store
episodes that include the complete current state of the
system. To do so would require storing the contents of all
ACT-R’s buffers as a unitary structure, as well as the ability
to retrieve and access them, without having the retrieved
values being confused with the current values of those
buffers. Moreover, ACT-R’s declarative memory does not
inherently encode the temporal structure of episodic
memory, where temporally consecutive memories can be
recalled (Tulving, 1983). While the work presented in this
paper is specific to learning to use an episodic memory,
similar work could be pursued in the context of ACT-R by
learning to use its declarative memory mechanism.
However, we are unaware of existing work in that area, and
even if there were, it would fail to engage the same issues
that arise with episodic memory.

Background

Soar includes an episodic memory that maintains a complete
history of experience (Nuxoll & Laird, 2007), implemented
so as to support efficient memory storage and retrieval
(Derbinsky & Laird, 2009). “Snapshots” of Soar’s working
memory, which is a relational graph structure, are
automatically stored in episodic memory so that learning is
not required to control how and when information is stored.
To retrieve an episode, a cue is created in working
memory by Soar’s procedural knowledge, which is encoded
as rules. A cue is a relational structure that describes a
subset of working memory elements that may exist in an
episode. The cue is compared to the stored episodes, and the
episode that best matches the cue is retrieved to working
memory. If there are multiple episodes with the same degree
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of match, the most recent of those episodes is retrieved.
Once an episode is retrieved to working memory, other
knowledge (such as procedural knowledge) can access it.

After performing a cue-based retrieval, the agent can use
the unique temporal structure of episodic memory and
retrieve the next episode, providing a mechanism for the
agent to move forward through its memories, recalling
sequences of experiences, in addition to specific instances.

Although it is straightforward to create agents that use
episodic memory for a variety of purposes (Nuxoll, 2007),
this requires endowing the agent with knowledge as to when
to access episodic memory and what structures should be
used for cueing retrievals. In this research, we study the
possibility of learning when to use episodic memory as well
as learning which cues to use from experience using Soar’s
RL mechanism. Soar uses a type of RL called Q-Learning
(Nason & Laird, 2005). Q-Learning learns the value for
potential actions using temporal-difference updates of
reward (Sutton & Barto, 1998) and in Soar this can be used
to learn to control external actions as well as internal actions
that retrieve information from episodic memory.

Well World

In order to explore how an agent might learn to use an
internal episodic memory, we constructed several tasks
within a domain we call “Well World.” The domain is
simple enough to be tractable for an RL agent, but rich
enough such that episodic memory can potentially improve
performance. The goal in Well World is to be safe when not
thirsty, and to quench thirst as soon as possible when thirsty.

In Well World, the agent moves between objects and can
consume resources, such as water or shelter if they are
present. The agent perceives the object that is present at its
current location, features of the object (including resources
that are present), and adjacent objects that it can move to.

Figure 1 shows the base Well World environment. There
are two wells which can provide the water resource (“r:
water” in the Figure). Well 1 is currently empty, while well
2 has water available. There is also a shelter, which allows
the agent to feel safe when the agent is not thirsty.

Well 1

r: water,
empty

Well 2

r: water,
avail.

Shelter
r: safety,
avail.

Figure 1: Objects, resources, and adjacency in Well World.

An agent in Well World possesses two internal drives:
thirst and safety. When its thirst is quenched, an agent’s
thirst drive is 0; on every time step after it has been
quenched, the thirst drive is incremented by a small amount.
After passing a threshold, the agent is thirsty until it
quenches its thirst, which requires that the agent move to a
well object that contains water and consume water from it.

Only one well contains water at any given time; once
water is consumed from a well, it is empty and water
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becomes available in the other well. In Figure 1, well 2 has
water available while well 1 does not. Once the water at
well 2 is consumed, well 2 will be empty while well 1 will
have water available, and so on.

The agent’s other internal drive is to feel safe. The agent
satisfies this drive when not thirsty or when it consumes the
safety resource from the shelter (which is always available).

Two of Well World’s characteristics make it challenging
for RL: the agent can only perceive the status of the object
in its current location, and wells alternate in containing
water and being empty. To perform optimally, an agent
must maintain a memory of the environment (the status of
the wells) — something a conventional RL agent lacks.

Reinforcement in Well World

The reward signal used by an RL agent in Well World is
determined by the state of the agent’s internal drives, as
well as changes in the states of those drives. Reinforcement
in Well World is internally calculated by the agent based on
its internal drives, rather than determined by the
environment as in a conventional RL setting.

The most important aspects of the agent’s reward
structure are that: there is a cost for taking external actions
and it is greater than the cost of internal actions; there is a
reward for not staying at the wells when the agent is not
thirsty; there is a significant reward for performing the
action (consuming water when thirsty) that is made possible
by the episodic retrieval; and there is no explicit reward for
using episodic memory, rather such control knowledge must
be learned while seeking to satisfy thirst. The reward values
are as follows. External actions result in -1 reward, while
internal actions result in -0.1 reward. On every time step
that the agent is thirsty, it receives -2. On every time step
that the agent is not thirsty and consumes the safety
resource, it receives +2. Finally, the agent receives +8 for
satisfying its thirst. Concurrent rewards (e.g. the agent is
thirsty and takes an external action) are summed together.

Experiments in Well World

Within the Well World domain, we developed a suite of
three experiments to evaluate various strategies for using
episodic memory. In the first experiment, we tested an
agent’s ability to learn to select a single cue for episodic
memory retrieval. The second experiment tested an agent’s
ability to learn to use the temporal aspects of episodic
memory retrievals. The third experiment investigated the
agent’s ability to create a conjunctive cue (i.e. a cue that
contains more than one feature). This set of experiments
investigated all of the ways retrievals can be used to access
Soar’s episodic memory. Before discussing the experiments
and results, we present the details of our agent.

Agent Design and Implementation

To explore learning to use episodic memory, we created a
Soar agent. In our agent, procedural knowledge determines
what actions can be taken in the external environment as
well as what actions can be taken to access the internal
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episodic memory. On each time step of the environment, the
procedural knowledge proposes applicable actions based on
the agent’s current perception of the environment and its
internal state. It proposes consuming resources that are
present, and it proposes moving to any adjacent objects.
There are two internal actions that it can propose for
controlling episodic memory (depending on the experiment,
as described below): create a cue to initiate a retrieval, or if
there has been a retrieval, advance episodic memory
forward in time. In experiments where the agent must learn
which retrieval cue to use, multiple retrieval actions are
proposed, one for each cue.

The decision procedure selects actions probabilistically,
based on what has been learned by Q-learning. A central
problem in RL is the exploitation vs. exploration trade-off
(Sutton & Barto, 1998) - an agent must balance between
choosing actions based on what it has already learned
(exploitation), with choosing other actions to gain more
knowledge about the effects of those actions (exploration).
Our agent uses a linearly decaying exploration rate; initially,
the agent selects a random action half of the time and the
other half selects actions according to their learned values.
As time goes on, the agent takes random actions less often.

Although the Well World is presented in terms of
“water,” “thirst,” “empty,” and “wells,” the agent does not
know the semantics of these terms. To the agent, consuming
water is simply a possible action that it can take; it must
learn that it is good to consume water when thirsty, that
water is available at a particular well, and so on.

In contrast to many learning systems that are “reset” after
a performance or learning trial, our agent has a continual
existence and once it begins acting in the environment, it
continues to move about Well World, performing actions,
until the end of the experiment.

Instead of using episodic memory, the agent could have
maintained task-specific events in working memory (such as
which well the agent last consumed). This memory would
provide the agent with sufficient knowledge to learn to act
in the domain. However, this approach requires task-specific
background knowledge while our approach is completely
general and applies to any task without additional task-
specific knowledge.

Results presented in this paper are the average of 250
trials, were smoothed with 4253 Hanning, and normalized
so that an average reward of 0 per action is optimal.

Learning to Retrieve Episodic Memories

The first experiment tests the basic behavior of using RL to
learn to use an internal episodic memory, and its purpose is
to determine whether an RL agent can learn what to retrieve
and when retrieval is appropriate. In this experiment, an
agent must learn to retrieve information from memory using
a single cue, where the retrieved episode provides sufficient
information to perform the task. In one condition, there is
only one cue available to the agent to use for retrieval; in
another, the agent selects from six possible cues, only one of
which is useful.
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In Well World (Fig. 1), the optimal policy (where a policy
is a mapping of every state, or situation, to an action) is for
the agent to move to the shelter and consume the safety
resource when it is not thirsty, and to move to the well that
contains water and consume water there when it is thirsty.
As agents are unable to perceive which well contains water,
an agent that does not possess an internal memory does not
know which well it must move to and wastes time while
trying to find available water. An agent that possesses an
internal memory, however, can retrieve the episode for the
last visited well.

Figure 2 shows the results under the following conditions:
only the correct cue is available to be learned (labeled “No
distracters”); the correct cue and five distracters are
available to be learned (“5 distracters”); and a baseline
condition in which episodic memory is lesioned and all
retrievals fail (“Lesioned ep. mem.”).
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Figure 2: Performances of agents learning to retrieve

episodic memories.

When only a single cue is available for retrieval, the agent
quickly learns both to act in the environment and to use its
internal memory so as to receive the maximum amount of
possible reward (it follows the optimal policy). When
distracter cues are present, the agent learns more slowly but
also converges to the optimal policy. These results indicate
that the agent can learn to use its internal memory while
simultaneously interacting with its environment.

Learning to Retrieve What Happened Next

A unique aspect of episodic memory is that events are
linked and ordered temporally. In Soar’s episodic memory,
memory retrievals can be controlled temporally by
advancing to the next (or previous) memory after
performing a cue-based retrieval, providing a primitive
envisioning or planning capability where the agent can use
its prior history to predict potential future situations.
Through RL, the system has the potential of learning when
and how to perform such primitive planning.

In the previous experiment, agents retrieved episodic
memories of the last time that they had perceived the water
resource, which was sufficient information to determine
which well to move to in order to find water. An alternative
strategy, explored in this experiment, is to retrieve a
situation that closely resembles the agent’s current situation
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and then advance to the next memory to remember what the
agent did the last time that it was in a similar situation.

In this experiment, the agent has available the normal
actions in the environment (moving and consuming
resources). It also has two internal actions available to it: a
cue-based episodic memory retrieval, which uses structures
from its current perceptual state to retrieve the most recent
situation that most closely resembled its current situation;
and an action (called advance) that retrieves the next
episode (the episode that was stored after the episode most
recently retrieved). Thus, the agent must learn when to do a
cue-based retrieval and when to advance its retrieval, and
these actions are always competing with the other actions.

For this task, the optimal policy for the agent when it is
not thirsty is to move to the shelter and consume the safety
resource. When it becomes thirsty, the optimal policy is to
perform a retrieval cued by its current state, which results in
the agent remembering the last time it was thirsty at the
shelter. The next step is to perform an advance retrieval,
which results in the agent remembering where it moved to
after it was last thirsty at the shelter. This is followed by
moving to the other well, where the agent will find water, as
the well that it previously visited will be empty.

An important characteristic of this task is that the agent
must learn to use its memory while simultaneously learning
to act in the world. The best policy for memory usage
depends on the agent’s prior actions in the environment; if
the agent does not visit and consume resources in the
appropriate order (i.e. follow the optimal policy for external
actions), then the agent is not guaranteed to gain useful
information from internal memory retrievals.

The performances of the agent under three conditions are
plotted in Figure 3: using a fixed policy to automatically
advance episodic memory after a cue-based retrieval,
making only the initial cue-based retrieval open to learning;
learning when to select both retrieval and advance actions;
and a baseline comparison where episodic memory is
lesioned.

There are several features of the results in Figure 3 worth
further discussion. First, the performances of both agents
that use episodic memory are very similar. This was
unexpected. The agent that learns to use the temporal action
has a larger action space, which implies that it would
initially perform worse than the agent that had a fixed policy
to advance to the next memory after retrieving. Second, the
agents reach asymptotic performance after about 4,500
actions, but do not reach the optimal level of performance.
Third, while the agents are exploring while selecting actions
(until the 4,000 action), the agent that deliberately selects
actions outperforms the agent that has a fixed policy to
advance after retrieving. Fourth, there is a dramatic
improvement in performance just after exploration ends.
The agent retrieves episodes from memory that are similar
to its current situation, and uses its past actions to determine
how to act in the present situation. If the agent takes an
exploratory action when it is thirsty or is not at the shelter
when it becomes thirsty because of an exploratory action,
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then the behavior that results is no longer correct. In effect,
although exploration of the problem space is necessary for
the agent to learn, it hinders the agent’s performance in the
task and once there is no exploration the agent can perform
significantly better.
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Figure 3: Performances of agents using temporal control
of episodic memory after retrieval.

All four of these phenomena are explained by the
difficulty of the learning problem that was identified above -
for the agent to learn the optimal policy for using its internal
memory, it must also learn a near optimal policy for acting
in the environment. The learning problem is partially
observable, in that the effects of the agent’s memory actions
depend on the history of the agent’s actions in the
environment, but the agent cannot perceive that history. The
agent is faced with a conundrum: it must learn how to use
its memory while settling on a good policy in the
environment, but it must also settle on a good policy in the
environment without knowing how to use its memory. Often
the agent is successful in learning to simultaneously control
both memory and external action, but occasionally the agent
is unable to converge to the best policy.

The asymptotic behavior of the agent is very near to
optimal, which demonstrates that the agent still learns to
perform relatively well in the environment. In fact, in all
trials the agent converged to one of two policies: the optimal
policy, or a policy in which the agent uses episodic memory
retrievals to toggle a conceptual bit, as in the agents in
Littman (1994) and Pearson et al. (2007). In this second
policy, when the agent becomes thirsty, it immediately
moves to one of the wells (the same well every time). If the
well contains water, it consumes it; if not, it performs a
retrieval and moves back to the shelter. At the shelter, the
agent now knows that it has performed a retrieval and
instead of moving to the same well again (the one that it just
visited and knows is empty), it moves to the other well and
consumes water there. Essentially, the agent learns which
well to move to when it is thirsty based on whether a
retrieval has been performed, and not based on the contents
of what was retrieved.

From Figure 3 it is also clear that the agent requires many
more actions before converging to near-optimal behavior in
comparison with the agents from the previous experiment.
For the agent to converge to the optimal control policy, it
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must explore significantly longer than in the previous
experiment; however, as noted above, this exploration can
hinder the agent’s performance in the task as well. We
investigated how different exploration policies affected the
agent’s convergence to the optimal policy and the results are
presented in Table 1. In all three cases, the rate of random
action selection decays linearly over time. Table 1 presents
data gathered when random action selection decayed over
500 steps, 5,000, and 50,000. These results suggest that
there are important interactions between the exploration rate
decay and learning that need to be pursued in future work.

Table 1: Percentage of trials that converged to optimal
memory control policy when using temporal control for
different periods of exploration.

Condition 500 5,000 50,000
Fixed 26% 60% 25%
Deliberate 36% 71% 38%

Learning To Construct a Retrieval Cue

In the first experiment, one condition involved the agent
learning to select between multiple cues when retrieving
from memory. In the second experiment, the agent used
cues with more than one feature (multiple features of its
current state) in order to retrieve from memory. The purpose
of this third experiment is to investigate whether an agent
can learn to select multiple features to use as cue,
combining aspects of both previous experiments.

In order to test this capability, it was necessary to extend
the base Well World configuration so that there were more
wells and more features that could be used for retrieval. A
third well was added to the environment, and a color feature
was added to all objects; the modified environment is shown
in Figure 4. As in the base environment, only wells 1 and 2
ever contain water, and they continue to alternate between
full and empty as before. Well 3 is always empty and never
contains water; it was added to the environment to serve as
a distracter to the agent when it performs a cue-based
retrieval with features not present on the other two wells.

Well 3

r: water,empty
c:red

Well 1

r: water, empty
c: blue

Well 2

r: water, avail.
c: blue

Shelter

r: safety, avail.
c: blue

Figure 4: Well World modified with an additional well
and an additional feature, color.

In this task, the optimal policy when the agent is not
thirsty is still to navigate to the shelter and consume safety.
When thirsty, the agent must construct a cue containing

40

features corresponding to the two wells that can contain
water in order to determine which well it visited last; these
features are “resource: water” and “color: blue”. After
retrieving the memory of the last blue well that it visited, the
agent must then navigate to the other blue well and consume
water there to satisfy its thirst.

If the agent constructs a cue with some other combination
of features, the result of its retrieval depends on its previous
behavior — but the retrieved episode will not provide
sufficient information for the agent to determine which well
to visit next, because the agent must always visit the red
well before visiting the shelter. As Soar’s episodic memory
mechanism is biased towards more recent episodes when
multiple memories are perfect matches to the cue, building a
cue that contains only “resource: water” or “color: blue”
will not result in the agent remembering the last well that it
visited (assuming that it has moved back to the shelter).
Color: blue will lead to the retrieval of the shelter, while
retrieval of resource: water will lead to retrieval of well 3.

The performances of the agent that constructs retrieval
cues in the modified Well World are shown in Figure 5 for
three conditions: learning to construct a cue from the two
correct possibilities (“No distracters”), learning to construct
a cue when two distracters are present, and a baseline where
episodic memory is lesioned. In the two conditions, there
are different sets of features with which an agent may
construct the cue: the first has only the two correct features
available (resource: water, and color: blue), while the other
also has their complements (resource: water/shelter, and
color: blue/red). Cues can contain any combination of
features so the agent must learn to construct the cue from
the correct combination in both cases.

0.0
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13 w2 distracters
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Figure 5: Constructing cues with more than one feature in
order to retrieve from episodic memory.

The agent converges to the optimal policy under both
conditions, more slowly when two distracter features are
present, as expected. These results indicate that an agent can
learn to build conjunctive cues from raw features, and use
them in a task to retrieve from episodic memory.

Discussion and Conclusions

Although in all three experiments the agent is faced with
learning to use its memory while acting in the environment
(and thus affecting what information will be retrieved from
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memory in the future), the interaction of memory and action
in the environment is significantly more intertwined in the
second experiment. There, the agent’s past actions directly
impact the usefulness of information retrieved from episodic
memory. In all experiments, the agent learns very early on
to consume safety when it is not thirsty, and to immediately
move to the shelter as soon as it is not thirsty. In the first
and third experiments, this means that when the agent
retrieves an episode from memory using features of a well
as a cue, it will typically be the well that it last consumed
water from. However, in the second experiment, the agent is
retrieving memories of the first action that it took to quench
its thirst, and not the memory of when it finally managed to
quench it. It not only takes longer to learn how to best act in
this setting, but the eventual result is that sometimes instead
of converging to the optimal policy it instead converges to a
local maximum in the policy space. One issue for future
research that we identified in the second experiment is that
our approach lacks task-independent strategies for
controlling exploration.

In all experiments, the cost of an internal action is less
than the cost of external action in the environment. The
rationale behind this decision is that it takes significantly
more time to act in the world than it does to perform an
internal action. Although internal rewards are structured in
this way, we have gathered results (not presented here in the
interest of space) that demonstrate that this feature of our
reward structure does not affect the eventual learned
behaviors, but does serve to speed up the learning process
by encouraging the selection of internal actions initially.

These three experiments demonstrate that RL can be
applied successfully to learn to use internal actions over an
episodic memory mechanism while simultaneously learning
to act in its environment. Additionally, RL alone cannot be
successfully applied to those same tasks, demonstrating that
there is a functional advantage to combining RL with an
episodic memory in some settings. We also demonstrated
that RL can be used to learn when to retrieve, learn which
cue to use for retrieval, learn when to use temporal control,
and learn to build a cue from a set of possible features.

More broadly, this research opens up the possibility of
extending the range of tasks and behaviors modeled by
cognitive architectures. To date, scant attention has been
paid to many of the more complex properties and richness
of episodic memory, such as its temporal structure or the
fact that it does not capture just isolated structures and
buffers but instead captures working memory has a whole.
Similarly, although RL has made significant contributions to
cognitive modeling, it has been predominantly used for
learning to control only external actions. This research
demonstrates that cognitive architectures by incorporate
both episodic memory and RL, they can learn behavior that
is possible only when they are combined.

Although our research demonstrates that it is possible to
learn to use episodic memory, it also raises some important
issues. Learning is relatively fast when the possible cues
lead to the retrieval of an episode that contains all of the
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information that an agent requires in order to determine how
to act in the world. When retrieving episodes that most
closely match the current state and then using temporal
control of memory to remember what happened next,
however, learning is slower and does not always converge
to the best possible behavior. Learning to use episodic
memory to project forward is difficult — requiring many
trials to converge and without a guarantee that optimal
behavior will be achieved. Do these same issues arise in
humans or do they have other mechanisms that avoid these
issues? One obvious approach to avoid the issues
encountered in our experiment is to use one method, such as
instruction or imitation, to initially direct behavior so that
correct behavior is experienced and captured by episodic
memory, and then learning to use those experiences would
probably be much faster.
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Abstract

Fatigue has been implicated in an alarming humber of motor
vehicle accidents, costing billions of dollars and thousands of
lives. Unfortunately, the ability to predict performance
impairments in complex task domains like driving is limited
by a gap in our understanding of the explanatory mechanisms.
In this paper, we describe an attempt to generate a priori
predictions of degradations in driver performance due to sleep
deprivation. We accomplish this by integrating an existing
account of the effect of sleep loss and circadian rhythms on
sustained attention performance with a validated model of
driver behavior. Although quantitative empirical data for
validation are lacking, the predicted results across four days
of sleep deprivation match qualitative trends published in the
literature, and illustrate the potential for making useful
predictions of performance in naturalistic task contexts that
are relevant to real applied problems.

Keywords: Driver Behavior; Fatigue; Computational Model;
Sustained Attention; Sleep Deprivation.

Introduction

Accidents on roadways in the United States account for a
distressingly high number of fatalities and substantial cost
on an annual basis (Horne & Reyner, 1999; Klauer, Dingus,
Neale, Sudweeks, & Ramsey, 2006; NTSB, 1995; Pack et
al., 1995). According to a National Highway Transportation
Safety Administration report, nearly 25% of these accidents
can be wholly or partially attributed to the effects of
drowsiness or fatigue on driver attention, judgment, and/or
performance (NTSB, 1995).

The alarmingly high cost of fatigue in the context of
driving has been one motivation for studies to better
understand changes in cognitive performance stemming
from extended time awake (sleep deprivation), insufficient
sleep (sleep restriction), and being awake at times of the day
when the body is predisposed to sleep (circadian
desynchrony; Dijk, Duffy, & Czeisler, 1992; Van Dongen &
Dinges, 2005a; 2005b). This research has succeeded in
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identifying characteristic consequences of fatigue on
cognitive performance. However, there remain significant
limitations in the capacity to make valid predictions about
performance in novel task contexts based on a history of
time awake and circadian rhythms (Dinges, 2004; Van
Dongen, 2004).

Our computational modeling research has been targeted at
addressing some of these current limitations in predictive
validity. Much of this research addresses significant
theoretical challenges associated with understanding the link
between cognitive processes and fluctuations in overall
cognitive arousal, or alertness (e.g., Gunzelmann, Gross,
Gluck, & Dinges, 2009; Gunzelmann, Gluck, Kershner, Van
Dongen, & Dinges, 2007). However, we are also addressing
the issue of how these theoretical insights can be used to
make a priori quantitative performance predictions in novel,
naturalistic task contexts, based upon the mechanisms and
parameters that have been identified (e.g., Gunzelmann,
Byrne, Gluck, & Moore, 2009; Gunzelmann & Gluck, in
press)

In the research presented here, we evaluate the capacity to
make predictions about degradations in driver performance
associated with an extended period of total sleep
deprivation. We discuss the implications of our research in
the context of potential applications of a predictive capacity
in the domain of driving. In the next sections, we describe
our model of driving behavior, our theoretical mechanisms
for fatigue, and how they are integrated to allow for the
generation of quantitative predictions of behavior. We then
compare the model’s predictions with qualitative trends in
the empirical literature, demonstrating that the a priori
predicted trend in the integrated model are aligned with
those published results.

Driver Model

The first component of our exploration of driving and
fatigue is the ACT-R driver model (Salvucci, 2006), a
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computational model of driver performance developed in
the ACT-R cognitive architecture (Anderson, 2007
Anderson et al., 2004), which serves as a psychological
theory and simultaneously a computational framework for
specifying and simulating human behavior models. The
driver model is based on a control law of steering behavior
(Salvucci & Gray, 2004) that visually encodes two salient
points on the roadway: a near point in the lane center
immediately in front of the vehicle; and a far point such as
the vanishing point on a straight road, the tangent point on a
curved road, or the lead vehicle when present. The control
law describes how steering can be realized by keeping the
far point stable while keeping the near point both stable and
centered in the current lane.

The driver model that uses this control law relies on a
fundamental component of the ACT-R architecture — the
production system that represents central cognition. Central
cognition in ACT-R operates through a series of conflict
resolution cycles to produce cognitive processing and
behavior. During each cycle the subset of productions
whose conditions match the current system state is
identified. The “system state” is represented by the contents
of a set of buffers that provide limited-bandwidth
communication between central cognition and peripheral
information processing modules such as perception and
motor action. Within this set of matching productions, the
one with the highest “utility value” is selected and its
actions are executed, provided that it exceeds the ACT-R
“utility threshold” parameter. The default duration for these
cycles is 50 ms.

The driver model uses successive iterations of four ACT-
R production rules to represent the control law of steering
behavior. Specifically, these four rules comprise a control
update cycle during which the model (1) encodes the near
point, (2) encodes the far point, (3) updates steering and
acceleration according to the control law, and (4) checks the
vehicle’s current stability as measured by the lateral velocity
and position of the near and far points. If the vehicle is not
yet stable, the model immediately initiates another control
update; otherwise, the model waits approximately 500 ms to
initiate the next control update.

The driver model has been shown to account well for
driver behavior with respect to curve negotiation and lane
changing (Salvucci, 2006). The most critical aspect of the
model for our purposes here is the execution time for a
control update cycle: A single cycle requires approximately
200-250 ms, including 50 ms for each production rule firing
(as dictated by ACT-R theory) plus some additional time for
visual encoding. The update cycle time can increase,
however, when attention is divided between driving and
some secondary task, thus resulting in degradations in driver
performance. For example, recent work has shown how
dialing a phone (Salvucci, 2001; Salvucci & Taatgen, 2008)
and rehearsing a memorized list of numbers (Salvucci &
Beltowska, 2008) affects the driver model’s performance; in
both cases, concurrent execution of the secondary task
interferes with processing of the driving task, thereby
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increasing the update cycle time and degrading performance
(measured by, e.g., lateral deviation from lane center or
brake response time to an external event). As we will
describe, proposed mechanisms for fatigue in ACT-R can
also prolong or delay the update cycle, leading to similar
degradations in driver performance.

Mechanisms for Fatigue

The driver model provides a validated basis for making
predictions about driver behavior. In independent research,
efforts have been made to identify mechanisms within ACT-
R to account for the impact of sleep loss and circadian
rhythms on cognitive processing. In some of this research,
we have focused on central cognitive mechanisms
associated with the production execution cycle
(Gunzelmann, Gross, et al., 2009). To account for changes
associated with decreased alertness, we have integrated
mechanisms in ACT-R that create opportunities for brief
breakdowns in cognitive processing called microlapses.. In
addition, we proposed a secondary process to represent the
influence of explicit effort, which decreases the likelihood
of a microlapse but also increases the probability of using
lower-cost, less effective strategies in pursuit of achieving
the goal.

The mechanisms in the fatigue model are based on the
theoretical perspective that fluctuations in overall alertness
or arousal can be associated with changes in utility values
for selecting and executing production rules in ACT-R’s
central production system. Utility values are decreased,
which increases the likelihood that no action will be taken
on a given cycle. This situation leads to a microlapse, which
is formally defined as a gap in cognitive processing lasting
for the duration of one cognitive cycle (approximately 50
ms).

To account for the potential benefits of increased effort, a
second parameter is manipulated — the utility threshold —
which sets the minimum utility value required for a
production to fire. Decreasing the utility threshold
instantiates greater effort by making it more likely that some
production  will  successfully fire. However, this
manipulation also increases the probability that a suboptimal
action (a production with a low utility) will be executed
instead (see Gunzelmann, Gross, et al., 2009).

To evaluate the validity of our account, we compared the
model’s performance to human data on a sustained attention
task across 88 hrs of total sleep deprivation. The model
captured the important features of the human data, including
explanations for small increases in the median of
appropriately fast responses and increasing probabilities of
false starts, slowed responses (lapses), and complete failures
to respond (sleep attacks). The task, model, and results are
described in detail in Gunzelmann, Gross, et al. (2009).

Integration

The mechanisms for fatigue instantiate a theory of changes
in central cognitive processing resulting from fluctuations in
alertness attributable to sleep loss and circadian rhythms.
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Meanwhile, the model of driver behavior provides a
validated account of mechanisms and processes involved in
skilled driving. Importantly the ACT-R driver model relies
on procedural knowledge for successful performance,
including staying within its lane. As a result, an opportunity
exists to bring together an existing model of driver behavior
with an existing account of fatigue to explore the
implications of fatigue on driving behavior. This
opportunity represents an important step in the evolution of
computational  architectural accounts of cognitive
phenomena, and illustrates the potential utility of unified
theories that integrate theoretical insights from various
domains of psychological research.

The integration of the driver model and fatigue
mechanisms was a straightforward process. The
implementation of the driver model was altered to run on a
high-performance computer but was not changed with
respect to its core behavior. The driver model is similar to
the sustained attention model in that neither makes
extensive use of declarative memory, simplifying the
account by eliminating the need to consider potential
influences of fatigue on declarative knowledge access (e.g.,
Gunzelmann et al., 2007). The fatigue mechanisms were
taken directly from Gunzelmann, Gross, et al. (2009) and
applied to the driver model. Thus, our procedural fatigue
mechanisms alone provide the moderating effects in the
driving model.

The actual effects of the fatigue mechanisms center on the
production selection and execution phases of the production
cycle in ACT-R. Proportional scaling of utility values
during the selection phase of the driver model creates
situations where the matching production with the highest
utility fails to exceed the utility threshold. Thus, no
production is executed on that cycle, producing a microlapse
as described above. This is the key component in our
theoretical account of performance declines associated with
fatigue because it provides an account, based upon a single
mechanism, of phenomena in the sleep research community
that have been associated with cognitive lapses and
cognitive slowing (e.g., Dinges & Kribbs, 1991). Parameter
manipulations associated with fluctuations in alertness
influence the frequency of microlapses, and microlapses
lead to the performance changes exhibited by “tired”
models.

In cases when a microlapse occurs with no other ongoing
processes in any of ACT-R’s information processing
modules, the microlapse is accompanied by additional
attenuation of utility values. The noise component of the
utility values allows subsequent conflict resolutions to
potentially match a production and continue model
execution. However, this does not always occur, and as each
successive decline in alertness further reduces the possibility
of utilities rising about the threshold, a model can quickly
spiral into a state analogous to sleep. In the model described
in Gunzelmann, Gross, et al. (2009), this mechanism is
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critical in capturing the most substantial breakdowns in
cognitive processing (i.e., sleep attacks).

In the sustained attention task, long periods of time go by
—as long as 10 seconds — where the model is simply waiting
for a stimulus event. In contrast, the processing in the driver
model incorporates a constant monitoring behavior, which
leads to cognitive processing in modules outside central
cognition throughout the task. Peripheral processing does
not affect the occurrence of microlapses, but does prevent
any progressive declines in utility values over the course of
a 10-minute driving session. The implication is that our
model currently does not capture changes in performance
that may be expected over the course of a 10-minute driving
episode (i.e., time on task effects). However, our focus is on
making truly a priori predictions, and so we leave them
unchanged in the model runs described below.

In the next section, we evaluate the impact of our fatigue
mechanisms on the driver model. Recall that the driver
model realizes the continuous control law through four key
productions. It is in this control update cycle that the fatigue
mechanisms are most influential, since microlapses increase
the overall update cycle time. As will be shown, even brief
delays in cognitive activity can amount to significant and
potentially devastating behavioral impacts.

Model Evaluation

To evaluate the model, its behavior was assessed in the
context of a driving scenario described in Salvucci and
Taatgen (2008). In the task, the driver steered down a
single-lane highway, keeping the vehicle as centered as
possible in the roadway. The vehicle moved at a constant
speed that was not controlled by the driver, thus focusing
the task particularly on lateral control. One key measure of
performance in the task is lateral deviation: the root-mean-
squared error between the lane center and the vehicle’s
lateral position within the lane. The baseline driver model
navigating this environment exhibits an average lateral
deviation of approximately 15 cm across a 10-minute
driving scenario (see Salvucci & Taatgen, 2008).

To produce predictions of driver behavior and
performance, we used parameter values for the fatigue
mechanisms that were estimated in our research on
sustained attention (e.g., see Gunzelmann, Gross, et al.,
2009). Specifically, the model for that research was able to
account for human sustained attention performance at 2
hour intervals across 88 hours of total sleep deprivation. As
an initial assessment of the driver model, we used the
parameter values from sessions occurring shortly after
participants awakened on the baseline day of the study, and
from sessions occurring after 24, 48, and 72 hrs of total
sleep deprivation (0800 on each of 4 consecutive days). The
model was run 200 times using each of those parameter sets,
leading to reliable measures of central tendency in the
performance measures as well as evidence regarding the
variability in fatigue effects across 10 minute driving
sessions.
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Figure 1: Proportion of 1-second samples of lateral deviation falling into each of the specified bins. The last
two categories represent instances where (1) the vehicle is partway out of the proper lane (a lane violation,
“LV”), and (2) the vehicle’s deviation is more than a full lane width off (a lane switch, “LS”). Separate
lines represent 0, 24, 48, and 72 hours of total sleep deprivation (TSD).

To assess the performance, the lateral deviation of the
model was recorded for each second during each model run.
Figure 1 shows a histogram of these deviation values as a
function of degree of sleep deprivation (0, 24, 48, and 72
hrs). Perhaps surprisingly, the distributions are not radically
different. Note however, that on the left side of the
distribution the proportion of lower deviation values (3-12
cm) decreases with increasing sleep deprivation. The overall
trend is toward an increasingly skewed distribution, where
performance is basically normal most of the time, but
diverges more often and to a greater extent as sleep
deprivation increases. This pattern of results matches the
data from the sustained attention task that we have used in
developing the mechanisms applied to the driver model in
this paper (see Gunzelmann, Gross, et al., 2009).

While the distributions in the larger deviations (21-80 cm)
are not very different, clear differences emerge in the
categories representing the largest deviations. Lane
violations (“LV” in the figure) represent points when some
portion of the vehicle had crossed the lane line (i.e., the
vehicle overlapped the adjacent lane). The proportions of
lane violations more than double for Days 2 and 3 of sleep
deprivation as compared to the baseline day or a single night
without sleep. The final category, lane shifts (“LS” in the
figure), represent points during which the vehicle has moved
an entire lane’s width laterally — clearly a substantial
degree of driver performance error. Whereas the Baseline
and Day 1 conditions exhibit no lane shifts, there appear a
small number of lane shifts in Day 2, and in Day 3, 3% of
all lateral deviation values sampled are in this category. This
means that 3% of the time, the model is driving completely
out of its intended lane (possibly off the road or possibly
into oncoming traffic).

To better understand the nature of this performance in
terms of the driver model and fatigue mechanisms, Figure 2

45

shows a histogram of update times for the driver model in
each condition — that is, the amount of time needed for the
model to complete its four-production control update cycle.
As was the case for lateral deviation, the distributions shift
with increasing sleep deprivation such that update times
reflecting cycles that are not interrupted (200-300 ms)
become less frequent and longer update times become more
prevalent. The increase in update times arises because
production rules are more likely to fall below threshold
under the influence of fatigue mechanisms, thus missing an
opportunity to fire during a conflict resolution cycle.
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Figure 2: Distribution of model update times as a function
of number of days of total sleep deprivation (TSD).
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Comparison to Human Performance

To evaluate the model predictions in the context of actual
human driver performance, we compared the model’s
performance to published results from a study of fatigued
driving (Peters, Kloeppel, & Alicandri, 1999). Peters et al.
(1999) measured lane violations during conditions of
restricted sleep and sleep deprivation. Figure 3 compares the
pattern of results from Peters et al. (1999) to the data from
our model. The data from Peters et al. (1999) are frequency
counts of lane violations, while the data from the ACT-R
model reflect proportions of 1-second samples of lane
deviation that exceeded the threshold for a lane violation.
Though these measures are slightly different, they are
closely related, and the pattern of results is identical (r=.99).
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Figure 3: Lane violations from Peters et al. (1999) compared
to the proportion of lane deviation samples classified as lane
deviations or lane shifts in the model.

The Peters et al. experiment protocol was slightly
different than the strict total sleep deprivation protocol
assumed in our model predictions. Participants in Peters et
al. (1999) were allowed four hours of sleep on the first
night, between the Baseline Day and Day 1, whereas the
parameters in the model assume total sleep deprivation. This
could have some impact on the quantitative results, but the
overall pattern would be similar in either case. The pattern is
similar for both the human data and the model: only a slight
performance decrement in Day 1, but a much larger
decrement in Days 2 and 3. While the above caveat
concerning the experiment protocol differences should be
noted, these results suggest that the integration of the driver
and fatigue models indeed captures an important aspect of
fatigued driver behavior.

Conclusions and Future Directions

The model described in this paper exhibits declines in
performance when mechanisms are implemented to
represent the deleterious effects of sleep loss on central
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cognitive functioning. The foundation is a validated model
of skilled driver behavior (Salvucci, 2006). That model is
augmented with a set of mechanisms that account for
changes in central cognitive processing that result from
increased levels of fatigue associated with time awake and
circadian rhythms (Gunzelmann, Gross, et al., 2009).

The primary contribution of this research is the
demonstration that it is possible to make truly a priori
predictions regarding the effects of extended wakefulness on
performance in complex, dynamic tasks. The qualitative
changes in the model’s performance are identical to the
performance changes observed in human participants
attempting to drive after extended periods of partial or total
sleep deprivation. The results go beyond intuitive notions
regarding degradations in cognitive processing and
performance as time awake increases by providing
quantitative estimates about the actual impact of those
changes on performance in the driving task.

Of course, qualitative comparisons of overall performance
falls short of the rigorous evaluation of the model that we
would like to perform. However, the current research effort
represents a critical step in the process of using
computational cognitive modeling to make predictions
about human cognition and behavior in naturalistic task
contexts. The modular design of ACT-R facilitates this
convergence of research efforts by providing an
infrastructure that allows new theoretical components (like
the account of fatigue) to be added seamlessly to the
architecture. Once added, these new components, or
modules, influence the model’s behavior to the extent that
the proper conditions arise to activate the mechanisms. In
this case, the mechanisms for fatigue have a substantial
impact on model behavior. Importantly, the impact appears
to be in line with human data on a similar task in the
research literature.

A major goal of research on fatigue is to develop an
understanding of the impact of sleep loss that is useful in
making predictions regarding the consequences for
performance in applied settings. At the outset, we cited the
enormous cost of fatigue — both in dollars and lives — on
highways in the United States. A better understanding of the
relationship between fluctuations in alertness and changes in
observable human behavior has the potential to greatly
reduce this cost, potentially saving thousands of lives.
Moreover, driving is not the only area where the potential
benefits exist. In many applied settings, lack of sleep and
circadian desynchrony may lead to disastrous consequences
(e.g., Caldwell, Caldwell, Brown, & Smith, 2004; Dinges,
1995). Accurate predictions of the consequences of fatigue
could help to avert some of these potential tragedies.
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Abstract

The fundamental mammalian behaviours of perception, recog-
nition, recollection, and all other psychological phenomena are
intrinsically related to the basic cognitive tasks of memorisa-
tion and association. Based on Hebb’s Cell Assembly (CA)
theory, it is believed that concepts are encoded as neuronal
CAs in mammalian cortical areas. This paper describes a se-
ries of simulations that demonstrate various associative mem-
ory tasks using CAs based on biologically plausible fatiguing,
Leaky, Integrate and Fire neurons. The simulations show the
ability of CAs to form, retain and recollect basic concepts and
multiple and sequential associations.

Keywords: Cell Assemblies; Multi-associative memory; fLIF
neurons

Introduction

Associative memory is a fundamental cognitive process. The
concepts in memory and the associations between them are
learned. These concepts and associations are critical to cog-
nitive processing.

Like all cognitive processes, associative memory must
have a neural basis, but neural models of associative memory
are rare and surprisingly incomplete. Cell Assemblies (CAs)
can account for many cognitive phenomena, including asso-
ciative memory. Concepts can be stored as CAs (see Section
CAs and auto-associative memory), and associations can be
stored in connections between CAs.

Associative memory has a wide range of properties. Con-
cepts can be connected in one to one, one to many, and many
to many relationships. Associations can be context sensi-
tive. In this paper, simulated CAs are used to explore these
properties performing different tasks including a simple spa-
tial cognitive mapping task. Cognitively, a good associative
memory model should be capable of priming, differential as-
sociations, timing, gradual learning and change, encoding in-
stances, and many such processes. The model simulations do
not account for these phenomena, but this is the beginning of
an exploration of a model that will (see Section Discussion
and conclusion).

Background

Human associative memory is remarkable. Throughout life,
new concepts are learned and new associations formed. Any
given concept is associated with many other concepts, and
retrieval of an associated concept can be based on a combi-
nation of the base concept and the context. Priming studies,
for example, show the memory system supports a wide range
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type and strength of associations between concepts. Memory
retrieval and formation of associations are rapid processes.

Simulated neural models of associative memory are not
currently capable of many of the tasks described in the prior
paragraph. Closely related connectionist models have how-
ever been used to perform some of them.

CAs and auto-associative memory

Hebb (1949) hypothesised that the CA is the neural basis of
concepts, and the CA is central to most neural models of
memory. The theory proposes that objects, ideas, stimuli and
even abstract concepts are represented in the brain by simulta-
neous activation of large groups of neurons with high mutual
synaptic strengths (Wennekers & Palm, 2000). If an external
stimulus excites a sufficient number of neurons of an exist-
ing CA, it can result in the spreading of activation within the
CA, in turn igniting it due to recurrent activity and high mu-
tual synaptic strength. The CA can then remain active even
after the stimulus is removed. This reverberating behaviour
accounts for short term memory.

CAs are learned using the Hebbian learning rule, whereby
modifications in the synaptic transmission efficacy are driven
by the correlations in the firing activity of pre-synaptic and
post-synaptic neurons (Gerstner & Kistler, 2002). When ex-
ternal stimuli are presented to a network, synaptic strength
between neurons are adjusted so as to gain more strength
if they undergo repeated and persistent activation or firing,
gradually assembling them into a group, a CA. This forma-
tion of CAs accounts for long term memory. Thus, the CA
hypothesis provides a structural and functional account for
such cortical processes.

While still unproven, there is significant evidence and
wide spread agreement that CAs are the neural basis of con-
cepts. This includes a range of neural recording mechanisms
(Abeles, Bergman, Margalit, & Vaddia, 1993; Bevan & Wil-
son, 1999; Pulvermuller, 1999).

The CA is a form of auto-associative memory. In auto-
associative memories, an initial state is allowed to settle into
a stored memory, allowing subsequent noisy input to retrieve
a stored pattern. The Hopfield Model illustrates this property
(Hopfield, 1984). A network of units that are well connected
with bidirectional weighted connections is used to store a
set of binary patterns (typically using a Hebbian calculation).
When an initial set of neurons is switched on, in the discrete
version of the system, activation spreads through the system
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based on the weighted connections. In most cases the system
will settle into a stable state with no neurons switching be-
tween on and off. If the input pattern is close to a stored pat-
tern, it will settle into that pattern’s state, thus functioning as
a content-addressable memory. Neurons may also belong to
multiple CAs. Hopfield patterns that share on-bits are models
of CAs that share neurons.

While CAs are critical for the model of multi-associative
memory described in this paper, they are not the solution. The
question is how different CAs are associated with each other.

Multi-associative memory

Auto-associative memory is not typically what is meant by
associative memory. Instead, associative memory is gener-
ally a shortened form (usually implicitly) of multi-associative
memory; this has also been called hetero-associative memory.
Psychologically, memories are not stored as individual con-
cepts, but large collections of associated concepts that have
many to many connections (Anderson & Bower, 1980). Each
memory (CA) is associated with many other memories (CAs).

CAs and multi-associative memory

Even though CAs account for memory formation, their pre-
cise neural dynamics are far from perfectly understood. As
explained in the Section CAs and auto-associative memory,
neurons may belong to different CAs, and if they are repeat-
edly co-activated by different versions of the same stimulus,
they tend to become associated (Hebb, 1949). This is based
on the notion that events that occur together repeatedly should
somehow belong together. Wennekers and Palm (2000) ex-
plained that every time these events occur in conjunction,
they drive certain subgroups of neurons, their correlated fir-
ing should be learned, and, by that, respective groups should
become associatively connected.

Repeated co-activation of neurons can lead to the forma-
tion of CAs. Similarly, repeated co-activation of multiple
CAs results in the formation of multiple and sequential as-
sociations, and sometimes new CAs. When an external stim-
ulus activates a CA, it might lead to the activation of neurons
that ignites a different CA that is not directly stimulated. This
forms the rudimentary, neural level explanation of associative
memory. Humans constantly retrieve and form associations
with whatever sensory input they receive for the purpose of
perception, understanding and reasoning.

Multi-associative memory models

Many multi-associative memory models have been proposed.
A select few models are reviewed below.

Non-Holographic Associative Memory is an early multi-
associative memory model (Willshaw, Buneman, & Longuet-
Higgins, 1969). It is a well-connected network that can learn
to map input bit patterns to output bit patterns using a Heb-
bian learning mechanism. In CA terms, input CAs are con-
nected to output CAs via learned one way associations. This
is a one step model. The Linear Associator (Kohonen, 1977)
is a similar model that, like many other models, encodes
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memories in well connected systems. The brain is not well
connected, but it is often argued that it is broken into com-
partments that are well connected (Amit, 1989).

The Multi Modular Associative Memory (Levy & Horn,
1999) used well connected modules and analysed the storage
capacity of a system with items stored in multiple modules.
It showed that such a multi modular network is resilient to
corrupted input, based on their observation that natural asso-
ciated memories remain resilient to a great extent in humans
who suffer from focal damage. They concluded that multi
modular networks are necessary for meaningful implementa-
tion of associative neural networks. This is supported by evi-
dence that shows that the memory for a given word is stored
in multiple areas of the brain (Pulvermuller, 1999).

The Valiant model (Valiant, 2005) is a graph theoretical
model of memorisation and association based on four quan-
titative parameters associated with the cortex: the number of
neurons per concept; number of synapses per neuron; synap-
tic strengths; and number of neurons in total. It is assumed
that neurons are randomly connected. The learning algorithm
provided is biologically implausible, but the model shows
that random graphs allow a method of assigning new mem-
ory items and associative relationships between the items.

The Jets and Sharks simulation (McClelland, 1981) uses
the interactive activation model (Rumelhart & McClelland,
1982) to simulate associative memory. In the model, each
concept is represented by a node, and connections are made
between nodes to show how closely related these are. The
system is not well connected. Activation spreads between the
nodes via the weighted connections. The information to be
encoded concerns two hypothetical groups (Jets and Sharks),
group members, and some of their demographic characteris-
tics. The system can act as a content-addressable memory
system. So, the features of an individual group member can
be activated as input, and the individual’s representation will
quickly become activated by the spread of activation. Addi-
tionally, prototypical effects can be derived (Rosch & Mervis,
1975). So, if the Shark concept is stimulated, activation will
spread and eventually, the prototypical shark will become
more active than other individuals. The individual that shares
most features with other Sharks is the prototypical member.

This has been a brief review of multi-associative memory
models. It has been known for 40 years that simulated neu-
ral systems can encode multi-associative memories, but it has
become apparent that well connected systems are not a good
model of the brain. This has been addressed by partition-
ing the system into modules, and by using sparsely connected
random graphs. These models however do not account for a
range of associative memory characteristics that the human
memory system exhibits, for instance, context effects.

The simulator

This section briefly describes a computational model that
simulates CAs using fLIF neurons. Like all models, it is a
simplification of the mammalian neural architecture, but has
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proven successful in modelling many cognitive phenomena.

The fLIF neural network

The fLIF neuron model (Huyck, 2007) encompasses many
properties of the biological neuron. The CAs used in the
experiments described in this paper emerge from fLIF neu-
ral networks. The model is an extension of the LIF (Leaky
Integrate and Fire) model (Maas & Bishop, 2001; Gerstner,
2002). fLIF neurons collect activation from pre-synaptic neu-
rons and fire on surpassing a threshold, that is, they integrate
and fire. On firing, a neuron loses its activation level, other-
wise the activation leaks gradually, resembling the behaviour
of a biological neuron.
The activation A of a neuron i at time ¢ is:

A;
Ait _ + Z WijS; (D)
E jvi

The current total activation is the activation from the last time
step divided by decay factor §, plus incoming activation. This
new activation is the sum of the active inputs s; of all neurons
J € Vi, V; being the set of all neurons connected to i, weighted
by the connection from neuron j to i. The neuron fires when
the accumulated activation A exceeds a threshold 0, and firing
neurons do not retain activation. Firing is a binary event, and
activation of w;; is sent to all neurons j to which the firing
neuron 7 has a connection. Fatiguing causes the threshold to
be dynamic, 6,41 = 6, + F;. F; is positive (F) if the neuron
fires at ¢ and negative (F_) if it does not.

The network architecture

Two of the three the simulations discussed in this paper par-
titions the network into subnetworks; the context simulation
uses only one subnet. The subnets are made of fLIF neu-
rons and the number of neurons vary between subnets. Intra-
subnet synapses are based on biologically inspired distance
biased connections. This topology makes it likely for a neu-
ron to have excitatory connections to neighbouring neurons,
and less likely to far away ones. The subnet is a rectangu-
lar array of neurons with distance organized toroidally. In-
hibitory connections within a subnet and all inter-subnet con-
nections are set randomly. The connectivity rule for excita-
tory neurons is given by equation 2. There exists a connection
between neuron i and j of a network only if C;; = 1.

C; = Lifr<(1/(dxv)) 2)
C;i = 0,ifnot

where r is a random number between O and 1, d is the neu-
ronal distance and v is the connection probability. This indi-
cates that connections in a network are influenced by distance
between neurons and the connection probability factor. Dis-
tance d = 5 throughout all the simulations, as it has been ob-
served to work well. Inspired by biological neural topology,
long distance intra-network connections are also present, con-
nected by long distance axons with many synapses (Church-
land & Sejnowski, 1992).
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In each of the simulations, networks are divided into mul-
tiple CAs using unsupervised Hebbian. The CAs are orthog-
onal and represent different concepts, and this is in response
to training stimuli. Neurons in different CAs do have excita-
tory connections to other CAs, based on the connection rule
(Equation 2), but the learned weights are low because neurons
in different CAs rarely co-fire. Once learned, when a CA is
externally activated, it typically inhibits all inactive CAs in
the same network via learned inhibitory connections. Sim-
ilarly, simultaneous co-activation of CAs increases the con-
nection strength between them, creating associations.

Learning in the network

CAs in a network are learned by a correlatory Hebbian learn-
ing rule (Huyck, 2004), whereby synaptic connection weights
are modified based on the following equation:

A+W,'j

Aiw,'j =

(lfw,'j)*X (3)
W,'j*—?\, (4)

w;; is the synaptic weight from neuron i to j and A is the learn-
ing rate. During each cycle, weights change based on the state
of pre-synaptic and post-synaptic neurons. If both neurons
fire, the weights increase as per the Hebbian rule (Equation
3). If only the pre-synaptic neuron fires, weights decrease as
per the anti-Hebbian rule (Equation 4). These two rules act
together, changing w;;, gradually increasing the likelihood of
j firing if i fires. Without reverberation, the weight would
reflect the likelihood that neuron j fires when neuron i fires.

The network parameters used in the simulations are pre-
sented in the table 1. The decay parameter has a link to bio-
logical data, but the others have been selected via a search of
the space. In particular, the fatigue parameters are different
across the three experiments described below.

Table 1: Network parameters

Parameter Symbol  Value
Learning rate A .10
Activation threshold 0 4.5
Fatigue Fy=F_ .80
Decay factor ) 1.2
Neuronal distance d 5
Simulations

This section describes three sets of simulations. These sim-
ulations demonstrate that the model is capable of supporting
complex associations.

Jets and Sharks

This is a CA based implementation of a modified version of
the classic Jets and Sharks model that uses five members in
each of the hypothetical (Jets or Sharks) groups. The orig-
inal experiment had 27 members, but 10 randomly selected
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member were used here to demonstrate feasibility. Each of
the members and their attributes are encoded as CAs in dif-
ferent subnets. A unique Person CA represents each member
and their attributes, namely Name, Age, Education, Marital
status, and Occupation. There is a one-to-one relationship
between each Person and their Name CA. A subset is illus-
trated in Figure 1.

Art - Jet, 40’s, Junior High, Single, Pusher
Phil - Shark, 30’s, College, Married, Pusher

Divorced

Burglar

Bookie

Figure 1: Two people in Jets and Sharks. Circles refer to sub-
nets, names to orthogonal CAs, and arrows to connections.

Each CA is mutually exclusive and is made up of 200
neurons. Inter-subnet connections are random, initially low-
weight excitatory connections. The CAs and their associa-
tions are learned by external stimulation and co-activation of
each Person CA and their attributes simultaneously for 200
cycles, in succession.

Multiple memory retrieval tests were conducted. For in-
stance, when the Name CA of Art is externally stimulated, it
propagates activation to Art’s Person CA. The particular Per-
son CA, having learned excitatory connections to different
attributes, causes activation to further propagate throughout
the network, gradually activating all corresponding attributes
of Art. On 15 runs, the correct results were retrieved for each
of the 10 people. This shows one to one associations (e.g.
Art to his name), one to many (e.g. Art to all his properties)
and many to many (e.g. Pusher is activated by many people
along with other properties).

Similarly, when the attribute Shark is externally activated,
it propagates activation to all Person CAs having that at-
tribute, and the immediate effect is that all Shark members
ignite Though these CAs do not share neurons, multiple CAs
in a subnet may be simultaneously active. Gradually, activa-
tions stabilise through competition between CAs. One Person
CA is found to have more activation than others, emerging as
the prototypical Shark. The network was tested 15 times to
obtain the prototypical Jer and Art emerged to be so, through-
out. The same was done for Sharks and Nick emerged to be
prototypical 9 times and Ned, 6 times. This is because both
members share the most features with other members of the
group, and hence emerge to be prototypical members.

Context sensitive association

Most associative memory models, focusing solely on associ-
ations, usually neglect to acknowledge the inherent fypes of
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associations that exist. A concept may be associated to many
others, but the types of associations may vary from concept to
concept. The association of cat to mammal is not the same as
fur to mammal. As a step towards simulating different types
of associations and eventually implicit labelled associations,
a model capable of differentiating associations based on con-
texts was developed.

Fooz*f:[
=
Not Hungry

B

Figure 2: Initial and Learned state of CAs

Not Hungry

Figure 2 shows the network setup, the physical connection
before (A) and after (B) the CAs and their associations are
learned. A single network holds all the 5 orthogonal CAs,
namely Hungry, Not Hungry (states), Salivate, Lie down (ac-
tions) and Food (object). Since all the CAs are in the same
network, they have excitatory and inhibitory connections with
each other. The parameters in the simulation are those from
Table 1, except the fatigue parameters have been modified.
F, = F_ = 0.4. Initially, patterns corresponding to each of
the CAs are presented for 300 cycles so that they are learned
independently. When a CA is active, it inhibits all other CAs
in the network via learned inhibitory connections. When one
CA is active and another is inactive, inter-CA connection
weights are decreased. The associations between CAs are
learned by co-activation for 300 cycles each, that is, by acti-
vating three CAs (object, state, action) simultaneously, in the
following manner:

Food + Hungry = Salivate

Food + Not Hungry = Lie down
This mimics the behaviour of a hypothetical dog that salivates
when food is presented when hungry, and lies down ignoring
food when not hungry. After the associations are learned,
context sensitive behaviour is tested in the following manner:
when Food and Hungry are externally stimulated, Salivate ac-
tivates, suppressing Lie down. The tests were repeated on
100 different network configurations, and action CAs (Sali-
vate, Lie down) activated correctly 83 times with an average
of 84.6 neurons firing.

Igniting any one CA leads to activity in one associated CA,
and in less than 20% of trials the third associated CA. No
unassociated CAs have been activated in simulations.
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Cognitive spatial mapping using sequential memory

Cognitive spatial mapping is a psychological process by
which an individual acquires, stores, recalls and decodes in-
formation about the relative locations and attributes of a spa-
tial environment for the purpose of spatial navigation (Downs
& Stea, 1973). A simplified version of this complex process
was implemented, where a virtual agent navigates a 3D vir-
tual world by recognising, memorising, associating and rec-
ollecting rudimentary landmarks. The parameters in the sim-
ulation are those from Table 1, except the fatigue parameters
have been modified. F; = F_ = 0.1. The change of these
parameters between the three simulations has merely been an
engineering decision based on a simple exploration of the pa-
rameter space. It is likely that different topologies using the
same parameters would have also produced similar results.

Figure 3 shows the top view of the virtual world, its 4
rooms, 4 coloured doors, and the exploration path the agent
takes. The agent’s path is fixed and it lacks the ability to turn
back and only moves forward.

Room?2 Rooml
Red|door
PR RITRI|  ERTPTILY < @ Agent
4
Grcén door Yclloiw door
Blue(door
Room3 Room4

Figure 3: Top view of the virtual world

In the learning mode, the agent explores the world, learn-
ing rooms, doors and Room-Door-Room sequences in the pro-
cess. A simple vision system detects doors and door colours,
and triggers learning actions, helping the agent navigate.

Figure 4 illustrates the gross subnetwork topology of the
spatial mapping module, excluding other subnets of the agent.
The solid arrows show physical inter-subnet connections
(random, low-weight excitatory connections). RoomNetl
and RoomNet2 store instances of the rooms the agent vis-
its. DoorNet stores the doors encountered and SequenceNet,
encodes the sequences of visits. ColourNet has CAs that
represent colours recognised by the agent, and GoalNet en-
codes the target door, which the agent searches for while in
the test mode. The greyed areas show a sample sequence,
where the agent has learned the association Room+«— Red-
Door——Room?2 by co-activation. The dashed lines represent
learned connections with increased synaptic weights.

The CAs representing rooms, doors and sequences in cor-
responding subnets are made up of 200 neurons each, and are
learned as the agent explores. In the learning mode, when
the agent encounters a door, a 5-step learning process is trig-
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ColourNet DoorNet GoalNet
Red | N D1 ™.
Green D2
Blue R D3
Yellow D4
RoomNetl SequenceNet RoomNet2
R1 DR »  RI-DI-R2 Rl
AAAAAAAAAAAAAAAAAA ol oo
R2 R2
R3 R3
R4 R4

Figure 4: Cognitive spatial mapping network setup

gered: 1) The agent encodes its present location as a CA
in both the RoomNets; 2) It learns the door, forming a CA
in the DoorNet; 3) The agent associates the colour of the
door in the ColourNet with the newly formed door CA; 4)
The agent moves to the next room and learns the room (as in
Step 1); 5) It then encodes the passage it just made as a CA
in the SequenceNet, as in PreviousRoom-ConnectingDoor-
PresentRoom. This process is repeated until the agent is back
at its starting position. Each of the CAs are learned by stim-
ulation lasting 300 cycles, triggered by the visual cues the
agent reviews. Associations are learned by co-activation, as
described in the previous simulations. For instance, passages
are learned by simultaneously activating the corresponding
sequence CA in the SequanceNet, pre-entrance room CA
in RoomNetl, the connecting door CA in DoorNet and the
present room CA in RoomNet2, for 300 cycles.

In the test mode, the agent is instructed to go to a room ran-
domly chosen from the 4 rooms. This is done by externally
stimulating the target room CA in RoomNet2. This causes the
corresponding sequence CA to activate, which in turn acti-
vates the associated room CA in RoomNet1 and the connect-
ing door CA in DoorNet. When the door CA becomes active,
the goal CA is activated externally, leaving them to remain si-
multaneously active for 300 cycles, causing them to become
associated. As a result of this association, the goal CA be-
comes active whenever the corresponding door CA activates.
The active door CA that the agent has set as its goal is the door
that leads to the target room. With the goal in memory, the
agent moves forward, looking for the target landmark (door).
When the target door appears in the agent’s visual field, the
corresponding door CA in DoorNet activates, immediately
causing the goal CA to activate due to the previously learned
association, indicating achievement of the goal. With this, the
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agent reaches the target room and the test ends.

The agent could have failed by stopping prematurely, or
continuing beyond the target room. However, it correctly
reached a the target room all 30 times the test was repeated.

Spatial cognitive mapping is an important associative task.
The task is also important for agents, and this cognitive map-
ping module is currently being incorporated into our current
Cell Assembly roBot (CABot3), an agent in a video game
based solely on fLIF neurons.

Discussion and conclusion

These simulations show that CAs emerging from model fLIF
neurons are capable of learning and retrieving core memories,
in the form of CAs, and associations between them. The Jets
and Sharks simulations show that the model can handle one
to one, one to many, and many to many relations. The sec-
ond set of simulations show that the model is capable of han-
dling context sensitive associations, and the third set shows
that it is capable of a basic form of cognitive mapping, using
multi-associative sequential memories. This is the first neural
model that simulates all the these processes.

While these are useful capabilities, the model does not ex-
hibit the wide range of behaviours that human associative
memory does. Human memories have varying strengths, and
so do the associations. Instances of types (tokens) can be
learned. Types, associations and tokens are all forgettable.
All of these behaviours occur in measurable times. It is
planned that future work will include all of these behaviours.

In the simulations described in this paper CAs were or-
thogonal, that is, neurons were in only one CA, and associa-
tions were maintained solely by synapses between neurons in
the associated CAs. Another type of association is possible,
where CAs are associated by sharing common neurons and
subcategorisation associations have been stored using shared
neurons in CAs (Huyck, 2007) . For example, the concept
Cat shares neurons with the concept Mammal because of the
association that a Cat isA Mammal. 1t is likely that such over-
lapping CAs are important for a good neural implementation
of multi-associative memory.

Other properties may also be necessary to achieve the full
range of associative memory behaviours. For instance, global
inhibitory mechanisms might be needed to manage spreading
of activation and prevent all neurons firing simultaneously.
None the less, the current simulations show simulated neural
systems can perform a range of associative memory tasks.
The authors leave the reader with these questions: what tasks
does an associative memory perform, and what are good tests
to show that a system performs these tasks?
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Abstract

The non-word repetition test has been regularly used to
examine children’s vocabulary acquisition, and yet there is no
clear explanation of all of the effects seen in non-word
repetition. This paper presents a study of 25 5-6 year-old
children’s repetition performance on three non-word
repetition tests that vary in the degree of their lexicality.
EPAM-VOC, a model of children’s vocabulary acquisition, is
then presented that captures the children’s performance in all
three repetition tests. The model represents a clear
explanation of how working memory and long-term linguistic
knowledge interact in a way that is able to simulate
performance in non-word repetition.

Keywords: Computational modelling; Non-word repetition;
Child development.

Introduction

One ability that sets the human species apart from other
species is that of language. However, the learning of
language is a complicated process that involves at least the
following processes. First, the learner must identify where
words begin and end from speech that is often continuous.
Second, the learner must store the newly identified words in
their long-term lexicon. Finally, the learner must acquire the
rules of syntax and grammar that govern the way in which
their lexicon words can be combined. It is the second of
these three processes that this paper is focused: the process
of vocabulary learning.

Research that examines vocabulary learning is
proliferated with tests of non-word repetition — a test that
involves nonsense words being spoken aloud to the
language learner, who must repeat them accurately. The test
involves non-words since one can be certain that the child
has never encountered the sequence of sounds before, hence
providing a true test of vocabulary learning. Furthermore,
studies of vocabulary involving non-word repetition have
primarily focused on children, since the vast majority of
language learning occurs early in one’s development.

Non-word repetition research

Non-word repetition tests were originally developed to
examine the influence of phonological working memory on
the vocabulary learning process. For example, Gathercole
and Baddeley (1989) showed that repetition accuracy
improved between the ages of 4 and 5 years, and
performance declined as non-word length increased for both
ages. Both of these findings were interpreted in terms of
phonological working memory: an improvement with age
could be explained by an increase in memory capacity; and
a decrease in performance as non-word length increased
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could be explained by the decay of items in working
memory.

However, subsequent research has shown that the child’s
existing lexical knowledge plays a major role in their non-
word repetition ability. Gathercole (1995) re-analysed the
non-words in the original test by separating them into
“wordlike” and “non-wordlike” non-words based on adult
subjective ratings of wordlikeness. She found that children
performed significantly better for non-words that were
wordlike. Although wordlikeness is a subjective measure,
even when more objective measures are used, there are still
clear differences between non-words that share substantial
lexical features with words compared to those that do not.
For example, if one actively distinguishes non-words based
on their constituent phoneme combinations — having one set
that contain highly frequent combinations of sounds versus
a set containing relatively infrequent combinations — there
are clear performance differences, with children regularly
finding the high-frequency non-words easier to repeat (e.g.
Edwards, Beckman & Munson, 2004; Vitevich, Luce,
Charles-Luce & Kemmerer, 1997).

It would therefore seem that non-word repetition, and in
turn vocabulary acquisition, can be affected by both
phonological working memory and long-term lexical
knowledge. There are at least two prominent explanations of
vocabulary acquisition that explain repetition performance
in terms of both processes.

Explanations of non-word repetition performance

Since non-word repetition performance is affected by an
interaction between working memory and long-term
memory, any explanation of performance must provide
some detail of how these two processes interact. Gathercole
(2006) explained this interaction using the idea of
phonological frames. Phonological working memory is used
to store linguistic stimuli (e.g. non-words in the repetition
test) and when these items decay, long-term linguistic
knowledge is relied upon to help bolster the decaying
representations in working memory. Since non-words that
are wordlike, or that contain highly-frequent sounds, will
share more information with lexical items in long-term
memory, it is these items that gain more help from existing
vocabulary knowledge. That is, the support provided by the
phonological frames of existing vocabulary items increases
as the amount of overlap in shared features (to non-words)
increases.

An alternative explanation of vocabulary learning shares
many features with Gathercole’s idea of phonological
frames, yet is more explicit in its detail. Jones, Gobet and
Pine’s (2007, 2008) EPAM-VOC is a computational model
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of vocabulary learning that concretely specifies how
phonological working memory and long-term phonological
knowledge interact. Long-term knowledge is represented
by “chunks” of phoneme sequences — as the model is
subjected to more and more linguistic input, these chunks of
phonemes become larger and larger. Phonological working
memory is represented by a fixed amount of chunks that can
be stored. Hence, early on in the model’s learning, EPAM-
VOC is able to store only a limited amount of linguistic
information in working memory since the chunks at this
point in time will not be large sequences of phonological
information. Later on in learning, the phoneme sequences
within chunks will be relatively large, and so an increased
amount of information can be stored in working memory
even when the number of chunks remain the same. This
explanation of vocabulary learning puts forward the idea
that improved performance with age arises due to an
increased amount of linguistic knowledge. However, the
model also explains wordlikeness and frequency effects
quite easily. Phoneme sequences that appear regularly in the
child’s language will be represented within the model as
relatively large chunks, whereas low frequency sequences
will not. Therefore non-words that contain high frequency
sequences can be stored in working memory using few
chunks, giving rise to an increase in the likelihood of their
correct repetition over non-words containing low frequency
sequences. A similar explanation can be used for wordlike
versus non-wordlike non-words. The former, since they bear
great resemblance to words, are likely to be represented
within the model using fewer chunks than non-wordlike
non-words.

The current paper

EPAM-VOC has thus far been used to successfully simulate
the non-word results of Gathercole and Baddeley (1989)
plus a non-word set devised for children between 2 and 5
year of age. However, neither of these tests were
specifically designed to vary in their lexicality. Since
research has shown that non-word repetition is strongly
influenced by the lexical nature of the non-words involved,
this paper examines EPAM-VOC’s repetition performance
across three sets of non-words that vary in the degree of
their lexicality. The remainder of this paper is as follows.
First, the model itself is detailed so that the reader has more
extensive knowledge of its workings. Second, a new study
of 5-6 year-old children’s repetition is described that
presents three different non-word repetition tests that vary in
the extent of their lexicality. Third, the results of the
children are compared to the results of the model. Finally, a
discussion of the results are given.

EPAM-VOC: A model of vocabulary learning

EPAM-VOC is a model of vocabulary learning that is based
on the EPAM modelling architecture (Feigenbaum &
Simon, 1984). This architecture has been used to
successfully simulate human behaviour in a range of
psychological domains (see Gobet et al., 2001).
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Furthermore, the modelling environment has been
successfully applied to syntax acquisition as well as
vocabulary acquisition (e.g. Freudenthal, Pine & Gobet,
2006; Freudenthal, Pine, Aguado-Orea & Gobet, 2007). The
model presented here is an updated version of that described
by Jones, Gobet and Pine (2007, 2008), since that model did
not have an explicit articulation process.

Representing long-term knowledge

Knowledge within EPAM-VOC is represented as a
hierarchy of chunks that contain phoneme sequences.
Chunks that are lower down in the hierarchy contain larger
sequences, and hence EPAM-VOC can be equated to a tree-
like structure. The model begins with knowledge of all of
the constituent phonemes in English, since there is good
reason to believe that even at an early age, children have
knowledge of the phonemes of their language (Bailey &
Plunkett, 2002).

An example hierarchy of chunks is given in Figure 1.
Here it can be seen that the model knows the phoneme
sequence for the word “Toys” (T OY Z). Note that we
represent phonemes using the phoneme set in the CMU
Lexicon Database (available at
www.speech.cs.cmu.edu/cgi-bin/cmudict) rather than the
International Phonetic Alphabet. This is chiefly because the
database allows the semi-automatic conversion of spoken
utterances into their phonemic equivalent (this will be
detailed later when the input regime for the model is
covered).

Figure 1: Graphical representation of EPAM-VOC having
been presented with “Toys” (T OY Z) twice as input.
Chunks are represented by ellipses and links are represented
by arrows. Note that although only five phonemes are
represented as single phoneme chunks (K, OY, T, Z and P)
the model knows all phonemes in English as individual
chunks.

Representing phonological working memory

Working memory in this version of EPAM-VOC is no
longer limited to a set amount of chunks. Instead, there is a
set amount of activation that is spread over the chunks that
are in working memory (c.f. Cowan, 1997). However, we
base this activation on time, since there is solid research to
indicate that items in working memory have a temporal
duration of 2,000 ms unless rehearsed (e.g. Baddeley,
Thomson & Buchanan, 1975) and there is solid research that
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places timing estimates on accessing a chunk and accessing
its constituent phonemes (Zhang & Simon, 1985).

For any given input, EPAM-VOC’s long-term knowledge
is accessed in order to convert the input into a series of
chunks (i.e. representing the input sequence in as few
chunks as possible). Each chunk is then assigned an access
time — 400 ms to access the chunk and a further 30 ms to
access each constituent phoneme bar the first (e.g. given the
long-term knowledge of Figure 1, “Toys” would be
allocated 460 ms, whereas the single phoneme “K” would
be allocated 400 ms). Once the input has been represented in
as few chunks as possible, and each chunk has been
assigned an access time, then a pointer to each chunk is
placed in working memory. The total access time is
calculated by summing the access times for all chunks.
When this total exceeds 2,000 ms, then there is a probability
of less than 1.0 that a chunk can be correctly accessed from
its pointer (when learning or articulating, the model requires
the chunk to be accessed from its pointer in working
memory).

Let us take the input “My toys are here” as an example
(phonemic representation: “M AY T OY Z AE R HIY R”)
and the knowledge in Figure 1. Only “T OY Z” exists as a
multi-phoneme chunk, and this is assigned an access time of
460 ms. All other phonemes (“M”, “AY”, “AE”, etc.) are
assigned an access time of 400 ms — there are a total of 8
chunks required to represent the input, in a total access time
of (7*400 ms)+(1*460 ms)=2,560 ms. The probability of
subsequently accessing a chunk from its pointer is the
temporal duration of working memory divided by the total
time required to access all of the chunks:
2,000/2,560=.78125.

To summarise, any given input is converted into as few
chunks as possible using EPAM-VOC’s long-term
knowledge of phoneme sequences. This matching process
takes a certain amount of time, and the result of the process
is that a pointer to each chunk is placed in working memory.
Since working memory only contains pointers to chunks,
any process that requires the actual information in the chunk
(e.g. when learning or articulating items in working
memory) must access the chunk itself. The accurate access
of information in a chunk is probabilistic, dependent upon
whether the total access time for all chunks exceeds the
2,000 ms time limit of working memory.

Learning phoneme sequences

During learning, any given input is coded into as few
chunks as possible, and pointers to the chunks are placed in
working memory (as described above). The learning process
then examines each pair of pointers to see if a phoneme
sequence can be learnt that combines the information within
each chunk pairing. This can only be done if each chunk is
correctly accessed, but if this is the case, a new chunk is
learnt whose contents are the combination of both chunks.
Let us use the input “Toys” (“T OY Z”) as an example.
When EPAM-VOC first begins its learning, it only knows
single phonemes as chunks, and therefore “T OY Z” would
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be represented in working memory using three pointers to
three chunks (one pointer to each of “T”, “OY” and “Z”).
Since the time to encode the three chunks is 400 ms for each
(totalling 1,200 ms and therefore within the 2,000 ms limit)
then the subsequent accessing of the information within the
chunks will be completely accurate. EPAM-VOC takes each
pair of pointers in turn and tries to learn something from
them. The first pair are “T” and “OY”. The “T” chunk is
accessed, and then a link to a new chunk is placed below the
“T” chunk. The link will specify the additional information
that is being learnt (“OY”’) and the new chunk contains the
joint set of information (“T OY”). The next pair of chunks
(“OY” and “Z”) are then examined, and in a similar vein, a
new chunk “OY Z” is learnt. Should “T OY Z” be presented
to EPAM-VOC a second time, it can now be represented as
two pointers to the chunks “T OY” and “Z”. The learning
from this pair of pointers would result in a new chunk “T
OY Z” being added below the “T OY” chunk, and the
resulting network would be that shown in Figure 1.

Let us now see how learning progresses when the access
time exceeds the 2,000 ms limit. Take the previous example
sequence “My toys are here” (‘M AY T OY Z AER HIY
R”) and the long-term knowledge of Figure 1. It was already
determined that there was a .78125 probability of accessing
a chunk that related to a pointer for this input. Since the
pointers in working memory are analysed in a pairwise
fashion, then if one pointer cannot access its associated
chunk, no learning can be accomplished for that pointer. For
example, if the pointer to the chunk “AY” failed, then
EPAM-VOC could not learn the sequence “M AY” or the
sequence “AY T OY Z”.

Articulating phoneme sequences

In order for a phoneme sequence to be articulated, it must
first be represented in working memory as a series of
pointers to chunks (as described above). In the same way as
for learning, each chunk needs to be correctly accessed from
its pointer, otherwise an incorrect articulation takes place.
However, even if each chunk is correctly accessed, the
chunk may still be incorrectly articulated based on its
frequency. EPAM-VOC maintains a frequency for each
chunk based on the number of times that the chunk has been
accessed. We assume that the articulation of phonemes in a
chunk is based on the frequency of that chunk — those
chunks that are low in frequency will attract more errors
than chunks that are high frequency. Correct articulation of
an input sequence (e.g. a non-word) is only achieved when
all of the relevant chunks are correctly encoded into
phonological working memory, and all of the phonemes are
correctly articulated from each chunk based on the
frequency of the chunk.

Training the model

The model uses naturalistic speech input based on the
maternal input from 12 sets of mother-child interactions to
2-3 year-old children (Theakston, Lieven, Pine & Rowland,
2001). All input is converted into the phonetic alphabet of
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the CMU Lexicon Database, as discussed previously. 12
simulations are carried out, one for each set of mother’s
input. However, since comparisons are going to be made to
5-6 year-old children, additional input was sought from
paternal interactions with 5 year-old children plus input
from reading material for children of this age group (e.g.
Snow White).

During training, the model was presented with the same
amount of input as per the original maternal input. However,
as learning progressed, more and more of the maternal input
was replaced with input that reflected that which a 5-6 year-
old child would receive.

Since the input to the model can vary based on which
utterances from the mother were chosen for replacement,
and which input from the 5-6 year-old input set was chosen
as the replacement, then the model was run ten times for
each “mother”. This ensures that the results from the model
are replicable and are not simply based on an advantageous
input set. Similarly, the non-word repetition tests are carried
out ten times for each simulation, since there are
probabilistic elements to both encoding and articulation.
There were therefore, for any non-word in a non-word
repetition test: 12 mothers * 10 simulations runs * 10
attempts at each non-word = 1,200 repetitions of each non-
word.

5-6 year-old children’s repetition performance

Participants

25 5-6 year-old children (5;4-6;8, M=6;1; 10 male, 15
female) who all scored within normal ranges on the British
Picture Vocabulary Scale (Dunn, Dunn, Whetton & Burley,
1997). All children were English monolinguals and had no
hearing difficulties, as reported by their school teacher.

Materials

The CNRep (Gathercole, Willis, Baddeley & Emslie, 1994)
that includes non-words that are considered high in
lexicality since they include syllables that are either real
words (e.g. thickery) or morphemes (e.g. glistering). The
non-words in this test are either single consonant (e.g.
sladding) or clustered consonant (e.g. glistow). There were 5
non-words of each type at each of three lengths (2-4
syllables). 5-syllable non-words were excluded because
children at this age had difficulty in repeating non-words of
this length.

The non-word test of Dollaghan, Biber and Campbell
(1995) that contain 3-syllable non-words. 6 non-words
contained a real-word syllable (e.g. bathesis) and 6 changed
one phoneme in the non-word so that it was entirely non-
lexical (e.g. fathesis). This test is considered medium in
lexicality.

A new non-word repetition test that was entirely non-
lexical and that contained two sets of 3-syllable non-words:
8 that were low frequency (e.g. latmunoz) and 8 that were
very low frequency (e.g. wegnerterk). The non-words in
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each set were matched for syllable structure, number of
phonemes, age of acquisition of the phonemes, and number
of consonant clusters. The average log frequency was lower
for very low frequency non-words than low frequency ones
(.51 vs. 44, #7)=3.92, p<.0l) using a procedure for
measuring bi-phone frequency similar to that of Luce and
colleagues (e.g. Jusczyk, Luce & Charles-Luce, 1994;
Vitevich, Luce, Charles-Luce & Kemmerer, 1997). This test
was considered to be low in lexciality.

Design

The CNRep had two independent variables: non-word type
(single or clustered) and non-word length (2, 3, or 4
syllables). The Dollaghan non-words had one independent
variable (lexicality: lexical or non-lexical). The new non-
word test also had one independent variable (frequency: low
or very low). The dependent variable in all cases was
repetition accuracy.

Procedure

All children were tested individually on a one-to-one basis
in a quiet area of their school. Each non-word repetition test
was carried out on a separate day. For the CNRep, the
original recordings were maintained, but for the other two
repetition tests the non-words were recorded by a speaker
native to Nottingham. The instructions for each set of non-
words are given below, and were the same for each non-
word test. Children’s responses were recorded onto a Sony
ICD-MX?20 digital voice dictaphone for later analysis.
“Hello, in a few seconds you will hear a funny made up
word. Please say the word aloud yourself as soon as you
hear it.”

Results

For each repetition test, two sets of results are shown for the
model: the average of all of the 1,200 simulations, plus the
average of 12 simulation runs (one from each mother). The
12 runs are included since statistical analyses are based on
these — the nature of the 1,200 simulations means that they
show little variance, since they are all based on a similar set
of input data. The selection of the single simulation on
which to base statistical analyses was pseudo-random — that
is, the individual 1,200 simulation runs were narrowed
down to those that approximated the average of all 1,200
runs when taken as a whole, and one run (the first run for
each mother together with the seventh of the ten duplicate
repetitions) was randomly chosen from that set.

Figure 2 shows the children’s results for the CNRep
together with the results from EPAM-VOC. A 2 (non-word-
type: single or clustered) x 3 (non-word-length: 2, 3, or 4
syllables) repeated measures ANOV A was performed on the
children’s data. There was a significant effect of non-word-
type (F(1,24)=43.5, p<.001), showing that performance was
better for single consonant non-words, and a significant
effect of non-word-length (F(2,24)=26.7, p<.001), showing
that performance was better for short non-words. There was
no interaction between the two (F(2,48)=1.8, p>.05). For the
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model, there was also the same effect of non-word-type
(F(1,11)=5.5, p<.05) and non-word length (F(2,22)=9.8,
p<.001), with no interaction between the two (F(2,22)=.3,
p>.05).
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80 -
70 A
60 -
50 A
40 -
30 A
20 A
10 +
0 4

W Children

B Model (1,200 runs)

OModel (12 runs)

25 35 45 2C 3C 4C
Figure 2: Non-word repetition performance (%) for the
CNRep and for the two sets of model runs. The numeric on
the x-axis denotes the number of syllables (2, 3, or 4) and
the alphabetic character denotes the non-word type

(S=single consonant, C=clustered consonant).

Figure 3 shows the children’s and model’s performance
for the Dollaghan non-words and the new set of non-words.
For the Dollaghan non-words, the children showed no
difference in their ability to repeat lexical and non-lexical
non-words (#(24)=.6, p>.05). The same was found in the
model (#(11)=.6, p>.05). For the new set of non-words, there
was no difference in children’s repetition accuracy between
low and very low frequency non-words (#(24)=.1, p>.05).
Again, the same result was found in the model (#(11)=.5,
p>.05).
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L NL

LF VLF
Figure 3: Non-word repetition performance (%) for the
Dollaghan and new non-words, for the children and the two
sets of model runs. L=Dollaghan, Lexical non-words;
NL=Dollaghan, Non-Lexical non-words; LF=Low
Frequency new non-words and VLF=Very Low Frequency
new non-words.

Discussion

Figures 2 and 3 show that the model provides a very close
fit to the repetition data of 5-6 year-old children. The central
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finding is that the statistical analysis of the model’s data
mirrors that of the children: clear effects are found for the
non-words of the CNRep whereas no effects are found for
the other repetition tests. The results from each set of non-
words will now be discussed in turn.

The CNRep results are exactly those found in 4 and 5
year old children (e.g. Gathercole & Baddeley, 1989):
performance improves for single consonant non-words and
for non-words of fewer syllables. In fact, this set of findings
is rather robust since they persist in older age groups also
(e.g. Briscoe, Bishop & Norbury, 2001). Both the previous
version of EPAM-VOC and the new version presented here
are able to simulate these findings, suggesting that a
reasonable account of working memory and its interaction
with long-term linguistic knowledge is sufficient to capture
the behaviour shown in the CNRep.

For the Dollaghan non-words, the original study showed
an effect of lexicality for 10 year-old children (Dollaghan,
Biber & Campbell, 1995). Not only do the children in this
study not show this lexicality effect, the model itself also
does not capture it. The model puts forward an explanation
for the lack of effect, in that the lexical items (e.g. bath) are
not robust enough in terms of their frequency of use to cause
improved performance for non-words containing a lexical
item. It would be interesting to take the learning in the
model a stage further to the type of input older children may
receive to then see if lexical effects emerge.

For the new set of non-words, there was no effect of
frequency in either the children or the model. This shows
that frequency effects are not picked up by children of this
age, although they may well be for older children.

In summary, EPAM-VOC replicates the findings of 5-6
year-old children on three different non-word repetition tests
varying in the degree of their lexicality. It now needs to be
seen whether the errors made in children’s repetitions are
also mirrored by the model — if this is the case, then EPAM-
VOC may prove to be a very strong explanation of the way
in which children are learning vocabulary.
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Abstract

Experiments on visual search have demonstrated the existence
of a relatively large and reliable memory for which objects
have been fixated; an indication of this memory is that revisits
(fixations on previously fixated objects) typically comprise
only about 5% of fixations. Any cognitive architecture that
supports visual search must account for where such memory
resides in the system and how it can be used to guide eye
movements in visual search. This paper presents a simple
solution for the EPIC architecture that is consistent with the
overall requirements for modeling visually-intensive tasks
and other visual memory phenomena.

Keywords: visual search; cognitive modeling; eye
movements.

Introduction

Many everyday and work activities involve visual search,
the process of visually scanning or inspecting the
environment to locate an object of interest that will then be
the target of further activity. Many human-computer
interaction tasks require such visual search to be made in a
visual environment that is must simpler than natural scenes.
For example, a particular icon coded by color, shape, and
other attributes must be located on a screen and then clicked
on using a mouse. This domain combines relative simplicity
of the visual characteristics of the searched-for objects with
practical relevance: the task is a natural one in the sense that
such activities are very common in current technology.
Visual search is so heavily relied on in many computer-
based systems that it probably is a major bottleneck in
system performance. Thus understanding in detail how
visual search works in such domains can lead to better
system designs. In addition, if visual search can be
understood in the context of a comprehensive computational
cognitive architecture, then it will add to our knowledge of
human perception, cognition, and action in the especially
rigorous and coherent way characteristic of computational
cognitive architectural modeling.

Visual Search and Active Vision

In a laboratory visual search task, a display of objects is
presented, and the participant must locate a particular object
specified by perceptual properties and make a response
based on whether such an object is present or exactly which
properties it has (e.g. the specific shape). In most
experiments, the display is static and contains some number
of objects, only one of which is the target that must be
responded to; the others are distractors. The properties of
the display or the displayed objects are manipulated, and
reaction time (RT) and/or eye movements are measured. The
empirical literature on this task was dominated for a long
time by studies that measured only RT, and often for
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tachistoscopically presented displays that ruled out eye
movements, but more recently the cost of eye movement
data collection has decreased to the point that it has become
much more common, and deservedly so. While any
behavioral measurement only indirectly reflects the mental
processes that produce it, RT is clearly much less diagnostic
of what goes on during visual search than eye movements.
Furthermore, tasks in which the eye is free to move about a
static display in a naturalistic manner, typical of eye
movement studies of visual search, will be more
representative of the normal operation of the visual system
and the role of attention in visual activity. This point was
argued eloquently by Findlay and Gilchrist (2003) in
presenting an active vision framework for understanding
visual activity; it is markedly different from traditional
approaches to visual attention which have ignored both the
role of eye movements and extra-foveal information.

A key process in visual search is choosing the next object
for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that this choice is not at all
random; rather the color, shape, size, orientation, or other
visual properties of objects influences which object is
chosen for the next fixation; the phenomenon is called
visual guidance or eye guidance. In the active vision
framework, these properties are available in extra-foveal or
peripheral vision to some extent, meaning that visual
attention, which in the context of normal visual activity is
almost synonymous with where the eye is fixated, is a
process of selecting for detailed examination one of a large
number of objects currently perceived to be in the visual
scene, and doing this selection on the basis of the visual
properties available in extra-foveal vision.

Fixation Memory

An important fact about visual guidance in visual search
tasks is that an object that was previously fixated will be
only rarely selected for a new fixation. This is an old result
in eye movement studies (e.g. Barbur, Forsyth, & Wooding,
1993), but it did not receive much attention until the
controversial Horowitz and Wolfe (1998) claim that "Visual
search has no memory." They compared search RTs of a
static display with a changing display, in which the objects
changed positions during search, and found no difference in
RT. If the visual search mechanism remembered where it
had already inspected, it should be disrupted if the objects
changed location; the RT being unaffected argues that the
search was not disrupted, which means in turn that there was
no memory for the previous fixations. Peterson, Kramer,
Ranxiao, Irwin, and McCarley (2001) countered with a
study demonstrating that "Visual search has memory". They
recorded eye movements during search of a static display,
and discovered, as earlier studies had noted, that revisits
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were rare, meaning that the previous fixations were
remembered in some way.

Encoding failures trigger revisits. Peterson et al. went
further with a detailed analysis showing that most revisits
were made immediately after only one intervening fixation,
which rules out memory failure as the cause of a revisit.
Rather, Peterson et al. proposed that revisits were due to
encoding failures: soon after fixating an object and moving
on to the next, the person would realize that the previous
object had not been fully encoded, and so would revisit it.
Using a Monte-Carlo model, they demonstrated that this
explanation accounted for the statistical structure of the
revisits considerably better than either a no-memory or
memory-failure model.

Search strategies dominate. Several subsequent studies
(e.g. von Miihlenen, Miiller & Miiller, 2003; Geyer, von
Miihlenen, & Miiller, 2006) using RT, eye tracking, and
changing displays make it clear that the Horowitz and Wolfe
results were an artifact of how the changing displays would
force a change in task strategy. If the display is changing,
the only way to perform the task successfully is use a
strategy that compensates, such as to "wait and see" whether
the target appears in a subset of the display. In other words,
the changing display paradigm forces a strategy that
produces a no-memory effect. Regardless of the
methodological issues and the merits of the results, an
important implication is that making use of memory for
previous fixations is not "hard-wired" in the visual system,
e.g. at the oculomotor level, but rather is an optional feature
of a visual search task strategy.

Objects, not locations. Additional studies (e.g. Beck,
Peterson, & Vomela, 2006) have attempted to determine
whether what is remembered on each fixation is the
location, the identity, or the properties of the objects.
However, it should be clear that in a changing-display
paradigm, if objects are identified in terms of their
properties (e.g. shape), then they are "teleporting" from one
location to the next, which is not a natural input to the visual
system. Hulleman (2009) performed the most elegant and
naturalistic test of whether fixation location was
remembered simply by having the objects move around on
the display during search similar to the Pylyshyn & Storm
(1988) multiple object tracking paradigm. He observed
almost no difference in search rates compared to a static
display. This strongly suggests that fixation locations
themselves were not remembered, since the objects were
continuously changing location. The conclusion would seem
to be that previously fixated objects are being remembered,
where object identity persists over changes in location. In a
naturally static display, such as the Peterson et al. (2001)
paradigm, the issue does not arise: objects retain their
location and properties.

Large capacity. The consensus of the empirical literature
at this point is that memory for previous fixations exists.
Moreover, it has a fairly large effective capacity. The
Peterson et al. study involved twelve objects, half of which
would have to be visited on the average. Results described
in Kieras and Marshall (2006) involved 48 objects for two
targets, with low revisit rates. Takeda (2004) estimated the
capacity as high as 20 objects. This effective capacity is
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much more than the typical estimates for working memory,
and so-called visual working memory in particular (e.g.
Luck & Vogel, 1997) which has been estimated as holding
only about four objects in a change-detection paradigm.

The locus puzzle. From the point of view of cognitive
architecture, this result presents a serious quandary. Where
is this capacious and reliable memory situated, and how
does it work? Is it a special-purpose memory, or is it simply
a by-product of some other memory function? These
questions were addressed as part of program of detailed
quantitative modeling of visual search tasks using the EPIC
architecture, which was developed to represent perceptual-
motor constraints on performance as fully as cognitive
constraints, and so is well-suited to the goal. This work with
EPIC visual search models focussed on representing how
multiple stimulus attributes could guide visual search
through conjunctive feature guidance, and how to represent
their differential availability at the retinal level. These
models were successful at accounting for detailed results in
very simple tasks such as Findlay's (1997) first-saccade
conjunctive search, searching very large displays of 100
multiattribute objects as in Williams (1967), and searching
dense displays of 48 complex objects (Kieras & Marshall,
2006). However, in these models, the memory for fixations
was represented in an unsatisfactory ad hoc manner. This
paper presents a detailed model for the Peterson results to
show how the fixation memory could be a side function of a
memory system that is already present.

The EPIC Cognitive Architecture

The EPIC architecture for human cognition and
performance provides a general framework for simulating a
human interacting with an environment to accomplish a
task. Due to lack of space, the reader is referred to Kieras &
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for
a more complete description of EPIC. Figure 1 provides an
overview of the architecture, showing perceptual and motor
processor peripherals surrounding a cognitive processor; all
of the processors run in parallel with each other. To model
human performance of a task, the cognitive processor is
programmed with production rules that implement a strategy
for performing the task. When the simulation is run, the
architecture generates the specific sequence of perceptual,
cognitive, and motor events required to perform the task,
within the constraints determined by the architecture and the
task environment.

Figure 2 expands the visual processor shown in Figure 1.
The eye processor explicitly represents differential retinal
availability in terms of acuity functions that specify which
visual properties of objects are currently visible as a
function of the current position of the eye and the size of the
object. The currently available visual properties for each
object are represented in the sensory store; the perceptual
processor then encodes the properties of each object,
possibly in relation to other objects, and passes the encoded
representation on to the perceptual store where they are
available to the cognitive processor to match the conditions
of production rules. The perceptual store thus contains the
current representation of the visual world that cognition can
reason and make decisions about, especially decisions about
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Figure 1. The overall structure of the EPIC architecture.

where to move the eyes next by commanding the ocular
motor processor. The perceptual store retains the
representations for all objects currently visible, with more
information and detail about those that have been fixated.
When the eyes move away from an object, the properties
of the object persist for a short time (e.g. 200 ms) in the
sensory store, and when lost, the perceptual processor notes
that the corresponding property in the perceptual store no
longer has sensory support. After a relatively long time, the
property will then be lost from the perceptual store. But if
the object disappears completely, it and all of its properties
will be removed from the perceptual store fairly quickly.
The concept is that as the eyes move around the visual
scene, a complete and continuous representation of the
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Figure 2. EPIC's visual system.

objects currently present in the visual situation will be built
up and maintained in the perceptual store, allowing the
cognitive processor to make decisions based on far more
than the properties of the currently fixated object. The
notion that this information persists for a considerable time
as long as the scene is present in supported by studies
summarized by Henderson & Castelhano (2005) in which a
visual scene is continuously present, but using a gaze-
contingent forced-choice paradigm, subjects are tested for
their memory of a previously fixated object in a naturalistic
scene; retention times at least several seconds long were
observed.

Modeling Fixation Memory

The earliest attempts to fit models with the EPIC
architecture for visual search in several tasks determined
that some kind of fixation memory is required in order to
account simultaneously for basic measures such as the
number of fixations, search time, and distribution of
fixations on objects with different properties (e.g. Kieras &
Marshall, 2006). In order to include fixation memory, these
earliest models simply "tagged" each object in memory to
designate that it had already been fixated and then made an
occasional random fixation to produce a revisit. This is an
unsatisfactory ad-hoc solution.

The model presented here examines a more interesting
possibility, namely that the perceptual store, which
represents the current visual scene, could serve as a memory
for fixations. That is, if the object has been fixated, then its
representation would include the relevant property of the
object; if the object was the target, the search would stop as
soon as this was determined. But if it was not, then the next
object to be examined can be chosen from the set of objects
currently lacking information about the property in question.
Thus by choosing objects whose properties are unknown,
previously fixated objects will not be revisited.

However, since the encoding of the fixated objects is not
perfectly reliable, there will be occasions when a previously
fixated object will be lacking the target property, and so will
get visited again. This concept is the basis for the simple
statistical model presented by Peterson et al. (2001); the
explicit cognitive architectural model presented here
provides a generalization to other visual search tasks, and in
addition, clarifies some aspects of their results.

Model for the Peterson Task

Figure 3 shows the EPIC model display of the physical
visual situation consisting of the stimuli for a single trial in
the Peterson task after several fixations. The stimuli on each
trial were twelve objects presented in random locations on a
static display; eleven were distractors, consisting of rotated
L-shapes, and one was the target, a T-shape rotated either to
the left or to the right. The participant's task was to locate
the T shape and press a key depending on whether it was the
left- or right-rotated shape. Figure 3 shows how the objects
were quite small, being 0.19° in visual angle size, and were
widely spaced, a minimum of 4.9° apart. Participants with
normal vision would thus have to fixate each object
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Figure 3. An example of the physical situation in a Peterson et al.
(2001) task trial after several fixations as depicted in EPIC's
display. The concentric circles show the current location of the
eyes, the small inner circle has a 1° radius corresponding to the
conventional fovea size; the outer circle is a calibration ring with
10° radius. The sizes of the overall display and the search objects
are shown to scale, so the objects are indeed very small.

individually to recognize it. Because of space limitations,
the very small shapes are obscured in the figure.

The EPIC model to fit the data comprised a choice of (1)
visual acuity parameters, (2) an encoding process in the
visual perceptual processor, (3) a parameter for the encoding
failure rate, (4) a parameter for the decay time of visual
properties in the perceptual store that are no longer sensorily
supported, and (5) a set of production rules that
implemented the visual search strategy. Each of these model
inputs will be described briefly.

(1). The visual acuity parameters for this situation are
very simple, specifying that the shape of an object was
available only in the fovea, while the location of an object is
available throughout the visual field, meaning that any
object can be selected as a fixation target. The object color
plays no role in the task, but its availability was left at the
default value. Figure 4 shows the effects of the acuity
functions for the same display as in Figure 3.

(2, 3).The perceptual processor encodes the objects by in
terms of the recognized shapes for distractors and targets,
which are then stored in the visual perceptual store where
they become available for production rules to match on. The
Peterson et al. encoding failure concept is represented as
follows: with some constant probability, the encoding could
fail and result in a partial encoding that retains some
information about whether a distractor or target was present,
but not enough to identify the actual shape. For example, a
partial encoding for distractor could be that two line
segments were joined at the ends, while a partial encoding
for a target could be that one line segment joined another in
the middle. For purposes of display in the model, these
partial encodings are represented by partially rotated L and
T shapes. The probability of partial encoding of targets and
distractors is assumed to be the same.
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Figure 4. An example of the contents of the sensory store
corresponding to the lower right corner of Figure 3. Objects whose
location, but no other properties, are known are represented as
light gray open circles (top two). Objects which are close enough
to the current fixation point to have their black color available, but
not their shape, are represented as black open circles (right hand
two). Both the shape and the color are available for the currently
fixated object.

(4). After encoding, if the eye is then moved to a different
object, the actual shape quickly becomes unavailable, and
the encoded shape is marked as no longer having sensory
support. The encoded property then disappears from the
perceptual store after the time specified by the decay time.
In accordance with the Henderson and Castelhano (2005)
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Figure 5. Flowchart for the search task strategy. Two threads
overlap the process of choosing the next candidate and checking
whether the current candidate is a target.
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results, this parameter is assumed to be a few seconds in
magnitude, though for purposes of model fitting for this
data, it was made as small as possible.

(5). The visual search strategy in the model is an
application of a basic strategy, shown in Figure 5, that has
been used in several EPIC visual search models. There are
two threads of execution. Nomination rules in the first
thread propose objects to fixate based on available visual
properties, and also nominate a random choice. Choice rules
then pick a single candidate from the nominated objects
according to a priority scheme, and launch an eye
movement to the chosen candidate. The rules in the second
thread wait for all relevant properties of the fixated
candidate to be fully visible and either respond if it is a
target, or discard the candidate if not. The overlapped
processing provided by the two threads enables the time
between successive eye movement initiations to be short,
about 250 ms, which is commonly observed in high-speed
visual search tasks.

For the Peterson model, the strategy chooses objects for
the next fixation according to the following simple scheme:
Only objects not being currently inspected are considered. If
an object is partially encoded as a target, it is given first
priority for the next fixation, followed by an object not
encoded as a distractor (either no encoding at all or partially
encoded as a distractor), followed by an object chosen at
random. Thus the strategy favors possible targets, then
unvisited or partially encoded objects, and avoids objects
fully known to be distractors. Figure 6 summarizes the
model by showing the contents of the perceptual visual store
corresponding to Figure 3, right before a target revisit.

Figure 6. An example of the contents of the perceptual store after
several fixations corresponding to the upper left corner (left panel)
and lower right corner (right panel) of Figure 3. Two objects
whose color is known to be black, but whose shape is unknown are
represented as black open circles. Previously fixated objects have
encoded shapes available. In the right panel, three distractors have
been fixated, including the current one. In the left panel, there is a
partially encoded target at the top left, and partially encoded
distractor in the center right, represented as partially rotated
shapes. The strategy is about to move the eyes back to the
previously visited target.

Results

Figure 7 shows the observed and predicted results for this
model, with the observed data from Peterson et al. (2001)
shown as solid points and lines with 95% confidence
intervals. The graph shows the proportion of fixations that
are revisits as a function of /ag, the number of fixations
between the original and the revisit. Thus most of the
revisits occur after fixating one intervening object. The total
number of revisits is shown in the upper curve, and the
number of revisits on targets in the lower curve.

The predicted values from the model are shown as open
points and dotted lines. The model parameter values were
chosen by iteration to produce a good fit with 10,000
simulation trials per run. The fit of the model predictions is
very good; almost all of the predicted values are within the
confidence intervals; the R? and standard error of prediction
is 0.986 and 0.001 for Revisits, and 0.999 and 0.000 for
Target Revisits. The parameter values producing this fit are
0.14 for the probability of encoding failure, and 4000 ms for
the decay time of properties in the perceptual store. Any
shorter decay time produces an increase in the number of
predicted revisits at very long lags.

A comparison to the Peterson et al. 2001 model is useful.
Although they reported the number of target revisits, they
modeled only the total number of revisits, and so did not
attempt to account for the fact that most of the immediate
revisits are due to revisits to the target. Exploration with a
variety of strategies and parameter values makes it clear that
to fit both curves, the model must make the distinction
between partially encoded targets and partially encoded
distractors. Partially encoded targets must be favored for
revisits, and partially encoded distractors treated similarly to
unvisited objects — otherwise, there is no way to fit both
curves simultaneously. That is, if possible targets are not
favored for a revisit, then parameters that fit the overall rate
of revisits far underpredict the proportion of target revisits.
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Figure 7. Solid points and lines and confidence intervals are the
observed proportion of fixations at each lag for total Revisits and
Target Revisits. Open points and dotted lines are model
predictions.



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

In fact, according to the model, the revisit data for all
objects are the sum of two underlying functions: Partially
encoded distractors are revisited only because they are
treated like unvisited distractors, yielding a shallow descent
in revisits as a function of lag (imagine the total revisits
curve for lags 2 to 12 extrapolated back to lag 1). But
partially encoded targets are revisited immediately,
producing the sharp descent from lag 1 to lag 2. The sum of
these two trends produces the sharp-then-shallow curve for
total revisits which was modeled by Peterson et al. The
current EPIC model always revisits partially encoding
targets immediately, and never favors partially encoded
distractors over unvisited distractors. It might be possible to
improve the fit slightly by using different encoding failure
parameters for targets and distractors, and a more subtle
choice strategy, but the current model fits the data
acceptably well with few free parameters and a simple
strategy.

Conclusion

The Peterson et al. (2001) experiment is fundamental in
that it well isolates a set of basic processes underlying visual
search that a successful cognitive architecture must be able
to explain naturally. The present EPIC model demonstrates a
how memory for fixations can emerge from the operation of
a strategy for choosing the next object based on a persistent
visual store of information about previously fixated objects.
In this task, the only relevant properties of the objects is
their location, whose wide availability makes it possible to
choose an previously unvisited object for fixation, and the
shape, visually available for only the one object foveated at
a time. This model works by relying on the persistence of
the perceptual encoding in the visual store and a simple
strategy that maximizes task performance by making the
most efficient use of partial encoding results.

The persistent visual store needs to be present in the
architecture to allow cognition to reason about the entire
visual situation. Its persistence is required for this
architectural function, and is consistent with other empirical
results such as those surveyed by Henderson and Castelhano
(2005).

Thus the architectural puzzle posed by the existence of
fixation memory can be solved by relying on this otherwise-
required store; no special architectural mechanism is need to
account for fixation memory. Models currently being
refined for other visual search tasks (such as that described
in Kieras & Marshall, 2006) show that this concept of
fixation memory scales to more complex displays, objects,
and search tasks.
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Why EPIC was Wrong about Motor Feature Programming
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Abstract

The EPIC computational cognitive architecture was among
the first to propose representing motor movement constraints
explicitly in the form of motor processors that implemented a
specified time course for the preparation, initiation, and
production of movements. A key feature of this proposal was
that movements were specified in terms of features, and
movement preparation time was linear with the number of
features that had to be prepared before a movement was
initiated. While successful in modeling many high-speed tasks
involving choice reaction times with keypress responses,
serious difficulties appeared in modeling high-speed visual
search tasks involving saccades and mouse movements. A
reappraisal of the basis for EPIC's assumptions requires a
critical change: visually aimed manual and ocular movements
require no feature preparation time.

Keywords: cognitive architecture; motor processing; motor
features; S-R compatibility; spatial compatibility

Introduction

The EPIC architecture for human cognition and
performance provides a general framework for simulating a
human interacting with an environment to accomplish a
task. Due to lack of space, the reader is referred to Kieras &
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for
a more complete description of EPIC. Figure 1 provides an
overview of the architecture, showing perceptual and motor
processor peripherals surrounding a cognitive processor; all
of the processors run in parallel with each other. To model
human performance of a task, the cognitive processor is
programmed with production rules that implement a strategy
for performing the task. When the simulation is run, the
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Figure 1. The overall structure of the EPIC architecture.
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architecture generates the specific sequence of perceptual,
cognitive, and motor events required to perform the task,
within the constraints determined by the architecture and the
task environment. Components of EPIC, especially the
motor processors, have been incorporated into other
cognitive architectures that use their own cognitive
processor.

Motor Feature Preparation

Meyer and Kieras (1997) argued that a cognitive
architecture must explicitly represent the constraints on
motor activity in order to comprehensively account for task
performance. They specified these constraints in the EPIC
cognitive architecture in terms of motor processors that
were equal in status to perceptual processors and the
cognitive processor. These motor processors, one for each of
the manual, ocular, and vocal motor modalities, accept
symbolic movement commands from a production-rule
cognitive processor, and then generate simulated
movements that are inputs to a simulated task environment.
Their characterization focussed on the temporal constraints,
not on how muscle activity would be controlled, and can be
summarized as follows:

1. Movements are described in terms of motor features,
such as the direction and distance of a pointing movement,
or the hand and finger used for a button-pushing movement.
The type of movement, the style, was considered the
dominant feature within each movement modality.

2. When a movement is commanded, the motor processor
prepares each feature serially, requiring a constant time per
feature, estimated as 50 ms. When all features have been
prepared, the movement is initiated. After an initiation time
delay (also estimated as 50 ms), the mechanical movement
begins.

3. Once prepared, the features for a movement are
retained in the motor processor. If a movement is repeated,
its features do not have to prepared, and the movement can
be initiated immediately.

4. The motor processor can be commanded to prepare one
or more movement features in advance; these are stored in
the motor processor. When the movement is commanded,
the previously prepared features do not have to be prepared,
allowing the movement to be initiated sooner by the amount
saved in preparation time.

5. The feature preparation mechanism is used for the
motor processors in all modalities; the only difference is in
the specific feature structure of different movements
possible in each modality.

Meyer and Kieras based the motor processor assumptions
on the available literature on motor control (see Rosenbaum,
1991 for an overview). Because the motor control area is
seriously under-researched (Rosenbaum, 2005), the only
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useful theoretical concept available was Rosenbaum's theory
of motor feature programming, and so it was adopted.
However, any cognitive architect has to go beyond the
specific literature to some extent by simplifying and
generalizing the empirical effects and available theory to
produce a conceptually and practically manageable
architecture. Uniformity of mechanism is a compelling first
approximation as well. Meyer and Kieras therefore assumed
that feature preparation held for all motor modalities and
that the per-feature time was constant and uniform for all
features and modalities. They also proposed the specific
features for various movements and postulated
dependencies between them. For example, manual pointing
movement features could not be re-used in eye movement
feature preparation; changing hands or fingers could reuse
the remaining manual features, but changing the style of
manual movement requires all features to be prepared.

Kieras and Meyer successfully constructed many EPIC
models for high-speed choice reaction tasks, especially dual
tasks, with these motor processors (summarized in Meyer &
Kieras, 1999). Depending on the details of the task, motor
feature preparation time often set a substantial constraint on
other processes in the models, especially if features could be
prepared in advance. However, since many experiments are
done with the exact required response movement
randomized over trials, the net effect of feature preparation
usually is simply to produce an average preparation time
that serves as a component in the overall latency of
response. Also most of the modeled experiments involved
button presses, typically using laboratory methodology in
which the stimulus location is constant and the fingers are
pre-positioned on the alternative response keys, meaning
there is little or no eye or hand movement.

Since EPIC has been one of the few cognitive
architectures that attempted to represent motor processes
and constraints, even in highly abstracted form, its analysis
of motor processing has been explicitly adopted in other
architectures, in particular, the widely used ACT-R/PM and
current ACT-R architectures (e.g. Anderson & Lebiere,
1998). Thus the status of EPIC's characterization of motor
processing has broad relevance and concern to the cognitive
architecture community as a whole. This paper presents why
a major revision in this characterization is required: visually
aimed manual and ocular movements require no feature
preparation time.

Symptoms of the Problem

When models for high-speed visual search tasks were
constructed, it proved to be extremely difficult to fit basic
latency data given the constraints on ocular feature
preparation. For example, models were constructed for
Findlay's (1997) results for latency and accuracy in the first
saccade in a conjunctive visual search task. Findlay
observed that the latency of the first saccade was only about
250 ms, which was quite difficult to obtain in the EPIC
architecture with its standard timing parameter values. Due
to the syntax and semantics of the production rules, two
production rule cycles are required to identify the target of
the eye movement, for a total of 100 ms. A motor initiation
requires 50 ms. An eye movement in the task required
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preparing an average of one feature, for an additional 50 ms.
The total is 200 ms, which leaves only 50 ms total for
stimulus transduction and recognition, which seems
implausibly short — 100 ms seems a more reasonable
perceptual processing time.

In a more complex visual search task (such as in Kieras &
Marshall, 2006), there are enough eye and hand movements
that feature preparation time can sum to several hundred ms
in the total RT. A more complex task strategy will also
require more production rule firings to choose the next
fixation target, making it even more difficult to fit the
commonly observed 250 ms delay between successive
saccades, even if multithreaded production rule strategies
are deployed.

While the difficulty of programming a model is not
normally grounds for rejecting a model, it is significant if
the difficulty is due to a cognitive architectural feature. A
cognitive architecture is supposed to capture the underlying
mechanisms and processes of human activity; it is natural to
expect that simple activities should have reasonably simple
representations in the architecture. So undue difficulty in
constructing a model for a straightforward task is a strong
suggestion that the architecture is incorrect.

In the case of the visual search task modeling, it was
observed that setting the feature preparation time to zero for
aimed manual and ocular movements gave the strategy
programming adequate "breathing room" in fitting the data.
This led to a re-examination of empirical literature behind
this basic feature of EPIC's motor processors to see if the
original reasons for the motor feature programming were
still justifiable.

Reappraising the Literature

Manual movement feature preparation

The seminal experimental demonstration of motor feature
preparation is Rosenbaum (1980) in which participants
made button-press movements in response to precues and
cues. The experimental task is diagrammed in Figure 2. On
each trial, the participant received a precue which specified
some of the putative features of the movement, then a cue,
which specified the exact movement,  whereupon the
participant made the response movement. The latency of the
initiation of the movement was recorded. More specifically,
as shown in Figure 2, the response buttons were a set of
eight buttons arranged in two parallel rows, one on the right,
and one on the left, running forwards towards the display,
and rearwards towards the participant. The two center
buttons in each row were the "home" buttons; at the start of
the trial, the participant held each home button down with
their left- and right-hand index fingers, and in response to
the cue, moved one of the fingers to the response button; the
time of release of the home button is the RT. The buttons
were color-coded; the participant was practiced in
associating the color codes with the physical location of the
buttons. The response cue was a colored disk appearing on
the display that designated which button to press.

The precue was presented on the display before the cue,
and consisted of three letters, one for each putative feature
of the movement which Rosenbaum described as Direction,
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Figure 2. The Rosenbaum task. First a precue appears —
four example are shown. Then appears a color-coded cue
designating the button to be pressed. Depending on the
precue, some number of movement features must be
prepared, then the participant moves the left or right index

finger from the home button to the designated button. The
response buttons are hidden from the participant's view.

Arm, and Extent. For example, FRN stood for forward,
right, near, which completely specifies the features of the
movement to be made; in contrast, XRX specifies only a
single feature, right. The participant was practiced in
interpreting the precues. The logic of the paradigm is that
when the cue appeared, the participant would have to
prepare the remaining features before the movement could
be initiated. Figure 2 shows additional examples of precues
that vary the number of features that would have to be
prepared before the movement could be initiated. The more
features needing to be prepared, the greater the latency
should be, and the results confirmed the prediction: zero,
one, two and three features produced latencies of about 300,
450, 550, and 700 ms respectively. However, there were
subtle and confusing specific-feature effects: different
features appeared to require different times to prepare
(ranging from 150 to 200 ms), and some features required
different times depending on their values; for example, near
movements were initiated faster than far movements, and
more so if more features had to be prepared. Thus while
demonstrating feature preparation time effects, the effects as
presented were a complex mixture of general and specific
effects.

Theorists of choice RT paradigms usually postulate a
response selection stage of processing in which the stimulus
is mapped to the response to be made. Motor feature
preparation would follow response selection and should be a
distinct process. However, it is clear that performing this
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task requires some complex mappings - first from the letter
codes to movement features, and then from the cue color to
the button. An immediate question that arises is the extent to
which the effect of the precue is actually a response
selection effect - maybe the precue is assisting response
selection, not movement preparation.

To eliminate the possibility that purely cognitive response
selection effects were responsible for the latency effects,
Rosenbaum conducted a second, decision task, experiment
in the participant viewed the precue and then the cue, and
rather than making the response movement, made a vocal
response for whether or not the cue was valid (consistent
with) the precue. The resulting RTs showed a strong effect
of the number of precued features, but no effect of the
specific features or feature values. Even though he primary
effect of number of features was present in both
experiments, Rosenbaum claimed that the lack of feature-
specific effects meant that response selection effects were
not responsible for the differences in movement RTs.
However, this argument is hard to understand — the feature
preparation concept would not seem to require feature-
specific effects, which in any case are hard to explain.
Additionally, the logic of deciding which movement to
make would seem to overlap a lot with deciding whether the
movement could be made. The present author correlated the
mean decision RT with the mean movement RT for each
precue condition, and discovered that 91% of the variance in
movement RT is accounted for by the decision RT. This
strongly suggests, contrary to Rosenbaum's claim, that most
of the movement RT is accounted for by some form of
response selection process, even if there are specific feature
effects.

Response Selection Effects: S-R compatibility

A long-studied aspect of response selection is S-R
compatibility, which can be described as the case with
which the mapping from stimulus to response can be made.
See Proctor & Vu (2006) for a recent review, and
Rosenbaum & Newell (1987) or John, Rosenbloom, &
Newell (1985) for computational model accounts of some
forms of S-R compatibility. One feature of Rosenbaum's
task is that both the precues and the cues would require a
complex mapping to the actual response movements.
Goodman and Kelso (1980) examined this issue in a critical
but usually overlooked response to Rosenbaum. They first
replicated Rosenbaum's results using color words or number
labels for the target buttons. In a second study they used a
precue and cue display, diagrammed in Figure 3, consisting
of an array of lights in the same spatial arrangement as the
response buttons. Precues were indicated by illuminating the
lights corresponding to the buttons consistent with the
precued movement features. For example, the FRN precue
would illuminate the single light for the button
corresponding to the three features, while XRX precue
would illuminate all the lights for the right-hand side of the
button set. The cue would then consist of the single light for
the to-be-pressed button. This presentation has an especially
powerful form of S-R compatibility termed spatial
compatibility — the spatial properties of the stimulus map
directly to the spatial properties of the response.
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Figure 3. The Goodman & Kelso version of the Rosenbaum
task. First a precue appears on an array of lights that
matches the layout of the response buttons. The top light
indicates a precue (vs. cue) display. Then in the same array
appears a cue designating the button to be pressed.
Depending on the precue, some number of movement
features must be prepared, then the participant moves the
left or right index finger from the home button to the
designated button.

Compared to Rosenbaum's and the replication
presentations. this spatially-compatible presentation of
precue and cue information drastically reduced the effect of
number of precued features. In contrast to the 300-700 ms
range of Rosenbaum's latencies, the range was only about
250-350 ms.

S-R compatibility is normally assumed to be a response-
selection process; there is nothing in the movement feature
concept that suggests S-R compatibility would be involved.
That is, once the response has been selected, the spatial
similarity of the stimulus to the response should be
irrelevant to computing the movement features. This is a
further strong suggestion that Rosenbaum's effects were
actually response-selection effects rather than movement
preparation effects.

Response Selection Effects: Hick's Law

A second major aspect of response selection difficulty is
the number of possible responses in the selection set, long
codified as Hick's Law (Hick, 1952), which states that the
RT in a choice reaction task is proportional to /og> of the
number of alternative (possible) responses. One
consequence is that if the number of possible responses is
held constant, then the RT should be constant. This would
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take ordinary response selection effects out of the picture,
leaving only motor feature programming to produce RT
differences. Thus, Goodman and Kelso (1980) conducted an
additional experiment that held the number of possible
responses constant at two. Using the same compatible
display, they precued two possible responses by precuing
both possible values of a single feature, such as illuminating
the lights for both right and left forward near buttons. Also
included were ambiguous precues that illuminated two
lights, but which had no feature values in common, such as
left-rearward-far and right-forward-near. These results were
highly persuasive: the movement RTs were virtually
identical at about 300 ms for all feature precue types,
including the ambiguous precues. Apparently the specific
movement features involved were irrelevant; what matters is
only the difficulty of response selection, governed in this
case by the number of possible responses.

It is also an old result that Hick's Law effects disappear in
the presence of high S-R compatibility (Teichner & Krebs,
1974). Goodman & Kelso's highly compatible presentation
of cues and precues drastically reduced the putative feature
programming effects, and when the number of alternatives
was held constant, they disappeared altogether.

This suggests that other aimed movement tasks in which
S-R compatibility is manipulated might shed light on
whether movement feature preparation is involved. That is,
if S-R compatibility results in no Hick's Law effects, then
there would be no response selection effects to be confused
with feature preparation, and then perhaps other evidence of
motor feature preparation would be visible, such as a
movement latency long enough to have "room" for
something like 50 ms or more per feature, and evidence of
feature reuse, as described above, in which a repeated
movement could be initiated more quickly.

Dassonville, Lewis, Foster, and Ashe (1999) had
participants make joystick movements to place a cursor on
visible targets arranged in a circle around the starting
position, with various cues that differed in compatibility. In
highly compatible mappings, there was no effect of the
number of possible targets (no Hick's Law effect) and a
latency of only about 300 ms. If the cue/response was
repeated, the second response was substantially faster in the
incompatible mappings, but not in the compatible mappings.

Wright, Marino, Belovsky, and Chubb (2007) had
participants move a physical stylus from a starting point to
one of several target pads arranged in an arc. The movement
target and response cue was indicated by illuminating the
pad, a perfectly compatible S-R mapping. There was no
Hick's Law effect of the number of targets, the latencies
were about 250 ms, and there was little or no effect of
repetitions.

These results all point to the same conclusion: The motor
feature preparation hypothesis states that features should
require substantial time to prepare before a movement could
be initiated and then could be reused in subsequent
movements. Instead the effects are due to response selection
effects described by Hick's Law, and when these effects are
removed by highly compatible specifications of movement
targets, reuse effects disappear, and the movement is
launched so rapidly that there is no time to spare from other
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aspects of EPIC's architecture for feature programming to
occur.

The same story for eye movements

A parallel story appears in the case of eye movements.
Another key demonstration of motor feature programming
was Abram & Jonides (1988) who applied the Rosenbaum
feature preparation paradigm to saccade preparation. The
movement task, illustrated in Figure 4, consisted of a
saccade to one of four targets, two on each side of the
fixation point at different distances. The precue and cue
were shown in four circles, two on each side of the fixation
point, inside the actual targets. The saccade responses
required were anti-saccades — the eye movement had to be
made in the opposite direction from the precue or cued
direction, an S-R incompatibility. The saccade latencies

e ¢ OO + OO e o Start

e 06 O O + OO o o Precue

e 06 OO + OO e o Cue for
response

e e 0O m Antisaccade
response

Figure 4. The Abram and Jonides task. The trial starts with
the participant fixating the central cross. A precue is then
presented showing e.g. the direction and both possible
extents of the movement. Then a cue appears designating
the actual movement target, one of the four small outer
circles. The participant responds by fixating the target at the
same distance but opposite direction as the cue.

increased by about 50 ms per feature preparation required,
consistent with the feature preparation model. But in a
second experiment, they required compatible response
saccades, and held the number of precued alternatives
constant at two. While there were some feature-specific
differences, the saccade latency was basically constant
across number of precued features, corresponding to the
Goodman & Kelso (1980) results with the number of
possible responses held constant. Again the feature-
preparation effect seems to be confounded with a response
selection effect.

What if the cue and response are more compatible? As
illustrated in Figure 5, Crawford and Mueller (1990) used
targets that were six lights, three on each side of the fixation
point. A precue consisted of a background illumination
around the possible target; the cue was illuminating the
target light itself; in response, the participant made an eye
movement to the illuminated target. The precue locations
were either the same as the target (valid), different from the
target (invalid), or at the fixation point (neutral), and
presented either 100 ms or 500 ms before the cue. The
results were very short latencies (about 250 ms), a small
benefit of valid or neutral precues if the precue-cue delay
was short, and no effect at all if it was long. Such an effect
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Figure 5. The Crawford and Mueller task. The trial starts
with the participant fixating the central cross. A precue is
then presented, e.g. a valid cue designating the future
movement target. Then a cue appears designating both the
actual movement target and acting as the stimulus for the
movement. The participant responds by fixating the target.

would not be expected from the motor feature preparation
concept - if anything, the benefit of the precue should be
larger with more time. Rather the delay results suggest some
low-level visual effect on saccade initiation.

Additional studies further clarify the compatibility effects
for eye movements. Lee, Keller, and Heinen (2005) had
participants make eye movements to memorized color-
coded locations in a circular array given a color cue, not
unlike Rosenbaum's approach. Hick's Law effects were
observed. Kveraga, Berryhill, and Hughes (2002) and
Kveraga, Boucher, and Hughes (2005) used targets arranged
in a circle or semicircle, and the movement cue was co-
located with the target, producing no Hick's Law effect.
However, if anti-saccades or key presses were required to
the same stimuli, Hick's Law effects were obtained.

The results for eye movements point to the same
conclusion as for aimed manual movements: Effects
suggesting motor feature preparation for eye movements are
better explained as response selection effects accounted for
by Hick's Law, and when these effects are removed by
highly compatible specifications of movement targets, there
is no evidence of feature preparation and the movement is
launched so rapidly that there is no time to spare for feature
programming to occur.

Conclusion

It was wrong

Empirically, once the target has been visually identified,
an aimed manual movement or eye movement can be
quickly launched to it without any S-R translation or motor
feature programming delays; there is no evidence of feature
programming effects. In terms of the EPIC architecture,
once the production rules have identified the target of a
movement as an object currently visible, and passed the
identity of that object to the motor processor in a movement
command, the movement will be initiated without any
feature programming time. There seems to be no reason to
maintain feature preparation delays for aimed movements in
the architecture at the cost of making the models
substantially more difficult to fit to important classes of



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

data, especially in the high-speed performance tasks that
motivated the design of EPIC. This original feature of EPIC
was simply an incorrect overgeneralization. Fortunately, the
solution is simple: set the per-feature preparation time for
saccades and aimed manual movements to zero.

Implications for previous models

What effect does this change have on previous models
built with EPIC? As mentioned earlier, most of the models
in the original Meyer & Kieras (1997, 1999) work used
keypress responses, which are not affected by this correction
because they would not seem to be aimed manual
movements (but see Welford, 1971).

Furthermore, because experimental results are typically
aggregated over specific response movements, the net effect
is that previous models using aimed manual movements or
eye movements have a variable component of response time
that instead of being due to movement preparation, has to be
reattributed to stimulus encoding or response selection. At
this point the theoretical implications appear to be minor.

Should feature preparation be discarded for keypress
movements as well? Unfortunately, this question cannot be
easily answered because the motor control literature remains
so sparse (Rosenbaum, 2005) that we are still in the earliest
stages of our theoretical understanding of how movements
are performed. An interim heuristic would be to assess
whether keystroke feature preparation can be replaced by
changing the response selection strategy.
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Abstract

When individuals learn facts (e.g., foreign language vocab-
ulary) over multiple sessions, the durability of learning is
strongly influenced by the temporal distribution of study
(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). Computa-
tional models have been developed to explain this phenomenon
known as the distributed practice effect. These models pre-
dict the accuracy of recall following a particular study sched-
ule and retention interval. To the degree that the models em-
body mechanisms of human memory, they can also be used
to determine the spacing of study that maximizes retention.
We examine two memory models (Pavlik & Anderson, 2005;
Mozer, Pashler, Lindsey, & Vul, submitted) that provide dif-
fering explanations of the distributed practice effect. Although
both models fit experimental data, we show that they make ro-
bust and opposing predictions concerning the optimal spacing
of study sessions. The Pavlik and Anderson model robustly
predicts that contracting spacing is best over a range of model
parameters and retention intervals; that is, with three study ses-
sions, the model suggests that the lag between sessions one
and two should be larger than the lag between sessions two
and three. In contrast, the Mozer et al. model predicts equal
or expanding spacing is best for most material and retention
intervals. The limited experimental data pertinent to this dis-
agreement appear to be consistent with the latter prediction.
The strong contrast between the models calls for further em-
pirical work to evaluate their opposing predictions.

Keywords: distributed practice effect; optimization; study
schedules

Introduction

In educational settings, individuals are often required to
memorize facts such as foreign language vocabulary words.
A question of great practical interest is how to retain knowl-
edge once acquired. Psychologists have identified factors in-
fluencing the durability of learning, most notably the tempo-
ral distribution of practice: when individuals study material
across multiple sessions, long-term retention generally im-
proves when the sessions are spaced in time. This effect,
known as the distributed practice or spacing effect, is typi-
cally studied via an experimental paradigm in which partici-
pants are asked to study items over two or more sessions, and
the time between sessions—the interstudy interval or I1SI—
is varied. Retention is often evaluated via a cued recall test
at a fixed lag following the final study sessionthe retention
interval or RI (Figure 1).

Typical experimental results are shown in the data points
and dotted lines of Figures 2a (Glenberg, 1976) and 2b
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(Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008). In both ex-
periments, participants studied material at two points in time,
with a variable ISI, and then were tested following a fixed
RI. The graphs show recall accuracy at test as a function of
ISI for several different RIs. The curves, which we will refer
to as spacing functions, typically show a rapid rise in mem-
ory retention as ISI increases, reach a peak, and then gradu-
ally drop off. From the spacing function, one can determine
the optimal ISI, the spacing of study that yields maximal re-
tention. The exact form of the spacing function depends on
the specific material to be learned and the RI. The distributed
practice effect is obtained over a wide range of time scales:
ISIs and RIs in the Glenberg study are on the order of seconds
to minutes, and in the Cepeda et al. study are on the order of
weeks to months. On the educationally relevant time scale
of months, optimally spaced study can double retention over
massed study. Thus, determining the optimal spacing of study
can have a tremendous practical impact on human learning.
Pavlik and Anderson (2005; 2008) used the ACT-R declar-
ative memory equations to explain distributed practice ef-
fects. ACT-R supposes a separate trace is laid down for each
study and that the trace decays according to a power function
of time. The key feature of the model that yields the dis-
tributed practice effect is that the decay rate of a new trace
depends on an item’s current memory strength at the point in
time when the item is studied. This ACT-R model has been
fit successfully to numerous experimental datasets. The solid
lines of Figure 2a show the ACT-R fit to the Glenberg data.
Mozer, Pashler, Lindsey, and Vul (submitted) have recently
proposed a model providing an alternative explanation of the
distributed practice effect. In this model, when an item is
studied, a memory trace is formed that includes the current
psychological context, which is assumed to vary randomly
over time. Probability of later recall depends in part on the
similarity between the context representations at study and
test. The key feature of this model that distinguishes it from
related past models (e.g., Raaijmakers, 2003) is that the con-

text is assumed to wander on multiple time scales. This
nth Test
1Y ™Variable . Study —Freq on.
Session| interstudy | Session Session |Retention| Material
Interval 1 Interval

Figure 1: Structure of a study schedule.
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Figure 2: Results from (a) Glenberg (1976) and (b) Cepeda et al. (2008) illustrative of the distributed practice effect. The dotted lines
correspond to experimental data. The solid lines in (a) and (b) are the ACT-R and MCM fits to the respective data. (¢) A contour plot of recall
probability as a function of two ISIs from ACT-R with parameterization in Pavlik and Anderson (2008).

model, referred to as the multiscale context model (MCM),
has also been successfully fit to numerous empirical datasets,
including the Glenberg study. In Figure 2b, we show the
MCM prediction (solid lines) of the Cepeda et al. data.

Both ACT-R and MCM can be parameterized to fit data
post hoc. However, both models have been used in a predic-
tive capacity. Pavlik and Anderson (2008) have used ACT-R
to determine the order and nature of study of a set of items,
and showed that ACT-R schedules improved retention over
alternative schedules. Mozer et al. (submitted) parameter-
ize MCM with the basic forgetting function for a set of items
(the function relating recall probability to RI following a sin-
gle study session) and then predict the spacing function for
the case of multiple study sessions. Figure 2b is an example
of such a (parameter free) prediction of MCM.

Most experimental work involves two study sessions,
the minimum number required to examine the distributed-
practice effect. Consequently, models have mostly focused
on this simple case. However, naturalistic learning situations
typically offer more than two opportunities to study material.
The models can also predict retention following three or more
sessions. In this paper, we explore predictions of ACT-R and
MCM in order to guide the design of future experiments that
might discriminate between the models.

Study Schedule Optimization

A cognitive model of the distributed practice effect allows us
to predict recall accuracy at test for a particular study sched-
ule and RI. For example, Figure 2c shows ACT-R’s prediction
of recall probability for a study schedule with two variable
ISIs and an RI of 20 days, for a particular parameterization of
the model based on Pavlik and Anderson (2008). It is the two-
dimensional generalization of the kind of spacing functions
illustrated in Figures 2a and 2b. Recall probability, shown by
the contour lines, is a function of both ISIs. The star in Figure
2c indicates the schedule that maximizes recall accuracy.
Models are particularly important for study-schedule opti-
mization. It is impractical to determine optimal study sched-
ules empirically because the optimal schedule is likely to de-
pend on the particular materials being learned and also be-
cause the combinatorics of scheduling n+ 1 study sessions
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(i.e., determining n ISIs) make it all but impossible to explore
experimentally for n > 1. With models of the distributed prac-
tice effect, we can substitute computer simulation for exhaus-
tive human experimentation.

In real-world learning scenarios, we generally do not know
exactly when studied material will be needed; rather, we have
a general notion of a span of time over which the material
should be retained. Though not the focus of this paper, mod-
els of the distributed practice effect can be used to determine
study schedules that maximize retention not only for a partic-
ular prespecified RI, but also for the situation in which the RI
is treated as a random variable with known distribution. The
method used in this paper to determine optimal study sched-
ules can easily be extended to accomodate uncertain RIs.

Pavlik and Anderson ACT-R Model

In this section, we delve into more details of the Pavlik and
Anderson (2005; 2008) model, which is based on ACT-R
declarative memory assumptions. In ACT-R, a separate trace
is laid down each time an item is studied, and the trace decays
according to a power law, 1 ~¢, where ¢ is the age of the mem-
ory and d is the power law decay for that trace. Following n
study episodes, the activation for an item, m,, combines the
trace strengths of individual study episodes:

n
my = Bs +Bi+ By +In (Zbktkdk> ;

k=1

where f;, and dj, refer to the age (in seconds) and decay asso-
ciated with trace k, and the additive parameters By, B;, and By;
correspond to participant, item, and participant-item factors
that influence memory strength, respectively. The variable by
reflects the salience of the kth study session (Pavlik, 2007);
larger values of by correspond to cases where, for example,
the participant self-tested and therefore exerted more effort.

The key claim of the ACT-R model with respect to the
distributed-practice effect is that the decay term on study trial
k depends on the item’s overall activation at the point when
study occurs, according to the expression:

di(my—1) = ce"1 +a,

where ¢ and o are constants. If spacing between study trials
is brief, the activation my_ is large and consequently the new
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study trial will have a rapid decay, di. Increasing spacing can
therefore slow memory decay of trace k, but it also incurs a
cost in that traces 1...k — 1 will have substantial decay.

The model’s recall probability is related to activation by:

pm)=1/(1+¢"),
where T and s are additional parameters. The pieces of the
ACT-R model relevant to this paper include 3 additional pa-
rameters, for a total of 10 parameters, including: A, a transla-
tion of real-world time to internal model time, u, a descriptor
of the maximum benefit of study, and v, a descriptor of the
rate of approach to the maximum.

Pavlik and Anderson (2008) use ACT-R activation predic-
tions in a heuristic algorithm for scheduling the trial order
within a study session, as well as the trial type (i.e., whether
an item is merely studied, or whether it is first tested and then
studied). They assume a fixed intersession spacing. Thus,
their algorithm reduces to determining how to best allocate a
finite amount of time within a session.

Although they show a clear effect of the algorithm used
for within-session scheduling, we focus on the complemen-
tary issue of scheduling the lag between sessions. The ISI
manipulation is more in keeping with the traditional concep-
tualization of the distributed-practice effect. Fortunately, the
ACT-R model can be used for both within- and between-
session scheduling. To model between-session scheduling,
we assume—as is true in controlled experimental studies—
that each item to be learned is allotted the same amount of
study (or test followed by study) time within a session.

Pavlik and Anderson (2008) describe their within-session
scheduling algorithm as optimizing performance, yet we
question whether their algorithm is appropriately cast in
terms of optimization. They argue that maximizing proba-
bility of recall should not be the goal of a scheduling algo-
rithm, but that activation gain at test should be maximized so
as to encourage additional benefits (e.g., improved long-term
retention). We believe that had Pavlik and Anderson (2008)
sought simply to maximize probability of recall at test and
had more rigorously defined their optimization problem, they
would have seen results of the ACT-R within-session sched-
uler even better than what they achieved. In light of these
facts, we contend that our work is the first effort to truly opti-
mize memory retention via cognitive models.

Multiscale Context Model

One class of theories proposed to explain the distributed-
practice effect focuses on the notion of encoding variabil-
ity. According to these theories, when an item is studied, a
memory trace is formed that incorporates the current psycho-
logical context. Psychological context includes conditions of
study, internal state of the learner, and recent experiences of
the learner. Retrieval of a stored item depends partly on the
similarity of the contexts at the study and test. If psycholog-
ical context is assumed to fluctuate randomly, two study ses-
sions close together in time will have similar contexts. Conse-
quently, at the time of a recall test, either both study contexts
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will match the test context or neither will. A longer ISI can
thus prove advantageous because the test context will have
higher likelihood of matching one study context or the other.

Raaijmakers (2003) developed an encoding variability the-
ory by incorporating time-varying contextual drift into the
Search of Associative Memory (SAM) model and used this
model to explain data from the distributed-practice literature.
The context consists of a pool of binary-valued neurons which
flip state at a common fixed rate. This behavior results in ex-
ponentially decreasing similarity between contexts at study
and test time as a function of the study-test lag.

In further explorations, we (Mozer et al., submitted) found
a serious limitation of SAM: Distributed-practice effects oc-
cur on many time scales (Cepeda et al., 2006). SAM can ex-
plain effects for study sessions separated by minutes or hours,
but not for sessions separated by weeks or months. The rea-
son is essentially that the exponential decay in context simi-
larity bounds the time scale at which the model operates.

To address this issue, we proposed a model with multi-
ple pools of context neurons. The pools vary in their rela-
tive size and the rate at which their neurons flip state. With
an appropriate selection of the pool parameters, we obtain a
model that has a power-law forgetting function and is there-
fore well suited for handling multiple time scales. The notion
of multiscale representations comes from another model of
distributed-practice effects developed by Staddon, Chelaru,
and Higa (2002) to explain rat habituation. We call our
model, which integrates features of SAM and Staddon et al.’s
model, the Multiscale Context Model (MCM).

MCM has only five free parameters. Four of these pa-
rameters configure the pools of context neurons, and these
parameters can be fully constrained for a set of materials to
be learned by the the basic forgetting function—the function
characterizing recall probability versus lag between a single
study opportunity and a subsequent test. Given the forget-
ting function, the model makes strong predictions concerning
recall performance at test time given a study schedule.

MCM predicts the outcome of four experiments by Cepeda
et al. (in press, 2008). These experiments all involved two
study sessions with variable ISIs and RIs. Given the ba-
sic forgetting functions for the material under study, MCM
accurately predicted the ISI yielding maximal recall perfor-
mance at test for each RI. Although MCM is at an early
stage of development, the results we have obtained are suf-
ficiently promising and robust that we find it valuable to ex-
plore the model’s predictions and to compare them to the
well-established ACT-R model.

Comparing Model Predictions

Having introduced the ACT-R model and MCM, we now turn
to the focus of this paper: obtaining predictions from the two
models to determine whether the models are distinguishable.
We focus on the most important, practical prediction that the
models can make: how to schedule study to optimize mem-
ory retention. We already know that the models make sim-
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ilar predictions in empirical studies with two study sessions
(one ISI); we therefore turn to predictions from the models
with more than two sessions (two or more ISIs). Even if the
models make nonidentical predictions, they may make pre-
dictions that are quantitatively so similar the models will in
practice be difficult to distinguish. We therefore focus our ex-
plorations on whether the models make qualitatively different
predictions. Constraining our explorations to study schedules
with three study sessions (i.e., two ISIs), we test whether the
models predict that optimal study schedules have expanding,
contracting, or equal spacing, that is, schedules in which ISI
1 is less than, greater than, or equal to ISI 2, respectively. For
the sake of categorizing study schedules, we judge two ISIs to
be equal if they are within 30% of one another. The key con-
clusions from our experiments do not depend on the precise
setting of this criterion.

In all simulations, we used the Nelder-Mead Simplex
Method (as implemented in Matlab’s fminsearch) for find-
ing the values of ISI 1 and ISI 2 that yield the maximum recall
accuracy following a specified RI. Because this method finds
local optima, we used random restarts to increase the likeli-
hood of obtaining global optima. We observed some degen-
erate local optima, but for the most part, it appeared that both
models had spacing functions like those in Figures 2a and 2b
with a single optimum.

Our first exploration of the models’ spacing predictions
uses parameterizations of the models fit to the Glenberg
(1976) data (Figure 2a for ACT-R, not shown for MCM). Be-
cause the models have already been constrained by the exper-
imental data, which involved two study opportunities, they
make strong predictions concerning memory strength follow-
ing three spaced study opportunities. We used the models to
predict the (two) optimal ISIs for RIs ranging from ten min-
utes to one year. We found that both models predict contract-
ing spacing is optimal regardless of RI. The spacing func-
tions obtained from the models look similar to that in Figure
2c. Because the models cannot be qualitatively discriminated
based on the parameters fit to the Glenberg experiment, we
turn to exploring a wider range of model parameterizations.

Randomized Parameterizations

In this section, we explore the predictions of the models
across a wide range of RIs and model parameterizations, in
order to determine whether we can abstract regularities in the
models’ predictions that could serve to discriminate between
the models. In particular, we are interested in whether the op-
timality of contracting spacing predicted by both models for
the Glenberg paradigm and material is due to peculiarities of
that study, or whether optimality of contracting spacing is a
robust parameter-independent prediction of both models.

Methodology. We performed over 200,000 simulations for
each model. In our simulations, we systematically varied the
RIs from roughly 10 seconds to 300 days. We also chose ran-
dom parameter settings that yielded sensible behavior from
the models. We later expand on the notion of “sensible.”
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Figure 3: The distribution of qualitative spacing predictions of
ACT-R (upper panel) and MCM (lower panel) as a function of RI,
for random model variants. Each point corresponds to the percent-
age of valid model fits that produced a particular qualitative spacing
prediction.

For the ACT-R model, we draw the parameters B;, Bs, Bsi
from Gaussian distributions with standard deviations speci-
fied in Pavlik and Anderson (2008). The parameters A, ¢, and
o are drawn from a uniform distribution in [0, 1]. The study
weight parameter b is fixed at 1, which assumes test-practice
trials (Pavlik & Anderson, 2008). Remaining parameters of
the model are fixed at values chosen by Pavlik and Anderson
(2008). For MCM, we vary the four parameters that deter-
mine the shape of the forgetting function.

To ensure that the randomly generated parameterizations of
both models are sensible—i.e., yield behavior that one might
expect to observe of individuals studying specific materials—
we observe the forgetting function for an item studied once
and then tested following an RI, and place two criteria on the
forgetting function: (1) With an RI of one day, recall proba-
bility must be less than 0.80. (2) With an RI of thirty days, re-
call probability must be greater than 0.05. We thus eliminate
parameterizations that yield unrealistically small amounts of
forgetting and too little long-term memory.

Results. Results of our random-parameter simulations are
presented in Figures 3 and 4. The upper graphs of each fig-
ure are for the ACT-R model and the lower graphs are for
MCM. Figure 3 shows, as a function of the RI, the proportion
of simulations that yield contracting (red curve), expanding
(green curve), and equal (blue curve) optimal spacing. The
ACT-R model (Figure 3, upper) strongly predicts that con-
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tracting spacing is optimal, regardless of the RI and model
parameters. In contrast, MCM (Figure 3, lower) suggests
that the qualitative nature of the optimal study schedule is
more strongly dependent on RI and model parameters. As
the RI increases, the proportion of expanding spacing pre-
dictions slowly increases and the proportion of equal spacing
predictions decreases; contracting spacing predictions remain
relatively constant. Over a variety of materials to be learned
(i.e., parameterizations of the model), MCM predicts that ex-
panding spacing becomes increasingly advantageous as the
RI increases.

Each scatter plot in Figure 4 contains one point per ran-
dom simulation, plotted in a log-log space that shows the val-
ues of the optimal ISI 1 on the x-axis and the optimal ISI
2 on the y-axis. In other words, each point is like the star
(point of optimal retention) of Figure 2c, plotted for a unique
parameterization and RI. The two solid diagonal lines repre-
sent the decision boundary between the different qualitative
spacing predictions. Points between the decision boundaries
are within 30% of each other (in linear space) and fall under
the label of equal spacing. Points above the upper diagonal
line are classified as expanding spacing, and points below the
lower diagonal line are classified as contracting spacing. The
color of the individual points specifies the corresponding RI.

The spacing functions produced by the ACT-R model are
fairly similar, which is manifested not only in the consistency
of the qualitative predictions (Figure 3, upper), but also the
optimal ISIs (Figure 4, upper). The relationship between
optimal ISI 1 and optimal ISI 2 appears much stronger for
the ACT-R model than for MCM, and less dependent on the
specific model parameterization. Not only do we observe a
parameter-independent relationship between the optimal ISIs,
but we also observe a parameter-independent relationship be-
tween the RI and each of the ISIs. The apparent linearity in
the upper panel of Figure 4 translates to a linear relationship
in log-log space between RI and each of the optimal ISIs. The
least-squares regression yields:

logo(IS1}) = 1.016410g,,(RI) +0.5091
logo(ISh) = 1.023710g,,(RI) +0.9738

with coefficient of determination (p?) values of 0.89 and 0.90,
respectively. We emphasize that these relationships are pre-
dictions of a model, not empirical results. The only empirical
evidence concerning the relationship between RI and the op-
timal ISI is found in Cepeda et al. (2006), who performed a
meta-analysis of all cogent studies of the distributed-practice
effect, and observed a roughly log-log linear relationship be-
tween RI and optimal ISI for experiments consisting of two
study sessions (one ISI). Were this lawful relationship to ex-
ist, it could serve as an extremely useful heuristic for edu-
cators who face questions such as: If I want my students to
study this material so that they remember it for six months
until we return to the same topic, how should I space the two
classes I have available to cover the material?

In further contrast with ACT-R, MCM’s optimal ISI predic-
tions are strongly parameter dependent (Figure 4, lower). Is
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Figure 4: Optimal spacing predictions in log-space of ACT-R (up-
per figure) and MCM (lower figure) for random parameter settings
over a range of RIs. Each point corresponds to a parameter setting’s
optimal spacing prediction for a specific RI, indicated by the point’s
color. The black lines indicate the boundaries between expanding,
equal, and contracting spacing predictions.

this result problematic for MCM? We are indeed surprised by
the model’s variability, but there are no experimental data at
present to indicate whether such variability is observed in op-
timal study schedules for different types of material (as rep-
resented by the model parameters).

Although ACT-R shows greater regularity in its predictions
than MCM, as evidenced by the contrast between the upper
and lower panels of Figure 4, note that both models make op-
timal spacing predictions that can vary by several orders of
magnitude for a fixed RI. No experimentalist would be sur-
prised by the prediction of both models that optimal spacing
of study for a given RI is material-dependent, but this point
has not been acknowledged in the experimental literature, and
indeed, the study by Cepeda et al. (2008) would seem to sug-
gest otherwise: two different types of material yielded spac-
ing functions that appear, with the limited set of ISIs tested,
to peak at the same ISI.

Another commonality between the models is that both
clearly predict the trend that optimal ISIs increase with the
RI. This is evidenced in Figure 4 by the fact that the long
RIs (red points) are closer to the upper right corner than the
short RIs (blue points). Although the experimental litera-
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ture has little to offer in the way of behavioral results using
more than two study sessions, experimental explorations of
the distributed-practice effect with just two study sessions do
suggest a monotonic relationship between RI and the optimal
ISI (Cepeda et al., 20006).

Discussion

In this paper, we have explored two computational models
of the distributed practice effect, ACT-R and MCM. We have
focused on the educationally relevant issue of how to space
three or more study sessions so as to maximize retention at
some future time. The models show some points of agree-
ment and some points of fundamental disagreement.

Both models have fit the experimental results of Glenberg
(1976). With the parameterization determined by this fit, both
models make the same basic prediction of contracting spacing
being optimal when three study sessions are involved. Both
models also agree in suggesting a monotonic relationship be-
tween the RI and the ISIs. Finally, to differing extents, both
models suggest that optimal spacing depends not only on the
desired RI, but also on the specific materials under study.

When we run simulations over the models’ respective pa-
rameter spaces, we find that the two models make remarkably
different predictions. ACT-R strongly predicts contracting
spacing is best regardless of the RI and materials. In con-
trast, MCM strongly predicts that equal or expanding spacing
is best, although it shows a greater dependence on both RI
and the materials than does ACT-R. This stark difference be-
tween the models gives us a means by which the models can
be evaluated. One cannot ask for any better set-up to pit one
model against the other in an experimental test.

In reviewing the experimental literature, we have found
only four published papers that involve three or more study
sessions and directly compare contracting versus equal or
contracting versus expanding study schedules (Foos & Smith,
1974; Hser & Wickens, 1989; Landauer & Bjork, 1978; Tsai,
1927). All four studies show that contracting spacing leads
to poorer recall at test than the better of expanding or equal
spacing. These findings are consistent with MCM and incon-
sistent with ACT-R. However, the findings hardly allow us to
rule out ACT-R, because it would not be surprising if a post-
hoc parameterization of ACT-R could be found to fit each of
the experimental studies.

Nonetheless, the sharp contrast in the predictive tenden-
cies of the two models (Figure 3) offers us an opportunity to
devise a definitive experiment that discriminates between the
models in the following manner. We conduct an experimental
study with a single ISI and parameterize both models via fits
to the resulting data. We then examine the constrained mod-
els’ predictions regarding three or more study sessions. If
ACT-R predicts decreasing spacing and MCM predicts equal
or increasing spacing, we can then conduct a follow-on study
in which we pit the predictions of two fully specified models
against one another. We (Kang, Lindsey, & Pashler, in prepa-
ration) have just begun this process using Japanese-English
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vocabulary pairs that Pavlik and Anderson (2008) have mod-
eled extensively with ACT-R. Without extensive simulation
studies of the sort reported in this paper, one would not have
enough information on how the models differ to offer an ap-
proach to discriminate the models via experimental data.
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Abstract

It has been shown that between-trial effects in Stroop-like
interference tasks are caused by differences in the amount of
cognitive control. Trials following an incongruent trial show
less interference, an effect suggested to result from the
increased control caused by the previous trial (the Gratton
effect). In this study we show that cognitive control not only
results in a different amount of interference, but also in a
different locus of the interference. That is, the stage of the
task that shows the most interference changes as a function of
the preceding trial. Using computational cognitive modeling
we explain these effects by a difference in the amount of
processing of the irrelevant dimension of the stimulus.

Keywords: Picture-word interference; Gratton effect;
Cognitive control; Dual-task study (PRP); ACT-R; RACE/A.

Introduction

Picture-word interference is a Stroop-like interference effect
that is observed when participants are asked to provide the
name of a picture, while they should also try to ignore a
word that is inscribed in the picture (e.g., Glaser &
Diingelhoff, 1984). The common finding is that reaction
times are increased if word and picture bear a categorical
relationship, as opposed to when they do not bear a
relationship. In addition, reaction times are decreased when
word and picture are identical, that is, describe the same
object. In many respects, this is analogous to the Stroop
effect, in which color naming reaction times are increased
for trials in which the word also is a color name, as opposed
to trials in which the word is not a color name. Also, in
Stroop experiments a decrease in reaction times is found
when word and ink color refer to the same color name.
Many theories ascribe the congruency effect — the
increased reaction times as a result of a categorical
relationship between the word and the picture — to the
semantic relation between picture and word (e.g., Glaser &
Diingelhoff, 1984; Roelofs, 1992; Van Maanen & Van Rijn,
2007). A word that is a category-member of the picture
(e.g., “dog” and a picture of a cat) makes picture naming
harder than an unrelated word (e.g., “book” and a picture of
a cat), resulting in increased reaction times. In addition, the
congruency effect has also been ascribed to a failure to
suppress the more automatic word reading response (e.g.,
Lovett, 2005; MacLeod & Dunbar, 1988). Thus, because it
is hard to not read a word, it will interfere with a response
on the color or picture, resulting in increased reaction times.
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The amount of suppression of the automized reading
response has been hypothesized to be under cognitive
control (e.g., Botvinick, Braver, Barch, Carter, & Cohen,
2001). This means that a control mechanism exists that
dynamically adapts the amount of suppression of the
reading response to the task demands.

For instance, the influence of cognitive control is
observed as a between-trial effect in congruency tasks, in
which the congruency effect is decreased in trials following
an incongruent trial. This effect has been interpreted as an
increase in control, resulting from the increased difficulty of
the task (Verguts & Notebaert, 2008). Similarly, the
congruency effect is increased after congruent trials,
suggesting a relaxation in control of the reading response.
This particular between-trial effect is referred to as the
Gratton effect (Gratton, Coles, & Donchin, 1992).

Experiment

To study the locus of the interference leading to the Gratton
effect, we re-analyzed a picture-word interference
experiment in a Psychological Refractory Period (PRP)
paradigm (Van Maanen, Van Rijn, & Taatgen, submitted).
In a PRP design, participants are asked to perform two tasks
sequentially. The first task is often relatively simple,
whereas the second task is the task of interest (the main
task). The interval between the stimulus onsets of the two
tasks is manipulated (Stimulus Onset Asynchrony or SOA).
A typical finding, known as the PRP effect (Telford, 1931)
is a negative correlation between SOA and response latency
on the main task. Responses to the first task are typically
unaffected by varying the SOA.

The PRP effect has been explained by the assumption that
both tasks share a cognitive resource that can only be used
by one task at a time (e.g., Pashler, 1994; Welford, 1967).
Thus, the second task is delayed because the first task still
requires a critical resource, as illustrated by Figure 1. As the
interval between the tasks increases, the delay becomes
smaller, resulting in a faster main task response.

The PRP design has been used to study the locus of
various effects (e.g., for PWI, Dell'Acqua, Job, Peressotti, &
Pascali, 2007; for word frequency and age of acquisition
effects, Dent, Johnston, & Humphreys, 2008; for the Stroop-
effect, Fagot & Pashler, 1992). For PWI, it was found that
the locus of interference was located before the singular
resource that both tasks share. The reasoning behind this is
that a small interval between the first and the second task
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Figure 1: Diagram of the PRP design. The top bar
indicates processing of the first task. The bottom bar
indicates processing in the second task. S1: stimulus of task
1; S2: stimulus of task 2; R1: response on task 1; R2:
response on task 2; SOA: Stimulus Onset Asynchrony

generates a large delay in processing of the second task
(referred to as “cognitive slack™), in which the interference
that is present in PWI can be resolved. If the interval
between the tasks increases, the delay in processing of the
second task disappears, and therefore the interference
becomes apparent in the reaction times. Following this
logic, no congruency effect at small SOAs (but a
congruency effect at larger SOAs) would mean a locus
before the singular resource, whereas a congruency effect at
every SOA would mean a locus after the singular resource.
We applied the same reasoning to study which processing
stages in a PWI task are affected by cognitive control.

Methods

To study the locus of the Gratton effect in picture-word
interference, we re-analyzed the data from a previous
experiment (Van Maanen, Van Rijn, & Taatgen,
submitted)." In this experiment, participants were required
to perform a tone classification task and a PWI task
concurrently. For the tone classification task, participants
had to classify a tone as either low, medium, or high pitch
by pressing the b, n, or m keys respectively with the index,
middle and ring fingers of the right hand. For the PWTI task,
participants were required to name an image in which a
word was written in the center, and ignore the word. Of each
image, three PWI stimuli were created that consisted of the
image, with a word written in the center of the image. The
words were selected as follows: For the Related condition,
category members of the image descriptors were selected.
The words for the Unrelated condition were then selected
from the CELEX lexical database (Baayen, Piepenbrock, &
Van Rijn, 1993), and matched to the related distractors with
respect to word length (plus or minus 1 letter) and word
frequency (plus or minus 10%). For the Congruent
condition, Dutch translations of the most common English
picture names were used.

In addition to the Relatedness condition (Related,
Unrelated, Congruent), we also manipulated the interval
between the tone presentation and the PWI-stimulus
presentation (SOA), which could be either 100ms, 350ms,
or 800ms. These SOAs were chosen to ensure the PRP

1 The submitted manuscript contains an extensive description of
the experiment. The manuscript can be downloaded from
http://www.ai.rug.nl/~leendert/pubs.

R2
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effect. Importantly, the correct response order was stressed,
to ensure that participants responded to the tone first and to
the PWI-stimulus second.

Results

We excluded trials according to the following criteria:
Responses that were more than three standard deviations
from a participants’ mean were excluded (2.1% on the PWI
stimulus, and 2.3% on the tone, respectively). Trials in
which the responses were in the incorrect order were also
excluded (5.3%). Overall, 7.7% of the trials were excluded.
In this paper, we will only focus on the effects on the PWI
task, and not discuss the effects on the secondary tone
classification task.

For each trial, we determined the relatedness between
picture and word on the previous trial (Previous). An
analysis of variance (ANOVA) showed significant main
effects of Relatedness (the congruency effect), and of SOA
(the PRP effect), but not of Previous (Frelatedness(2,42) = 50,
p<0.001; Fsoa(2,42) = 104, p<0.001; Fpreyious(2,42) = 1.3,
p=0.28). However , there was a Relatedness times Previous
interaction present (Frejatedness x Previous(4,84) = 4.0, p=0.005),
representing the Gratton effect. In addition, there was an
effect of SOA on the Relatedness condition (Fsoa x
Relatedness(4,84) = 2.5, p=0.047), as well as a significant three-
way interaction between SOA, Relatedness, and Previous
(FSOAX Relatedness x Previous(8,168) = 34’ p=0001)

A visual inspection of the data (Figure 2) shows that the
three-way interaction appears as a difference in the
congruency effect at the small SOAs (100ms and 350 ms)
between the trials directly following a Congruent trial
(“post-C” in Figure 2) and the trials following a Related trial
(“post-R” in Figure 2). Where the post-C trials do not show
a congruency effect at small SOAs (t<1), the post-R trials
do (paired t-test, t=3.2, df=43, p=0.002). The Gratton effect
is visible at SOA=800ms as a smaller congruency effect for
post-R trials then for post-C trials.

Discussion

The lack of a consistent pattern in the responses on the trials
following an Unrelated trial (the post-U trials) can be
explained by individual differences in how participants
adapt their control. Some participants might treat Unrelated
trials similar to Congruent trials (because they are both non-
conflicting). Other participants might adapt their control on
post-U trials similar to the control in post-R trials, following
the similarity between related PWI and unrelated PWI
stimuli (both incongruent). A mixture of these two strategies
could explain the data found for the post-U trials.

The experiment shows that in PWI, the Gratton effect is
present as an interaction between congruency and the
previous trial. However, for trials immediately following a
Congruent trial, the congruency effect disappears at small
SOAs, whereas for trials following a Related trial, the effect
remains. Similar observations have been interpreted as a
different effect locus (e.g., for Stroop and PWI, Dell'Acqua
et al.,, 2007; for word frequency and age of acquisition
effects, Dent, Johnston, & Humphreys, 2008). Therefore,
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Figure 2: Response times as a function of SOA for the Relatedness conditions. U: Unrelated; R: Related; C: Congruent.

the experiment suggests that the locus of the congruency
effect in PWI is influenced by the previous trial. In the
following section, we will present a computational cognitive
model that accounts for this apparent shift in locus in terms
of a difference in processing speed between conditions.

A Cognitive Model of the Gratton Effect
RACE/A

The basis of our computational model of the Gratton effect
is a recent model of declarative memory retrieval that we
have developed (Van Maanen, 2009; Van Maanen & Van
Rijn, 2007; Van Maanen, Van Rijn, & Taatgen, submitted).
The model — termed Retrieval by Accumulating Evidence in
an Architecture or RACE/A — describes memory retrievals
as a sequential sampling process (Ratcliff, 1978). In
addition, RACE/A assumes that the dynamics of the
retrieval process are constrained by other cognitive
processes that co-occur with a particular retrieval process.
This aspect is captured by integrating the sequential
sampling process in the cognitive architecture ACT-R
(Anderson, 2007).

The accumulation process can be characterized by two
equations that determine the long-term dynamics and the
short-term dynamics of the activation. The short-term
dynamics are mediated by the presence or absence of stimuli
and spreading activation from other chunks. During a
retrieval process, the activation of chunks that match a set of
retrieval conditions gradually accumulates until a certain
decision criterion (explained below) has been reached. The
chunk that has been decided upon is retrieved from
declarative memory, and the accumulation of activation
stops. Because no new activation is being accumulated, the
short-term component of the activation of all chunks decays.
The short-term activation dynamics can be represented by a
drift, a starting point, and a decision boundary, which will
be discussed below.

Drift Drift in RACE/A is the reflection of the current
demands of the environment. Thus, drift is a function of
stimuli, as well as the currently active declarative facts. All
facts and stimuli, which will collectively referred to as
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sources of activation, continuously spread excitatory
activation towards associated chunks. This means that a
chunk that has more sources of activation (more evidence)
or sources with more activation (“stronger” evidence) will
accumulate faster than a chunk with less sources of
activation or sources with less activation. In the absence of
evidence for a particular chunk, the short-term activation
will decay. The drift in RACE/A is also determined by a
logistically distributed noise sample, adding stochasticity to
the system. These considerations are reflected by Equation
1, which may be referred to as the drift equation (Usher &
McClelland, 2001). The drift equation captures the
dynamics of short-term activation (C) of one chunk (chunk
i) over time.

dC,=1-aC, + B35 ,4, + .
J

In this equation, the decay of short-term activation is
expressed by «, which should be a value in the range [0,1].
The spreading activation component is a sum of the
activation of other chunks (4;), weighted by the associations
that exist with chunk 7 (Sj;). Note that this differs from the
implementation in ACT-R, in which only the chunks in
buffers spread activation. In RACE/A, all chunks may
spread activation. The spreading activation component is
scaled by a factor S that determines the overall
accumulation speed. The noise is expressed by &;.

Starting point The starting point of the accumulation
reflects the prior probability that a chunk is needed. This is
reflected by ACT-R’s base-level activation equation
(Equation 2, Anderson, 2007), which incorporates the usage
history of a chunk. Chunks with a high base-level activation
start the accumulation of activation at a higher starting
point, and are thus more likely to be retrieved from memory.

B =In| Yt o)
j=1

Given that the usage history of the retrieved chunk has been
altered (because it has been retrieved recently), the chunk’s
long-term component is being increased in such a way that
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it greatly exceeds the current level of short-term activation.
For this reason, the net activation of each chunk in the
system can be described as

A, =max(B,,C)) A3)

indicating that the activation of a chunk is the maximum of
the need probability of a chunk (reflected by B;) and the
accumulating evidence for that chunk (reflected by C;).

Decision Boundary The decision boundary in RACE/A is
relative to the activation of competitors in the system. This
choice reflects the insight that if multiple memory
representations are relevant, responding becomes more
difficult (Hick, 1952; Luce, 1986). This is reflected by
Equation 4, which expresses the conditions under which a
decision will be made. If the activation of a certain chunk
(chunk i in Equation 4) exceeds the activation of all
competitors (j, including i) by a certain ratio 6 (referred to
as the decision ratio), then that chunk is retrieved from
memory. The ratio between the activation of one chunk and
the summed activation of all competitors reflects the relative
likelihood of a chunk, and will be referred to as the Luce
ratio for that chunk (Luce, 1963). The duration of the
retrieval process constitutes the interval between the onset
of the retrieval process (when the request for a retrieval is
made) and the moment at which the Luce ratio of one chunk
exceeds the decision ratio.

A,
e’

2"

The Model

The model concurrently performs the tone classification task
and the PWI task. The tone classification task was modeled
using ACT-R's standard auditory perception module. If a
tone is presented, the model processes auditory information,
and retrieves a memory trace that encodes the appropriate
stimulus-response mapping (that is, which button to press
given the perceived tone). Finally, the model made a motor
response to press the correct button.

When the PWI-stimulus is presented, the model activates
conceptual representations in response to the image, and
activates a lemma representation in response to the word
(e.g., Roelofs, 1992). Because lemmas spread activation to
the conceptual representations that relate to them, the
presentation of a distractor word causes interference at the
conceptual level. The decision boundary that determines
retrieval from memory becomes harder to reach for the
conceptual representation of the picture, increasing the
retrieval time. The different activation levels of the target
chunk versus competing chunks determine the latency
difference between the related and wunrelated PWI
conditions. In the related condition, the concepts of the
target and the distractor spread activation to each other. This
mutual excitation causes both activation values to increase,
making it even harder to reach the decision boundary. In the

=0

“4)

81

unrelated condition mutual excitation is not present.
Therefore, there is less competition and a faster retrieval in
the unrelated than in the related condition.

In order to name the image, the relevant concept has to be
retrieved from memory. Once a concept has been retrieved,
the model initiates a response, but not before the selection of
the appropriate tone-to-button mapping for the tone
classification response has been retrieved. This ensures that
the model displays cognitive slack time in which
interference in the first processing stage may be resolved.

In processing the PWI response, the model first retrieves
a lemma representation that encodes the syntactic
information associated with the desired response, than it
retrieves a motor program to articulate the desired response.
Thus, to complete the task the model needs to do three
memory retrievals.

Simulation Results

The model is similar to a previous model of a PRP study of
PWI (Van Maanen, Van Rijn, & Taatgen, submitted).
However, in the current model we manipulated the speed of
word processing relative to the speed of picture processing.
Following Botvinick et al. (2001) we assumed that a
previous conflict trial leads to more cognitive control,
leading to more suppression of the reading response. Thus,
high control in the model means a low value for the
parameter controlling word processing speed. On the other
hand, if the previous trial was congruent, we assume a
relaxation of control, resulting in less suppression of the
reading response and a high value of the parameter that
controls word processing speed (low control).

Figure 3 presents the model behavior for high and low
control, respectively. Similar to the pattern in the data
(Figure 2), the model shows no interference effect for the
high control condition (analogous to the post-R trials),
whereas it shows an interference effect for the low control
condition (analogous to the post-C trials). In our simulations
we ignored the post-U condition from the experiment, since
we assume that behavior in that condition was a mixture of
behavior from post-C trials and post-R trials.
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Figure 3: Simulation results for low control (left) and high
control condition (right). R: Related; U: Unrelated; C:
Congruent.

SOA (ms)

100 200 300 400 500 600 700 800



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

The explanation for this effect follows directly from the
dynamics of the activation of the chunks (conceptual and
lemma information) in the model. Retrieval times for the
concept and lemma information are determined by the
activation ratio (the Luce ratio) between the chunks. Thus, a
high Luce ratio in favor of the relevant chunk (the one
associated to the correct response) leads to a fast retrieval. A
high Luce ratio is reached by a large difference in
processing speed fo the two stimulus dimensions,
hypothesized to reflect high control (Figure 4, High
Control). A high ratio in favor of the irrelevant chunk, or a
low ratio in favor of the relevant chunk leads to slower
retrievals. The competition between chunks results from
mutual excitation of the competing chunks. Therefore,
strong competition results in high activation of the
competing chunks, and also in a high activation difference
(Figure 4, Low Control). As a result, a subsequent retrieval
of the same chunk will be faster, because the starting points
of accumulation of activation of the competing chunks
differ more than at the start of the first retrieval. A similar
argument can be constructed for chunks that are strongly
associated, as are the concept chunks and lemma chunks in
our model. An initial concept retrieval already influences
the activation at the start of the subsequent lemma retrieval.

Figure 5 presents the activation dynamics of four chunks
in the model over time. the top panel (Low control) presents
a prototypical model run in which the word processing
speed is high, the bottom panel (High control) presents a
model run in which the word processing speed is low.
Figure 5 illustrate how a fast retrieval in the first stage of the
PWI process may lead to a slow retrieval in the later stages,
resulting in a shift of the overall interference pattern.

Discussion & Conclusion

Although we implemented the effect of more cognitive
control as a lower speed of word processing relative to
picture processing, we make no claims on the exact
mechanism. Besides actual slower perceptual processing,
another possibility could be that more cognitive control
results in active inhibition of the undesired response.
However, similar to our current implementation this would
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Figure 4: The activation dynamics in RACE/A.
result in less competition, and our results would not differ.

Analogy with Stroop and PWI

The results from our study show a remarkable analogy with
the results from experiments that studied the difference
between the Stroop effect and PWI. Dell’ Acqua et al. (2007)
found an early locus of interference in PWI, similar to the
post-C condition in our experiment. By contrast, Fagot and
Pashler (1992) found a late locus of interference in the
Stroop task, similar to our post-R condition. In a previous
study, we explained this difference by a difference in
processing speed between colors and images (Van Maanen
& Van Rijn, 2008; Van Maanen, Van Rijn, & Borst,
submitted). The cognitive models in that study showed that
both Fagot and Pashler’s data and Dell’Acqua et al.’s data
could be explained by one model that maintained a lower
processing speed for color information than for picture
information.

Our current results suggest that it may not be the speed of
perceptual processing per se that is important in shifting the
locus of interference, but rather the difference in speed
between the two stimulus dimensions (words and pictures
for PWI). In the current model, the processing speed of the
word and picture differed more for the low control than for
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Figure 5: A simulated trial for the low control condition (top) and the high control condition
(bottom). The grey areas indicate the duration of every memory retrieval during a trial.
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the high control condition. This was explained by more
suppression of the reading response in the high-control
condition. In the Stroop/PWI model, the processing speed
for the PWI condition differed more than for the Stroop
condition. This was explained by the faster processing of
colors than of pictures, and hence a greater difference in
processing speed between words and pictures in PWI than
between words and colors in Stroop.

Conclusion

The experiment demonstrated that the Gratton effect is not
only present as a difference in interference effect size after
Congruent and Related trials, but also entails a shift in the
locus of the interference. The absence of observable
interference at small SOAs in the post-C trials suggests that
the locus of interference in those trials is in an early
processing stage, but is absorbed in the cognitive slack time
that is created by the PRP design. The presence of
observable interference in post-R trials suggest that the
locus of interference is late, after the bottleneck that is
created by the PRP design.

Our simulations suggest a mechanism for this shift in
locus. The simulations show that if the speed with which
words are processed is high, the locus of interference is
early, whereas a low processing speed for words results in a
late locus. The processing speed for words was
hypothesized to be under cognitive control, where an
increase in control leads to a decrease in word processing
speed, and vice versa. These results suggest that the
specifics of the stimulus determine the magnitude and
spacing of interference over the entire task, a result which
may be extended to the Stroop/PWI literature as well.
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Abstract

When averaging the estimates of individuals, the aggregate
can often come surprisingly close to the true answer. We are
interested in extending this “wisdom of crowds” phenomenon
to more complex situations where a simple strategy like
taking the mode or mean of responses is inappropriate, or
might lead to bad predictions. We report the performance of
individuals in a series of ordering tasks, where the goal is to
reconstruct from memory the order of time-based events, or
the magnitude of physical properties. We introduce a
Bayesian version of a Thurstonian model that aggregates
orderings across individuals, and compare it to heuristic
aggregation techniques inspired by existing models of social
choice and voting theory. The Bayesian model performs as
well as the heuristics in reconstructing the true ordering, and
has the advantage of being well calibrated, in the sense that it
gives more confident responses the closer it is to the truth.

Keywords: Bayesian Modeling; Rank Ordering; Consensus;
Wisdom of Crowds; Rank aggregation.

Introduction

When Galton first surveyed English fair-goers in 1906, it
was a novel curiosity that their estimates of the dressed
weight of an ox, when averaged, closely approximated the
true weight (Galton, 1907). Subsequently, many
demonstrations have shown that aggregating the judgments
of a number of individuals often results in an estimate that is
close to the true answer. This phenomenon has come to be
known as the “wisdom of crowds” (Surowiecki, 2004). The
wisdom of crowds idea is currently used in several real-
world applications, such as prediction markets (Dani et al.,
2006), spam filtering, and the prediction of consumer
preferences through collaborative filtering.

Many wisdom of crowds demonstrations have involved
situations where a single numerical quantity needs to be
estimated. In these cases, a robust estimate of the central
tendency of individual estimates can be an effective
aggregation method (Yaniv, 1997). Other situations have
involved recovering the answers to multiple choice
questions. For example, on the game show "Who Wants to
be A Millionaire", contestants are given the opportunity to
ask all members of the audience to answer a multiple choice
question. In this case, an aggregation method based on the
modal response can be quite effective. Over several seasons
of the show, the modal response of the audience
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corresponded to the correct answer 91% of the time. More
sophisticated approaches have been developed, such as
Cultural Consensus Theory (e.g., Romney, Batchelder,
Weller, 1987), that additionally take differences across
individuals and items into account when aggregating
multiple choice answers.

In this paper, we extend the wisdom of crowds idea to the
more complex problem of rank ordering. Is it possible to
recover the correct order of events or physical properties
from a large number of independent individual responses?
How confident can we be that these aggregations represent
the ground truth?

Aggregating rank order data is not a new problem. In
social choice theory, a number of systems have been
developed for aggregating rank order preferences for groups
(Marden, 1995). Preferential voting systems, where voters
explicitly rank order their candidate preferences, are
designed to pick one or several candidates out of a field of
many. These systems, such as the Borda count, perform well
in aggregating the individuals' rank order data, but with an
inherent bias towards determining the top members of the
list." However, as voting is a means for expressing
individual preferences, there is no ground truth. The goal for
these systems is to determine an aggregate of preferences
that is in some sense “fair” to all members of the group.

Relatively little research has been done on the rank order
aggregation problem with the goal of approximating a
known ground truth. In follow-ups to Galton's work, Gordon
(1924) and Bruce (1935) tested a large number of
individuals in psychophysical ordering tasks. They found
that the group estimate approximates the ground truth better
as the size of the group increases. Interestingly, these
authors used the Borda count voting method (without
making this connection to voting theory explicit in their
work) to aggregate the rank orderings of individuals.
Romney et al. (1987) also developed an informal
aggregation model for rank order data based on Cultural
Consensus Theory, using factor analysis of the covariance
structure of rank order judgments. With this, they were able
to partially recover the correct order of 34 causes of death in

' This is necessary to satisfy the Condorcet Criterion, which
requires that a top ranked candidate selected by a voting system
should be a candidate who has more votes when compared to every
other voter on the ballot (Shepsle & Bonchek, 1997)
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the US on the basis of the individual orderings of 36
subjects.

We present empirical and theoretical research on the
wisdom of crowds phenomenon for rank order aggregation.
We conduct an empirical study where people are asked to
rank order the occurrence of events (e.g., US presidents by
term of office”) or the magnitude of some physical property
(e.g., rivers by length). Most importantly, no
communication between people is allowed for these tasks,
and therefore the aggregation method operates on the data
produced by independent decision-makers.

Importantly, for all of the problems there is a known
ground truth. The ground truth might only be partially
known to the tested individuals. If different individuals have
knowledge of different parts of the ordering problems,
aggregation across individuals can yield a group answer that
comes closer to the ground truth than any of the individuals
in the group. For example, if some individuals know that the
Congo is longer than the Parana River, and other individuals
know that the Parana River is longer than the Mekong
River, aggregation might lead to the correct overall ordering
(i.e., Congo > Parana > Mekong). Therefore, for the wisdom
of crowd phenomenon to work, the errors in semantic
memory need to have some degree of independence. If all
individuals have access to the same knowledge, there will
be no advantage to aggregating their answers.

We  compare several heuristic = computational
approaches—based on voting theory and existing models of
social choice—that analyze the individual judgments and
provide a single answer as output, which can be compared
to the ground truth. We refer to these synthesized answers as
the “group” answers because they capture the collective
wisdom of the group, even though no communication
between group members occurred.

We also develop a probabilistic model based on a
Thurstonian approach that represents items as distributions
on an interval dimension. We make inferences about the
parameters of the model using Markov chain Monte Carlo
(MCMC). The advantage of MCMC estimation procedure is
that it gives a probability distribution over group orderings,
and we can therefore assess the likelihood of any particular
group ordering. We use this likelihood as a confidence
measure to test whether the model is calibrated, in the sense
that the group answers with high confidence are close to the
ground truth.

Experiment

Method

Participants were 78 undergraduate students at the
University of California, Irvine. The experiment was
composed of 20 questions (3 were excluded from analysis;
one because participants misunderstood the question, one
because of the lack of a proper ground truth, and the last for

% The ordering of US Presidents has been studied before in the
context of memory research by Healy, Havas, and Parker (2000).
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consistency as it only included 5 elements for ordering,
whereas all the others included 10). The remaining
questions involved general knowledge regarding: population
statistics (4 questions), geography (3 questions), dates, such
as release dates for movies and books (7 questions), U.S.
Presidents, material hardness, the 10 Commandments, and
the first 10 Amendments of the U.S. Constitution

All questions had a ground truth obtained from Pocket
world in figures and various online sources. An interactive
interface was presented on a computer screen. Participants
were instructed to order the presented items (e.g., “Order
these books by their first release date, earliest to most
recent”), and responded by dragging the individual items on
the screen using the computer mouse, and “snapping” the
item into the desired location in the ordering. Once
participants were satisfied with their response they clicked
on the submit button. They were prompted to confirm that
they wished to proceed before being presented with the next
question. Once their response was submitted it was not
possible to return to that question. The questions were
presented in a fixed order. Half the participants received the
forward ordering of questions, the other half received the
backwards ordering of questions. The initial ordering of the
10 items within a question was randomized across all
questions and all participants.

Results

We first evaluated participants' responses based on whether
or not they reconstructed the correct ordering. Table 1
shows the proportion of individuals who got the ordering
exactly right (PC) for each of the ordering task questions.
On average, about one percent of participants recreated the
correct rank ordering perfectly. We also analyzed the
performance of participants with a more fine-grained
measure, using Kendall’s t distance. This distance metric is
used to count the number of pair-wise disagreements
between the reconstructed and correct ordering. The larger
the distance, the more dissimilar the two orderings are.

Table 1: Participant performance statistics.

Percentiles of ©

Problem PC 25 50 75 90 100

books  0.000 15 10 8 5 3

city population europe  0.000 19 15 12 10 7
city populationus  0.000 20 14 11 8 6
city population world  0.000 23 18 15 12 5
country landmass  0.000 12 9 7 5 2
country population 0.000 17 15 11 9 4
hardness  0.000 18 15 12 11 7

holidays  0.051 12 8 5 3 0

movies releasedate  0.013 9 6 4 2 0
oscar bestmovies  0.013 14 10 6 4 0
oscar movies  0.000 16 10 5 2 1
presidents  0.064 10 7 3 1 0

rivers  0.000 19 15 13 11 3

states westeast  0.026 10 6 3 1 0
superbowl  0.000 24 17 14 11 6
tenammendments  0.013 19 13 10 4 0
ten commandments  0.000 23 17 11 7 1
AVERAGE  0.011 16.5 12.1 88 6.2 26
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Values of t range from: 0 < t < N(N — 1)/2, where N is
the number of items in the order (10 for all of our
questions). A value of zero means the ordering is exactly
right, and a value of one means that the ordering is correct
except for two neighboring items being transposed, and so
on up to the maximum possible value of 45.

Table 1 shows the distribution of T values over the ranked
population of participants for each of the 17 sorting task
questions, in terms of values at the 25th, 50th, 75th, 90th
and 100th percentiles. For six of the questions, one or more
participants get the ordering exactly right, as indicated by a
T of 0 for the 100th percentile. The best individuals on each
question achieve good performance, and solve the problem
exactly, or are within a few pair transposes, for most
questions. As this is a prior knowledge task, it is interesting
to note the best performance overall was achieved on the
Presidents, States from west to east, Oscar movies, and
Movie release dates tasks. These four questions relate to
educational and cultural knowledge that seems most likely
to be shared by our undergraduate subjects.

Modeling

We evaluated a number of heuristic aggregation models and
compared the performance of these methods against a
probabilistic model based on a Thurstonian approach. For
each model, the set of orderings from individuals is
analyzed in order to create a single group ordering, which is
then compared to the ground truth.

Heuristic Models

We tested four heuristic aggregation models. The simplest
heuristic, based on the mode, has been used since the
earliest rank order experiments (Lorge et al. 1957). For this
heuristic, the group answer is based on the most frequently
occurring sequence of all observed sequences. In cases
where several different sequences correspond to the mode, a

randomly chosen modal sequence was picked.

The second method, which we refer to as the “greedy
count”, counts the number of participants responses for each
item in each position. The item and the position with the
largest agreement among participant is selected first. The
selection of items then proceeds in a greedy algorithm
fashion, making sure that each item and position is not
already filled.

The third method takes the group answer as the
participant ranking that is ‘“closest”, as determined by a
distance measurement metric, to the rankings of all
participants. This is a variation of a Kemeny scheme (see
Dwork et. al. 2001) where we restrict ourselves to the user-
submitted responses. It is implemented here by finding the
participant ordering that has the smallest distance, measured
by the sum of Kendall's t's between strings, to the orderings
of all other participants. Note that we restrict ourselves to
finding a ranking from the existing set of participants’
responses. This method can be extended to find any
arbitrary rank order that is closest to the “middle” of
observed rankings, but that approach suffers from well-
known computational complexity problems.

The fourth method uses the Borda count method, a widely
used technique from voting theory. In preferential voting
systems, voters express their candidate choices in terms of
an ordering of all ballot candidates. In the Borda count
method, weighted counts are assigned such that the first
choice “candidate” receives a count of N (where N is the
number of candidates), the second choice candidate receives
a count of N-1, and so on. These counts are summed across
candidates and the candidate with the highest count is
considered the “most preferred”. Here, we use the Borda
count to create an ordering over all items by ordering the
Borda counts.

Table 2 reports the performance of all of the aggregation
models. For each, we checked whether the inferred group
order is correct (C) and measured Kendall's 1. We also

Table 2: Performance of the four heuristic models and the Thurstonian model

Kemeny Scheme Thurstonian Model Borda Counts Greedy Count Mode
Problems C T Rank C T Rank C T Rank C T Rank C T Rank
books 0 4 96 0 6 88 0 7 82 0 7 82 0 12 40
city population
europe 0 11 81 0 11 81 0 11 81 0 13 69 0 17 42
city population us 0 10 87 0 11 79 0 12 67 0 9 90 0 16 45
city population world 0 18 59 0 16 73 0 15 77 0 16 73 0 19 44
country landmass 0 7 76 0 5 95 0 5 95 0 5 95 0 7 76
country population 0 11 82 0 11 82 0 11 82 0 13 67 0 15 53
hardness 0 11 91 0 11 91 0 11 91 0 18 31 0 15 46
holidays 0 5 77 0 4 78 0 4 78 0 4 78 1 0 100
movies releasedate 0 2 95 0 2 95 0 2 95 0 2 95 0 2 95
oscar bestmovies 0 3 97 0 4 90 0 3 97 0 5 90 0 3 97
oscar movies 0 2 96 0 1 100 0 2 96 0 3 88 0 2 96
presidents 0 1 94 0 2 87 0 3 79 0 1 94 1 0 100
rivers 0 11 91 0 12 86 0 11 91 0 13 77 0 16 42
states westeast 0 1 97 0 2 88 0 3 78 0 1 97 0 1 97
superbowl| 0 10 96 0 12 88 0 10 96 0 15 71 0 19 40
ten amendments 0 2 97 0 4 95 0 5 90 0 4 95 0 4 95
ten commandments 0 11 82 0 11 82 0 12 74 0 12 74 0 17 51
AVERAGE 00 7.1 879 00 74 869 00 75 852 00 83 804 01 97 682

0
(@)}
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report in the Rank column the percentage of participants
who perform worse or the same as the group answer, as
measured by t. With the Rank statistic, we can verify the
wisdom of crowds effect. In an ideal model, the group
heuristic should perform as well as or better than all of the
individuals in the group. Table 2 shows the results
separately for each problem, and averaged across all the
problems.

These results show that the mode heuristic leads to the
worst performance overall in rank. On average, the mode is
as good or better of an estimate than 68% of participants.
This means that 32% of participants came up with better
solutions individually. This is not surprising, since, with an
ordering of 10 items, it is easily possible that only a few
participants will agree on the ordering of items. The
difficulty in inferring the mode makes it an unreliable
method for constructing a group answer. This problem will
be exacerbated for orderings involving more than 10 items,
as the number of possible orderings grows combinatorially.
The greedy count heuristic performs better than the mode
overall, but it does not lead to the correct answer for any
individual problem.

The Borda count and Kemeny scheme perform relatively
well in Kendall's tand overall rank performance
measurements. On average, these methods perform with
ranks of 85% and 88% respectively, indicating that the
group answers from these methods score amongst the best
individuals, although 10% of individuals still perform
better.

A Thurstonian Model

Despite comparable statistical performances, the heuristic
aggregation models create no explicit representation of each
individual's working knowledge. Therefore, even though the
methods can aggregate the individual pieces of knowledge
across individuals, they cannot explain why individuals rank
the items in a particular way, or how much confidence
should be placed in the overall group ranking. To address
this potential weakness, we develop a simple probabilistic
model based on the seminal Thurstonian approach.
Although the Thurstonian approach has often been used to
analyze preference rankings (see Marden, 1997 for an
overview), it has not been applied, as far as we are aware, to
ordering problems where there is a ground truth.

In the Thurstonian approach, the overall item knowledge
for the group is represented explicitly as a set of coordinates
on an interval dimension. The interval representation is
justifiable given that all the problems in our study involve
one-dimensional concepts (e.g., the relative timing of
events, or the lengths of items). Specifically, each item is
represented as a value y; along this dimension, where
i €{1,...,N}. Each individual is assumed to have access to
the group-level information. We assume, however, that
individuals do not have precise knowledge about the exact
location of each item. We model each individual's location
of the item by a single sample from a distribution, centered
on the item’s group location. We represent the uncertainty

associated with this value, y;, with a Normal distribution,
N(y;, 07). In a fully specified Thurstonian model, once an
individual draws samples for each item, the ordering for that
individual is based on the ordering of the samples. Figure 1
shows an example of the group-level information for six
items, A to G. A particular individual might sample values
from these distributions such that some items are ranked
correctly, but other items are transposed. In Figure 1, there
is a larger degree of uncertainty for item C, making it likely
that item C is placed incorrectly in the ordering.

2 15 -1 5 0 1 15 2 25

Relative Probabvility by Latent Order Strength

Figure 1. Example of group-level information for six items.

We apply Bayesian estimation techniques to infer the
group representation from the individual orderings.
Bayesian methods have been applied to Thurstonian models
before (Yao, & Bockenholt, 1999), but here we present a
simplified version of the Thurstonian model that facilitates
more efficient Bayesian inference.

In the simplified model, we do not attempt to explain the
particular orderings for each individual, but rather the
pairwise orderings across all individuals. The data for this
model consist of a N x N count matrix R, where R(i, ;)
contains the number of participants who ordered item i later
than item j. For example, Figure 2 shows the matrix for the
Presidents question with the Presidents in the correct order.
Note that nearly all of the 78 participants correctly place
George Washington earlier than any of the other Presidents,
but that Dwight D. Eisenhower, who should be ranked last,
is often placed earlier than other Presidents. The pairwise
data therefore indicate some uncertainty about the ranking
of Eisenhower relative to other Presidents.

In our model, when determining the relative order of two
items i and j, a person samples a value from item i,
x; ~ N(u;, 0;), and also a value from item j, x; ~ N(,uj,aj).
These values are then compared to each other and item i is

George Washington
John Adams 78 0 29 10 14
Thomas Jefferson 76 49 0 10 10
James Monroe 77 68 68 0 45 15 18 14 13 15

A
B
C
D
Andrew Jackson E[ 77 64 68 33 0 11 9 10 9 11
F
G
H
|
J

R NPT
o o N[O
N ORI
w s k|-
NN e

Theodore Roosevelt 77 71 77 63 67 0 37 18 24 23
Woodrow Wilson 76 72 72 60 69 41 0 22 29 27
Franklin D. Roosevelt 77 73 76 64 68 60 56 0 40 34
Harry S. Truman 77 74 75 65 69 54 49 38 0 38
Dwight D. Eisenhower 76 73 76 63 67 55 51 44 40 O

Figure 2. Count matrix R for the 'Presidents' question.
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ranked above j whenever x; > x;. Let 6;; represent the
probability of the outcome x; > x;. This probability can be
determined exactly:

0y =p(x;>x)=a ((ﬂi — )/ |of + 0,-2>, (M
where @ is the cumulative normal distribution. This
sampling process is repeated for each individual and all item
pairs. Therefore, the number of times that item i is ranked
before item j, across all individuals, is based on the binomial
distribution:

Ri;~ B(8y, K), #)

where K is the number of individuals.

In this probabilistic model p; and o; are the latent
variables that can be estimated on the basis of the observed
data R.3 We applied MCMC techniques to estimate the
latent parameters using a sequence of Metropolis Hasting
steps. In order to prevent a drift in the items during
estimation (as there is no natural zero point), we fixed the
minimum of g; to 0 and the maximum of g; to 1. We ran 20
chains with a burn-in of 200 iterations. From each chain, we
drew 20 samples with an interval of 10 iterations. In total,
we collected 400 samples. To construct a single group
answer, we analyzed the ordering of the items according to
Ui, separately for each sample, and then picked the mode of
this distribution. This corresponds to the most likely order in
the distribution over orders inferred by the model.

The result of this Thurstonian model is shown in Table 2.
The model performs approximately as well as the Borda
count method, but not quite as well as the Kemeny scheme.
The model does not recover the exact answer for any of the
17 problems, based on the knowledge provided by the
current 78 participants. It is possible that a larger sample
size is needed in order to achieve perfect reconstructions of
the ground truth.

Visualization of Group Knowledge One advantage of the
Thurstonian approach is that it allows a visualization of
group knowledge not only in terms of the order of items, but
also in terms of the uncertainty associated with each item on
the interval scale. Figure 3 shows the inferred distributions
for four problems where the model performed relatively
well. The crosses correspond to the mean of y; across all
samples, and the error bars represent the standard

deviations g; based on a geometric average across all
samples.

These visualizations are intuitive, and show how some
items are confused with others in the group population. For
instance, nearly all participants were able to identify George
Washington as the first President of the U.S., but many
confused later Presidents whose terms occurred close to
each other. Likewise, there was a large agreement on the
proper placement of the right to bear arms in the

3 Because of the simplified nature of the model, there is no need
to explicitly estimate the particular draws X. These have been
integrated out of the model by virtue of Equation (1)
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Figure 3. Sample Thurstonian inferred distributions.
The actual order is the ground truth ordering, while
the numbers in parentheses show the group answer.

amendments question — this amendment is often popularly
referred to as “the second amendment”.

Model Calibration Since the probabilistic model is
estimated with MCMC techniques, we derive a posterior
distribution over all group orderings, from which we select
the mode as the best group answer. Because of this, we can
also assess the posterior probability of this group answer.
This probability has a natural interpretation as the model's
measure of confidence. If the distribution over orders is very
peaked, most posterior probability is concentrated on the
modal answer, indicating a high confidence. If, on the other
hand, the model is uncertain about any of the orderings, a
low posterior probability, and therefore a low confidence, is
given to the modal answer. We can then use this confidence
measure to assess to what extent the model is calibrated.
That is, we can ask: do confident answers come close to the
ground truth?

Figure 4 shows an ordering of the problems according to
their confidence values (i.e., the posterior probability of the
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Figure 4. The relation between the confidence in the
group answer and the Kendall t distance of the group
answer to the true answer.
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modal answer). The right panel shows the Kendall
7 distance between the group answer and the true answer.
The correlation between confidence and Kendall t is -.63,
showing the expected relationship: high confidence
responses are associated with orderings that are closest to
the correct ordering. Calibration is important because, in
practical situations, the ground truth is not available and a
decision maker need to know how confident to be in the
aggregated group answer.

Conclusion

We have presented four heuristic aggregation approaches, as
well as a Thurstonian approach, for the problem of
aggregating rank orders to uncover a ground truth. The
model comparison showed that the mode is not a reliable
approach for extracting the ground truth, because few
individuals agree on the same ordering. We expect that in
larger ordering tasks, involving more than 10 items, there
might be no individuals that agree with any other on the
item ordering. The other heuristic methods, such as the
greedy count and the Borda count, analyze the orderings
locally by counting the number of times items each occur at
each position. This strategy seems to overcome some of the
problems with using the mode. The Kemeny scheme
extracted a group answer by finding an existing answer in
the data that had the smallest combined distance to all other
answers, as measured by Kendall’s t. This result suggests
that the idea of finding “prototypical” orderings can lead to
effective group answers.

We also presented a Bayesian model based on the classic
Thurstonian approach. While this model did not outperform
the heuristic models, it did perform well, and has some
advantages over the heuristic models. The Bayesian model
not only extracts a group ordering, but also a representation
of the uncertainty associated with the ordering. This can be
visualized to gain insight into mental representations and
processes. The MCMC estimation procedure used for the
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Bayesian model leads naturally to a distribution over
orderings. This distribution can be used to measure the
confidence in any particular group answer. We found that
this confidence relates to how close the group answer is to
the true answer. Additionally, although not explored here,
the Bayesian approach potentially offers advantages over
heuristic approaches because the probabilistic model can be
easily expanded with additional sources of knowledge, such
as confidence judgments from participants and background
knowledge about the items.
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Abstract

We evaluate the predictions of surprisal and cue-based
theory of sentence processing using an eye-tracking
corpus, the Potsdam Sentence Corpus. Surprisal is a
measure of processing complexity based on a prob-
abilistic grammar and is computed in terms of the
total probability of structural options that have been
disconfirmed at each input word. The cue-based theory
characterizes processing difficulty in terms of working
memory costs that derive from decay and interference
arising during content-based retrieval requests of pre-
viously processed material (e.g., to incrementally build
the sentence structure). We show that both surprisal
and cue-based parsing independently explain difficulty
in sentences processing and interestingly, they have
an over-additive effect on processing when combined
together.

Keywords: Sentence processing; eye-tracking; cue-
based theory; surprisal; memory retrievals

Introduction

Research in psycholinguistics provides much evidence
for probabilistic disambiguation in human language
processing at various levels including lexical, syntactic
and semantic processing (Jurafsky, 1996, 2003). More
frequent words and structures are easier to compre-
hend than less frequent ones. Surprisal (Hale, 2001) is
a proposal which characterizes processing difficulty in
terms of the amount of work done in probabilistically
disconfirming sentence continuations as a consequence
of the information supplied by the current word. Con-
sider, for example, the famous garden path sentence in
(1). It has been observed that English speakers hearing
this sentence have great difficulty at “fell”. Hale (2001)
demonstrates using probabilistic context-free grammar
that the difficulty occurs because at “fell” the parser has
to disconfirm alternatives that together comprise a great
amount of the probability mass.

(1)  The horse raced past the barn fell.
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Recent research in computational models of sentence
comprehension has shown that surprisal is a signifi-
cant predictor of eye movements while reading indi-
vidual sentences and text (Boston, Hale, Kliegl, Patil,
& Vasishth, 2008; Demberg & Keller, 2008). However,
surprisal is likely to furnish only part of the explana-
tion (Levy, 2008). As Lewis (1996) and Gibson (2000)
argue, sometimes people take longer to process words
that they need to connect to other words processed ear-
lier. Resolving these linguistic relations seems to im-
pose more processing effort even when the construc-
tions are frequent or unsurprising. Grodner and Gibson
(2005) provide evidence using self-paced reading study
which involved reading sentences like (2) below. They
observed monotonically increasing reading time at the
verb “supervised” as a function of its distance from the
subject "nurse”.
(2) a. The nurse supervised the ...
b. The nurse from the clinic supervised the ...
¢. The nurse who was from the clinic supervised
the ...

This difference between surprisal and integration
cost was addressed by Demberg and Keller (2008), who
compared the predictions of surprisal with Gibson’s
(2000) Dependency Locality Theory (DLT), a theory of
integration difficulty. They found that DLT’s predic-
tions played a limited role in explaining processing dif-
ficulty. DLT was a significant predictor only for reading
times at nouns and verbs. Here we show that surprisal
and retrieval costs unequivocally play a role in deter-
mining processing difficulty. More interestingly, we ob-
served a significant interaction of surprisal and mem-
ory retrievals, suggesting that a simple additive model
of surprisal and retrieval processes will not suffice.

We compared surprisal’s predictions to the cue-based
retrieval model of (Lewis & Vasishth, 2005) (LV05
henceforth) using the Potsdam Sentence Corpus (PSC)
of German (Kliegl, Nuthmann, & Engbert, 2006). The
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cue-based retrieval theory characterizes processing dif-
ficulty in terms of working memory costs that derive
from decay and interference arising during content-
based retrieval requests of previously processed mate-
rial, e.g., to complete dependencies, or to incrementally
build structure.

We implemented cue-based retrieval models for sen-
tences from the PSC, closely following the approach
taken by LV05 and generated predictions for retrieval
cost at each word. We also computed surprisal’s predic-
tions using a probabilistic phrase-structure parser. The
main findings are that (1) retrieval cost furnishes bet-
ter models of eye-fixation measures than models based
on baseline predictors such as unigram and bigram
frequency, word length, Cloze predictability plus sur-
prisal, and (2) surprisal and retrieval cost show a signif-
icant interaction in predicting reading times.

Surprisal

Surprisal offers a theoretical reason why a particular
word in a sentence should be easier or more difficult
to comprehend on the basis of underlying probabilistic
grammatical knowledge of the language. The idea of
surprisal is to model processing difficulty as a logarith-
mic function of the probability mass eliminated by the
most recently added word. This number is a measure
of the information value of the word just seen, as rated
by the grammar’s probability model; it is nonnegative
and unbounded. More formally, the surprisal of the n'"
word (w,) in a sentence is defined as the log-ratio of the
prefix probability before seeing the word, compared to
the prefix probability after seeing it. The prefix proba-
bility at word w, is defined as the total probability of
all grammatical analyses that derive the prefix string
w = wi---w, which is initial part of the bigger string
wv. For grammar G and a set of derivations D the prefix
probability o, at word w, can be expressed as:

prefix_probability(w,G) = Z probability(d) = o,

deD(G,wv)

Then, the surprisal at wy, is:

Olp—1

surprisal(wy,) = log,( )
n
Intuitively, surprisal and hence the difficulty of pro-
cessing increases when a parser is required to build
some low-probability structure.

Cue-based theory

The cue-based theory of sentence processing is derived
from the application of independently motivated prin-
ciples of memory and cognitive skills to the specialized
task of sentence parsing. As a result, sentence process-
ing emerges as a series of skilled associative memory
retrievals modulated by similarity-based interference
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and fluctuating activation. The corresponding pars-
ing model is implemented in the cognitive architecture
ACT-R (Anderson et al., 2005) which formalizes the cog-
nitive principles mentioned above in terms of the fol-
lowing set of equations:

1. The base activation (B;) of chunk i, where; is the time
since the j" retrieval of the item, d is the decay pa-
rameter, and the summation is over all n retrievals,
is

n
B; = ll’l(Z l‘;d)
Jj=1

Total activation (A4;) of a chunk i is defined as the sum-
mation of its base activation and strength of associa-
tion. W; is the amount of activation from the elements
j in the goal buffer and Sj;s are the strengths of asso-
ciation from elements j to chunk i

A= Bi+ZWiji
J

S is defined in terms of fan; which is the number of
items associated with j

Sj,' =5—- ln(fanj)

Retrieval latency of chunk i is defined in terms of A;
and F, a scaling constant

T, = Fe i

The cue-based retrieval theory quantifies the process-
ing difficulty at each word in terms of its attachment
time, which is the sum of (i) the time required to retrieve
the currently-built syntactic structure in order to attach
the word into that structure, and (ii) a baseline cost of
100 milliseconds, which is the time required for the ex-
ecution of the retrieval request and the subsequent at-
tachment of the current word into the existing structure.
See LVO5 for details about data structures and the pars-
ing algorithm used.

To summarize, the delay in retrieval of a prior syn-
tactic element due to similarity based interference and
fluctuating activation is assumed to induce difficulty in
processing.

Experiment

The experiment involved a quantitative evaluation of
the predictions of surprisal and cue-based theory using
a corpus of eye movements during reading single sen-
tences.

Methods

Data For the analyses in this paper, we selected 32
sentences from the Potsdam Sentence Corpus (PSC),
which is an eye-tracking corpus consisting of fixation
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durations recorded from 222 persons, each reading
144 German sentences (Kliegl, Nuthmann, & Engbert,
2006). These 32 sentences were selected in a way that
enabled us to cover a wide range of syntactic structures.

For generating surprisal values for each word in
these selected sentences we used a probabilistic context-
free phrase-structure parser from Levy (2008), which is
an implementation of Stolcke’s Earley parser (Stolcke,
1995). We unlexicalized the parser to avoid overlap of
surprisal’s predictions with the word frequency effect.

We hand-crafted an ACT-R model for each selected
sentence, closely following the approach taken by LV05.
The model of each sentence was run for 30 simulations
and a prediction of attachment time for every word was
generated by averaging across all simulations. All ACT-
R parameter values were kept the same as those used
by LVO05 except for activation noise. In LVO05, five out
of six simulations were carried out without switching
on the activation noise. They also noted from prelimi-
nary experiments that adding activation noise did not
change their results significantly. Since, one of ACT-R’s
standard assumptions is that there is always some noise
added to the activation value of a chunk at each re-
trieval which permits modeling various kinds of mem-
ory errors, we set its value to 0.45 (this was one of the
values used in Vasishth, Bruessow, Lewis, & Drenhaus,
2008).

Statistical Analyses The statistical analyses were car-
ried out using linear mixed-effects models (Bates &
Sarkar, 2007; Gelman & Hill, 2007) and the Deviance In-
formation Criterion or DIC (Gelman & Hill, 2007, 524—
527) was used to compare the relative goodness of fit
between simpler and complex models. Linear models
were fit for the following “early” and "late” eye move-
ments measures:

SFD - fixation duration on a word during first pass if it
is fixated only once

FFD - time spent on a word, provided that the word is
fixated during the first pass

FPRT - the sum of all fixations on a word during the
first pass

TRT - the sum of all fixations

FPSKIP - the probability of skipping the word during
the first pass

We considered following baseline predictors in addi-
tion to surprisal and attachment time:

unigram - logarithm of token frequency of a word
in Das Digitale Worterbuch der deutschen Sprache
des 20. Jahrhunderts (DWDS) (Geyken, 2007; Kliegl,
Geyken, Hanneforth, & Wiirzner, 2006)
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bigram - logarithm of the conditional likelihood of a
word given its left neighbor in DWDS (also called
transitional probability)

word length - number of characters in conventional
spelling

predictability - empirical predictability as measured
in a Cloze task with human subjects (Taylor, 1953;
Ehrlich & Rayner, 1981; Kliegl, Grabner, Rolfs, & En-
gbert, 2004)

Sentences and participants were treated as partially
crossed random factors; that is, we estimated the vari-
ances associated with differences between participants
and differences between sentences, in addition to resid-
ual variance of the dependent measures. For the anal-
ysis of FPSKIP (coded as a binary response for each
word: 1 signified that a skipping occurred at a word,
and 0 that it did not), we used a generalized lin-
ear mixed-effects model with a binomial link function
(Bates & Sarkar, 2007; Gelman & Hill, 2007).

For each reading time analysis reported below, read-
ing times more than three standard deviations away
from the mean were removed before the analyses, ex-
cluding at most 1.7% of the data. Attachment time and
all dependent measures except FPSKIP were log trans-
formed. Word length, surprisal and attachment time
were centered in order to render the intercept of the sta-
tistical models easier to interpret.

In the initial analyses, as expected, we found
collinearity among the baseline predictors.  Since
collinearity can inflate the estimates of coefficients’
standard errors leading to unreliable results, and can
also lead to uninterpretable coefficient values, removal
of collinearity between predictors was crucial before fit-
ting the linear models for different fixation measures.
For removing collinearity, we incrementally regressed
each of these predictors against one or more baseline
predictors and used residuals of the regressions as the
predictors in the subsequent linear models. This was
done in the following three steps:

1. Regression of unigram frequency against word
length-
uni.res = residuals (unigram ~ length)
2. Regression of bigram frequency against word length
and residual unigram values obtained from step 1-
bi.res = residuals (bigram ~ length + uni.res)

. Regression of predictability against word length,
residual unigram and bigram obtained from step 1 &
2-
pred.res = residuals (predictability ~ length + uni.res
+ bi.res)
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As aresult, we had four baseline predictors — length,
uni.res, bi.res, pred.res — which were completely non-
collinear.

Table 1: Linear model coefficients, standard errors and
t-values for surprisal, attachment time and interaction
of attachment time and surprisal. An absolute t-value
of 2 or greater indicates statistical signicance at o = 0.05.

Coef SE t-value
SFD
surprisal 0.021722  0.001195 18
att. time 0.084338 0.013722 6
att. time:surprisal 0.048706 0.009518 5
FFD
surprisal 0.018304 0.001032 18
att. time 0.062361 0.012361 5
att. time:surprisal 0.039307 0.008327 5
FPRT
surprisal 0.021520 0.001217 18
att. time 0.056154 0.014221 4
att. time:surprisal 0.050750 0.009743 5
TRT
surprisal 0.028558  0.001389 21
att. time 0.058249 0.016197 4
att. time:surprisal 0.055988 0.011128 5

Table 2: Linear model coefficients, standard errors and
t-values for baseline predictors for TRT.

Coef SE t-value
TRT
length 0.031052  0.000949 33
uni.res -0.023228 0.002322 -10
bi.res -0.011984  0.000879 -14
pred.res -0.006162 0.002752 -2

Table 3: Linear model coefficients, standard error, z-
scores and p-values with FPSKIP as the dependent mea-
sure.

Coef SE z-score p-value
att. time -0.51588  0.09401 -55  <0.001
surprisal -0.18235  0.01000 -18.2  <0.001
att. time:surp  -0.12521  0.08067 -1.6 0.121
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Table 4: Deviance Information Criterion values for sim-
pler model (baseline predictors + surprisal) vs. more
complex model (simpler model + attachment time).

Simpler model Complex model

SFD 8624.7 8576.5
FFD 9908.0 9873.1
FPRT 22606.0 22581.9
TRT 30695.5 30674.6
FPSKIP 36140.8 36111.5

Results & Discussion

The results of the mixed-effects models are summarized
in tables 1 to 3. We observed significant main effects
of both surprisal and attachment cost across “early” as
well as “late” measures and also on FPSKIP. The coeffi-
cient for FPSKIP is negative reflecting the fact that the
probability of fixating a word increases with increase
in surprisal and retrieval cost. These results illustrate
that surprisal as well as retrieval cost can account for
variance in eye-tracking measures independent of base-
line predictors (such as unigram and bigram frequency,
word length, Cloze predictability, etc.). For compari-
son, coefficients of baseline predictors for TRT are listed
in table 2; similar coefficient values were obtained for
other reading time measures.

The interaction of attachment time and surprisal is
significant for all measures except for FPSKIP (though
even in this case the coefficient has the expected sign),
which indicates that there is a disproportionate increase
in reading difficulty when both surprisal and retrieval
cost are high.

Table 4 compares the DIC values for simpler models
(baseline predictors + surprisal) and complex models
(baseline predictors + surprisal + attachment time). For
all dependent measures the predictive error (DIC value)
was lower in the more complex model that included at-
tachment time, which means that the complex models
should be preferred to the simpler ones.

Retrieval cost, surprisal and their interaction show
effects on “early” as well as ”late” measures. This
suggests that structure-building and retrieval processes
start very soon after lexical access begins.

Implications for eye movement models Besides the
contribution to psycholinguistic theories, this work can
contribute towards extending models of eye move-
ment control such as E-Z Reader (Pollatsek, Reichle, &
Rayner, 2006) and SWIFT (Engbert, Nuthmann, Richter,
& Kliegl, 2005) which despite being the two most fully
developed models of eye movements, do not incor-
porate any theory of language processing. The latest
version of E-Z Reader (Reichle, Warren, & McConnell,
2009) makes an attempt in this direction by augmenting
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the model with a post-lexical integration stage, named
L. This stage is assumed to reflect all of the post-lexical
processing like linking the word into a syntactic struc-
ture, generating a context-appropriate semantic repre-
sentation, and incorporating its meaning into a dis-
course model. However, the amount of time to com-
plete I, t(I), is independent of the language processing
demands at that word; instead t(I) is sampled from a
gamma distribution having a mean of 25 msec and stan-
dard deviation of 0.22. Models of sentence processing
like the two evaluated here or, preferably, a systematic
combination of them would offer a more realistic way
of computing t(I). A similar approach of incorporating
post-lexical processes can be taken in other eye move-
ment models depending on the particular architecture
of each model.

Conclusions

This work evaluated the combined contribution of two
theories of sentence processing, viz., surprisal and cue-
based retrieval theory. The two approaches capture dif-
ferent aspects of sentence processing, namely instanta-
neous probabilistic disambiguation and processing con-
straints due to memory retrievals. It was shown that
when effects of these theories were combined together
to predict eye movements measures, they emerged as
significant predictors even when word length, n-gram
frequency and Cloze predictability were taken into ac-
count. Moreover, they showed an over-additive effect
on several eye movements measures. This needs to be
taken into account in future models of sentence process-
ing that integrate surprisal and retrieval costs. Also,
models of eye movement could benefit from this work.
Although the size of the evaluation corpus is small (to-
tal 32 sentences and 222 participants) and models of
cue-base parsing were hand-crafted, this work serves as
a first step towards developing a broad coverage model
of sentence processing that combines the two processes
— probabilistic disambiguation and memory retrieval —
in a principled way.
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Abstract

Much can be learned about the world by examining the
discrepancies between what is expected and what
actually occurs. Although many formal learning theories
make use of prediction error as an important— even
necessary—component in explaining behavior, this
source of evidence has been largely overlooked in the
language-learning literature. In this paper, we show how
incorporating prediction error into a model of plural
word learning (Ramscar & Yarlett, 2007) can yield a
surprising prediction: that at an appropriate point in
learning, the tendency of children to over-regularize
irregular plurals can be reduced, by exposing them to
regular plurals alone. We report on an experiment,
which was designed to test the model's predictions
empirically. The findings indicate that memory testing
on regular plurals led to significant reductions in the
rates of plural over-regularization in six-year-olds.

Introduction

Gregory: “Is there any other point to which you would
wish to draw my attention?”

Holmes: “To the curious incident of the dog in the night-
time.”

Gregory: “The dog did nothing in the night-time.’

Holmes: “That was the curious incident.”

“Silver Blaze,” Sir Arthur Conan Doyle.

>

A racehorse vanishes on the eve of an important race,
its trainer murdered. Sherlock Holmes lights upon a
crucial piece of evidence: a dog on the premises has
remained silent throughout the time in question. The
fact that the dog did not bark — and thus, that an
expected event did not occur — proves an important clue
to the identity of the murderer. As the curious incident
of the dog in the nighttime reminds us, much can be
learned from discrepancies between what is expected
and what actually occurs.

In what follows, we show how in the ordinary course
of their lives, people use the discrepancy between what
they expect and what they actually experience as a vital
source of information in learning; and that often, as in
the case of Sherlock Holmes and The Silver Blaze, the
non-occurrence of expected events provides important
negative evidence. That people use such evidence is
only natural: expectation and prediction-error are
important components of animal learning (Rescorla,
1988). However, these factors have been largely
overlooked in discussions of children’s learning,
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especially in relation to language. The extensive
literature asserting the lack of negative evidence to
children learning language (e.g., Chomsky, 1959;
Pinker, 1984, 2004; Marcus, 1993) either ignores
expectation and error-driven learning, or treats them
superficially at best. Expectation is usually dismissed as
a weak form of ‘indirect negative evidence’ that can
offer little to no assistance in the complex process of
language acquisition (Pinker, 2004). Here we show that
prediction-error provides an abundant source of
evidence in human learning, and in particular language
learning, by testing and confirming an intriguing
prediction that error-driven learning makes about
children’s plural over-regularization errors: namely,
that at an appropriate point in learning, the tendency of
children to over-regularize irregular plurals can be
reduced through exposure to regular plurals alone.

Prediction error and learning theory

Formal learning models are able to account for a wide
range of the effects associated with learning by
assuming that learning is driven by the discrepancy
between what is expected and what is actually observed
(error-driven learning). The learned predictive value of
cues produces expectations, and any difference in the
value of what is expected versus what is experienced
produces further learning. In the Rescorla-Wagner
(1972) model, for example, the change in associative
strength between a stimulus i and a response (or event) j
on trial n is defined as: '

A Vij" =Q®; pj X~ Vot (D

Learning is governed by the value of (4; - Vior.) where
A; is the value of the predicted event and Vy, is the
predictive value of a set of cues. In the ordinary course
of learning, the discrepancy between A; and Vi
reduces over repeated trials, producing a negatively
accelerated learning curve, and asymptotic learning.

What is often overlooked is what happens when a
predicted event does not occur. If a cue predicts
something that doesn’t follow, then A; will have a value

! 1 indexes the current trial. 0 < a; < 1 denotes the saliency of
cue ;, 0 < f; = 1 denotes the learning rate of event;, A; denotes
the maximum amount of associative strength that cue; can
support, and V,,, is the sum of the associative strengths
between all cues; present on the current trial and event;.
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of zero for that trial. In this case the discrepancy (4, -
Viern) Wwill have a negative value, resulting in a
reduction in the associative strength between the cues
present on that trial and the absent feature j. For
example, in modeling learning in a dog being trained to
expect food when a bell is sounded, setting 4; to 1 for
training trials where food is given, and 0 for later trials
when no food appears, allows for the characteristic
patterns of training and extinction to be modelled. This
means that latent learning about the relationship
between cues and events that are not actually present
occurs in these circumstances, and it is this process that
is a key aspect of learning.

Thus, in error-driven learning, cues compete with one
another for relevance, producing associative learning
patterns that can differ greatly from those that would
arise out of a record of the correlation between cues and
outcomes (Rescorla, 1988). There is evidence for this
mechanism at a neural level. Increases and decreases in
the firing rates of monkeys’ striatal dopamine neurons
appear to track the degree to which the outcomes of
training trials are under- or over-predicted (Hollerman
& Schulz, 1998).

(a) (b) (c) (d)

H T H T T H
Figure 1. Four logical situations a child might arrive at while
trying to “learn” a language (for the purposes of the example,
language learning is assumed to be a process in which the
child guesses the grammar that underlies that adult target
language). Each circle represents the set of sentences
constituting a language. “H” stands for the child’s
“hypothesized language”; “T” stands for the adult “target
language.” “+” indicates a grammatical sentence in the

language the child is trying to learn, and “-” represents an
ungrammatical sentence (Pinker, 1989).

Expectation in language learning

A good example of the considerations that have led to
the widespread belief that much of the conceptual
structure of language is innate (see e.g. Pinker, 1984) is
the “logical problem of language acquisition” (LPLA).
A classic statement of this is provided by Pinker (1984)
and is depicted in Figure 1. According to the LPLA, in
attempting, to learn language, children “hypothesize the
grammar of the adult language” (strictly, the child’s
task is to guess guessing the set of grammatical
sentences that comprise a language; Gold, 1967).

Possible languages are depicted as circles
corresponding to sets of word sequences, and four
logical possibilities for how a child’s hypothesis might
differ from adult language are given. In the first
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possibility (a), the child’s hypothesis language, H, is
disjoint from the language to be acquired (the “target
language” - T). In terms of noun usage, on which we
focus here, this corresponds to the state of a child
learning English who cannot produce any well-formed
noun plurals (the child might say things like “the
mouses” but never “the mice.”). In (b), the sets H and T
intersect, corresponding to a child who has learned
some nouns correctly but others incorrectly (the child
uses nouns like “mice” alongside incorrect words like
“gooses”). In (c), H is a subset of T, which means that
the child has mastered usage of some but not all English
noun plurals and never uses forms that are not part of
English. Finally, in (d), H is a superset of T, meaning
that the child has mastered all English nouns but
nevertheless produces some forms that are not part of
the English language (i.e., the child says both “mouses”
and “mice” interchangeably).

Since the LPLA assumes that learners cannot recover
from erroneous inferences without corrective feedback,
and because children do not get the kind of feedback
required (Brown & Hanlon, 1970), in addition to the
fact that they through stage (d), it follows accordingly
that, children cannot acquire language simply by
attending to the input. (Indeed, the idea that language is
learned purely from experience is often regarded as
having been effectively disproved; see Baker, 1979;
Gold, 1967; Pinker, 1989)

However, the assumption that explicit negative
feedback is needed for children to correct errors is
entirely inconsistent with the principles of error-driven
learning described above, and Ramscar and Yarlett
(2007) provide an account of the way that general error-
driven learning principles can give rise to the patterns
of children’s plural inflection acquisition. Ramscar and
Yarlett’s (2007) model represents plural items as
semantic cues to phonological outcomes. Each item is
an exemplar comprising an associatively linked
semantic and a phonological component. For example,
the plural noun CARS is represented by a couplet
encoding the association between the general semantics
of cars, including their plurality, and the phonological
form /carz/. The model assumes that learning is driven
both by what the child has heard, and what the child
expects to hear based on prior experience.

Over-regularization — children saying foots instead of
feet, for example — arises in the model out of an initial
failure to discriminate the individual semantic cues to
particular plural words. In early learning, this lack of
discrimination results in interference when shared cues
activate frequent (and thus strongly learned) regular
forms during the production of infrequent (and thus
weakly learned) irregular forms. Interference thus
results from prediction error generated by shared
semantic cues. Accordingly, the associative values of
these shared cues get weakened as learning progresses,
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which results in irregular forms becoming better
discriminated and a decline in interference. Because
regular and irregular forms are learned at different rates
(there are far more regular than irregular plurals) and
require different degrees of discrimination (regular
plurals are supported by other regulars, but interfere
with irregulars) the model predicts that interference
effects will worsen for a time in the earliest stages of
learning (because of the speed with which regular forms
are learned), before slowly resolving as irregular forms
become better learned. The model thus predicted that
older children could improve their production of correct
irregulars by repeatedly generating plurals (indeed even
if they produce over-regularizations), but that this might
be less beneficial to younger children.

These predictions were supported by the outcomes of
several empirical tests (Ramscar & Yarlett, 2007). In
one study, children repeatedly named plurals (correctly
and incorrectly) for several blocks of regular and
irregular items. The older children converged on the
correct irregular plurals (e.g., production of “child”

decreased, while “children” increased), without
corrective feedback, however under the same
conditions, younger children’s over-regularization

worsened, consistent with ‘U-shaped’ learning. A
similar pattern of data was obtained when a semantic
memory task for pictures was interspersed between pre-
and post- tests of plural production: older children who
performed an old/new task on pictures of regular and
irregular plural items over-regularized less on the post-
test, while younger children over-regularized more.

Can over-regularization be reduced by exposure to
regular items alone?

A strong, very counterintuitive prediction that arises
out of the principles of error-driven learning was not
tested in Ramscar & Yarlett’s (2007) studies. This is
that at an appropriate point in learning, children’s
tendency to over-regularize irregular plurals will be
reduced if they given training on only regular plurals.
The way that this surprising prediction arises can be
explained as follows: because regular nouns in English
are frequent (both in terms of the number of regular
plural noun types, and the overall number of plural
noun tokens that are regular), the majority of plural
forms cued by “plurality” will be plural forms which
resemble their singular forms, but which end in + /S/.
Since over-regularization is a failure to discriminate the
appropriate cues to individual items present, (i.e.,
generalization) — if children encounter the cues of to
regular plurals (e.g., a group of dogs), poor
discrimination will result in the prediction of irregulars.
The resultant prediction error will lead to children
learning to negatively associate regular cues with
irregular forms, which will increase the discrimination
of regulars and irregulars. This increased discrimination
of irregular plurals will in turn lead to a reduction in
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over-regularization. Further, although prediction errors
for irregular items are caused by the activation of the
cues for regular items, the erroneous prediction of
irregulars is a function of how well the irregular items
have been learned. Early in development, when
irregulars are weakly learned, exposure to regular
plurals will generate little irregular prediction error as
compared to later in development, when irregulars will
be better learned.

Simulation Experiment

To formally test these ideas, we implemented a
simple model of how children might learn to
discriminate plural forms over time (see also Ramscar
& Yarlett, 2007). The model assumes that plural items
are represented as semantic cues to phonological
outcomes. In early learning, over-regularization arises
because the semantic representations of irregular plural
items are not sufficiently discriminated from those of
regular plurals, i.e., children initially tend to pluralize in
response to general plurality, rather than in response to
specific plural items (Ramscar & Yarlett, 2007). In the
simulation, this was represented in terms of two
competing hypotheses, which were reinforced
whenever an irregular plural item was presented. One
hypothesis was item specific (e.g., plural mouse is the
cue to mice), while the other was more general (i.e.,
e.g., plurality is the cue to mice). Simultaneously, we
simulated the learning of regular plurals. Due to the fact
that regular plurals occur more frequently, and because
their singular and plural forms overlap, we assumed that
they offer more support to the general plural semantic
hypothesis than irregular plurals, which instead offer
support to more item-specific hypotheses.

Learning about the couplets was simulated using the
Rescorla-Wagner (1972) rule described above. In the
simulation, the learning rate, §; , for the semantic
hypotheses (cues) was set at a constant, and A, was set at
100% for the semantic-phonological couplets, which
included both regular and irregular plurals forms. To
simulate the high type and token frequency of regular
plurals, V; for the regular plurals was learned with o;
set to a high value (i.e., in the Rescorla-Wagner model,
a; effectively serves as a separate learning rate for each
cue;) while V;; for the irregular plurals was learned with
a; set to a low value.” This allowed training to be
simulated by alternately presenting the model with
regular and irregular items in training, to simulate a
child’s exposure to regular and irregular plurals at
different frequency levels.

To examine the effect of exposure to regular plurals
alone at different stages in learning, the presentation of
irregular plurals was withheld for 10 trials, the first of

2 In the simulation: B,=0.3 &, regular=0.4; @ irregular=0.15.
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these coming early in the model’s training, and the
second later in training, after the response to regular
plurals had asymptoted. Figure 2 shows the learning of
the two irregular hypotheses (general and specific) and
the general regular hypothesis.

100

— Multiple Items - Mice
— Multiple Mouse - Mice
— Multiple Items - "S"
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Figure 2. Learning of the semantic cues to an irregular item
such as mice and the regular /S/. The periods in which no
irregular trials occured appear as horizontal lines on the plot
representing the multiple mouse items=> mice hypothesis.

As in Ramscar & Yarlett (2007) the likelihood of
over-regularization (i.e. failure to produce the learned
response) was modeled as a result of response
competition, caused by spreading activation to items in
memory that are activated by the semantics of the
situation but which correspond to different
phonological forms. This activation is modeled as a
function of the degree to which the competing
semantic-phonological couplets have been learned, the
strength of the semantic cue that co-activates them and
a spreading activation parameter S (Ramscar & Yarlett,
2007). Figure 3 shows the strength of this interference
signal across the training period, and Figure 4 shows
the effect this competition has on the likelihood that a
learned irregular response will be reproduced. In Figure
4, response propensity is calculated by subtracting the
value of the interference signal from the value of the
correct response (Ramscar & Yarlett, 2007).

As can be seen from Figures 3 and 4, prediction
errors for irregular items are caused by the activation of
cues related to regular items, which results in the
unlearning of the multiple items=irregular cue. Early
in development, when irregulars are weakly learned,
exposure to regular plurals will generate less overall
irregular prediction error, and the overall frequency of
regulars will result in a steady increase in the level of
interference that produces over-regularization. Later in
development, exposure to regular plurals produces more
irregular prediction error, and interference no longer
increases. As a result, the model predicts that depending
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on the overall prior exposure a child has had to plurals,
exposure to regular plurals alone can lead to opposite
effects (e.g., ‘U-shaped’ learning; Ramscar & Yarlett’s
2007 model and empirical data showed that
interspersing regular and irregular items produced this
pattern of learning).
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Figure 3. Interference and imitation in training. These
parameter values were chosen to best illustrate our
predictions; the important thing to note is the wunderlying
relationship that arises out of the different learning rates.
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Figure 4. Response propensity levels over training. Over-
regularization will be likely when this value is negative.

Human Experiment

We tested these predictions using a semantic old/new
task to expose children to regular plurals, and a test-
train-test paradigm to establish a baseline rate of over-
regularization for each child. This allowed us to
examine the effect of children’s exposure to regular
plurals has on later irregular plural production (see
Ramscar & Yarlett, 2007). Semantic priming (e.g.,
where priming the semantics of “doctor” yields shorter
response latencies in a lexical decision task on “nurse”;
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Meyer &  Schvaneveldt, 1971) indicates that
phonological and orthographic representations can be
activated by cueing their semantic features. The
Ramscar & Yarlett (2007) model assumes that until the
representation of a phonological-semantic association
reaches asymptote, the activation of an association can
strengthen its representation (see Roediger & Karpicke,
2006). Thus explicitly priming the semantics of the
nouns, even in the absence of any overt naming
responses by the child, was expected to be sufficient to
produce errors in prediction and subsequent latent
learning. Furthermore, by not having children explicitly
name items, we aimed to reduced the effects of
perseveration on spoken motor responses have in
children’s performance during a post-test. This we
expected would allow for a better measure of their
representation of the items tested.

Participants

24 four and 23 six year old children living resident in
the vicinity of Palo Alto, California, and recruited from
a database of volunteers. The average ages were 4 years
and 7 months for the four year olds, and 6 years and 7
months for the six year olds.

Methods and materials

The children were randomly assigned to two groups,
both of which were pre-tested on plural production.” In
the elicitation test the children were asked to help a
cookie monster puppet name a series of six irregular
nouns, and six regular pairings of plural nouns. The
children sat with the experimenter and named the nouns
first from singular and then from plural depictions that
were presented on a laptop computer.

In the experimental condition the children then
performed an old/new task in which they were asked to
tell a cookie monster whether or not they had seen
depictions similar to those they had named in the pre-
test. All depictions of the “old” items in training were
novel, which required children to make categorization
judgments to generate the correct answers. The children
were asked to help the cookie monster identify them
“By telling him, yes or no” to indicate whether they had
already seen these depictions or not. When an object
appeared, the experimenter asked the child to “Look at
those — did cookie monster see those before?” Children
who did not spontaneously respond were prompted,
“Did cookie see these? Yes? No?”. If no response was
forthcoming, the experimenter proceeded to the next
item. Half of the presented items were new depictions

> The irregular items were MOUSE-MICE, CHILD-

CHILDREN, SNOWMAN-SNOWMEN, GOOSE-GOOSE,
TOOTH-TEETH and FOOT-FEET; the regular matches were
RAT, DOLL, COW, DUCK, EAR, and HAND. Ramscar &
Yarlett (2007) Experiment 1 revealed that although children
of these ages over-regularize these irregular plurals, they have
reliable knowledge of their correct forms.
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of the regular items in the pre-test and half were foils.
The children were thus tested on 12 new and 12 old
items per block. All of the items were presented as
depictions on a computer screen.

In the control condition, the children were shown 6
color slides after the pre-test, and then asked to tell the
cookie monster whether they had seen that particular
color before in an old/new task that contained an equal
number of foils. The colors were presented as blocks
filling the computer screen to avoid cuing any notion of
plurality. The total time to complete each was equal.
Both sets of children were then post-tested on exactly
the same set of depictions that were used in the pre-test.
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Figure 5. Pre and post test performance by age and condition

Results

The results overwhelmingly supported our
predictions. The performance of the older children in
the experimental condition improved between pre-and
post test (t(64)=2.256, p<0.05) while the performance
of the younger children declined (t(66)=1.955, p<0.05).
There was little change in the performance of either age
group in the control condition (see Figure 5). A 2 (pre-
to post- test) x 2 (age) x 2 (condition) repeated
measures ANOVA of the children’s plural production
revealed a significant interaction between age and pre-
to post-test performance (F(1,43) = 8.32, p<0.01), and a
significant interaction between age, training type and
pre- to post-test performance (F(1,266) = 4.235, p=.05).

General Discussion

We found that testing memory for regular plurals
significantly reduced the rates of plural over-
regularization in six-year-olds. Though the strength of
these results is likely to have been influenced by
recency (children named the irregulars immediately
prior to regular training), what is clear that the children
learned about irregular plurals, and improved their
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production of them, even though none were present
during the training trials. We feel that, to the extent that
this result is surprising, this surprise is due to the lack
of widespread understanding of error-driven learning
processes (see also Rescorla, 1988).

Overwhelmingly, research into language learning has
pre-occupied itself with the observable: that is, with
what a child hears or sees. Researchers have variously
touted “the lack of negative evidence” in language
learning as a constraint on theory (Marcus, 1993;
Pinker, 2004), and much virtue is attributed to models
that learn from “positive evidence” alone. We feel this
is regrettable. There is good reason to believe that error-
driven learning describes the principal mechanism by
which people acquire information about their
environment (Miller, Barnet & Grahame, 1995; Siegel
& Allen, 1996; Ramscar & Yarlett, 2007; Ramscar, et
al, in submission). The basic principles of error-driven
learning are supported both by animal (e.g., Kamin,
1969; Rescorla & Wagner, 1972) and neurobiological
models (e.g., Hollerman & Schultz, 1998; Barlow,
2001). In developing accounts of human learning, error-
driven learning ought to be primarily considered when
it comes to establishing conceptual and theoretical
constraints and default hypotheses.

Extrapolating from the findings presented here (see
also Ramscar & Yarlett, 2007; Ramscar et al, in
submission), it seems likely that the processes involved
in verbal learning — reducing prediction-error between
semantic cues in the world and linguistic forms — are
critical to the development of our use of language as an
abstract representational device in communication.

Understanding language in terms of learning may, in
the future, involve a reassessment of what human
communication involves, requiring and inspiring new
theories of language and its role in culture
(Wittgenstein, 1953; Quine, 1960; Tomasello, 1999). At
the very least, we would argue that simply reversing the
trend te of ignoring learning in human development, we
can and will reap many important scientific benefits.
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Abstract

We simulate the evolution of a domain language in small
speaker communities. Data from experiments (Garrod et al.,
2007; Fay et al., 2008) show that human communicators can
evolve graphical languages quickly in a constrained task (Pic-
tionary), and that communities converge towards a common
language even in the absence of feedback about the success
of each communication. We postulate that simulations of such
horizontal evolution have to take into account properties of hu-
man memory (cue-based retrieval, learning, decay). We imple-
ment a model that can draw abstract concepts through sets of
non-abstract, related concepts, and recognize such drawings.
The knowledge base is a network with association strengths
randomly sampled from a natural distribution found in a text
corpus; it is a mixture of knowledge shared between agents
and individual knowledge. In three experiments, we show that
the agent communities converge, but that initial convergence
is stronger when communities are structured so that the same
pairs of agents interact throughout. Convergence is weaker in
communities when agents do not swap roles (between recog-
nizing and drawing), predicting the necessity of bi-directional
communication in domain language evolution. Average and ul-
timate recognition performance depends on how much of the
knowledge agents share initially.

Keywords: Alignment; Language Evolution; Domain Lan-
guages; Microevolution; Cognitive Architectures, Multi-Agent
Simulation

Introduction

Languages evolve: like biological systems, they undergo mu-
tation and selection as they are passed on between speakers
and generations. Similar to its biological counterpart, human
communication evolves under environmental constraints. Fit-
ness of a communication device (software) is a function also
of the cognitive hardware: cognitive facilities constrain the
language system. In this paper, we use an independently mo-
tivated cognitive memory architecture to constrain an evolu-
tionary process that produces a communication system.

Recent models of dialogue describe how interlocutors de-
velop representation systems in order to communicate; such
systems can, for instance, be observed using referring expres-
sions that identify locations in a maze. Experiments have
shown that referring expressions converge on a common stan-
dard (Garrod & Doherty, 1994). Pickering & Garrod’s (2004)
Interactive Alignment Model suggests that explicit negotia-
tion and separate models of the interlocutor’s mental state
aren’t necessary, as long as each speaker tends to adapt to
themselves and their interlocutors, as they are known to do
on even simple, linguistic levels (lexical, syntactic).

Some evolutionary models (vertical models) see the trans-
mission of cultural information as a directed process, in
which information is passed only from the older to the
younger generation. Horizontal models explain the emer-
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gence of language as a continuous process within genera-
tions. Individualistic models of language evolution assume
that innate learning and processing systems set a prior, to-
wards which language converges. Interaction and the cultural
environment do not leave marks in the resulting language.
Collaborative models, on the other hand, accept that language
mutates and converges within generations as well. They
claim that meaning-symbol connections spread between col-
laborating agents and ultimately converge on a predominant
one. It is the dichotomy between individual and community-
based learning that motivated the experiments by Garrod et
al. (2007) and Fay et al. (in prep.), which serve as the basis
for the model presented here.

In the horizontal society of cognitive agents in our study,
agents adapt their communication system collaboratively to
environmentally shaped and cognitively constrained needs of
each individual. With our model, we aim to use a cognitive
framework — specifically a memory model — to reflect pro-
cesses in the individual that give rise to emergent convergence
and learning within the community. By this, we acknowledge
the fact that cultural evolution is constrained by individual
learning; each agent learns according to their cognitive fac-
ulty (cf., Christiansen & Chater, 2008). The possibility of
cultural language evolution has been supported by computa-
tional simulations (e.g., Kirby & Hurford, 2002; Brighton et
al., 2005).

It is because adaptation according to experience is deter-
mined by human learning behavior that simulation in val-
idated learning frameworks is crucial. Griffiths & Kalish
(2007) for instance model language evolution among ratio-
nal learners in a Bayesian framework; the purpose of the
present project is to simulate the evolution of a communi-
cation system using an architecture with an accurate account
of memory access and a concrete experimental design. We
will introduce a cognitive model that simulates a participant
in the experiment; multiple models interact as a community
of participants. The purpose of this paper is to observe how
a compositional language system is created between collab-
orating agents in a computational, cognitive simulation. We
will show that the model demonstrates learning behavior sim-
ilar to the empirical data. We assume these agents share a
common reference system initially, display cooperative be-
havior and adopt mixed roles as communicators. Therefore,
we explore different scenarios that test the necessity of our
preconditions, in particular the initial common ground and
the fact that each agent can be both on the sending and the
receiving end of the communications.
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The Task

The Pictionary experiment (Garrod et al., 2007) involves two
participants, a director, who is to draw a given meaning
from a list of concepts known to both participants, and a
matcher, who is to guess the meaning. Director and matcher
do not communicate other than through the drawing shared
via screens of networked computers; the matcher is able to
draw as well, for instance to request clarification of a part
of the picture. Each trial ends when the matcher decides to
guess a concept. Garrod et al.’s set of concepts is divided
into five broad categories (e.g., actor, building); the concepts
within each are easily confusable (e.g., drama, soap opera).
Each game involves several trials, one for each concept on the
list, in randomized order. The director is not informed of the
guess made by the matcher, and neither participant receives
feedback about whether the guess was correct. Participants
switch roles after each trial. Participants to play many games
so that the emergence of consistent drawings can be observed.

We implement the experiment in a form applied by Fay
et al. (in prep., 2008), where 16 concepts (plus 4 additional
distractors) were used in a design with two conditions. In
the isolated pair condition, participants were split into fixed
pairs. They played seven rounds of six games each with
the same partner. In the community condition, participants
changed partners after each round. Each community con-
sisted of eight participants. The pattern of pairings was de-
signed so that after the first round, four sub-communities
existed, after the second round, two sub-communities. Af-
ter round four, the largest separation between partners was
2 (i.e., each agent has interacted via another one with every
other agent); it was 1 after round seven. Fay et al. evalu-
ated the iconicity of drawings, showing that isolated pairs de-
veloped more idiosyncratic signs, while the signs emerging
within communities were more metaphoric (i.e. deducible)
and easier to understand for new (fictitious) members of the
language community. As idiosyncracy increases with each
drawing-recognition cycle, but resets (to some degree) when
communication partners change, communities may end up
evolving similar idiosyncracy once every pair of participants
played the same number of games.

The simplest measure and the one crucial for the evalua-
tion of models like ours is identification accuracy. Fay et al.
found that their participants generally converged quickly to
a common meaning system. Convergence reached a ceiling
of around 95% in both community and isolated-pair condi-
tions. Changing interaction partners from round to round, as
in the community condition, reduced accuracy during the ini-
tial changes; however, the community reached good ID accu-
racy after just a few rounds. We will use the development of
ID accuracy as one way to evaluate the model.

The Model

ACT-R (Anderson, 2007) is an architecture for specifying
cognitive models, one of whose major components is mem-
ory. ACT-R’s memory associates symbolic chunks of infor-
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mation (sets of feature-value pairs) with subsymbolic, acti-
vation values. Learning occurs through the creation of such
a chunk, which is then reinforced through repeated presenta-
tion, and forgotten through decay over time. The symbolic
information stored in chunks is available for explicit reason-
ing, while the subsymbolic information moderates retrieval,
both in speed and in retrieval probability. The assumption
of rationality in ACT-R implies that retrievability is governed
by the expectation to make use of a piece of information at
a later point. Important to our application, retrieval is fur-
ther aided by contextual cues. When other chunks are in use
(e.g., parliament), they support the retrieval of related chunks
(building).

A single ACT-R model implements the director and
matcher roles. As a director, the model establishes new com-
binations of drawings for given target concepts. As a matcher,
the model makes guesses. In each role, the model revises its
internal mappings between drawings and target concepts. Ta-
ble 1 gives an example of the process. The model is copied to
instantiate a community of 64 agents, reflecting the subjects
that took part in the Pictionary experiments.

Our model uses a scalable and efficient re-implementation
of ACT-R called ACT-UP, letting us underspecify model ele-
ments such as the production-rule system, which would nei-
ther introduce nondeterminism nor carry explanatory weight
in this particular model.

Maintaining a communication system

The simplest form of keeping a communication system in
ACT-R memory chunks is a set of signs. Each sign pairs a
concept with a set of drawings. Competing signs can be used
to assign multiple drawings for one concept, this would create
synonyms; multiple concepts can also combine with the same
drawings, creating homonyms and ambiguity.

To create new concepts, we need to introduce a subsym-
bolic notion of relatedness. We use ACT-R’s spreading acti-
vation mechanism and weights between concepts to reflect re-
latedness. Spreading activation facilitates retrieval of a chunk
if the current context offers cues related to the chunk. Relat-
edness is expressed as a value in log-odds space (S;; values).

When the model is faced with the task to draw a given con-
cept such as Russell Crowe (one of the concepts in the ex-
periment) that has no canonical form as a drawing, a related
but drawable concept (drawing) is retrieved from declarative
memory. Similarly, we request two more concepts, deferring
any desire of the communicator to come up with a distinctive
rather than just fitting depiction of the target concept. The
case of a model recognizing a novel combination of drawings
is similar; we retrieve the concept using the drawings as cues
that spread activation, making the target concept the one that
is the most related one to the drawings.

After drawing or recognizing, the target or guessed con-
cept, along with the component drawings, is stored symbol-
ically in memory as a chunk for later reuse (domain sign).
These signs differ from the pre-existing concepts in the net-
work, although they also allow for the retrieval of suitable



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

Director

Matcher

Fails to retrieve domain sign for A.
Retrieves related concept: = component drawings 123
Draws components 1, 2, and 3

Learns domain sign A-123

Requests related concept with cues 123 =- concept B
Guesses B
Learns domain sign B-123

Retrieves domain sign for target concept B
= component drawings 345

Verifies that B is retrieved when drawings 345 are activated

Draws components 3, 4 and 5

Learns domain sign B-345

Requests related concept with cues 345

= concept B

Guesses B

Verification: Requests domain sign for B

= domain concept B-123

345 spread more activation to B than do 123,
thus, learns domain sign B-345

Table 1: A protocol of two model instantiations, first failing to communicate concept A through three related drawings 1, 2 and
3, then successfully communicating concept B via drawings 3,4 and 5. The Matcher first adopts B-123 as a domain sign, then

revises it to B-345.

drawings given a concept, and for a concept given some draw-
ings. When drawing or recognizing at a later stage, the mem-
orized domain signs are preferred as a strategy over the re-
trieval of related concepts. The system of domain signs en-
codes what is agreed upon as a language system between two
communicators; they will be reused readily during drawing
when interacting with a new partner, but they will be of only
limited use when attempting to recognize a drawing combina-
tion that adheres to somebody else’s independently developed
communication system.

Knowledge

Agents start out with shared world knowledge. This is ex-
pressed as a network of concepts, connected by weighted
links (S;;). The distribution of link strengths is important in
this context, as it determines how easily we can find draw-
ing combinations that reliably express target concepts. Thus,
the S;; were sampled randomly from an empirical distribu-
tion: log-odds derived from the frequencies of collocations
found in text corpus data. In a corpus comprising several
years worth of articles that appeared in the Wall Street Jour-
nal, we extracted and counted pairs of nouns that co-occurred
in the same sentence (e.g., “market”, “plunge”). As expected,
the frequencies of such collocations are distributed according
to a power law. We found that the empirical log-odds result-
ing from these that form S; = log(P(J|I)/P(J|notI)) (Ander-
son, 1993) (J and I being the events that J and I appear) can
be approximated by a Generalized Inverse Gaussian-Poisson
distribution (given in Baayen, 2001).

Such knowledge is, however, not fully shared between
agents. Each agent has their own knowledge network result-
ing from life experience. This difference is essential to the
difficulty of the task: if all agents came to the same conclu-
sions about the strongest representation of target concepts,
there would be little need to establish the domain language.
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We control the noise applied to the link strengths between
concepts j and i for agent M (S ;) by combining the com-
mon ground Sj; (shared between all agents) with a random
sample Ny j; in a mixture model: Sy j;i = (1 —n)Sji +nNyji.
Then, n [0;1] sets the proportion of noise. For Experiments 1
and 2, the noise coefficient is set to 0.2.

Adaptation pressure

Notably, participants in the experiment converged to a com-
mon sign system fairly quickly. This happened even though
there was no evident, strong pressure to do so. Agents re-
ceived no explicit feedback about the quality of their guesses
or drawings. The only weak clue to the success of a set of
drawings was whether the partner made a guess quickly. A
helpful strategy for the matcher is to assume consistency be-
tween matching and drawing.

Invariably, the model will mistake a set of drawings for a
reference to the wrong target. Lacking a feedback loop in
this experiment, the model has no choice but to acquire even
flawed domain signs and boost their activation upon repeti-
tion. Under these conditions, there is little pressure to con-
verge. It is difficult to see how interaction partners could ever
agree on a working communication system, given that there
is no benefit for a model in choosing the concept-drawing
associations of its interaction partner. However, the model
does leverage consistency as proposed in Grice’s maxims of
manner, ‘“Avoid ambiguity” and “Avoid obscurity of expres-
sion” (Grice, 1975). To do so, it assumes that a given set
of drawings is associated with only one target concept, and,
conversely, that a given target concept is associated with only
three drawings. Suppose, for example (Table 1), that the
model associates concept B with drawings 1,2,3 (short: B-
123). Later on, it comes across drawings 3,4,5 as another
good way to express B. In fact 3,4,5 serve as convincingly
stronger cues to retrieve B than do 1,2,3. Thus, the model not
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Figure 1: Identification accuracy for isolated pairs and com-
munities (human data) as provided by Fay (p.c.). One-tailed
95% confidence intervals are given (upper bounds for com-
munities, lower bounds for pairs), based on standard error
(normality assumption).

only correctly recognized B, but also learns the new preferred
combination B-345. In the following rounds, B-345 will
likely shadow the alternative in a winner-take-all paradigm,
since B-345 is newer than B-123 and, thus, has stronger acti-
vation due to activation decay (noise and reinforcement may
keep B-123 as a winner for longer). The decay mechanism
counteracts the creation of synonyms.

In evolving the domain language, the model will avoid cre-
ating homonyms as well. Suppose a concept C is to be drawn,
and 345 are retrieved as closely related and highly active
drawings. Here, the model attempts to verify that 345 can-
not be understood as any other concept than C. As the most
strongly active concept for 345 is B, these drawings are ruled
out to express C. With this mechanism, the model is able to
cheaply modify the system of signs without extensive reason-
ing about the optimal combination every time a concept is
added.

Algorithm

Directing The model is given a target concept A to convey.
It uses domain signs and general knowledge to decide about
a sign. At the end, the composed concept is committed to
declarative memory as a domain sign. Domain knowledge is
explicitly accessible and overrides subsymbolically derived
compositions. As a consequence, the model acts with con-
sistency: once a combination has first been used to convey a
concept, the model will be more likely to use it. The director
proceeds with the following algorithm.

1. Attempt to retrieve a domain sign for A of form A — of}y.
If successful, verify by retrieving a domain sign B for the
same three drawings oy is retrieved (B — afy). Only if
A = B, accept the domain sign A — oy and continue with
step 3; otherwise choose another domain sign.

2. If no acceptable domain sign is found, use subsymbolic
knowledge to combine concepts to express related target
meanings. Using the target meaning as cue, retrieve three
drawings of}y. The most active drawings are retrieved pref-
erentially.

Convergence

' ' ' ' '

0.85 ' ' ' ' ' ' L
' ' ' ' ' '

0.80

0.75

0.70

0.65

Identification accuracy

0.60 —

42 Games over 7 rounds

Figure 2: Mean identification accuracy in model simulations:
As in the human data, both community pairs and isolated
pairs gain most of their ID accuracy in the first game, but
community pairs lose much accuracy when switching part-
ners. 95% C.I., bootstrapped. 100 runs.

3. Draw ofy.
4. Learn A — ofy (ACT-R buffer clearing action, repeated
multiple times during the drawing process).

Matching Recognizing a drawing takes place in a simi-
lar fashion: domain knowledge is preferred over associative
guesses. The model is given three drawings opy. It proceeds
with the following algorithm.

1. Attempt to retrieve a domain sign for apy, resulting in C —
ofy. If successful, verify by retrieving a domain sign of
form C — &eC. Only if o, B,y = 8,¢,C, accept the domain
sign C — oy and continue with step 3.

2. If no acceptable domain sign is found, retrieve a concept C

using cues oy (spreading activation).

Guess C.

4. Learn C — afyy (ACT-R buffer clearing action, repeated
multiple times during the drawing process, but less often
than during directing.)

»

ACT-R memory parameters were set to values consistent
with the literature (transient noise 0.2, base-level constant
1.0, base-level learning and spreading activation enabled, re-
trieval threshold 1.0).

Experiment 1: Learning and Convergence

In the first experiment, we evaluate whether the model
exhibits similar learning and convergence behavior, and
whether there are differences in learning between the
isolated-pair and community condition, as observed in Fay
et al.’s experiment. The model uses the same number of con-
cepts, trials and simulated participants as in the experiment.

Results

As shown in Figure 2, the learning behavior differs in the
two conditions. Isolated pairs and Community pairs show a
learning effect, i.e. they converge in their communication sys-
tems. However, unlike isolated pairs, community pairs dis-

105



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

Convergence (no role swapping)
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Figure 3: As in Figure 2, but without swapping roles.

play lower ID accuracy after the 7th game (game 1 of round
2), i.e. after switching partners.

We fitted a linear model to test some of the predictions
more explicitly. The linear regression model treating round,
game and condition (isolated pairs vs. communities) as in-
dependent variables, predicting log-transformed ID accuracy
showed expected effects for round (f = 0.03,p < 0.0001)
and game (B = 0.02, p < 0.0005), indicating improving ac-
curacy with each game and round. An interaction of round
and game (B = —0.0046, p < 0.0005) showed that the con-
vergence leveled off in later rounds (as expected). There was
no main effect of condition (p = 0.45), but an interaction of
condition (isolated pairs) and round in the predicted direction
(B = —0.008, p < 0.05), suggesting that convergence contin-
ued on for longer in the communities condition, and leveled
off sooner in the isolated pairs condition. (All f in log space.)

Discussion

The results demonstrate, first, that agents converge both when
retaining partners and when interacting with changing part-
ners. Second, the results show that partner switching results
in a setback in performance, but that agents continue to opti-
mize their communication systems. This demonstrates that
different dyads indeed converge on different signs for the
same concepts. Notably, the setback appears to be smaller for
rounds 3 through 7, i.e., through repeated partner switching,
agents converge to a more common language.'

Overall, the model behaves similarly in many ways to
the empirical data; however the initial and final accuracy
achieved by the model is consistently lower than the approx-
imately 70% and 95% accuracy (respectively) achieved by
human subjects in the Pictionary experiments.

Experiment 2: Director and Matcher roles

Garrod et al. (2007) compared the performance of their par-
ticipants in a comparable Pictionary task when a single direc-
tor remained in that role throughout the experiment (single di-

INote that Figure 2 suggests an effect of condition on the ceil-
ing that is achieved; the regression analysis does not support this.
We believe it is due to randomization of the concept order; further
work is needed here. Note that in these initial experiments, we sim-
ulated only the same number of subjects and communities as in the
experiments.
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rector, SD condition), vs. when participants swapped roles af-
ter each round (double director, DD condition). Identification
accuracy was slightly higher for the role-swapping, double-
director condition than in the single-director condition (sig-
nificantly so only in the final rounds 5 and 6). This condition
is similar to the isolated pairs condition in our model. Our
model can not only simulate the role-swapping conditions,
but also predict contrasts between isolated pairs and commu-
nities. The general question here is whether unidirectional
communication would be sufficient to develop a community
language. So, in this experiment, agents did not switch roles
after every concept conveyed, i.e. they remained either direc-
tor or matcher throughout the game. (Note that, unlike Fay
et al.’s experiments and our simulation, Garrod et al.’s study
involved feedback about the guesses.)

100 instances of Fay et al’s experimental design were run.

Results

Identification accuracy for isolated pairs converged to a
higher level than in Experiment 1. Interestingly, communities
failed to achieve the same level of accuracy when director and
matcher roles were not swapped (Figure 3).

Discussion

This experiment showed that turn-taking is essential for the
development of a common community language. Isolated
pairs benefit from uni-directional communication (as in Gar-
rod et al’s data), presumably converging towards the direc-
tor’s chosen language system. Communities are predicted
by the model to require bi-directional communication to con-
verge towards a similarly reliable communication system.

Experiment 3: Noise in Common Ground

A crucial assumption of the compositional semantics in this
model is that the agents start out with common knowledge.
For instance, both director and matcher need to accept that
ambulances and buildings are strongly related to the concept
hospital. However, the strength of the links between those
concepts may differ without precluding the matcher from
making the right inference.

The model allows us to test the importance of this assump-
tion and predicts the results of a lower overlap between the
knowledge bases of each agent.

Results

Figure 4 shows that mean identification accuracy (7th round,
all games) decreases with increased levels of noise in the sub-
symbolic knowledge state common to the agents. The model
appears to deal reasonably well with noise levels of up to 0.3
(coefficient in the noise mixture) for both isolated pairs and
communities configurations. This generally holds when tak-
ing all rounds into account. (At high noise levels, the ini-
tial acquisition of domain signs still works, but agents fail to
converge further beyond the initial game or beyond a lower
ceiling.) Further work should reveal whether further learning



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

0.8 o

0.6 Isolated Pairs

0.4 o

Mean identification accuracy in round 7

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Noise weight in mixture of common vs. agent-specific link strengths

Figure 4: Mean identification accuracy at round 7 is reduced
with noise between the knowledge bases of each agent. Boot-
strapped 95% confidence intervals.

cycles can make up for the effect, i.e., medium noise levels
lead to slower convergence and the failure to converge here is
due to the limited number of games.

General Discussion

The model replicates several of the characteristics of the com-
munities compared to the isolated pairs condition; specifi-
cally the set-backs after switching partners for the first few
times and the ultimate convergence, despite very limited feed-
back. We also arrive at a clear prediction: bi-directionality is
essential for linguistic convergence in communities.

At this point, we do not attempt to estimate optimal pa-
rameters in order to achieve a better fit to the empirical data.
We believe that adaptation rates and the convergence ceiling
depend both on the difficulty of the task, the specific materi-
als (concepts) and the higher-level reasoning tools employed
to optimize the language system. The task in Fay et al.’s ex-
periment structured the list of concepts into a tree (e.g., there
were four actors), making the job of drawing and guessing
easier. Rather than just drawing what seems most closely re-
lated to the target concept, the experimental design invites
them to choose a component concept that best disambiguates
the drawing in the light of competing concepts (a head and a
movie screen may be descriptive of Robert De Niro, but they
do not distinguish him from Brad Pitt). Neither specific dif-
ferentiation nor the precise choice of materials are modeled.
Thus, we may overestimate the difficulty of the task. As a
further simplifying assumption, our model always produced
three component drawings before a guess is made. Garrod
et al.’s (2007) design had participants give one another feed-
back about whether a drawing was thought to be recognized.
However, our simplification is not expected to influence the
character of the outcome.
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Conclusion

We have demonstrated the use of validated, cognitively plau-
sible constraints to explain an emergent, evolutionary group
process via multi-agent simulation. Subsymbolic and sym-
bolic learning within a validated human memory framework
can account for rapid adaptation of communication between
dyads and for the slower acquisition of a domain language
in small speaker communities despite very limited feedback
about the success of each interaction. Bi-directional commu-
nication is predicted to be necessary for a common language
system to emerge from communities. The effects are robust
against some divergence in prior common ground between
agents.

Our model of the horizontal emergence of a common lan-
guage in multi-agent communities is a first step to a compu-
tational, cognitive analysis of the learning processes involved
in creating combined signs and acquiring links between them
and arbitrary concepts, in order words, the evolution of lan-
guage. Firm predictions can be drawn from this simulation
only once robust convergence in much larger communities
can be demonstrated, which will go beyond the empirical data
that served as basis for this study.
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Abstract

Where the spacing effect promotes longer intervals between
facts that need to be memorized, the testing effect argues for
intervals that are short enough to recall the facts. As the ease
by which facts are memorized differs greatly between stu-
dents, an individual assessment of how well certain facts are
represented in memory is required to successfully balance
spacing and testing effects. We present a model that adapts
itself to the abilities of the student, and show in a real-world
experiment that this model outperforms other approaches to
spacing.

Keywords: spacing-effect; testing-effect; subsymbolic model
tracing; cognitive model.

Introduction

The last couple of years have seen a renewed interest in
applying insights from fundamental memory research in
real-world settings. One of the most visible lines of work are
studies to the application of the spacing effect. The spacing
effect, first described by Ebbinghaus (1913/1885) at the end
of the 19th century, is the positive effect on factual recall
that is observed when study trials are temporally separated.
Thus, the probability of recall of facts learned in a spaced
sequential order (e.g., abcabcabc or abc-break-abc-break-
abc) is higher than the probability of recall of facts that are
learned massed (e.g., aaabbbccc). The consequence of this
finding is that the presentation sequence of a to-be-
memorized list of facts partly determines how well these
facts will be recalled on a later test: items on a list that pre-
sents the items with wider spacing will be recalled better
than items on a list that presents the items as many times as
the first list, but massed instead of spaced.

This observation was central to much applied research in
the 1960s and early 1970s. Using the possibilities provided
by digital computers, scientists tried to construct optimal
learning schedules. Although some of this work has stood
the test of time from an applied or commercial point of view
(e.g., the Pimsleur and Leitner methods are still available
commercially), the methods used by these early systems are
relatively simple and the learning gains often did not out-
weigh the extra investment associated with using these sys-
tems. This led to a decline in applied research on the spac-
ing effect, although over the decades, more fundamental
research on this effect has thrived (for reviews see Demp-
ster, 1988, Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006).
Only recently has attention again shifted to using algorithms
to determine the optimal schedule for learning (Wozniak &
Gorzalanczyk, 1994, Pavlik, 2007, Pavlik & Anderson,
2008).
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Another finding that has a potentially large effect on how
an optimal sequence has to be constructed, is the testing
effect. This effect can be described as: “If students are tested
on material and successfully recall or recognize it, they will
remember it better in the future than if they had not been
tested” [but merely studied the same material] (Roediger &
Karpicke, 2006, p.249, see also Carrier & Pashler, 1992). As
it is generally assumed that memory decays over time, in-
creasing the interval between successive presentations
makes it more likely that an item cannot be recalled. There-
fore, spacing beyond a certain interval will be associated
with lower learning gains because of failing the testing ef-
fect (c.f., the inverse u-shape often observed when the per-
formance on a test is plotted as a function of the interval
between two presentations, Cepeda, Vul, Rohrer, Wixted, &
Pashler, 2008).

When it comes to computing an optimal presentation se-
quence for fact learning, spacing and testing have different
interests. For the spacing effect, increased spacing is theo-
retically preferred. But for the testing effect, small to no
spacing would theoretically provide the best results. One of
the aims of the study reported here is to reconcile these
seemingly conflicting requirements.

An interesting observation in almost all work on the spac-
ing effect is that the “optimal schedule” is defined as the
schedule that reaches the best performance (often defined as
the highest probability of recall) over a longer timeframe.
Although this is of course what the goal of all learning
should be, the goal of learning in a real-world situation is
often more pragmatic: passing the next day’s test by study-
ing for a limited, often more or less fixed amount of time.
So, although the results of more than a century of spacing
results can be used for the real-world situation of having to
learn numerous vocabulary word pairs for a foreign lan-
guage test that is scheduled a couple of weeks or months in
advance (c.f., Wozniak & Gorzalanczyk, 1994), these results
do not necessarily tell us anything about the pragmatic goal
of learning: What method should a student use to learn a set
of 20 vocabulary word pairs for a potential test tomorrow,
knowing that, because of soccer practice, favorite TV-shows
and other homework, all he or she has is 15 minutes to
spare?

Note that this real-life situation differs quite a bit from
typical experimental setups: First, to prevent effects of prior
knowledge, the learning materials in experimental contexts
are often selected in such a way that none of the participants
has any relevant prior knowledge (by either learning se-
quences of nonwords, e.g., Ebbinghaus, 1913/1885, very
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obscure facts, e.g., Cepeda et al, 2008, or word-pairs from
languages previously unstudied, e.g., Pavlik & Anderson,
2008). In contrast, when learning for a vocabulary test, most
students bring additional knowledge to the learning session
from earlier experiences with that language. Second, in most
studies the list of word pairs presented to the participants is
much longer than the 10 to 30 words that typically have to
be learned in a single real-life learning session. Third, the
retention interval (defined as the time between the final test
on the learned materials and the last study of the materials)
in most studies is less than a day (221 out of 254 studies
reviewed in Cepeda et al, 2006, used an interval less than a
day). Fourth, where many experimental studies aim for find-
ing a general law that describes the effects of different types
of spacing on performance in general, the goal of an indi-
vidual student is not striving for the best performance of a
larger group, but for the optimal results on his or her test. As
the speed and ease by which vocabulary is learned differs
greatly between individuals (e.g., Baddeley, 2003), settings
that are optimal for the group as a whole might not be the
optimal settings for an individual. These differences are less
substantial with respect to the spacing effect than with re-
spect to the testing effect. That is, irrespective of the indi-
vidual expertise in vocabulary learning, the spacing effect
predicts that increased spacing provides better scores. How-
ever, with respect to the testing effect, individual differences
greatly determine the probability of recall of a particular
item. Since successful recall is associated with better learn-
ing gains, it is important to account for individual differ-
ences in such a way that facts are presented before they can-
not be recalled anymore.

To test whether the general findings associated with spac-
ing and testing effects hold when these issues are taken into
account, we ran an experiment that closely mimics everyday
learning contexts. In this experiment, pre-university level
students were asked to memorize Dutch translations of
French words in a computer-supported learning session of
15 minutes. During learning, the schedule of presentations
of the Dutch-French word pairs was computed according to
one of four algorithms.

Algorithm 1 was based on a flashcard strategy: the study
items were clustered in sets of 5 which were presented indi-
vidually until all items in the set had been responded to cor-
rectly once. After all sets had been presented, the sequence
was started anew until time ran out. Algorithm 2 is an im-
plementation of the spacing method proposed by Pavlik and
Anderson (2005), which will be discussed below. Algo-
rithm 3 and 4 are adaptations of the original Pavlik and
Anderson algorithm in that the model that is used to deter-
mine the optimal sequence is dynamically adapted on the
basis of the observed performance of the student while tak-
ing the testing effect in account. Before turning to these
algorithms, we will first discuss Pavlik and Anderson’s
spacing model and how this model can be applied to provide
an optimal learning sequence.
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Pavlik & Anderson’s Spacing Model

The spacing model proposed by Pavlik and Anderson (2005,
referred to as the PA model) is based on the work of Ander-
son and Schooler (1991). Anderson and Schooler demon-
strated that the “availability of human memories for specific
items shows reliable relationships to frequency, recency, and
pattern of prior exposures to the item” (Anderson &
Schooler, 1991, p.396). Eventually, the following formula
was proposed to express the availability (or activation) 4 of
a certain item 7 at a certain time (¢) as a function of prior

encounters:

Aty =D (=t
j=1

According to this equation, which has become central to
all memory related models created in the ACT-R cognitive
architecture (Anderson, 2007), all previous encounters
(t1..tn) of the item i contribute to its current activation. How-
ever, the older an encounter (¢ represents the time of en-
counter j), the smaller the contribution of that encounter to
the total activation. The speed of this decline is expressed by
-d;, the decay parameter. Although initially -d; was assumed
to be variable for different encounters j (Anderson and
Schooler, 1991, provided an equation to account for some
spacing effects but downplayed its importance by noting
that “its exact form is a bit arbitrary”, p.407), it quickly be-
came a parameter that was treated as a constant (d=.5) as
different values for different encounters did not add much
explanatory power for most tasks to which this equation was
applied. However, in contrast to the original work of Ander-
son and Schooler, in none of these later tasks was spacing a
factor of importance. To account for a broader range of
spacing phenomena, the PA model reintroduced individual
decay values for individual items.

Pavlik and Anderson proposed to relate the decay values
for the individual encounters to the activation of that par-
ticular item at the time of the encounter (c.f., Rescorla-
Wagner’s, 1972, model of learning). As recently presented
items have a high activation, the second encounter of an
item presented twice in quick succession will be associated
with a high decay value. Therefore, the long-term influence
of this item will be small as its activation will decay quickly.
On the other hand, an encounter of an item of which the last
presentation was longer ago (and therefore has a lower acti-
vation) will receive a lower decay value, resulting in more
long term impact on the activation of that item. The pro-
posed equation calculates the decay, d, for encounter j of
item i by calculating the activation of that item (4,) at the
time of encounter .

dj; = cetit) 4o

In this equation, alpha represents the decay intercept. This
intercept is the minimum decay for an encounter that will
also be used as decay value for the first encounter. The de-
cay scale parameter ¢ determines the relative contribution of
the activation dependent component. Pavlik and Anderson
(2003, 2005, 2008, Pavlik, 2007) have shown in a series of
studies that these equations account for a wide range of
spacing-related learning phenomena.
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In the PA model the activation of a fact determines both
the probability of recall of that fact and the latency associ-
ated with recalling that fact. For the probability of recall, the
activation of the fact is compared to the retrieval threshold
while taking into account the noise that is associated with
declarative memory. If the activation of a fact is higher than
the retrieval threshold, that fact can be recalled. However, if
the fact is below the retrieval threshold, it is unavailable for
further processing. Apart from the probability of recall, the
activation also determines the latency of a retrieval at each
point in time (t) according to the following formula:

Li(t) = Fe~*® 4 fixed time

In this equation, F is a scaling factor and “fixed time”
refers to the time cost of all non-fact-retrieval processes
required in giving the answer.

Applying the Spacing Model

In Pavlik and Anderson (2008), the spacing model is used to
actively determine the optimal sequence for learning a list of
Japanese-English word-pairs. In this paper, Pavlik and An-
derson do not explicitly discuss the testing effect (although
it is partly accounted for), but instead focus on presenting a
sequence of items that have the highest activation gain per
second of practice. Thus, the positive effects of increased
spacing intervals on the probability of recall are balanced
against the negative effects that increased intervals have on
accuracy of immediate recalls. This results in a series of
complex formulae to determine the learning gains of test-
trials and study-trials.

An alternative and simpler approach is to determine the
optimal sequence on the basis of the activation of the word-
pairs in relation to the retrieval threshold. That is, if we as-
sume on the basis of the combination of spacing and testing-
effects that the time between two encounters is optimal jus¢
before the activation of the fact drops below the retrieval
threshold, an optimal sequence can be determined on the
basis of the activation of all facts.

Algorithm 2: Default PA

On the basis of the approach discussed above, the default
PA model (i.e., pre-2008) can be used to determine the op-
timal spacing sequence: as soon as a fact is about to fall

below the retrieval threshold, it has to be presented again. If
no previously presented fact is close to the threshold, a new
fact can be introduced. More precisely, as it could be that a
fact drops below the retrieval threshold while another fact is
being tested, the algorithm computes the activation of all
facts 15 seconds ahead to determine whether to introduce a
new fact or present a previous one. If all facts have been

introduced, the fact with the lowest activation is selected for
presentation. The performance of this algorithm is highly
dependent on the accuracy of the internal activation repre-
sentations, which are in turn dependent on the choice of

parameter values. Although the PA model has been tested
extensively, no fixed set of parameter settings have emerged
yet. The values for the decay scale (c) range (Pavlik & An-
derson, 2005, 2008) from 0.143 to 0.495, and for the decay
intercept (alpha) from 0.058 to 0.300. The threshold pa-
rameter is typically set at -0.704. As these parameters have
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been fit to experiments with longer study session than used
in the current experiment, we explored the effects of differ-
ent settings on the resulting sequences. As a threshold that is
too low results in extended spacing (e.g., in our explora-
tions, sometimes all word-pairs were presented before the
first word-pair was repeated), we decided to raise the re-
trieval threshold to -0.500. Following similar reasoning, the
decay intercept and the decay scale were set at .25. With
respect to the latency equation, we decided against separate
estimations for F and the “fixed time”. In Pavlik and Ander-
son (2008), F is set at a value larger than 1 (1.29) indicating
an enhanced effect of 4; on the latency. At the same time,
using a “fixed time” diminishes the effect of 4; on the la-
tency. Therefore, we set F'to 1, and the “fixed time” to 0.

Using the default PA algorithm, we can create an optimal
schedule. However, this schedule will be similar for all par-
ticipants: if the first word-pair is repeated after 5 trials be-
cause it will drop below the retrieval threshold within 15
seconds, this holds for all participants. Obviously, this does
not match real performance profiles: some participants will
have a higher overall performance level than other partici-
pants, but it might also be that some words are recalled bet-
ter by some participants, but a different set of words is re-
called better by other participants. However, each time an
item is presented the learner provides us with additional
behavioral data, which we can use to dynamically adapt the
model to the individual learner. This approach can be de-
scribed as subsymbolic model tracing.

Subsymbolic Model Tracing

In the traditional model tracing account (Anderson, Boyle,
Corbett, & Lewis, 1990), the behavior of a student is
matched against all knowledge available in a tutoring sys-
tem. For example, if a student has shown accurate perform-
ance in a number of subtraction problems in which carrying
is required, the knowledge in the tutoring system that repre-
sents carrying is marked as mastered. Thus, the tutoring
system keeps a representation of all knowledge the student
has mastered by updating the internal representation each
time new behavioral information becomes available. The
behavior that the learner displays can similarly be used to
update the subsymbolic activation of facts (Jastrzembski,
Gluck, & Gunzelmann, 2006).

Given that each time a student has to answer a test trial
both accuracy and latency information becomes available,
we can, in principle, use this information to determine what
the current activation of the retrieved chunk is. If we know
the latency and therefore the activation at the time of en-
counter j, and we also know the latency/activation at the
time of encounter j-/, we can calculate what the decay for
encounter j-/ should have been. By this rationale, we can
minimize the difference between the predicted activation
and the observed latency and use the behavioral data of the
student to update our model that represents the state of the
student.

However, given the general assumption that the retrieval
process is inherently noisy, using this direct relation might
be problematic when the response is fast. That is, when ¢ -
t.1 1s relatively long and the latency for ¢ is short because of
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a temporal boost in activation due to noise, the calculated
decay for #.; will be very low (or even negative). As a very
low decay results in facts that are predicted to be highly
active over a very long period of time, this temporal noise-
boost will ruin the scheduling of the fact. Therefore, we
have chosen not to use the outcome of the algorithm de-
scribed here directly, but instead change the dj.; with a fixed,
small amount in the direction indicated by the mismatch
between predicted activation and observed latency (c.f., hill-
climbing optimization algorithms).

Algorithm 3: Threshold-based Adaptation

Given the issues related to the noisy observations, using the
more fine-grained subsymbolic model tracing method de-
scribed above might result in overfitting. To minimize the
chances of overfitting, a coarser algorithm might prove
beneficial. Therefore, Algorithm 3 adapts the PA model by
only modifying the decay parameter for a certain encounter
when at test the word-pair cannot be correctly recalled (c.f.,
Pavlik & Anderson, 2008). As the system always presents
word-pairs of which the estimated activation is above the
retrieval threshold, a failure to recall indicates that the esti-
mated activation was too high. Thus, the decay for that par-
ticular item should be higher, which is reflected in increas-
ing the alpha parameter with 0.01.

Algorithm 4: Latency-based Adaptation

The threshold-based adaption algorithm focusses on maxi-
mizing the testing-effect. Each time a fact cannot be re-
called, its decay is increased, ensuring that it will be pre-
sented with shortened spacing in subsequent trials. Although
this will result in better testing effects because of shorter
spacing for facts that could not be recalled, this algorithm
does not adapt itself to the inverse situation when facts are
better learned than expected. That is, where a failure to re-
trieve is a marker of lower than expected activation, a faster
response than expected is a marker of a higher than ex-
pected activation. This idea is captured in the latency-based
adaptation of Algorithm 4 which extends the threshold-
based adaptation algorithm by comparing the expected la-
tency with the observed latency. To prevent overfitting, the
decay intercept is only changed if the difference between
expected and observed latency is more than 0.5 seconds.
Instead of a constant modifier, the decay intercept is
changed according to:

observed — expected
Aa = max(0.01, 1000 )

where observed and expected are the latencies expressed in
seconds.

Experiment

Four classes of approximately 15-year old pre-university
level pupils were asked to memorize Dutch translations of
20 French words. Each word pair was presented first in a
study trial in which both the French and the Dutch word
were presented. During a test trial, only the French word
was presented, and the participant had to type the Dutch
translation. After the initial presentation, the next trial was

111

scheduled on the basis of one of the four algorithms dis-
cussed above.

Procedure Study trials were presented for 5 seconds. After
each initial study trial, a test trial of the same word-pair was
presented. During a test trial, only the French word was pre-
sented and students had 15 seconds to reply by typing in the
correct Dutch translation. After pressing Enter, students
were presented with a 2-second feedback screen stating
“Correct”, “Incorrect” or “Almost correct” (which was
given if the Levenshtein-distance to the correct answer was
smaller than 3). If the participant did not respond in time, or
an incorrect answer was given, the study trial was presented
to refresh the participant’s memory. The four algorithms
determined which word pair to present next. The learning
session lasted 15 minutes, irrespective of the number of tri-
als or words presented. After the learning session on Day 1,
all words were tested by means of a traditional paper-and-
pencil test on Day 2. The post-test was graded on a scale
from 0 to 10. Each incorrect response deducted .5 point
from the maximum score of 10. Participants were naive with
respect to the experimental manipulation and did not know
that they would be tested on Day 2.

On Day 1, participants were tested in groups in a class-
room equipped for computer-supported education. Each
participant operated his or her own computer. The paper-
and-pencil test on Day 2 was conducted during normal
class-hours.

Materials A list of 20 words was compiled for each class
separately. All words were selected from a textbook chapter
that would not be discussed until one week after the experi-
ment.

Participants Ninety-one pre-university-education level stu-
dents (all students of four 3rd year HAVO/VWO classes) of
approximately 15 years of age participated, of which 85
took part in both tests. Participants were semi-randomly

distributed over conditions to ensure that in each class an
equal number of participants used each algorithm. All par-
ticipants were instructed that their results would be stored
anonymously and that the results would not be communi-
cated to their school or teachers on an individual level.

Results

Of the 85 students who took part in both sessions, six stu-
dents were removed from further analyses because they did
not respond in more than 5% of all trials and gave a number
of answers that did not fit the instructions (e.g., “I’m bored”,
or names of rock bands). Four participants were removed
because their performance in terms of correct responses
during the learning session deviated more than 2 standard
deviations from the average of their group. One participant
was removed because of scores on the final test that devi-
ated more than 2 standard deviations from the average score
for his or her group. This leaves 74 participants, 18 in the
flashcard condition, and 19 participants in each of the three
spacing conditions.
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Figure 1: Average grades on French
per algorithm condition

Algorithm
Figure 2: Raw scores on post-test per
algorithm condition

3 4 1 2 3 4
Algorithm

Figure 3: Post-test scores adjusted for
covariates mentioned in text

All errorbars depict standard errors.

Covariates As we tested participants in a domain in which
they have a significant amount of prior knowledge, it is im-
portant to control for potential differences in prior knowl-
edge between groups. Hereto, we analyzed the students’
school grades for French (graded on a theoretically linear
scale from 0 to 10, with a 6 representing the grade required
to pass that class), see Figure 1 (F(3,73)= 1.27, p=0.29).
Although this effect is far from significant, the value of the
F-statistic is larger than we hoped for. Therefore, we de-
cided to include the grades for French as covariate in all
subsequent analyses.

Given that we limited the amount of time to learn 20
word-pairs and the algorithm determined when a new word
pair was introduced, not all participants might have seen all
20 word pairs in the non-flashcard conditions (algorithm 2
to 4). This did indeed turn out to be the case in all three
conditions. The average number of word pairs presented to
the participants was 19.5, 19.6 and 19.8 for the default PA,
the threshold-based and the latency based conditions respec-
tively. Although these differences (when compared to the 20
words seen by the students in the flashcard condition) fail to
reach significance (ANOVA F(3,69)=2.6, p=0.057, post-hoc
pairwise t-tests with pooled standard deviations: flashcard
vs default PA algorithm, p=0.08, all other comparisons p >
.1), this does give the flashcard-based condition an advan-
tage when comparing scores on the post-test, as some par-
ticipants in the other conditions will
not have seen all word pairs. There-

Analyzing the data presented in Figure 3 shows that the
algorithm has a significant effect on the post-test scores
(F(3,70)=4.19, p=0.009). Testing the individual effects by
conducting pairwise comparisons using t-tests with pooled
standard deviation and Benjamini and Hochberg’s (1995) p-
value adjustment method showed that students in the
latency-adaptation group, Algorithm 4, score significantly
higher than students in the flashcard (p=0.032) or in the PA
model (p=0.010) group. None of the other comparisons
reached significance (p>0.100).

Adaptions The observed differences between the more
static PA model (Algorithm 2) and the latency adaptation
condition (Algorithm 4) suggests that the adaptations re-
sulted in different decay patterns for different participants.
Figure 4 shows the average estimation of the alpha parame-
ter associated with the last encounter per word-pair. As can
be seen, different participants required different alphas,
with, for example, participant 1 and 4 requiring relative low
decay values and participant 13 requiring a very high decay
value. If these three participants would have been set at the
average alpha (0.259), the estimated activation for partici-
pant 13 would be too high, resulting in many retrieval fail-
ures - and violating the testing-effect constraints. At the
same time, participants 1 and 4 would have had a too low
estimated activation, resulting in a sequence with too low
spacing, violating the spacing-effect
constraints.

fore, we also included the number
of words seen by the student as co-
variate in subsequent analyses.

To account for possible effects
associated with the session in which
the study was run or peculiarities of
a particular class, another factorial
covariate was included representing

group.

0.27

Estimated a

f
i

Discussion

The current study set out to answer two
questions. The first was to test whether
the results obtained in the scientific lit-
erature on the spacing effect would also
hold in the more real-life case of learn-
ing a small set of vocabulary items in a
small period of time. The second ques-
- tion was to examine whether the learn-

Post-test Scores Figure 2 shows the 0.25 7 . ; .

raw scores on the post-test, and ing gain would improve when the algo-
. ’ LI I I O O B O rithms that construct the learning se-

Figure 3 shows the scores on the 12345678 9101112131415161718 &

post-test adjusted by the covariates
French grade, group and number of
words seen.

Participant
Figure 4: Effects of adaption per participant

quence take individual differences into
account. With respect to the first goal,
the significant difference between the
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flashcard and the latency adaption conditions illustrates that
a learning sequence that is based on an algorithm that takes
spacing and testing-effects into account outperforms a more
traditional flashcard sequence. However, only the condition
that optimizes the sequence on the basis of individual la-
tency differences significantly outperforms the flashcard
condition, answering the second question.

It is striking to see that the default (pre-2008) PA spacing
condition scores - in absolute terms - worse than the flash-
card condition. This result for the default PA spacing condi-
tion might be caused by the parameter settings chosen for
this study: alternative parameter settings might improve the
PA model. However, it is difficult to come up with the pa-
rameter settings required. The first candidate for change
would be the retrieval threshold, as in most PA studies the
threshold is set at -0.704 instead of -0.5. However, decreas-
ing the threshold would increase the spacing between two
presentations of the same item. This will probably have a
negative effect on the data as the sole difference between the
default PA algorithm (2) and the threshold adaptation algo-
rithm (3) is decreased spacing and algorithm 3 fares consid-
erably better than the PA algorithm. With respect to changes
in the parameters involved in calculating dj;, it is most likely
that these changes would benefit the other algorithms as
well. Thus, although changes in the parameter settings
might diminish the gap between the different spacing algo-
rithms, it is hard to imagine how the default PA model
would outperform the alternative algorithms proposed here.

With respect to Algorithm 3 and 4, although the differ-
ences in performance are not significant, the performance
profiles favor the latency-based Algorithm 4 over the
accuracy-based Algorithm 3. This suggests that Pavlik and
Anderson’s 2008 implementation might be further refined
by incorporating the information that can be deduced from
the latencies (c.f., Pavlik, Presson, & Koedinger, 2007).

Finally, it is interesting to note that Pavlik and Anderson
(2008, p.102) discuss a very similar approach they call “per-
formance tracking” and mention that this method will “add
considerable power”. Nevertheless, they conclude that this
approach will make scheduling much more complex.

In this study we have shown that performance tracking is
possible, but also that adapting the sequence to the charac-
teristics of individual learners improves learning gains con-
siderably, even if the learning session takes only 15 minutes.
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Abstract

As cognitive architectures become ever more ambitious in the
range of phenomena they are to assist in producing and
modeling, there is increasing pressure for diversity in the
mechanisms they embody. Yet uniformity remains critical for
both elegance and extensibility. Here, the search for
uniformity is continued, but shifted downwards in the
cognitive hierarchy to the implementation level. Factor
graphs are explored as a promising core, with initial steps
towards a reimplementation of Soar. The ultimate aim is a
uniform implementation level for cognitive architectures
affording both heightened elegance and expanded coverage.

Keywords: Cognitive architecture; implementation level;
factor graphs; graphical models; production match; Soar

From Architecture to Implementation

A cognitive architecture is a hypothesis about the fixed
structures underlying thought in active intelligent beings,
whether natural or artificial. It consists of a set of
interacting mechanisms that can combine with appropriate
knowledge to model human intelligent behavior and/or
generate artificial intelligent behavior. In the large, a
cognitive architecture is a theory about one or more systems
levels comprising an intelligent being. Newell (1990)
discussed a hierarchy of levels (organelles, neurons, neural
circuits, deliberate acts, operations, etc.) across four bands
of human action: biological, cognitive, rational, and social.
At each level, a combination of structures and processes
implements the basic elements at the next higher level.

One controversial attribute of systems levels in cognitive
architecture is their girth; i.e., their uniformity versus
diversity.  Diversity always exists across levels, but
individual levels may consist of anything from a small
number of very general elements to a wide diversity of more
specialized ones. Uniformity appeals to simplicity and
elegance. In caricature, it is the physicist’s approach, where
a broad diversity of phenomena emerges from interactions
among a small set of general elements. Diversity appeals to
specialization and optimization. It is the biologist’s
approach, in which many specialized structures, each locally
optimized, jointly yield a robust and coherent whole.

Across a hierarchy of levels, there is no a priori reason to
assume they are all of comparable girth. While physicists
and biologists may expect uniformity within their fields, the
networking community trumpets the Internet hourglass to
explain their protocol stack (Deering, 1998). At the
narrowed waist is the Internet Protocol (IP). Above is an
increasingly diverse sequence of levels enabling “everything
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on IP”. Below is an increasingly diverse sequence of levels
enabling “IP on everything”. The hourglass yields a
diversity of applications and implementations that are united
via a core of mesoscale uniformity. Domingos’s (In press)
recent call for an interface layer in Al is an appeal for a
similar sort of mesoscale uniformity in Al

Intelligence clearly entails diversity in the cognitive
hierarchy across levels, but what about within levels? At the
top, the extraordinary range of possible behaviors and
applications is one of the core phenomena cognitive
architectures are developed to explain. At the bottom, the
mind is grounded in the diverse biology of the brain and, at
least according to strong AI, could also be grounded in a
diversity of alternative technologies (with adjustments in
Newell’s lower levels for grounding in such technologies).
But is there an hourglass or a rectangle in between?

The question of the existence of a cognitive hourglass has
traditionally been cast in terms of whether the cognitive
architecture is uniform. Among architectures for cognitive
modeling, Soar (Rosenbloom, Laird & Newell, 1993) has
been a standard exemplar of uniformity and ACT-R
(Anderson, 1993) of diversity. Recently, based on both
functional and modeling considerations, Soar 9 (Laird,
2008) has shifted strongly towards diversity, and is helping
to tip the community balance in this direction.

As a scientist, one can respond to a demonstrated need for
diversity by simply accepting it, or by hypothesizing an
underlying uniformity and simplicity that explains it.
Anderson, for example, developed a background theory of
cognitive rationality to justify ACT-R’s mechanisms as
optimal adaptations to the environment (Anderson, 1990).
The theory’s uniformity is not in the architecture itself, but
does yield a simple, well-motivated explanation for it. Yet
something significant is lost when the uniformity is not in
the cognitive hierarchy, as diversity negatively impacts both
the elegance of the resulting system and the ease with which
new capabilities can be integrated into a unified whole.
Historically, diverse architectures have been tough to unify.
To the extent such a system remains disunified, it is more of
a toolkit or language than a hypothesis about the fixed
structures of thought (i.e., an architecture).

Another alternative is not simply to accept diversity, or
try to justify it, but to continue a search for uniformity — the
narrow waist of the hourglass — elsewhere in the cognitive
hierarchy. This is an application of the wuniformity-first
research strategy (a variant of Ockham’s razor): begin by
assuming uniformity and accept diversity only upon
overwhelming evidence. To the extent uniformity is
possible, it yields elegance and facilitates unification and
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extension. Beginning instead with diversity removes the
pressure to search for hidden commonality, and may lead
down an irrevocable path of complexity.

The history of Soar well illustrates the uniformity-first
strategy (Laird & Rosenbloom, 1996). For years it had a
single procedural, rule-based, long-term memory and a
single learning mechanism (Laird, Rosenbloom & Newell,
1986), while investigations continued into their ability to
support a diversity of memory (e.g., procedural, semantic,
and episodic (Rosenbloom, Newell & Laird, 1991)) and
learning  (e.g., skill and knowledge acquisition,
generalization and transfer, and learning from observation
(Rosenbloom, 2006)) behaviors. A wide range of such
behaviors proved feasible, but they never could be fully
unified with the rest of the system to yield pervasive utility
across all activity. This evidence against the existing
uniformity, amassed over years of experimentation, inspired
the development of Soar 9, a diverse architecture that adds
new long-term memories (semantic and episodic) and
learning mechanisms (semantic, episodic and
reinforcement), while also incorporating other new
capabilities (emotion and imagery) (Laird, 2008).

Uniformity-first, however, entails that acknowledging a
need for diversity at the architecture level should be
accompanied by a continued search for uniformity at other
levels. In this article, the particular focus is on burrowing
beneath the diversity at the architecture level to look for
uniformity at the implementation level just below. The goal
is still an hourglass, albeit one with a lower waistline.

The implementation of cognitive architectures, while
critical for efficiency and usability, is usually extra-theoretic
and not part of the architectural hypothesis. Characteristic
examples include the COGENT (Cooper & Fox, 1998) and
Storm  (Pearson, Gorski, Lewis & Laird, 2007)
environments for cognitive modeling/architectures, both of
which are coarse-grained, graphical tools intended to assist
the developer rather than theoretical hypotheses about the
implementation level. The primary exception is systems
like SAL (Jilk, Lebiere, O’Reilly & Anderson, 2008) or
Neuro-Soar (Cho, Dolan & Rosenbloom, 1991), where a
cognitive architecture is implemented via neural networks.
Neural approaches remain interesting possibilities for the
implementation level, but the focus here is on the related but
more general class of graphical models (Jordan, 2004).

Graphical models share the core graphical/network nature
of neural networks and graphical modeling environments,
but focus on representing independence across variables in
complex functions such as joint probability distributions and
communication codes. They include Bayesian networks
(Pearl, 1988) and Markov networks, with origins in
probabilistic reasoning. But they also include factor graphs
(Kschischang, Frey & Loeliger, 2001), which take a broader
multivariate-function view. Interestingly, a variety of neural
network algorithms — such as supervised Boltzmann
machines, radial basis functions, and unsupervised learning
algorithms — can be mapped onto graphical models (Jordan
& Sejnowski, 2001). A core premise of this article is that
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graphical models provide untapped potential for cognitive
architectures. They may also ultimately forge a principled
bridge between neural and symbolic architectures.

The work in this article is based on factor graphs.
Although originating in coding theory, where they underlie
the “astonishing performance” of turbo codes, factor graphs
are particularly promising for cognitive architecture because
of the diversity of important problems and algorithms they
subsume in a uniform manner when combined with their
canonical sum-product algorithm.  Factor graphs are
relevant for signal processing, where they are useful in
vision (Drost & Singer, 2003) and subsume Kalman filters,
the Viterbi algorithm, and the forward-backward algorithm
in hidden Markov models; probabilistic processing, where
they subsume belief propagation in Bayesian and Markov
networks; and symbol processing, where they yield arc
consistency for constraint problems (Dechter & Mateescu,
2003). There is also significant work on mixed approaches
combining symbolic and probabilistic processing, hybrid
approaches combining discrete and continuous processing,
and hybrid mixed approaches (Gogate & Dechter, 2005).

Factor graphs raise the possibility of a uniform
implementation level that elegantly explains the diversity
seen in existing cognitive architectures while going beyond
them to yield an effective and uniform basis for: unifying
cognition with perception and motor control, breaking down
the barriers between central and peripheral processing by
bringing the latter within the cognitive inner loop and
making each potentially penetrable by the other; fusing
symbolic and probabilistic reasoning to provide general
reasoning under uncertainty; and providing a conceptual
bridge from symbolic to neural architectures, by mapping
them onto a common intermediary. They provide a
tantalizing combination that is particularly appropriate at the
implementation level of: (1) generality, in the range of
capabilities they can uniformly support in a state-of-the-art
manner; and (2) constraint, in the ways that these
capabilities can reasonably be supported.

The remainder of this article introduces factor graphs,
begins exploring their utility for cognitive architectures via
a first step towards a graphical reimplementation of Soar,
and summarizes the path forward from here. The focus is
not on a specific cognitive model, but on the possibility of a
radically new generation of integrated cognitive models.

Factor Graphs

Factor graphs provide a form of divide and conquer with
nearly decomposable components for reducing the
combinatorics that arise with functions of multiple
variables. The function could be a joint probability
distribution over a set of random variables; e.g.,
P(V,W,X,Y,Z), which yields the probability of
V=vAW=waX=xAY=yAnZ=z for every value v, w, x, y and z in
the variables’ domains. Or the function could represent a
constraint satisfaction problem, C(4,B,C,D), over a set of
variables, yielding 1 if a combination of values satisfies the
constraints and 0 otherwise. Or the function could represent
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a discrete-time linear dynamical system, as might typically
be solved via a Kalman filter. The problem formulation
here would involve a trellis structure, where the graph for
one time step is repeated for each, with four variables per
time step — State, Input, Output and Noise (Kschischang,
Frey & Loeliger, 2001) — K(Sy,Z9,00,Ny, ..., Sp11,0,,Ny).

The prototypical factor graph operation is the
computation of marginals on variables. For a joint
probability distribution, this is simply the marginal of a
random variable, computed by summing out the other
variables: P(Y) = 2,,,.,P(v,w,x,Y,z). The key to tractability
is avoiding the explicit examination of every element of the
cross product of the variables’ domains. For probabilities,
the joint distribution is decomposed into a product of
conditional (and prior) probabilities over subsets of
variables: P(V,W.X,Y,Z) = P(V)P(W)P(X|V,W)P(Y|X)P(ZX).
Such decompositions derive from the chain rule plus
conditional independence assumptions. Using commutative
and distributive laws then enables more efficient marginal
computation: P(Y) = Z,P(Y|x)Z,P(z|x)Z,P(v)Z, P(x|v,w)P(w).
This provides

Ve
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variable node. A message from a variable node to a factor
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node is the pointwise product of the messages into the
variable from all of its neighbors except the target node. A
message from a factor node to a variable node starts with
this same product but also includes the factor node’s own
function in the product, with all variables other than the
target variable then being summed out to form the outgoing
message. A key optimization here, as in Bayesian networks,
is to use the commutative and distributive laws to
redistribute multiplicative factors outside of summations.

For tree-structured graphs in which only a single marginal
is desired, the factor graph can be reduced to an expression
tree in which the products and sums are computed
unidirectionally upwards in the tree. Beyond this simplest
case, the algorithm works iteratively by sending output
messages from nodes as they receive input messages. For
polytrees, which have at most one undirected path between
any two nodes, this iterative algorithm always terminates
and yields the correct answer. For arbitrary graphs with
loops, neither correct answers nor termination are
guaranteed. However, it does often work quite well in
practice, as has been most strikingly evident for turbo codes.

The sum-product algorithm uses two specific arithmetic
operations: sum and product. However, the same generic
algorithm works for any pair of operations forming a
commutative semi-ring, where: both operations are
associative and commutative and have identity elements;
and the distributive law exists. Max-product, for example,
is key to computing maximum a posteriori (MAP)
probabilities. OR-AND also works, as do other pairs.

To improve the efficiency of the algorithm, various
optimizations can be applied, and alternative algorithms can
be used (such as survey propagation (Mézard, Parisi &
Zecchina, 2002) and Monte Carlo sampling (Bonawitz,
2008)). A connection exists between factor graphs and
statistical mechanics, revealing that the sum-product
algorithm minimizes the Bethe free energy, and yielding
algorithmic innovations (Yedidia, Freeman & Weiss, 2005).

Factor Graphs for Cognitive Architecture

The key question for us is whether factor graphs can yield a
uniform level for implementing, understanding and
exploring cognitive architecture, while ultimately yielding
novel architectures that are more uniform, unified, and
functional. Existing work on hybrid mixed methods is
encouraging, as is work on general languages for mixed
probabilistic  and  logical reasoning. FACTORIE
(McCallum, Rohanemanesh, Wick, Schultz & Singh, 2008),
for example, combines factor graphs with an imperative
programming language to support relations and other
capabilities, while BLOG (Milch, Marthi, Russell, Sontag,
Ong & Kolobov, 2007) and Alchemy (Domingos, Kok,
Poon, Richardson & Singla, 2006) combine probability and
logic via Bayesian and Markov networks, respectively.

The particular approach advanced here is to: (1) re-
implement existing architectures to help understand factor
graphs, existing architectures, and the implications of
implementing architectures via factor graphs; (2) go beyond
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existing architectures by hybridization and simplification,
both within and across architectures; and (3) integrate in
new capabilities that don’t mesh well with existing
architectures, such as perception and motor control.

The initial focus is on Soar because of familiarity with it,
its history in cognitive modeling, and its dual status as both
a uniform (early) and a diverse (latest) architecture. We can
make a quick start on reimplementing the uniform core, and
build towards a more uniform integration of later diversity.

The inmost core of “uniform Soar” is the reactive layer,
where working memory (WM) is elaborated via associative
retrieval of relevant information from a parallel production
system. During a single elaboration cycle, match computes
all legal production instantiations, which then fire in parallel
to modify WM. Match is the core of the elaboration cycle,
so it is the natural focus for initial reimplementation efforts.

In Soar, match is based on Rete (Forgy, 1982), comprising
a discrimination network for sorting working memory
elements (wmes) to production conditions, a join network to
determine which combinations of wmes yield production
instantiations (while attending to across-condition variable
equality), and support for both incremental match across
cycles and shared match across productions.  Most
individual productions match efficiently, although worst-
case match cost is exponential in the number of conditions.

A factor graph implementation of Rete has been designed,
where factor nodes handle discriminations and joins,
variable nodes represent wmes that match production
conditions and their combinations — analogous to Rete’s o
and B memories — and unidirectional message passing over
an expression tree enables
incremental and shared match.
But, rather than imposing Rete
on factor graphs, the primary

P1: Inherit Color
Cl1: (<v0> "type <v1>)
C2: (<v1> “color <v2>)

focus here has been on -5

algorithms that arise more Al: (<v0> Acolor <v2>)
naturally from viewing

production match as a

.. . Figure 3. Example rule
multivariate function. £ P

Consider the rule in Figure 3. This is not exactly Soar’s
representation, although it does retain its object-attribute-
value scheme, with conditions testing wmes via constants
and variables (in angle brackets). The simplest mapping of
this production to a factor graph views it as a Boolean
function of the three production variables — Py(vy,v;,v2) —
which, for each combination of variable values, yields 0 or 1
depending on
whether the
combination defines
a legal instantiation.
The  production’s
conditions then
specify how the
function is to factor:
Pi(vo,v1,v2)
Co(vo,v)Ca(v1,v2)
(Figure 4).
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This mapping has been implemented. In it, WM is a 3D
Boolean array — objects X attributes X values — with 1s for
every wme in WM and Os elsewhere; and messages are
Boolean vectors with 1s for valid bindings of the link’s
variable and Os elsewhere. In essence, productions define
graphs while WM defines distributions over graph variables.

This initial approach showed the feasibility of
implementing match via factor graphs, but it also raised
three issues: (1) both WM and tests of constants were
hidden within the condition factors; (2) production match
ignored conditions without variables; and (3) it led to errors
from binding confusion (Tambe & Rosenbloom, 1994).
Solutions for these issues have been implemented, but as the
first one didn’t affect correctness — only how much factor
graphs were leveraged — and the second couldn’t actually
occur in Soar because all of its conditions must be linked
via variables, only the third issue is discussed here.

Binding confusion arose because the graph independently
tracked the legal bindings of each variable — called
instantiationless match in (Tambe & Rosenbloom, 1994) —
rather than maintaining Rete’s explicit combinations of
condition instantiations. Suppose (A “type B), (C “type D),
(B ~color Red) and (D “color Blue) are in working memory.
The match bound vpto A & C, v; to B & D, and v, to Red &
Blue, but it couldn’t, for example, distinguish which color
(v,) to associate with object A (vy), despite the fact that a
correct match would mandate Red rather than Blue.

This problem is a direct consequence of the interaction
between two types of constraint imposed by factor graphs:
(1) the locality of processing in the network; and (2) the
limitation on message content to the values of one variable.
Approaches to binding confusion must either work around
these constraints to yield correct combinations or redefine
match to live within them. Correct combinations can be
yielded, for example, by post-extraction (Dechter & Pearl,
1987) or by implementing Rete. If instead match is to be
redefined to be what is produced, we must then determine
how to write rules that yield the desired overall behavior
given the new semantics. This approach could also be
further refined by replacing Boolean array values with
apportioned fractional values for ambiguous bindings.

The most promising approach at this point modestly
redefines the semantics of match to produce the needed
combinations of bindings for action variables, while still
avoiding the need for Rete’s full instantiations. In the
process, it eliminates binding confusion, alters the worst-
case match cost for a production to exponential in its
treewidth, and further reduces costs and potential confusion
by eliminating redundant instantiations that would otherwise
generate equivalent results (when some condition-variable
bindings differ while action-variable bindings do not).

This approach enables local processing of variable
combinations by using variable nodes in the graph that
represent combinations of production variables rather than
individual ones. To start, an ordering is imposed on the
production’s conditions and actions to yield a sequence of
factor nodes. A variable node is then added between each
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successive pair of factor nodes. To finish, the first and last
condition/action that uses each production variable is
determined, and that variable is added to each variable node
between these two factor nodes (Figure 5). The approach is
based on stretching in factor graphs, which itself maps onto
junction trees (Kschischang, Frey & Loeliger, 2001). Its
implementation eliminates binding confusion by tracking
combinations of variable bindings just as they are needed.
Since  each

variable node in Vos Vo2

the graph may [(®—1—@& ]

now represent C] C2 Al

multiple

production P VoV, V) = Cy(Vo V)G (VL V)ALV, V)
iables, multi- ) )

Z?rrriaelns?(s)n:llu ' Figure 5. Modified rule graph

arrays result that can be expensive to process without further
optimization. The most critical optimization here is factor
rearrangement. Without it, the full factor graph for the rule
in Figure 3 — comprising 8 factor nodes and 8 variable
nodes when all three problem solutions are included plus the
goal memory to be described later — exhausts heap space
before match completes (in LispWorks PE). With factor
rearrangement, match takes only 1.7 sec.

A second critical optimization leverages the uniformity of
WM and message arrays (which are almost all Os or 1s) via
an N-dimensional generalization of region quad/octrees (a
la CPT-trees in Bayesian networks (Boutilier, Friedman,
Goldszmidt & Koller, 1996)). If an array is uniform, it
becomes a single-valued unit. Otherwise, each dimension is
bisected — yielding 2" sub-arrays — and the process recurs.
The sum and product algorithms are trickier here, but have
been worked out. With this optimization, match time is
reduced by a further factor of ~7 (from 1.7 to .25 sec.). It
also enables comparing match cost without rearrangement,
yielding a factor of ~500 (132 vs. .25 sec.).

One interesting implication of representing WM via trees
is a view of it as a piece-wise constant function. If this
proves extensible to piece-wise linear functions, it may be
effective for variables with continuous domains and ranges
(as used in mixed and hybrid systems). It may also be
possible to employ more intelligent partitioning algorithms
for WM, including adaptive clustering methods.

Conclusion and Next Steps

Despite the increasing trend towards diversity in cognitive
architectures, uniformity at the implementation level may
yet provide leverage in exploring, understanding and
improving existing architectures; and in developing novel
architectures with increased elegance and broader coverage.
Factor graphs, and graphical models more generally, are
intriguing for this level because they yield a wide diversity
of capabilities in a uniform and constrained manner.

An initial step has been taken towards reimplementing
Soar by factor graphs, with the demonstration of the latter’s
ability to implement (symbolic) production match via an
interesting new algorithm. The key next step is extending
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beyond match to the rest of Soar’s cognitive inner loop — the
deliberate layer (or decision cycle) — where elaboration
cycles repeat until quiescence (the elaboration phase)
followed by a decision. One approach to the elaboration
phase is to alter WM between cycles, as in standard
production systems. This has been implemented, but a more
promising alternative is to arrange the elaboration phase’s
temporal structure in space rather than time, as a trellis.
With a trellis, perceptual and motor processing may be
integrated directly into the cognitive inner loop rather than
being walled off into a separate I/O system. A trellis would
also enable bidirectional information propagation across the
elaboration phase to ensure correct graphical probability
calculations. For the process of decision making itself,
influence diagrams are a natural strategy to explore first.

Beyond reimplementing Soar’s cognitive inner loop is the
challenge of extending the loop to include a more uniform
integration of Soar 9’s semantic and episodic memories,
plus probability and signal processing. The lead candidate
for semantic memory blends Prolog’s view of facts as
condition-less rules that are triggered backwards by a goal
probe, with the statistical view of retrieving the most
probable semantic memory element given the probe
(Anderson, 1990). A goal memory — in analogy to working
memory — has been implemented to enable backwards
access to production actions; but appropriate control of
backwards vs. forward processing in the inner loop is still
needed, as is restricting retrieval to the most probable
element (based on MAP probabilities and the max-product
algorithm). For episodic memory, two approaches have
potential: (1) adding long-term trellises to the graph; and (2)
extending WM to a fourth, temporal dimension.

Adding probabilities to the inner loop is being explored
via experiments with extant mixed languages, such as
Alchemy and BLOG (Rosenbloom, 2009). Signal
processing will be investigated via trellises and piecewise-
linear quad/octrees (for representing continuous functions).

Still, this is all only the beginning. It will also be critical
to: (1) reimplement Soar’s reflective layer and learning
mechanism(s); (2) implement and integrate in other
cognitive capabilities, such as planning, emotion, social
cognition and language; (3) reexamine the implementation
of a broader range of architectures (such as ACT-R); and (4)
forge a bridge to neural architectures. Success should yield
both a uniform implementation level for architecture
development — i.e., a narrow waist for the cognitive
hourglass — and better architectures for cognitive modeling.
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Abstract

A common feature of many cognitive architectures is a central
executive control with a 50-millisecond cycle time. This
system determines which action to perform next, based on the
current context. We present the first model of this system
using spiking neurons. Given the constraints of well-
established neural time constants, a cycle time of 46.6
milliseconds emerges from our model. This assumes that the
neurotransmitter used is GABA (with GABA-A receptors),
the primary neurotransmitter for the basal ganglia, where this
cognitive module is generally believed to be located.

Keywords: cognitive cycle time; central executive; LIF
neurons; neural production system; neural engineering
framework; cognitive architectures

Introduction

ACT-R, Soar, GOMS, EPIC, and a variety of other
approaches to modelling human cognition all contain a
common assumption about the central control of cognitive
operations. This is usually regarded as a production system
where IF-THEN rules are applied sequentially. This
imposes a serial bottleneck where low-level decisions as to
which cognitive action should be performed next are made,
requiring approximately 50 milliseconds per decision
(Anderson et al., 1995).

While this 50 millisecond cognitive cycle time leads to
models that match empirical data, the neurological basis for
this time constraint has not been previously established.
This paper develops a model of low-level rule application
using realistic spiking neurons. The 50 millisecond cycle
time is then shown to be the result of well-established
neuron membrane and neurotransmitter properties. The
result is not only a realistic, neurally plausible model of a
core component for cognition, but also an explanation for
why this characteristic time appears across architectures.

The model presented here is not meant to be complete. In
particular, we do not provide a model of the developmental
process which leads to the decision making system. We
also do not currently include any learning capabilities,
although this is part of our ongoing research. Instead, our
model wuses fixed mathematically derived synaptic
connection weights, in contrast to most neural network
models. These derived weights are meant to be the final
result of a learning process, and weights derived in this
manner have been shown to be realistic and highly robust to
noise and neuron death (Eliasmith & Anderson, 2003).

Recent results have suggested that the brain area that
corresponds to the system we are modelling is the basal
ganglia (e.g. Anderson et al., 2004). This provides us with
constraints as to the neural properties and neurotransmitters
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involved. However, since we are not yet modelling all
aspects of this system and its interactions with other brain
areas, we do not present our work as a complete model of
the basal ganglia.

We start by describing the basic components of our
model: the standard leaky integrate-and-fire (LIF) neuron
and a model of post-synaptic current caused by a neural
spike. From these, we construct a simplistic minimal model
of neural decision making. We then add a competition
system so that only one option at a time is represented.
Finally, we build a working memory system so that context
can be stored over time.

Neural Model

The standard basic model of spiking neurons is the leaky
integrate-and-fire (LIF) model. ~While computationally
simple, it provides a good approximation to real neurons
over a wide range of conditions (Koch, 1999). It uses a
point neuron, as opposed to more complex compartment
models where ion flows within the neuron are modelled at a
sub-millisecond level. Current is constantly leaking out of
the neuron as per the membrane resistance R, but if enough
input current is gathered to cause the voltage to be above a
certain threshold, then the neuron will fire. After firing, the
voltage is set to O for a fixed refractory period (2
milliseconds) before starting to gather current again.

Given a constant current input J and membrane resistence
R, the voltage level of the LIF neuron changes over time as
given in Equation 1 and shown in Figure 1. The timing of
this behaviour is controlled by Trc, the membrane time
constant of the neuron. Larger values cause the neuron's
voltage to change more slowly, making it slower to respond
to changes in input current. Interestingly, many real
neurons are well-characterized by LIF neurons with
membrane time constants in the range of 20 milliseconds, so
this value is used for all simulations reported here.

—t/
V(t)=JR(1—e ™) 1)
spike
& "7 " threshod T _— 1|~~~
S
©
>
TRC |
7 1
0.00 0.01 0.02 0.03 0.04 0.05

time (seconds)
Figure 1: LIF neuron with constant input current.
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When a neuron fires, it affects the input current to all of the
neurons to which it is connected. This current h(t) can be
characterized by Equation 2, where T captures the effects of
neurotransmitter re-uptake and dispersal. As shown in
Figure 2, a small T, provides a fast, short-lasting effect
(~10ms), while others last for hundreds of milliseconds.

@

AMPA (r4~5ms)

GABA-A (73~10ms)

NMDA (r5~50ms)

post-synaptic current

0.04 0.06
time (seconds)

0.00 0.02 0.08

Figure 2: Post-synaptic currents for common synapses.

The T, values used here are approximate, based on available
neurophysiology data. Gupta et al. (2000) estimate T, for
GABA-A to be 10.41ms. AMPA is generally found to be
between 1ms and 10ms and NMDA between 50ms and
150ms (e.g. Moreno-Bote & Parga, 2004).

While the neural model we are using is not a perfect
replication of real neurons, we find it sufficient for our
purposes. The LIF neurons allow us to explore the timing
of neural processing, unlike the typical rate neurons used in
most neural models. These not only do not spike, but also
do not have any temporal dynamics at all, responding
instantly to any change in input. Furthermore, given that the
basic neural behaviour is well captured by the LIF model,
switching to a more detailed model should not significantly
impact the large-scale behaviour of the system (on the order
of tens of milliseconds). That said, our model does not rely
on the use of LIF neurons, and other more complex models
could be used.

Neural Representation

Any model of a central executive control system where
particular actions are chosen based on the current context
must confront the issue of neural representation. The
current context must be represented in such a manner as to
appropriately affect the behaviour of other neurons. The
approach described here to define and create such models is
known as the Neural Engineering Framework (NEF;
Eliasmith and Anderson, 2003).

To be as general as possible, we make the minimal
assumption that representations can be distributed across a
group of neurons, but leave open the question of the exact
nature of this distribution. Within a neural group, each
neuron has a preferred value (i) to which it responds most
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strongly, and this response is reduced as the difference
between this preferred value and the actual value increases.

If we assume that any value the neurons can represent can
be thought of as a vector x, this behaviour can be captured
in terms of the input current J as shown in Equation 3.
Adjusting the neuron gain «, the background input current
Jbias, and the preferred direction vector ¢ allows us to
capture a wide range of known neural representation
schemes.

J=O(¢)'x+‘]bias (3)

In the simplest case, 100 neurons could represent a 100
dimensional vector x by having each ¢ be a different
unit vector in each of the 100 dimensions. This would
provide a completely local representation of each value in
the vector. More realistically, 100 neurons could represent
one or two dimensions by having q~5 values chosen
randomly (i.e. uniformly distributed around the unit
hypersphere in that many dimensions). This approach has
been observed in numerous areas of visual and motor cortex
(e.g. Georgopoulos et al., 1986). By having more neurons
per dimension, the representation error can be decreased to
arbitrarily low levels (error is inversely proportional to the
number of neurons).

Since Equation 3 can be used as the input to a model of an
LIF neuron, we can determine the sequence of spikes that
would be generated for a group of neurons if a particular
vector x is being represented. We can also perform the
opposite operation: given a sequence of spikes we can
estimate the original vector. As shown elsewhere
(Eliasmith & Anderson, 2003), this can be done by deriving
the decoding vectors ¢ as per Equation 4, where q; is the
average firing rate for neuron i with a given vector x, and
the integration is over all values of x.

-1

o=I""'Y Fij=f a;a;dx Yj=f a;xdx (4

The resulting vectors ¢ can be used to determine an
estimate of the represented value using Equation 5. This is
an estimate that varies over time based on the individual
spikes. Importantly, it is the optimal estimate when under
the constraint that the estimate must be built by linearly
adding the effects of the post-synaptic currents caused by
each spike. This is precisely the constraint that other
neurons are under, so Equation 5 indicates the best that the
original vector can be reconstructed by another neuron.

s<<t)=z 6(t—ti’n)*hi(t)q§i=z h(t=t,,) b (s

This result further provides a method for determining
optimal synaptic connection weights between groups of
neurons if one group is to perform a linear transformation
on the value represented by the other. If one group of
neurons represents x and the other group should represent
Mx, then this can be achieved by setting the connection
weights w as per Equation 6.

wi=; ;M ¢, (6)

We can also use a variant of Equation 4 to determine
connection weights for arbitrary nonlinear transformations
of x (see Eliasmith & Anderson, 2003 for details).
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The Task

As a baseline for the construction and demonstration of our
model, we use a simple minimal sequential decision making
task. This is meant to show that the model is capable of
responding appropriately to different contexts, and is
capable of modifying the context itself.

The current context is represented by a large group of
neurons (at least 2000 in all models shown here), as per the
representation system described in the previous section.
The preferred direction vectors ¢ are chosen randomly
from the unit hypersphere, and the neuron gains o and
background currents Jue are chosen to give a uniform
distribution of maximum firing rates between 100Hz and
200Hz and an average background firing rate of 40Hz,
consistent with many cortical neurons. At the beginning of
a simulation, this context is fixed to represent the initial
state of the model, but after this initialization period (50ms)
there is no external input. That is, the model must be
capable of maintaining and changing its own internal state.

We arbitrarily choose five vectors to represent five
different internal states referred to as A, B, C, D, and E. The
model's task is to implement the set of state change rules
that will cause it to cycle through these five states. If the
system is in state A, it should change to state B; if it is in B,
it should change to C, and so on.

In terms of the cognitive architecture ACT-R, this would
involve five production rules. Each production rule would
match on a particular goal buffer state (A through E), and if
that production fires it would modify the goal buffer to
contain the next state in the sequence. In ACT-R (and in
most other cognitive architectures), this process is externally
fixed to require 50 milliseconds. As will be seen, in our
models this timing will emerge from neural properties.

Figure 3 shows an idealized (non-neural) model of this
process. The five different colours indicate the five
different representational states over a period of 500
milliseconds. This is enough time for the system to repeat
the cycle twice. At each moment in time, we measure the
represented vector x and compare it to the arbitrarily chosen
patterns A through E. This comparison is done by taking the
dot product of the represented value (from Equation 5) and
each of the five target patterns.

1.0 m m m ’—‘ m m !—1 E
0.8 E
2 0.6} .
5
€
=04 .
0.2 - E
—C
—D
0.0 J— E
0 100 200 300 400 500
time (ms)

Figure 3: Behaviour of an ideal model cycling through five
states, fixed to have a 50 millisecond cycle time.

122

Model 1: Basic Sequential Decisions

Our first model is created by adding a separate population of
neurons for each of the rules to be implemented. These
neurons must be connected to the main context neurons so
that they will only fire when the value being represented is
the same as (or very close to) the desired state (A through
E). When a particular group of neurons starts to fire, their
connections back to the context neurons are such that they
will drive its firing towards the desired next state. This
structure is shown in Figure 4. For clarity, this diagram
shows only three rules: A—»B, B—C, and C—A.

S

&

M

A

v, &,

Figure 4: Neural groups and connections for Model 1.

B

To form the synaptic connections from the context to the
rule neural groups, we can use Equation 6. For example, for
the connection to the first rule, we set M to be the pattern A.
As per Equation 6, this means that the neural group will be
driven to represent the value Ax, which is the dot product of
the represented context value with A. This will be large
(near 1) when A is being represented, and small (near 0)
when another pattern is being represented.

The properties of the neurons in the rule groups must also
be set. Here, we can make use of the fact that we want these
neurons to not fire at all when representing 0, but should be
sensitive to values near 1. This can be achieved by having a
large negative Jy.s (with some random variation). The
corresponding neuron tuning curves are shown in Figure 5.
These show the average spiking rate of ten different neurons
for different contexts x. To see the actual spiking patterns
over time, Figure 6 shows the spikes caused by varying the
input to this neural group from 0 to 1 and back to 0 over one
second.

200

150

100+

firing rate (Hz)

0.4 0.6
context similarity

8.0 012

Figure 5: Average firing rates for neurons detecting the
presence of pattern A. Different context patterns are on the
x-axis: far left is a context unlike A (dot product of 0), far
right is a context of exactly A. Each curve shows a different
neuron with different values of o and Jyigs.
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Figure 6: Individual neuron spikes for the neural group
detecting A. Each neuron's spikes are separated along the y-
axis. Dot product of the context with A is varied from 0 to 1
and back to 0 over one second (dotted line). The value

X decoded using Equation 5 is shown (solid line).

We use a similar process to form synaptic connections from
the individual rule groups back to the context neurons.
Here, the weights encode the effect of each rule, indicating
how the context should be changed if this rule is applied.
These are again calculated using Equation 6. The resulting
model has a variety of parameters, given in Table 1.

Table 1: Parameters of the model

Parameter Default value
# of context neurons 2000
# of neurons per rule group 20
membrane time constant (Trc) 20ms
synaptic time constant for context (Tsc) 10ms
synaptic time constant for rules (Tsr) 10ms

The behaviour of the resulting model is shown in Figure 7.
As can be seen, it successfully cycles between the five
states. For this particular model, each change requires an
average of 27.5ms, making this much faster than the
expected 50 millisecond cycle time. Furthermore, this rate
is not sensitive to the numbers of neurons in each group:
increasing these values by a factor of 10 causes only a slight
decrease (<2ms) in the cycle time, since adding more
neurons decreases the representational error in the system.

(i

I
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Figure 7: Behaviour of Model 1. Similarity is determined
by the dot product of X (calculated from the spikes of the
context neurons using Equation 5) with the vectors A to E.
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The main effect on behaviour is seen by adjusting the
synaptic time constants. As shown in Figure 2, different
neurotransmitter/receptor  pairs have different time
constants. We can adjust the synapses from context neurons
to rules separately from the ones from rule neurons to the
context. These parameters are varied in Figure 8. The
membrane time constant is known to be approximately
20ms for a wide range of neurons, so it is not adjusted here.
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75 (seconds)

Figure 8: Average cycle time in seconds for varying Tsc and
Tsk in Model 1. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).

Given the results in Figure 8, the model is successful when
the synaptic time constant for the context neurons is below
30ms, which is consistent with both GABA-A and fast
AMPA synapses. This limit decreases as the synaptic time
constant of the rule neurons increases.

While this model is successful at cycling across five
different states, it fails in many other cases. For example,
Figure 9 shows the behaviour when cycling between three
states. Here, cycling behaviour is initially evident, but over
time the system converges to a static representation. In
particular, it converges to representing all three states at the
same time. The final context value is the superposition
(vector sum) of A, B, and C. This is clearly not the desired
behaviour.
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Figure 9: Behaviour of Model 1 when there are only three
states. Similarity is determined by the dot product of X
(calculated from the spikes of the context neurons using
Equation 5) with the vectors A, B, and C.
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Model 2: Inhibition Between Rules

To improve on Model 1 and fix the behaviour shown in
Figure 9, we needed to add a mechanism to encourage the
application of only one rule at a time. This was
accomplished by adding inhibition between the groups of
neurons responsible for each rule. That is, if the neurons in
the first group are firing, this should decrease the activity in
the other four groups. This is accomplished with Equation
6, where M is simply the value -w; (the strength of the
inhibition). We must also add a self-excitatory connection
of strength w, within the neurons of each rule group, so as to
counteract this inhibitory current. This new model is shown
in Figure 10.

L)
Figure 10: Neural groups and connections for Model 2.

For w; of 0.5 and a w, of 1, the model is successfully cyclic
for cycles of 2 through 20 (which was as high as was
tested). That is, the resulting behaviour looks like Figure 7,
rather than Figure 9. The precise effects of these parameters
will be explored in future work, as they are likely to impact
any reinforcement learning system which might be used to
bias one rule over another (such as in the ACT-R utility
learning system).  With these parameter values, the
behaviour of the model for varying Tsc and Tsr is shown in
Figure 11. We can see that Model 2 is slightly slower, but
more stable over a wider range of synaptic time constants.
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Figure 11: Average cycle time in seconds for varying Tsc

and Tsg in Model 2. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).
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While this model eliminates the problem of convergence
onto a superposition of states, there is a further difficulty
present in both Model 1 and Model 2. So far, we have been
assuming that this rule-following system is completely self-
sufficient. In particular, once an action is chosen, the
context is modified, and the system is then immediately able
to start identifying the next rule to apply.

However, in real cognitive models, the central production
system is only one of many components that can affect the
current context. For example, in ACT-R, it is common for
the production system to request that the declarative
memory system recall a fact. While that fact is being
recalled, the production system may not be doing anything,
as no rules may apply until that fact is found (which may
take hundreds of milliseconds). During that time, no rules
are applied, but the context must be maintained.

Figure 12 shows the behaviour of Model 2 when no rules
can be found that apply to the current context. This is done
by removing the rule that transitions from E to A. As can be
seen, when no rule can be applied, the system forgets the
current context, since no rule is firing to set it in the context
population. Model 1 behaves similarly.
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Figure 12: Behaviour of Model 2 when the rule to go from
E to A is removed. The context information is lost.

Model 3: Maintaining Working Memory

To eliminate the forgetting effect shown in Figure 12, we
add recurrent connections among the neurons representing
context. This approach has previously been used to model
working memory (Singh & Eliasmith, 2006), and is a
generic method for storing information over time in spiking
neurons. This is done by using Equation 6 to determine
synaptic weights from the context population back into
itself, with M set to be the identity matrix I. The resulting
model is shown in Figure 13.

The behaviour of this model when the rule to transition
from E to A is removed is shown in Figure 14. In contrast
to Model 2 (Figure 12), the system is now capable of
maintaining context information over time.

Adding this new recurrent connection allows information
to be stored, but it also slows down the process of
modifying this information. The behaviour for varying Tsc
and Tsr is shown in Figure 15.
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Figure 14: Behaviour of Model 3 when the rule to go from
E to A is removed. The context information is maintained.
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Figure 15: Average cycle time in seconds for varying Tsc
and Tsg in Model 3. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).

Discussion

Our Model 3 successfully identifies the rule appropriate to
the current context and modifies the context appropriately.
It is able to keep the patterns for each context separate
(unlike Model 1) and store information over time (unlike
Model 2). Furthermore, if the synaptic time constants for
both the context neurons and the rule neurons are set to be
10ms, the average cycle time is 46.6ms, very close to the
standard of 50ms. As noted above, 10ms is the synaptic
time constant for GABA-A receptors. These are the
primary synaptic receptors in the basal ganglia, which is the
postulated location responsible for sequential rule selection.
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While our model closely matches the generally accepted
cycle time of 50 milliseconds, more is needed before it can
be accepted as a neural model of central executive control.
Most crucially, cognitive architectures generally postulate
rules that are much more complex than “if A then B”. We
have shown elsewhere (Stewart & Eliasmith, 2008) how
complex symbolic rules can be translated into vectors
appropriate for our model. This would require the addition
of a new neural population capable of combining the output
of the rule neurons with the existing context. Preliminary
results indicate that such a system would increase the cycle
time by 5-10ms if AMPA or GABA-A are used.

We are also in the process of directly mapping our model
onto the architecture of the basal ganglia and its connection
to the cortex via the thalamus. In this case, the context may
be stored using faster AMPA connections in various cortical
areas and then gathered in the striatum for matching. The
thalamus would then apply the complex rules mentioned in
the previous paragraph. This is a direct match to the
mapping from modules to brain areas found in ACT-R
(Anderson et al., 2004). Furthermore, a learning system is
required (likely using a dopamine-based expected reward
signal) to identify how these synaptic connections arise.

Although our model is incomplete, it provides the first
neural explanation for the 50 millisecond cognitive cycle.
This time is a direct result of the properties of GABA-A
receptors, along with the requirements that the system be
able to recognize appropriate rules in a given context, apply
rules separately, and store context information over time.
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Abstract

Methods for cleaning up (or recognizing) states of a neural
network are crucial for the functioning of many neural
cognitive models. For example, Vector Symbolic
Architectures provide a method for manipulating symbols
using a fixed-length vector representation. To recognize the
result of these manipulations, a method for cleaning up the
resulting noisy representation is needed, as this noise
increases with the number of symbols being combined.
While these manipulations have previously been modelled
with biologically plausible neurons, this paper presents the
first spiking neuron model of the cleanup process. We
demonstrate that it approaches ideal performance and that the
neural requirements scale linearly with the number of distinct
symbols in the system. While this result is relevant for any
biological model requiring cleanup, it is crucial for VSAs, as
it completes the set of neural mechanisms needed to provide a
full neural implementation of symbolic reasoning.

Keywords: Autoassociative memory; Neural engineering
framework; Vector symbolic architectures; Holographic
reduced representation;

Autoassociative Memory

A fundamental component of many cognitive architectures
is an autoassociative memory. This is a system that can be
provided with a partial or noisy version of a previously
stored memory and will in turn provide a complete and
more accurate version of that memory. This can be seen in
ACT-R's declarative memory system (Anderson & Lebiere,
1998), CLARION's non-action-centered subsystem (Sun,
2006), RAAM's compressor and reconstructor (Pollack,
1988), and many other cognitive models. This capability
can be implemented using a wide variety of approaches,
including multilayer perceptrons, Hopfield networks, and
any prototype-based classifier.

The particular use of autoassociative memory of
importance to this paper is as a cleanup memory for
cognitive operations. Recent research has shown that the
storage and manipulation of cognitive symbol systems can
be implemented as mathematical operations on fixed-length,
high-dimensional vectors. These approaches are known as
Vector Symbolic Architectures (VSAs; Gayler, 2003) and
include Holographic Reduced Representation (HRR; Plate,
2003), MAP Coding (Gayler & Wales, 2000), Binary
Splatter Codes (Kanerva, 1997), and others. Each of these
provides an alternate method for converting symbols and
symbol trees into vectors, combining vectors to perform
symbolic manipulations, and extracting out the original
components of that symbol tree.
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In previous research we have shown how VSAs can be
implemented in biologically realistic spiking neurons
(Eliasmith, 2005; Stewart & Eliasmith, 2008).  This
approach is many orders of magnitude more efficient' than
alternate theories of how symbolic manipulations could be
performed by the brain (Stewart & Eliasmith, in press).
However, one common criticism is that this approach does
not yet show how these systems can clean up their
representations. Performing symbol manipulations using
VSAs is an inherently noisy process, and these operations
must be performed by spiking neurons, adding a significant
amount of random variation. When symbols are extracted
from a bound representation, the brain needs a reliable
method for identifying which symbol it is, allowing it to
respond appropriately.

The purpose of this paper is to present an autoassociative
memory constructed from spiking neurons which is
appropriate for cleaning up the representations resulting
from cognitive manipulations using VSAs. We first
describe the characteristics of VSAs that define the
statistical properties of the noise that must be removed.
Next, a general method is described for encoding (and
decoding) high-dimensional vectors across a population of
spiking neurons. We then show that standard approaches to
deriving connection weights have difficulty when scaled up
to the number of symbols required for human. Our cleanup
memory model is then presented, followed by an analysis of
its behaviour.

Vector Symbolic Architectures

There are three core ideas for all VSAs. First, each symbol
is represented by a randomly chosen vector. Second, two
vectors can be combined by superposition (+) to produce a
new vector that is similar to both of the original vectors.
Third, two vectors can be combined by binding (®) to
produce a new vector that is dissimilar to both of the
original vectors, and this operation can be reversed by
binding with the inverse of a vector (denoted with an
underline), such that AQ B®B=A. These operations are
similar to standard addition and multiplication in terms of
being associative, commutative, and distributive. With such
a system we can represent a structure such as
chase(dog, cat) by performing the following calculation:

! For realistic vocabulary sizes, this approach uses three orders
of magnitude fewer neurons than the Neural Blackboard
Architecture (van der Velde & de Kamps, 2006) and seven orders
of magnitude fewer than LISA (Hummel & Holyoak, 2003).
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chase®verb + dog®subj + cat®obj

The result is a single vector of the same length as the
vectors for the basic symbols (chase, verb, dog, etc.).
This one vector can be interpreted as a representation of the
entire structure because it is possible to extract the original
components. For example, to determine the object of the
above structure, we take the whole vector and bind it with
the inverse of obj.

(chase®verb + dog®subj + cat®obj)®obj
= chase®verb®obj + dog®subj®obj + cat® obj®obj
= cat + chase®verb®obj + dog®subj®obj

The result is a vector that is similar to cat, but is not exactly
the same since it has two additional terms superposed on it.
Due to the properties of the binding operation, however,
these two terms chase®verb®obj and dog® subj® obj
will be vectors unlike any of the original symbols. They can
thus be treated as randomly distributed noise. It is this noise
that must be removed by the cleanup memory system.

While the above discussion applies to all VSAs, if we
choose one particular type of VSA we identify the
properties of the symbol and noise vectors. For this, we use
Holographic Reduced Representations (HRRs; Plate, 2003).
Here, each basic symbol vector is set by randomly selecting
a point on the high-dimensional unit sphere (i.e. a random
vector normalized to a length of one). Superposition is
performed by vector addition and the binding operation is
circular convolution.

The cleanup memory thus needs the following properties:

1) Recognize M unit vectors (one per symbol), distributed
uniformly over a high-dimensional unit sphere.

2) Handle additive noise produced by adding k unit
vectors uniformly distributed over the same sphere.

To be useful for cognitive operations, on the order of
100,000 symbols (M) must be able to be identified. The
complexity of the structures that can be encoded is
determined by k, indicating the number of terms that can be
superposed and still lead to accurate recognition. This
should be at least 7 + 2 to conform to the standard chunk
sizes used in cognitive modelling.

To determine whether recognition is accurate, we take the
dot product of the correct vector and the output of the
memory; if this value is above a threshold the symbol is
successfully recognized. For the purposes of this paper, we
arbitrarily choose a threshold of 0.7, although Plate (2003,
p. 100) provides a method for determining the optimal
threshold in special cases where k is fixed and known.

The final factor to consider when using Vector Symbolic
Architectures is the number of dimensions. In an ideal case
(where vectors are represented exactly, rather then via noisy
spiking neurons), Plate (2003) derived the following
formula for determining the minimum number of
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dimensions D required to represent combinations of k
vectors out of M symbols and have a probability of error g:

D=4.5(k+0.7)In (M /30q*) 1)
From this, we note that 700 dimensions would be sufficient
to represent chunks of up to 7 symbols out of a vocabulary
of 100,000 with an accuracy of 95%. However, this
formula assumes an ideal cleanup memory.

Distributed Representation

There are a variety of methods whereby a numerical vector
can be represented by a population of spiking neurons. The
most simplistic approach is to have one neuron per
dimension, and the firing rate of that neuron indicates the
value in that dimension. However, this approach is highly
fragile to neuron death and does not correspond to known
methods of spatial representation by neurons. It is well
established (e.g. Georgopoulos et al., 1986) that movement
directions are encoded by having a large population of
neurons, each of which is sensitive to a different direction.
The firing rate of each neuron is related to the angle
between that neuron's preferred direction vector and the
value being encoded.’

We take this same approach to encode high-dimensional
vectors. Each neuron has a preferred direction vector ¢
and the current entering the neuron is proportional to the dot
product between this and the vector x being represented. If
a is the neuron gain and J*® is a fixed background current,
then the total current flowing into cell i is:

J=op x+J )
This current can be used as the input for any model of
spiking neurons, such as the standard leaky integrate-and-
fire (LIF) model. In general, x can vary over time as x(t)
and the spikes produced will be based on this varying
current. If the details of the neural model (i.e. the relation
between input current and spiking behaviour) are written as
G[-] and the neural noise of variance ¢ is n(o), then the
encoding of any given x(t) as the temporal spike pattern
across the neural group is given as:

bias

> 6(t—1,,)=G o, g x ()T +n, ()] 3)

Since this spiking pattern is meant to represent the original
vector X, it should be possible to determine an estimate X(t)
given only this spiking pattern. This can be done by
deriving linearly optimal (in terms of minimizing squared
error) decoding vectors & for each neuron as per Equation
4, where qa; is the average firing rate for neuron i (see

* It should be noted that the simplistic representation mentioned
initially is a special case of this approach, where the preferred
direction vectors are exactly aligned along the dimensions being
represented, rather than being randomly distributed.
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Eliasmith & Anderson, 2003 for details). This method has
been shown to uniquely combine accuracy and
neurobiological plausibility (e.g. Salinas and Abbot, 1994).
$=I""Y Fi/:faiajdx Y].:fa,xdx )

To derive an estimate of x(t), we weight the decoding
vectors by the post-synaptic current h(t) induced by each
spike. The shape and time-constant of this current are
determined from the physiological properties of the neural

group. The result is the best possible linear estimate of x(t)
using only the spike timing information.

()= 5(1—1,,)% ©)

hi(,)(bizz h(t—t,,) ¢,
The representational error between x(t) and X(t) is
dependent on the particular neural parameters and encoding
vectors, but in general is inversely proportional to the
number of neurons in the group.

While the decoding vectors ¢ are useful for determining
what a spike pattern represents, a more important feature is
that they can also be used to derive optimal connection
weights between neural groups. That is, consider a situation
where one neural population represents x and we want a
second neural population to represent Wx (where W is an
arbitrary linear transformation). The optimal connection
weights w; between each neuron to achieve this are
determined by Equation 6 (see Eliasmith & Anderson, 2003
for further details).

W= ;p ;W (6)
These results provide a generic framework for representing
vectors of any dimension using spiking neurons. These
neurons can be made as realistic as possible (given
computational processing constraints), including effects of
adaptation, neurotransmitter re-uptake rates, refractory
periods, and so on. Furthermore, we can derive the synaptic
connection weights that will cause the neurons to perform
the desired transformations on these represented values.

Standard Approaches

Given the above representation system, we have two groups
of neurons: one representing the input (noisy) vector, and
one representing the output (cleaned) vector. The goal then
is to determine how to connect these neurons so as to
achieve the best cleanup.

For this work, we are only considering feed-forward
networks. That is, we do not consider models where
activity flows backwards from the output to the input, or
where the output is the same group of neurons as the input,
but at a later time. These models, such as the Hopfield
network, must wait for their output to “settle”, requiring
significantly more time than purely feed-forward models.
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Linear Autoassociation

The simplest autoassociation memory merely performs a
linear transformation on the input to produce the output
(Hinton & Anderson, 1989). If the matrix X consists of a
set of noisy vectors and the matrix Y holds the
corresponding cleaned vectors, then we want to find W such
that WX=Y. Given the subsequent noisy vector x, it can
then be multiplied by W to produce the estimated cleaned up
item y=Wx. Once W is found, we derive the connection
weights for this linear transformation using Equation 6.

A variety of methods exist to find the W that minimizes
the error between WX and Y. Figure 1 shows the result of
using the Penrose-Moore pseudoinverse, which was chosen
since X is generally not full rank.
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Figure 1: Accuracy of the linear autoassociation network for
varying D, M, and k. Values above 0.7 (shown in lightest
shading) indicate successful cleanup (i.e. output values
sufficiently close to the original non-noisy vector).

These results show that the linear association approach does
not scale up for large values of M. In 500 dimensions this
network is unable to accurately clean up a vector where 4
symbols are combined if there are more than 50 possible
symbols. This is much smaller than the desired 100,000.

Linear Neural Transformation

A second possibility is to directly determine the optimal
connection weights, rather than relying on Equation 6.
Here, instead of X being the noisy vectors, it is the spiking
rate of the individual neurons when representing those
vectors. This approach is used extensively in the Neural
Engineering Framework (Eliasmith and Anderson, 2003) to
derive synaptic connection weights that can perform
nonlinear operations, using a slight modification of
Equation 4 where x is replaced by the corresponding
cleaned up vector. This allows synaptic connection weights
to be derived that approximate arbitrary nonlinear functions.

While the results in Figure 2 show that this approach is a
significant improvement over Figure 1 in terms of handling
larger values of k at smaller D, it is still not scaling up for
larger values of M.
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Figure 2: Accuracy of the linear autoassociation approach
applied to individual neuron firing rates for varying D, M,
and k. Values above 0.7 indicate successful cleanup.

Multilayer Perceptron

One potential reason for the failure of the linear associator
discussed in the previous section is that the function being
computed is highly nonlinear. To address this, we can make
use of a multilayer perceptron, capable of computing much
more complex functions. This involves introducing a new
hidden layer of neurons between the input and output.

The multilayer perceptron is the most famous and widely
used artificial neural network (Rumelhart et al., 1986).
Using a two layer MLP, a mapping is learned to convert
noisy input vectors into their cleaned (or prototype) vectors.

Instead of directly calculating the weights for these
networks, a learning rtule (such as the classic
backpropagation of error rule) must be used. This allows
the system to find a suitable intermediate representation in
the hidden layer which makes the cleanup operation most
accurate. For this task we trained the MLP using gradient
descent on the sum of the squared error.

In theory, given enough time, hidden nodes, and a
sufficiently powerful optimization algorithm, this approach
should be able to find the optimal synaptic connection
weights to perform this task. However, as the results in
Figure 3 show, due to limited computational resources we
were unable to successfully train this network for large M.
This is in part due to the fact that the MLP requires many
more hidden nodes than the vector dimension in order to
generalize across the entire input domain.

More importantly, the standard strengths of a
backpropagation network are not applicable to the cleanup
task. Crucially, there is no inner structure in the data being
modelled; each symbol is a randomly chosen unit vector.
This means that the network cannot use its hidden layer to
form an internal representation that simplifies the task.

Overall, it is likely possible to improve on this approach
to training a network to perform cleanup. However, such a
method may require significantly larger amounts of
computing resources as M increases.
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Figure 3: Accuracy of the multilayer perceptron for varying
D, M and k. Values above 0.7 indicate successful cleanup.

A Cleanup Memory Model

From the MLP model, it is clear that while transforming the
initial representation through a middle layer of neurons can
provide a significant improvement, it is impractical to learn
the required synaptic connection weights. Instead, for our
cleanup memory model we choose to directly derive the
optimal weights. To do this, we first identify how we want
the middle layer of neurons to respond. This involves
defining their preferred direction vectors ¢ , gain a, and
J? as per Equation 2. Given these, we can use Equation 6
to derive the neural connection weights that will result in
this behaviour. Since no transformation of the vector itself
is to be performed by the weights, W in Equation 6 is set to
be the identity matrix.

For the preferred direction vectors, we choose exactly
those vectors that must be cleaned up. For redundancy, we
have ~10 neurons for each of the M vectors, meaning that
there are particular neurons that fire maximally for each
symbol. Furthermore, we set J*® to be slightly negative for
each neuron. The resulting connection weights w;; cause the
middle layer neurons to only fire if the dot product of the
input vector with the corresponding clean vector is greater
than some small threshold (0.2).

In effect, the inherent non-linearity of the neurons (the
fact that they do not fire if their input current is too low) is
being used to perform cleanup. This middle layer is good at
representing the cleaned vectors, but is poor at representing
small vectors in any of those directions. Since the noise
added to the input consists of randomly chosen vectors,
these will generally have small dot products with each of the
preferred direction vectors, and so will not cause sufficient
activation for the neuron to fire. The presence of a slight
background inhibition (the negative J**) allows the neurons
to be insensitive to the noise.

The firing rates of ten sample middle layer neurons are
shown in Figure 4. Their activity varies as the dot product
of the input and the neurons' preferred direction vector
changes.
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Given this middle layer representation we can then calculate
the optimal connection weights with the output neural
group. This output group can have any arbitrarily chosen
preferred direction vectors ¢b and other neural properties.
Equation 6 is used to calculate these weights, again setting
W to be the identity matrix.

Performance

We evaluated this implementation of cleanup memory in the
same manner as the previous models and the results are
shown in Figure 5. It should be noted that these graphs
extend to much larger M (10,000 symbols rather than 500)
than the previous figures.
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Figure 5: Accuracy of our neural cleanup memory for
varying D, M and k. Values above 0.7 indicate successful
cleanup.

Importantly, our neural cleanup memory system was able to
successfully cleanup combinations of 8 symbols out of a
vocabulary of 10,000 using 500 dimensional vectors.
Furthermore, its capabilities increase rapidly with the
number of dimensions. We have evaluated this model up to
M=100,000 and D=1000, producing consistently high
quality cleanup results.
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We have thus demonstrated an effective implementation
of a neural autoassociator as a cleanup memory for Vector
Symbolic Architectures. The number of neurons required
for cleanup scales linearly with M, while the number of
neurons required for storing the resulting cleaned vector is
linear in D.

Comparison to the Ideal

To determine how closely our model approaches ideal
behaviour (even though it is implemented using realistically
noisy spiking neurons), we can examine the recognition
behaviour of a perfect mathematical cleanup system. This is
used by Plate (2003) in his analysis of the Holographic
Reduced Representation form of VSA, and merely outputs
the clean vector that is closest to the input noisy vector.
This ideal system can be approximated by Equation 1, and
its actual behaviour is shown in Figure 6.
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Figure 6: Accuracy of an ideal cleanup memory for varying
D, M and k. Values above 0.7 indicate successful cleanup.

From this result, we see that our neural cleanup memory and
the ideal cleanup both exhibit a similar growth in
representational capacity as the dimensionality of the
vectors increases. While the neural version is less accurate,
it still is able to scale up to large M. This ability is not seen
in the cleanup models examined previously.

Dynamics and Timing

Since a cleanup memory is meant to be a component to
support symbolic manipulations by spiking neurons, it must
not only be efficient in terms of numbers of neurons, but
also in terms of the amount of time required to perform
clean up. This is why we did not consider models that
require a long settling time (such as a Hopfield network).

Since the dynamics of the neurons in our model (G in
Equation 3) can be adjusted to match those of real neurons,
we can generate predictions as to how the output of the
cleanup memory will vary over time. Even with a constant
input vector x, the actual value being represented by the
output of the cleanup memory will vary since it is decoded
from the spike train as per Equation 5.
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The precise timing characteristics of the neural model will
vary based on the neural parameters. We used typical
values for cortical neurons: a refractory period of 2ms, a
membrane time constant of 20ms, and a maximum firing
rate of 200Hz. We applied random noise in the input
current to each cell of 0=10% (see Equation 3). We also
assumed NMDA neurotransmitter receptors, giving a time
constant of 5ms for the post-synaptic current (h(t) in
Equation 5).

To observe the dynamics, we ran a cleanup memory with
D=500, M=10,000, and k=8. Over the course of 250ms of
simulated time, we input five different noisy vectors for
50ms each. The output from the system was measured at
each time step. Figure 7 shows the result of comparing the
output of the model (the cleaned up vector) with the
corresponding five original vectors. As in the rest of this
paper, comparison was done by the dot product of the
output vector and the desired clean vector.

1.0

0.8

0.6

0.4

accuracy

0.2

0.0 KPR ORI

00
time (seconds)

Figure 7: Temporal accuracy of the cleanup memory. Five
noisy vectors are presented for 50msec each. Graphed lines
show the dot product of the output of the network and the
five original clean vectors.

These results indicate that the network reliably cleans the
input vector and does so within 5-10 milliseconds. This
makes our cleanup memory suitable for fast recognition,
which is needed for symbolic manipulations at a cognitive
time scale.

Conclusions

The model presented here is the first demonstration that a
cleanup memory can be efficiently implemented by realistic
spiking neurons. The number of neurons required to build
this memory increases linearly in the number of distinct
symbols that can be recognized. The accuracy approaches
that of an ideal mathematical cleanup, and can perform
cleanup in 5-10ms using realistically noisy spiking neurons.

Previous research (e.g. Eliasmith, 2005) has demonstrated
realistic neurons performing the binding and superposition
operations required for Vector Symbolic Architectures.
Given the cleanup memory presented here, arbitrary symbol
structures can be encoded, transformed, and recognized, all
within a spiking network. As a result, we take this work to
complete the currently most biologically plausible
implementation of a symbolic cognitive architecture
(Stewart & Eliasmith, 2009).
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Abstract

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the no-
tion of affordance in the context of grasping actions carried
out by monkeys. This explication is consistent with both di-
rect perception theories and neuroscientific models of mon-
key brains, insofar as the identification of grasping affordances
requires, according to this model, neither object recognition
processes nor access to semantic memory. Nevertheless, this
model posits a cascade of complicated computational pro-
cesses, in the way of visuo-motor transformations, which sug-
gest the advisability of qualifying and re-interpreting the claim
that (grasping) affordances are directly available to an acting
biological system. This re-interpretation undermines the al-
leged alternative between direct and indirect perception theo-
ries, to the extent that substantive visuo-motor transformations
have to be posited in order to identify grasping affordances.

Keywords: affordances; visuo-motor transformations; di-
rect perception; grasping
Background and Motivations

The notion of affordance was originally introduced by J. J.
Gibson (Gibson, 1979) to single out perceived propertias th

at work there (Borghi, 2005).

In the context of grasping actions, neurophysiologicahdat
on the macaque’s brain cortex are consistent with direct per
ception views of affordances. In particular, these datgesg
that the anterior intraparietal area (AIP) is involved ia tod-
ing of object affordances (Rizzolatti & Sinigaglia, 2008),
the light of functional hypotheses concerning more extdnde
brain circuits. The functional models of brain areas which
have been found to deliver afferent signals to AIP include ne
ther perceptual object recognition nor higher-level ctigai
processes, such as planning and decision-making (Creem &
Proffitt, 2000; Milner, 1998). Moreover, strong efferenttpa
ways have been identified which connect AIP to pre-motor
area F5 (Rizzolatti & Sinigaglia, 2008). Since F5 is promi-
nently involved in the coding of object-oriented actionsofs
as grasping, holding, and manipulating), the AIP to F5 con-
nections suggest the existence of some sodict func-
tional link between perceptual feature detection and dbjec
directed actions.

enable one to interact with objects in the environment. Pro- The computational model presented here, Grasping Affor-
cedurally, the notion of affordance is framed in the contextdances (GA) model, provides a precise explication of the
of direct perception theories, insofar as higher-level cogni-notion of affordance in the context of grasping actions car-
tive processes, such as access to semantic memory, logidid out by monkeys. This explication is consistent with

inference, and object recognition processes are allegedly

both direct perception theories and neuroscientific models

necessary to identify an affordance. Direct perception theOf the macaque’s brain. It is consistent with direct percep-

ories emerged in contrast with so-called indirect percepti
theories (Michaels & Carello, 1981). According to the Igtte

tion theories, insofar as the identification of graspingmaff
dances requires, according to the proposed computational

complex mental processing steps are needed to fill in the gap®del, neither object recognition processes nor access to s
between impoverished descriptions of the world furnished b mantic memory. It is <_:on_5|stent with _negrosmentlflc models
sensory inputs on the one hand, and the rich and accurate d& the macaque’s brain, insofar as (i) visual processes fur-
scriptions of the world delivered by perception on the otheishing AIP inputs are modelled in accordance with the bio-

hand. Thus, in particular, perceiving a glass as a graspab

|ggical "Standard Model” proposed in (Riesenhuber & Pog-

object one can drink from is the final outcome of mental pro-9i0; 2000), and (ii) the overall system output does not con-
cesses involving knowledge of what a glass is, what it cardlict with neuroscientific data and modelling constraintsain

contain, and how one uses it.

far as inputs supplied by AIP to brain motor areas are con-

A more precise understanding of the processes involved iféMed. Nevertheless, this model posits a cascade of com-

identifying an affordance is crucial to isolate what is cepc

plex computational processes, in the way of visuo-motor

tually and empirically at stake in the controversy betweerir@nsformations, which suggest the advisability of qyalif
direct and indirect perception theories. And an understandnd and re-interpreting the claim that (grasping) affoicizs

ing of these processes is crucial for the modelling of specifi
sensory-motor control mechanisms in biological systeras to
The existence of a particulary versatile sensory-mototrobn

are directly available to an acting biological system. Tkis
interpretation undermines the alleged alternative betvadée
rect and indirect perception theories, to the extent thht su

mechanism is witnessed by the wide range of sensory-motcttantive visuo-motor transformations have to be positetin
associations that monkeys are able to perform. Notably, thider to identify grasping affordances.

behavioural ability persists upon presentation of many un-

The paper is organized as follows. First, a selective

known/novel objects, thereby suggesting that a robust gereverview of neurophysiological findings about sensoryanot
eralization process, based on perceived object propeisies circuits in the macaque’s brain cortex is provided, and ba-
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sic features of computational models accounting for some o&ims at accounting for the processes enabling one to extract
these data are briefly recalled. Then, an explication of thaffordances from visual inputs. For this reason, we have out
notion of affordance in the context of grasping actions is adlined here a computational account of contextually sigaiftc
vanced. This explication sets the basic functional requirevisuo-motor transformations occurring on the path from V1
ments for a computational model of grasping affordancesto AlP.

whose architecture and basic functionalities are destiibe The model proposed in (Oztop et al., 2006) concerns the
some detail, and whose performances are evaluated on thievelopment of AIP neuron functionalities while an infast i
basis of some preliminary tests. The import of this model orlearning to perform grasp actions. This model focuses on an
direct perception theories and future developments aeflypri account of how units with processing properties similar to

outlined in the concluding remarks. those of AIP neurons emerge by visuo-motor learning. In-
terestingly, the model demonstrates that units with daffier
Relevant Neurophysiological Findings and kinds of object selectivity emerge. In particular, unitsreve
Computational Models found which encode object dimensions independently of ob-

ject shape. This model exhibits limited generalizationacap

Brain areas in the macaque parietal and motor cortex Weffjjities with respect to novel objects which do not belong to
shown to be involved in a series of sensory-motor transfor_the initial training set. In fact, this generalization chipiy is

mations, such as the mapping into appropriate actions of Viggyricted to transformations with respect to the size ofkm
sual information about objects and their location in the Vi'objects.

sual scene (Rizzolatti & Sinigaglia, 2008). In particutie The model of grasping affordance extraction presented be-
AIP-F5 parieto-frontal circuit appears to play a cruciderm |, (GA model) provides - unlike the FARS model - a de-

the visual guidance Of_ hand g_rasp?n_g a”‘?' manipulation_moveth"ed account of significant steps in perceptual procegssin
ments, where AIP (Rizzolatti & Sinigaglia, 2008) was iden- along the path from V1 to AIP. In addition to this, the GA

tified as a prominent cortical area involved in the coding Ofmodel is endowed - unlike the model proposed in (Oztop et

grasping affordances. One should be careful to note, morey 5404 - with more extended generalization abilitiethia
over, that along the cerebral pathway starting from pnmarxNay of novel/unknown objects.

visual cortex (V1), and reaching F5 via AlP, visual informa-
tion is transformed into motor information apparently with GA Model Description
out the intervention of cortical areas involved in highevdl .
perceptual and cognitive functions, such as the recognitio Affordances for Grasping
objects and their uses (Creem & Proffitt, 2000; Milner, 1998)Affordances are not intrinsic properties of an object, but
Two main computational models have been proposed imather depend on the relationship between object and agent
order to account for these data, by modelling AIP function-(Chemero, 2003). For example, differences in primate and fe
alities in the context of more comprehensive brain circuitsline effectors account to a large extent for the differefdraf
These are the FARS model (Fagg & Arbib, 1998) and adances that objects convey to humans and cats, respectively
computational model of AIP neurons introduced in (Oztop,As one moves to consider more specifically grasping affor-
Imamizu, Cheng, & Kawato, 2006). dances for monkeys and humans, one should still be careful to
FARS is a neural model of cortical processes involved innote that graspable objects do not merely "afford’ our grasp
generating and executing grasping plans. This model fecuséng them. Indeed, multiple opportunities for grasping aris
on the interaction between AIP and premotor area F5, within connection with many graspable objects. For example, a
out providing a computational account of how inputs to areamug can be grasped by handle, lateral side, and top. These
AIP are produced. In fact, affordances are "programmed‘grasps can be distinguished from each other in terms of hand
into this model, by hard wiring connections from units repre shape and wrist rotation obtaining just before grasping the
senting neurons in areas PIP and IT and units which represeabject (Tucker & Ellis, 2000). Accordingly, the grasping af
neurons of area AIP. The connectivity between these units ifordances associated to a graspable object will be ideshtifie
determined by behavioural compatibilities. For exampte, a in the GA model with a collection of (codes for) appropriate
AIP unit which is selective for a specific grasp type and hanchand configurations assumed by a hand just prior to grasp-
aperture receives inputs from units which hold input paraming the object (Oztop et al., 2006; Tsiotas, Borghi, & Parisi
eters of objects at which this kind of grasp and aperture ar@005). Since a graspable object may be grasped in several
usually directed. Moreover, the model does not specify howvays, this means that multiple hand configurations can be as-
these input parameters are computed from visual input.rThegociated to any given object in the GA model.
availability is taken for granted, and therefore the preees .
ing that visual information undergoes along the path from V1General GA Model Description
to AIP is presupposed too. This comprehensive presupposikrom the above discussion, three main requirements have
tion is acceptable in the FARS model, which is chiefly con-emerged for a computational model of grasping affordances
cerned with the generation and execution of grasping plango be empirically adequate and to move beyond previous com-
It is not equally acceptable in a computational model whichputational models which include affordance extractionrcfun
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tion. Points on thex axis represent visual inputs, and points
on thet axis represent hand-configurations. One may asso-

ciate ax point with multiplet points.
Figure 1: The GA model is formed by four modules: the

SE Module, the MP Module, The APC Module, and the AR . . o
Module. This computational model receives an image de@bilistic approach. More specifically, given the output
picting an object as input, and produces a list of affordanceC0MPuted by the mappingcan be approximated by the un-

(appropriate grasps for the given object) as outpui. conditional probability density functiop(t). Thus, in gen-
eral, the problem of modelling the functional mappihgan

be viewed in terms of estimating the conditional distribati
tionalities: (a) the model must provide computational solu p(t|x). A general framework for modelling conditional prob-
tions for significant processing steps along the path from Vaability distributions makes use of mixture models whose pa-
to AIP; (b) the model must enable one to extract multiplerameters functionally depend ar(Bishop, 1995):
hand-configurations from the same graspable object; (c) the
model must possess generalization capabilities with méspe
to novel/unknown objects.

To accomplish (a), the visual pathway was modelled start
ing from primary visual cortex V1 and reaching, through ar-
eas V2 and V4, into the posterior infero-temporal area (PIT)
which is identified as the cortical region supplying visual
monocular information to AIP (Borra et al., 2007). A bio-
Igg ggg dplagzlg: sv:sogil);))(f)g:j Vi(:]n(tlrg:a\élesrl:r?lljzgfzmﬁggg?o, The parametersy(x) can be regarded as prior probabilities of

2000). A component of the Standard Model, the view-baset?ogiggﬁgaeti%[ooargi;[irslﬁ'éhc?dri?]pon: gt cl\)/lf;gilgnv)\(/gjsrede-gﬁ-e q
Module, accounts for computations along the path from V1 . .QA ) . 19

. . . . S0 as to provide a computational solution to (b), that ishéo t
to PIT which makes inputs available to AIP. Accordingly, the multiple affordance extraction problem (see Figure 1)
Monocular Perception (MP) Module (see Figure 1) which is uttip X lonp gu :

an implementation of the view-based module was developegbﬁz agﬁnghesxTr;?t’ atzg: o:zhgee;?r?rl:ﬁg?/gl %at‘)p:g;“t'g_ssg r;
and included in the GA model. g jects,

To accomplish (b), that is, to provide a computational son9 point was provided by the observation that the agent usu-

: . : ally focuses its attention on the part of the object at which
lution to the multiple affordance extraction problem, alo the grasping action is directed (Schiegg, Deubel, & Schnei-
bilistic approach was pursued. In particular, this probtem grasping 99, '

be formalized as the problem of identifying and computing ader, 2003). This behaviour suggests the possibility of@sso

multi-valued function which relates any visual input to & co at!”% parts of a gr‘fa'spable iject to affordances, and te stor
lection of hand-configurations. More precisely, ¥t© & 9 this “mereological” information for use when novel grasieab

be thed-dimensional space of visual inputs, andTeC K¢ objects are presented. For example, one may learn to asso-
' - ciate appropriate affordances to handles and cylinders, re

be thec-dimensional space of hand configurations. Then, one . o .
, . . . Spectively, and to use this information when a cup (result-
has to find a functional mappinigsuch that: . " S . .
ing from the “composition” of handle and cylinder) is pre-
sented. This process was actually implemented by sliding an
“attention window” on the image of an object, and by ex-
whereld (T) is the power set of . A two-dimensional ex- tracting a collection of grasping affordances at each displ
ample of a multi-valued function is illustrated in Figure 2. ment step. This function is achieved by the Subimage Extrac-

This correspondence can be modelled by means of a proltion (SE) Module (see Figure 1). Finally, a post-processing

M
P(tX) = > a(X)a(t[x) @
k=1

The @«(x) are kernel functions, which are usually Gaussian
functions of the form
t — (¥)]|?
N wun} @

““”@mwwu>p{ 202(x)

fixeX—0O(T)
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step was required as well, in order to select the more plauprobability value is sufficiently high.

sible affordances. The post-processing step is acconeplish  This requirement corresponds, for each single feature vec-
by Affordance Ranking (AF) Module (see Figure 1). APC tor x and relatedp(t|x), to choose as member of the Set
and AR modules account for the AIP affordance computathe gaussians’ centerg(x) of the mixture associated to the
tion. The online learning of sensorimotor associationshinig higher values ofix(x). In the case oh probability distribu-

be grounded onto a basic grasping ability such as described tions p(t|x1), ..., p(t|X), in order to obtain a behaviour simi-
(Oztop, Bradley, & Arbib, 2004). Learning of sensorimotor lar to the single distribution case, one may proceed asWollo
associations may occur by collecting pairs of visually pre- ) o o
sented "object part” and related "hand-configuration” gver 1. generatgs sample points .from egch distribution, o.btalnllng
time a successful grasp is made. Since the focus of this work N > S points, each of which defines a hand configuration.
is not on the acquisition of sensorimotor associations,-how NOt évery hand configuration thus obtained corresponds to

ever, we suppose here that a series of such pairs is already9rasps for the input object; only those gathering around the
available. kernel's means do, while the other points are distributed in

a sparse manner;

Affordance Probabilistic Coding 2. aclustering over the x s points is performed;

N % 8( x) ‘A p(t]x) 3. the clusters are ranked according to the order of their var
i} ance values, and the filstlusters with lower variances are
selected because a lower variance implies less uncertainty
about the hand configurations;

Neural Network Mixture Model

4. finally, the sefl will be formed by the centers of the se-
Figure 3: The APC Module is formed by a neural network lected clusters.
and a Gaussian mixture model. Givenxavector, the neural
network computes the required Gaussian paramétegsto Test and Results

approximatep(t|x) (see (Bishop, 1995) for more details). ~ The GA model was designed so as to extract multiple hand-
configurations, and to generalize its affordance-exibaata-
. . . pability with respect to novel objects. Two experimentsaver
GA Model specification and implementation performed to test the extraction and generalization aslit
The GA model takes the image of an object as input and suprespectively. The results of these tests corroborate the po
plies the object’s grasping affordances as output. It is-comsession of the extraction ability, in addition to the reqdir
posed by four modules, as shown in Figure 1. The input imgeneralization ability as far as novel objects obtainednfro
agel, represented in gray scale, is processed by the SE Modhe composition of known object parts are concerned. Let's
ule, which extracts subimages;, j = 1,...,n. The number see.
of subimages depends on the dimensions of the windbw  The first test, which is concerned with the extraction of
sliding on the imagé, the image size, and the window dis- multiple hand-configurations, makes use of three different
placement stepS. prototypical object images: a sphere, a cylinder and aéottl
Each subimage is then sent as input to the MP Module. Thé is assumed that the first two objects can be grasped using
MP Module takes a sub-imade as input, and gives a 256 a power grasp only, whereas the bottle can be grasped in two
feature vector as outpuf. The latter is presented as input to different ways, by precision and power grasps. For each of
the APC Module, which computes the correspondiigx;j).  these prototypical object images, similar images were gene
To estimatep(t|x;), one uses a mixture model of the form ated by means of small contour variations. For each proto-
expressed in eq. 1, whose parametas), [k(X) andog(x)  type, the resulting training and test sets were compose@by 2
(for Gaussian kernel as in eq. 2) depend on the visual inpuind 10 images, respectively (Figure 4)
X. The relationship between visual inpwt&ind correspond- In order to generate target hand configurations, Grasplt!
ing mixture parameters is modelled by means of a two-layer(Miller & Allen, 2004), a robotic grasping simulator, was
feed-forward neural network withl hidden nodes. There- used. In particular, the robotic hand called Robonaut, en-
fore, the ACP Module has a combined density model andlowed with 14 degrees of freedom, was chosen. Conse-
neural network structure, as shown in Figure 3. guently, in the GA model hand configurations are identified
Since the APC Module receivas feature vectors¢; in by a vector of 14 components, where each component repre-
input, its overall output is formed by density functions sents just one hand joint’s angle. Spherical and cylintioba
p(t]x;). Note, however, that the desired output is a sefects are associated to a single hand configuration, gemerat
T = {t1,t2,...,tL} corresponding to thd distinct hand- manually by changing the Robonaut's degrees of freedom.
configurations that enable one to grasp the viewed objecBottle objects are associated with two distinct hand config-
Therefore, a non-trivial output selection problem remams urations: a precision grasp, applied on the object’s top, par
be solved at this stage: one has to isolate hand-confignsatio and a power one applied on the lateral part (see fig. 4). Train-
which differ from each other as much as possible, and whosing set targets are generated adding some Gaussian noise to
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(a) Some training objects (left) and test objects (right).

(b) Target hand-configurations.

The second experiment is meant to test generalization ca-
pabilities with respect to novel objects. To test this &ili
the system was trained to associaagetsof an object to hand-
configurations. Subsequently, the system was given in input
a novel object resulting from the "composition” of previtus
known parts. In this test, a cup is used, which is obtained fro
the composition of a cylinder and a handle. Examples of both
training images and the cup used as test image are shown in
figure 5. There are four kinds of training images: (a) cup
handles; (b) upper and lower cup parts; (c) lateral cup parts
(d) non-graspable cup parts. Two target hand-configuration
are associated with images (a); only one hand-configuration
is associated to images (b) to (d). The training set targets
are generated adding some Gaussian noise to hand configura-
tions. Targets for non-graspable cup parts images are drawn

from a Gaussian distribution with a large variance, so asto r
Figure 4: Examples of spherical, cylindrical and bottle ob-flect the fact that in this case no plausible hand-configomati
jects used to train and test the system, and target han@andidate exists. The K-Mean clustering algorithm is imple
configurations. mented by the AR Module, setting to 5 the number of clusters.

In table 3, cluster centroids are shown together with ctuste

variance. The fifth cluster was discarded in view of its large
these hand configurations. In this test, the attention windo yariance. Note that the first four cluster centroids are very
encompasses the whole object. Thus, for each object thekgmilar to target hand configurations (fig. 5) with respect to
is a single feature vectorwith an associate@(t|x). Hand  which mean percentage error was computed.

configurations are obtained by selectjggx) associated with
the higher values ofix(x). The model parameters are sum-
marized in table 2. For th'eth degree of freedom, percentage

error is defined aﬁ x 100, wherey; is the model out-

put, andmax andmln are the max and the min value, respec-
tively, for thei-th degree of freedomAverage errobetween
model output hand configuration and target hand configura-
tion is defined as the mean of percentage error over all de-
grees of freedom. For all test objects in each class, mean and
standard deviation of average error is computed and showed
in table 1.

Table 1. For each object class, the mean and standard de-
viation of the average error over all objects in the test set

is reported here. Moreover, for each class mean hand-
configuration over all objects in the class is exhibited.

Bottle Grasp 1 Bottle Grasp2  Spherical Cylindrical

(-

(b) Target hand-configurations.

2%+0.4 19%+0.6 39%+14 13%104
. v Figure 5: (a) Examples of training and test images (see.text)
¢ -['_'L,s o »y (b) Examples of target hand-configurations.
5 = ¢ \j)ﬁ?

Concluding remarks

The architecture of the GA model is largely motivated by the

Table 2: Model parameters for each test. Image $z@nd
DSare expressed in pixels.

goal of computationally investigating the allegedly dirik
between perception and action established by the pereceptio
of affordances. One should be careful to note that the over-

H M Image size Y] DS Cluster all output of the GA model does not correspond to actions,
Test1 5 2 160160 160160 O  None but rather corresponds to hand configurations. Therefore,
Test2 5 5 50500 160x160 30 5 one may legitimately question the claim that the GA model
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computes a perception-action transformation. However, in
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A memory for goals model of sequence errors
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Abstract

We propose a model of routine sequence actions based on the
Memory for Goals model. The model presents a novel
process description for both perseveration and anticipation
errors, as well as matching error data from a previously
collected dataset. Finally, we compare the current model to
previous models of routine sequential action.

Keywords: routine sequential actions; errors, cognitive
modeling

Introduction

Several researchers have described classes of errors that
people make as they perform routine sequential actions
(Norman, 1981; Reason, 1990; Baars, 1992). Most of the
categorization for these errors comes from either diary
studies (Reason, 1990) or from neurologically damaged
patient studies (Schwartz et al., 1998).

Sequence errors occur during routine action and consist of
perseverations, omissions/anticipations, and intrusions
(Reason, 1984). Perseveration errors are repeats of a
previous action and come in two forms (Sandson & Albert,
1984). Continuous perseveration errors occur when an
action is performed over and over. Recurrent perseveration
errors occur when a previously completed subtask is
performed again, usually with one or more intervening
subtasks. For example, putting cream in a cup of coffee
multiple times is a perseveration error. Omissions are
skipped steps, while anticipation errors are skipped steps
that are quickly rectified. For example, an omission error
would be completely forgetting to put cream in a cup of
coffee, while an anticipation error would be attempting to
pour from an unopened container. It can be quite difficult to
differentiate omission and anticipation errors (Cooper &
Shallice, 2000). Intrusion errors (sometimes called capture
errors) occur when an action comes from a different, usually
related, task. For example, a capture error would occur
when attempting to make coffee a person gets distracted by
a tea bag and instead makes tea.

There are other types of errors that occur during routine
action, but this report will focus on sequence errors.

Previous models of sequential behavior

There are two computational models of routine sequential
behavior: the interactive activation network (IAN) model
(Cooper & Shallice, 2000; Cooper & Shallice, 2006) and the
simple recurrent network (SRN) model (Botvinick & Plaut,
2004; Botvinick & Plaut, 2006).

In the IAN model, different schemas compete for
activation. Activation comes from triggers (environmental
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or context) and source-schemas (related schemas), but a
schema will not be activated if it is not over a specific
threshold. Thus, while working on a routine task, the
selection of a schema is influenced by the current schema
and the state of the world. The IAN model suggests that
errors are caused by a lack of attentional resources or
distraction in normal populations (Norman & Shallice,
1986; Cooper & Shallice, 2000). Variability in attentional
resources is instantiated in IAN by noise. In the case of
sequence errors, noise has two major effects. First, noise in
the system can cause variability in the ordering of schemas
that do not have ordering constraints. Second, noise can
cause variability in the selection of which schema is selected
when multiple schemas are applicable. Both these forms of
variability can cause various sequence errors.

The SRN model has a set of input units that are activated
by features of the environment. Activation is passed along
the input units to a set of hidden units, which receive
recirculated activation.  The hidden wunits then pass
activation to a set of output units that then perform an action
(fixating an object, pouring an object, etc.). The connection
weights encode series of sequential attractors which the
trained model tends to follow (Cooper & Shallice, 20006).
Errors in the SRN model are made by increasing the noise,
which in turn can cause the network to drift to a related task
sequence (i.e., a sequential attractor) whose internal
representation resembles the next step. Thus, an error is
made by the SRN model not because an attentional
operation has been omitted, but because the model’s internal
representations have resulted in a loss of information about
a previous or current state (Botvinick & Plaut, 2004;
Botvinick & Bylsma, 2005).

The Memory for Goals model

A different model of routine behavior is the memory for
goals model (MFG) which is an activation-based model that
has been used in the study of interruptions and goal-related
tasks (Altmann & Trafton, 2002; Trafton, Altmann, Brock,
& Mintz, 2003; Altmann & Trafton, 2007).

The MFG is based on the hypothetical construct of
activation of memory items—in particular, activation as
construed in the ACT-R (Adaptive Control of Thought-
Rational) cognitive theory (Anderson & Lebiere, 1998). A
basic processing assumption in this theory is that when
central cognition queries memory, memory returns the item
that is most active at that instant. Activation thus represents
relevance to the current situation. To capture the relevance
of any particular item, the memory system computes that
item's activation from both the item's history of use and
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from its associations to cues in the current mental or
environmental context. In Bayesian terms, the logic is that
history of use and current context together serve to predict
the current relevance of that item (Anderson, 1990). In
functional terms, the implication is that the cognitive system
should be able to exploit the predictive computations of the
memory system to overcome decay and keep certain
information active for use in the future.

Two main constraints determine goal activation:
strengthening and priming. The strengthening constraint
suggests that the history of a goal (i.e. frequency and
recency of sampling) will impact goal activation such that a
subgoal that is retrieved more often or the most recently
retrieved subgoal will have a higher activation value than
others with less history. The priming constraint suggests
that associated cues in the mental or environmental context
can provide activation to a pending goal. For example,
particular information in a task interface may prime a
subgoal, allowing the subgoal to be retrieved over
competing subgoals. In addition, each procedural step is
associatively linked to the next step within the task
hierarchy; thus, previously completed tasks are a source of
associative activation (Altmann & Trafton, 2007).

The model incorporates the assumption that cognitive
control is mediated at a fine-grained by episodic codes
passed between different processes (Altmann & Gray,
2008). Applied to cognitive control here, in the context of
routine sequential behavior, the assumption is that action
preparation and action execution are separate processes,
with the first retrieving a procedural step from semantic
memory, then communicating with the second by creating
an episodic code that represents the retrieved task. The
communication between these two processes can be
disrupted if some other cognitive operation (e.g., an
interruption) occurs after the first process has executed but
before the second has started.

All three models have different process explanations and
capabilities for accounting for sequence errors.

Perseveration Errors

The IAN model does occasionally repeat steps, resulting
in a continuous perseveration error. This occurs when, due
to too much self-activation or lack of inhibition, a schema is
not deselected at the appropriate time, causing a schema to
be repeatedly selected. The IAN model can not, however,
account for recurrent perseveration errors because once a
goal is completed it is “ticked off” and not applicable for
later selection (Cooper & Shallice, 2000; Botvinick & Plaut,
2004).

The SRN model does make both continuous and recurrent
perseveration errors. However, one interesting aspect of the
original SRN model was that virtually all errors were due to
capture errors but had different manifestations. For example,
with a small amount of noise, the network would
occasionally drift to a similar sequential attractor (a capture
process) and repeat a step (a perseveration error) (Botvinick
& Plaut, 2004; Cooper & Shallice, 2006). While it is
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interesting that the SRN model can elicit so many error
types, the capture process that causes those errors to occur
has been questioned by some (Cooper & Shallice, 2006).

The MFG model can make both types of perseveration
errors, though the process explanation is the same for both
continuous and recurrent perseveration. The reason that
MFG makes perseveration errors rests primarily on the
interference level. Perseveration errors may occur when the
wrong subgoal is retrieved to direct behavior. Occasionally,
the difference in activation levels between previous
subgoals and the target subgoal may be quite small and
noise in the cognitive system may result in the retrieval of
an incorrect subgoal. The constraints of the memory for
goals theory suggest that when an incorrect subgoal is
retrieved, it should be in close temporal proximity to the
target subgoal. Recency suggests that the subgoal just
completed will have a relatively high activation level and
associative activation from the most recently retrieved
subgoal will provide activation to neighboring subgoals.
Occasionally, then, the cognitive system may retrieve the
wrong subgoal to direct behavior. This will occur especially
when there are relatively few environmental cues so that
priming has less of an impact. Interestingly, the MFG
model predicts that errors should be proximate to the next
correct action. Not only should the most common error
action be to retrieve the subgoal just completed, other error
actions should be to subgoals that are temporally close to
the next correct action. Recency suggests that the last few
steps prior to the next correct action will have relatively
high activation levels. The farther away the subgoal is from
the correct action, the less likely this step should be
retrieved. Thus, the general prediction is that when
perseveration errors are made, most of the error actions
should be localized to within a few steps of the correct
action in a graded fashion.

Anticipation and Omission Errors

The IAN model also makes anticipation and omission
errors. Omission errors could occur because a schema may
not have a high enough activation due to low self-activation
or poor environmental influences. Anticipation errors occur
for a similar reason, but are not able to be executed because
a precondition was not satisfied (e.g., a container still has its
top attached).

The SRN model occasionally makes anticipation and
omission errors, primarily through the capture process
described before.

The MFG model also suggests that anticipation and
omission errors will occur. In fact, MFG suggests that there
are two possible explanations for skipping a goal. First, the
primed retrieval component of the theory suggests that
future steps receive activation in a decreasing graded
fashion (Altmann & Trafton, 2007). Second, the model
suggests that action preparation and action execution are
separate processes. If communication between these two
stages gets disrupted, an anticipatory error may occur.
Because the primed retrieval model is not yet implemented



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

in ACT-R, the separate-stages explanation will be focused
on in the remainder of this report.

While all three models can account for the majority of
error types, neither IAN nor SRN makes strong predictions
about which types of errors should be more prevalent in this
type of task. MFG, however, makes a strong prediction that
perseveration errors should occur more often than any other
type of sequence error. Additionally, MFG makes a
nuanced prediction that errors should be proximate and
graded from the correct step, especially with respect to
perseveration errors.

Experiment

There are very few datasets that can be used to constrain or
reject different models (Botvinick & Plaut, 2006). One of
the issues is that the when a task is routine, people generally
make very few errors, making statistical analysis difficult.
Thus, different researchers have examined errors in non-
routine tasks (Ruh, Cooper, & Mareschal, 2005), made the
task difficult to remember (Giovannetti, Schwartz, &
Buxbaum, 2007; Ruh, Cooper, & Mareschal, 2008) or
interrupted participants during the routine task (Botvinick &
Bylsma, 2005). We used an interruption paradigm because
interruptions have been shown to increase error rates even
on well-learned tasks (Li, Blandford, Cairns, & Young,
2008; Ratwani, McCurry, & Trafton, 2008). In addition, we
provided no global placekeeping (Gray, 2000) such that the
next step of the task could not be determined from visible
cues.

Method

Participants. Fifteen George Mason University students
participated for course credit.

Task and Materials. The primary task was a complex
production task called the sea vessel task (based on Li et al.,
2008; Ratwani et al. 2008). The goal was to fill an order for
two different types of sea vessels by entering in order details
through various widgets on the interface (Figure 1). Order
information was provided in the middle of the screen on the
“Navy Manifest.” A correct sequence of actions is required
to complete the order: (1) Enter Vessel Information, (2)
Material, (3) Paint, (4) Weapons, and (5) Location. Before
entering information into each widget, the widget must be
“activated” by clicking the corresponding selector button
(lower right hand corner of Figure 1). The procedure was
arbitrary, but participants had no trouble learning it because
(1) the information that was needed to fill in the widgets
was available on the Navy Manifest; and (2) the order of the
widgets was straightforward to remember due to a simple
spatial rule, which we provided to participants.

After completing each widget, the participant must click
“ok” and the information that was entered in the fields is no
longer visible. This information was cleared from the fields
because it may have served as an explicit cue indicating
which steps in the task hierarchy have been completed.
After entering information in each of the five widgets, the
order must be processed by clicking the “Process” button.
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Once this button is clicked, a small pop-up window appears
informing the participant of the total number of sea vessels
that have been created. This pop-up window served as a
false completion signal (Reason, 1990). Participants must
click the “ok” button to acknowledge this window. Finally
the “Complete Contract” button must be clicked to finish
the order. The “Next Order” button is clicked to bring up a
new order. Any deviation from this procedure was recorded
as an error; any time an error was made, the computer
emitted a brief auditory tone to alert the participant that an
error was made. When a participant committed an error the
participant had to continue with the task until the correct
action was made.

The interrupting task required participants to answer
addition problems with four single digit addends.

Design and Procedure. Each order on the sea vessel
task constituted a single trial; participants performed twelve
trials. Control and interruption trials were manipulated in a
within-participants design; half of the trials were control
with no interruption and half were interruption trials with
two interruptions each. The order of trials was randomly
generated. There were six predefined interruption points in
the sea vessel task. There was a potential interruption point
after clicking “ok” in each of the five widgets. The sixth
interruption point was after the ‘“Process” button was
clicked. During the experiment there were a total of 12
interruptions (6 interruption trials x 2 interruptions in each
trial); each lasting 15 seconds. Participants were instructed
to answer as many addition problems as possible in this time
interval. The interruptions were equally distributed among
the six interruption locations. When returning to the primary
task after the interruption, there were no visual cues on the
task interface indicating where to resume (i.e. no global
place keeping).

Before beginning the experiment, participants were given
instructions about the two tasks they were going to have to
perform and completed two trials as part of training; one
had no interruptions and one had two interruptions. All
participants were proficient at the task before beginning the
actual experiment. The experiment was self-paced. A break
was offered after six trials.

vvvvvvvvvvvvv

Figure 1: Screenshot of the ship production task

Description of Errors. Perseveration errors were any
actions that repeated an action that had already been
accomplished for that trial. Anticipation and omission
errors were any actions that skipped one or more steps.
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Because it was not possible to actually omit a step, all
skipped steps were categorized as anticipation errors. Errors
where participants failed to activate a particular module
before working on the module (e.g. device initialization
errors (Cox & Young, 2000)) were not analyzed.

Measures. Error rates were calculated for control and
interruption trials by calculating percentages (actual
errors/total error opportunities). Multiple incorrect actions in
a sequence were counted as a single error for the purposes
of calculating error rates. Error actions that occurred less
than 500 ms from the previous action were excluded from
all analyses as they were taken to be inadvertent mouse
clicks; this accounted for less than one percent of the data.

Results and Discussion

Comparing Error Rates. Of the fifteen participants,
eleven participants made at least one perseveration or
anticipation error. Error rates were compared between the
control trials and actions immediately after the interruption
using a repeated measures ANOVA. Participants made more
errors following an interruption (M = 9.3%) compared to the
control (M = .9%), F (1, 14) = 5.8, MSE = 91.9, p<.05.
Participants rarely made errors in the control trials,
suggesting the task was well learned. The non-zero error
rate on control trials also matches studies showing that
people do make errors on well-learned tasks (Reason, 1990).
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Figure 2: Distribution of errors during a sequential action
task. Bars are empirical data; circles are model fits.

Pattern of Error Actions. Next, we focused on the
pattern of error actions. In order to compare error actions at
different points in the task hierarchy, the error actions were
coded relative to the correct action at that point in the task
hierarchy. Recall that the correct order of actions was
Vessel, Material, Paint Scheme, Weapons, Location,
Process and Complete Contract. If the next correct action is
to work on the “Weapons” subtask and the participant made
the error of working on the “Paint” subtask, this error action
was coded as a “-1”. If instead the participant clicks the
“Process” button this was coded as a “2”. Based on this
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coding scheme, a “-1” represents a repeat of the just
completed action and a “1” represents skipping the next
correct action. All errors were coded using this scheme.

The distribution of error actions is illustrated in Figure 2.
A visual inspection of this graph suggests that both
perseveration and anticipation errors occur relatively
frequently. Additionally, the number of errors seems to be
proximate to the next correct action in both directions,
though this effect is not strong in this dataset. To determine
whether the error action of retrieving the subgoal just
completed and performing this action again was the most
common error action, a repeated measures ANOVA was
conducted to compare error actions at this position to all
other error actions. There was a significant difference
among the different error positions, F(7,70) = 12.8, MSE =
434.2, p<.0001. Tukey HSD post-hoc comparisons revealed
that participants were significantly more likely to repeat the
subtask just completed (M = 63.5%) than to make any other
action (all p’s<.05).

Model Description

An MFG model was written in the ACT-R cognitive
architecture.

High Level Description of the MFG model

There are five model components that are critical for routine
sequential skill and errors that occur during execution of a
routine task: the need for well-learned knowledge; the
encoding of an episodic trace; the strengthening constraint,
the priming constraint, and the interference level.
Well-Learned knowledge There are several ways to
represent well-learned knowledge in ACT-R. We provided
the model with declarative knowledge about the task such
that it always knew the sequence of steps it should follow.
Encoding of an episodic memory When the model knows
which step it should perform, it encodes an episodic
memory. A separate ACT-R module (goal-style), called
episodic was created for this purpose. An episodic memory
in this task is an extremely lean memory item that contains
the current goal and a unique identifier. This unique code
helps differentiate an episodic memory from a semantic one.
All episodic memory items are created with a slightly higher
initial activation so that they can be retrieved later. This
mechanism is very similar to other models (Altmann &
Trafton, 2002; Altmann & Gray, 2008); we propose that
people encode and retrieve episodic memories during
interactive routines. This episodic trace is later retrieved to
guide action; retrieval is biased by the strengthening
constraint, the priming constraint, and the interference level.
Strengthening constraint Which episodic memory element
is retrieved depends in part on the strengthening constraint.
The strengthening constraint suggests that the most recent
episode will have the highest activation.

Priming Constraint When the model attempts to retrieve
an episodic memory element, activation spreads from the
focus of attention to related elements, of which the relevant
episodic memory element is one. Thus, the mental context
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provides context to facilitate the retrieval of the correct
episodic trace. The environmental context could also
provide priming, but that aspect is not implemented in the
current model.

Interference Level When the model attempts to retrieve an
episodic trace (or any other memory item, for that matter),
there is interference from other similar memory items.
Interference occurs because a memory request is made that
does not contain a perfect cue for retrieval. Since there may
be several items that match the memory request, the system
retrieves the most active memory element. Transient noise
(sampled from a zero-mean logistic density function) can
cause older elements to be retrieved. Thus, interference can
lead to retrieval of an incorrect episodic memory item.

For all models, we kept most of the ACT-R parameter
defaults. Specifically, we enabled several parameters with
typical ACT-R values, including the maximum associative
strength parameter which is priming (from nil to a typical
value of 3), activation noise (from nil to .03), and the
randomize-time parameter, which allows some perceptual
and motor actions to have a small amount of variability in
their timings (we kept the default value of 3). The base
level learning parameter was set at the default of .5.

A sample experimental model run

To provide a match to the experimental procedure, 15
models (15 participants) were run. An abstracted interface
was used for model runs. The model did not perform the
post-completion step (Byrne & Bovair, 1997).

Normal processing The first thing that the model does in an
experimental trial is to prepare to make a step. In order to
do this, it retrieves from declarative memory the first step to
perform (well-learned knowledge).  Next, the model
encodes an episodic memory of that step (encoding of the
episodic memory). This retrieval and encoding is the
preparation component of the model. Next, the model must
execute the action. The execution component of the model
begins with an immediate attempt to retrieve that episodic
memory. Because the current mental context primes the
episodic memory (priming constraint) and it is the most
recent (strengthening constraint), the correct episodic
memory is highly likely to be retrieved. After retrieving an
episodic memory, that action is executed, the next step in
the procedure is retrieved (well-learned knowledge), and the
whole process repeats. Note that as the model completes
one action, it starts to prepare for and encode the next step.
This interleaving of motor and mental actions has been
shown to occur in a variety of tasks and contexts (Salvucci
& Taatgen, 2008).

Interruption processing When the model notices there was
a screen change, it starts working on the interruption. The
interruption effectively clears out all state information from
the primary task. According to the model, the two most
important aspects of the interruption are that (1) state
information from the primary task is cleared and (2) decay
occurs during the interruption. In the current model, only
cursory model processing occurs during the interruption and
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all state information (e.g., focus-of-attention and problem
representation) is cleared.

Resumption processing After an interruption completes,
the model notices the screen change and attempts to
remember the last task-relevant episodic memory. If it is
unable to recall an episodic item, the model executes a
random action. This rarely happens in the current model,
given the brief interruption duration. If the model is able to
retrieve an episodic memory, it assumes that the retrieved
element was the last completed action so retrieves the next
step and continues in the task.

Error behavior Most of the time, due to the strengthening
and priming constraints, the correct episodic memory is
retrieved and the procedural task is executed flawlessly.
During normal execution, however, the model will rarely
(when transient noise of an older episodic trace is greater
than strengthening and priming), retrieve an incorrect
episodic trace (interference level). When an error is made,
the model suggests that the most likely memory element to
be retrieved will be the one with the next highest activation.

The model makes perseveration errors because the
episode that was just completed is likely to have a relatively
high activation. Thus, the model makes perseveration errors
in a graded fashion away from the correct action.

The model makes anticipation errors because sometimes
the model pre-encodes a particular episodic action before it
gets completed (e.g., it encoded an episode but got
interrupted before it could complete that action). When this
pre-encoding / interruption occurs, the episodic element
with the highest activation is likely to be the next
(uncompleted) action upon resumption and therefore
selected, leading to an anticipation error. Note that when
the model makes an anticipation error, it is a simple skipped
step and can not skip more than one step.

As in the empirical data the model very rarely makes an

error during non-interrupted trials. These errors occur
because the wrong episodic memory was retrieved: noise in
the interference level overcomes the strengthening and
priming constraints of the correct episode.
The role of noise Greater noise in the system increases the
number of errors the system makes because there is a
greater probability that a different episodic memory will
have a higher activation than the correct one. Additionally,
a greater noise increases the “spread” of applicable
episodes. So, increasing noise increases both the number
and spread of errors.

Model fit

As is evident in Figure 1, the model matches the data quite
well; R*=.99 and RMSD = 1.3.

General Discussion

The current paper presents an experiment and model of
sequential actions. The experiment used an interruption
paradigm, increasing the rate of errors enough to see
emergent patterns from the data. The model used a memory
for goals model that describes the process people go through
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both during error-free behavior and when they make errors.
In general, errors occurred because the wrong episodic
memory was retrieved. Perseveration errors occurred
because a recent episodic memory had a high enough
activation that, with noise, it was retrieved instead of the
correct memory. Anticipation errors occurred because the
communication between the preparation and execution of an
action gets disrupted for some reason.

The MFG model shares both similarities and differences
to the other two models of sequential routine action, IAN
and SRN. MFG focuses on perceptual and memorial
processes rather than schemas (IAN) or distributed
representations (SRN). However, it is interesting that all
three models use noise as one of the primary explanatory
constructs for why errors are made.

The current MFG model does have several limitations.
First, it only accounts for sequence errors; it does not
account for intrusions, capture errors, etc. Second, while
both IAN and SRN attempt to model both normal and
patient populations, the MFG model only addresses
normally functioning individuals. Third, the model-task is
quite simple, and a more complete task description is
needed to expand the coverage of this model. Finally, the
MFG model does not model the learning of the task itself.

The experiment reported here and the MFG model itself
do, however, have several strengths. First, the experimental
paradigm used here allows errors to be studied in the lab
with normal populations. This data and other like it should
be able to constrain current models of sequential actions, as
Botvinick and Plaut (2006) suggest. Second, the MFG
makes both qualitative and quantitative predictions about
the error pattern for this task. Both the IAN and SRN
models have been critiqued for the way they make
perseveration errors. Finally, the model makes episodic
memory an aspect of its normal processing, so errors arise
out of normal processing of routine behavior.
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Abstract

We present an embodied model of gaze-following. The
model learns how to follow another’s gaze by using
cognitively plausible mechanisms. It matches a classic gaze-
following experiment (Corkum & Moore, 1998) and runs on
an embodied robotic system.

Keywords: infant gaze-following;
robotics; cognitive architectures

embodied cognition;

Introduction

Gaze-following is an important, early component of joint
visual attention (Scaife & Bruner, 1975; Butterworth &
Jarrett, 1991). Joint visual attention is looking at the same
object as another person. Some researchers have suggested
that joint visual attention is strongly related to the ability to
infer others' mental states (Baron-Cohen, 1995). More
recently, researchers have suggested that gaze following
does not require a representational component (Woodward,
2003).

In fact, several researchers have recently built
computational models to explore the emergence and
learning of gaze-following.

Previous models of gaze-following

One of the challenges confronting models of gaze-following
is to create an embodied model. Embodiment is important
in this domain for a number of reasons. First, there has
recently been a movement for embodied models of
cognition (e.g., Wilson, 2000). Second, spatial and
developmental models seem to be particularly amenable to
embodied cognition. Third, embodied cognition forces an
integrative approach across models, theories, and empirical
results.  Finally, the complexity of the physical world
provides strong tests for the theory under question. Each of
the models of gaze following (including ours) claims they
have embodied characteristics. There are three existing
models of the acquisition of gaze-following.

Nagai, Hosoda, Morita, & Asada (2003) used a neural
network approach to learn that shifts in the caregiver's head
pose pointed to a salient and interesting object. Over time,
the model (which also runs on a robot) learned to follow the
gaze of the caregiver to an interesting object.

Doniec, Sun, & Scassellati (2006) greatly sped up the
algorithm by using pointing gestures to acquire joint
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attention. Their algorithm (which also ran on a robot) had
the robot actively point to the object it thought the caregiver
was gazing at. This pointing greatly increased learning rate
through positive examples. The fact that infants start to
make deictic gestures around 10 months of age (Bates,
Benigni, Bretherton, Camaioni, & Volterra, 1979), which is
about the same age that gaze-following is acquired (Corkum
& Moore, 1995; Corkum & Moore, 1998) provides
empirical evidence that infant gesture may be a component
of gaze-following. Beyond this interesting suggestion,
however, Doniec et al.'s primary contribution is that it is
able to learn at a much faster rate than previous models.

Triesch, Teuscher, Deak, & Carlson (2006) also
developed a model of gaze-following. Triesch et al.'s model
monitors the caregiver's direction of gaze and gradually
learns that the caregiver looks at objects in the environment
that are interesting or novel to the infant, which is
rewarding. Triesch et al. modeled the learning process
through Temporal-Difference (TD) learning, a biologically
plausible reinforcement learning algorithm. Triesch et al.'s
model used a model of habituation to determine when to
shift attention and learned to follow gaze to determine
where optimal (most interesting) objects were in the
environment. Their model used a simple grid world where
objects could only exist in a limited number of locations.

It is a mantra in the modeling community that no model is
perfect; future models attempt to improve upon past models.
All three of these models made strong progress toward the
understanding of gaze-following. Their biggest weakness,
however, is that they had significant issues with cognitive
plausibility. In order to show cognitive plausibility, we (1)
use and integrate a variety of cognitively plausible
mechanisms (e.g., models of human memory, attention,
etc.), (2) run models using a similar experimental paradigm,
and (3) match experimental data using those mechanisms
within the constraints of the experimental paradigm.

Several criticisms have been leveled against the Nagai et
al. model. First, that model required an extremely large
amount of training data; probably too much to be
cognitively plausible (Doniec et al., 2006). Second, their
model does not seem to be able to scale up to the more
representational stage of gaze-following (Butterworth &
Jarrett, 1991). Third, their model seems to work for only a
single caregiver (Doniec et al., 2006).
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Doniec et al.'s model was built in a manner that did not
emphasize cognitive plausibility; their focus was on
achieving fast and efficient learning for gaze-following in a
realistic embodied context. One aspect of their model that
limits its plausibility as a cognitive developmental account
is the fact that they used six objects (toys) for joint gaze-
following. If we assume that their model is approximately a
10 m. old infant, it is well known that infants at that age can
not reliably identify objects a caregiver is gazing at if there
are other objects in the line of sight (Butterworth & Jarrett,
1991).

While we agree with many aspects of Triesch et al.’s
model, several criticisms have also been leveled at it. Some
researchers have explicitly questioned the psychological
plausibility (Moore, 2006). Specifically, Moore suggested
that accurately modeling the attentional processes of infants
during gaze following is a critical component to
psychological plausibility in gaze-following. Additionally,
because Triesch et al. used a grid system to simplify the
training, the need for spatial cognition was greatly reduced.
Thus, according to critics, a more robust and/or
psychological representation of space was needed (Doniec
et al., 2006; Moore, 2006).

The goal of this project is to show how an embodied
model of gaze-following can not only perform gaze-
following but also have a higher degree of cognitive
plausibility by having cognitive attentional mechanisms
(Doniec et al., 2006; Moore, 2006), a spatial representation
(Doniec et al., 2006; Moore, 2006), and a match to data.
While a match to data is not a perfect measure of cognitive
plausibility (Cassimatis, Bello, & Langley, 2008), it can be
used to differentiate models. At the least, if a model can
show performance and competence as well as a reasonable
data fit, it is more plausible (and, to us, preferred), than a
model that does not.

The data we attempt to match is an experiment by
Corkum and Moore (1998).

Method (Corkum & Moore, 1998)

A complete description of the experiment can be found in
Corkum & Moore (1998).

Participants

63 participants completed the study, 21 participants in each
of three age groups (6—7, 8—9, and 10—11 month olds).

Setup and Procedure

The experiment took place in a cubicle where two toys had
been placed. Each toy rested on a turntable on either side of
the room. When activated, the toy lit up and the turntable
rotated. Both toys were visible to the infant at all times.

At the beginning of the experiment, each child entered
into the cubicle and sat on their parent’s lap directly across
from the experimenter. The experimenter sat .6 m away.
The experimenter called the child’s name or tickled the
child’s tummy to get the infant to look at the experimenter.
After the child looked at the experimenter, the trial began.
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Each trial consisted of the experimenter looking 90° left
or right at one of the two toys. The experimenter gazed at
the toy for 7 s. During the trial, the experimenter did not
vocalize or touch the infant, nor did the experimenter call
the infant’s name.

The experiment consisted of three consecutive phases. In
the baseline phase, there were four trials where the
experimenter looked at a toy (two trials to each side).
During the baseline phase the toy remained inactive (i.e.,
did not light up or turn) in order to assess spontaneous gaze-
following.

During the shaping phase, there were four trials (two to
each side), but this time, regardless of the infant’s gaze, the
toy that was gazed at by the experimenter lit up and rotated.

During the final testing phase, a maximum of 20 trials (10
to each side) occurred where the toy was activated only if
the infant and the experimenter looked at the same toy. If
the child successfully followed the experimenter’s gaze 5
times in a row, the experiment terminated.

Scoring

Each head turn was coded as either a target (joint-gaze with
the experimenter) or a non-target (the wrong toy was gazed
at) response. Infant head turns that did not look at a toy
(e.g., naval-gazing) were not scored.

Random  gaze-following  would correspond to
approximately 50% accuracy. Accurate gaze-following
would correspond to an accuracy rate significantly greater
than 50%, while anti-gaze-following would correspond to
an accuracy rate significantly less than 50%.

Results and Discussion

To maintain clarity and connection with other researchers
who report accuracy, percentage scores will be reported here
for both the baseline and the last four test trials instead of
the reported difference scores.

As Figure 1 suggests, only 10—11 m infants could
reliably follow gaze at baseline. After training, however,
both 8—9 m and 10—11 m infants could reliably follow
gaze (there was a slight, non-significant increase in gaze-
following for the 6—7 m infants).

These results are consistent with other researchers
(Corkum & Moore, 1995) who have shown that gaze-
following reliably occurs during the end of the first year:
only 10—11 m infants could reliably follow gaze at
baseline. Interestingly, however, 8—9 m infants learned to
follow gaze in the experimental setting with a modest
amount of training.

Corkum and Moore (1998) interpret these data as showing
that there are several precursors to gaze-following. First,
infants must be mature enough to respond to different
spatial locations; they must have some rudimentary spatial
ability. Second, infants must be able to learn that an
interesting event will occur where the person looks. They
further suggest that the adult’s head turn cues the infant’s
attention in the direction of the turn.

We next describe the architecture and the task model.
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Gaze-Following
From Corkum and Moore (1998)
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Figure 1: Experimental data from Corkum and Moore
(1998). Bars are experimentall data and circles are model
data. Error bars are 95% confidence intervals.

Architecture Description

ACT-R is a hybrid symbolic/sub-symbolic production-based
system ( Anderson, 2007). ACT-R consists of a number of
modules, buffers, and a central pattern matcher. Modules
contain a relatively specific cognitive faculty associated
with a specific region of the brain. For each module, there
are one or more buffers that communicate directly with that
module as an interface to the rest of ACT-R. At any point in
time, there may be at most one item in any individual
buffer; thus, the module’s job is to decide what and when to
put a symbolic object into a buffer. The pattern matcher uses
the contents of the buffer to match specific productions.

ACT-R supports the concept of purely bottom-up
processing. Bottom-up or reactive processing occurs when
there is no goal-directed processing that occurs. In contrast,
top-down or goal-directed processing occurs when the goal
buffer (intentional module) is part of the processing.

ACT-R interfaces with the outside world through the
visual module, the aural module, the motor module, and the
vocal module. Other current modules include the
intentional, imaginal, temporal and declarative modules.

We have modified ACT-R by allowing it to perceive the
physical world by attaching robotic sensors and effectors to
it; we call our system ACT-R/E (the “E” is for Embodied).
For ACT-R/E, we have added a new module (spatial) and
modified the visual, aural and motor modules to work with
our robot and to use real-world sensor modalities. We did
not modify other parts of the architecture itself. Below we
discuss the modifications to visual and motor (aural is not
used in this project) and a brief description of the spatial
module. Figure 2 shows a schematic of ACT-R/E.

Visual

The Visual Module is used to provide a model with
information about what can be seen in the current
environment. ACT-R normally sees information presented
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on a computer monitor. We modified the original visual
module to accept input from a video camera. The visual
module allows access to both the location of an object (the
“where” system) and a more detailed representation (the
“what” system). Obtaining additional information about an
object or person requires declarative retrieval(s). We used a
3D optical flow model to capture a person’s 3D head pose in
space and a fiducial tracker for object identification and
localization. These systems are described more fully
elsewhere (Kato, Billinghurst, Poupyrev, Imamoto, &
Tachibana, 2000; Trafton, Bugajska, Fransen, & Ratwani,
2008; Fransen, Hebst, Harrison, & Trafton, under review).
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Figure 2: Schematic of ACT-R/E
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Traditional ACT-R has a virtual motor system that allows
virtual hand movements (e.g., typing, mouse movements).
ACT-R/E’s motor module allows commands to be issued
for navigation and mobility, as well as providing self-
localization knowledge. In this project, motor is used to
control the robot’s head, including the eyes and head pose.

Spatial

To facilitate acting in space, ACT-R/E utilizes a spatial
theory called Specialized Egocentrically Coordinated
Spaces (SECS, pronounced seeks) (Harrison & Schunn,
2003). SECS is neurologically inspired and based on 3D
space (Previc, 1998). SECS provides two egocentric spatial
modules, which are responsible for the encoding and
transformation of representations in service of navigation
(configural) and manipulation (manipulative).

The configural module provides high fidelity location
information for attended representations that is
automatically updated as the model moves through or looks
around the environment. The configural module represents
the world as spatial blobs that need to be navigated around,
above, or below. These spatial blobs do not have a high
degree of precision. The manipulative module uses a metric,
geon-based 3D representation for objects. The manipulative
module provides encodings of object geometry and
orientation, a critical component to the gaze-following
discussed below.
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Simulator and Robot Description

Currently, the open-source Stage robot simulator (Collett,
MacDonald, & Gerkey, 2005) is used to enable data
collection and to speed-up the model development cycle.

Our current robot platform is the MDS (Mobile-
Dexterous-Social) Robot (Breazeal, 2009). The MDS robot
neck has 18 DoF for the neck and head including eye pitch
and pan which allows the robot to look at various locations
in 3D space. Perceptual inputs include a color video camera
and a SR3000 camera to provide depth information. For the
current project, the MDS head can move its eyes and head
to look at various locations in 3D space.

Model Description

An ACT-R/E model was developed that simulates the
development of gaze-following.

High Level Description of the gaze-following model

There are five model components that enable gaze-
following: the reactive nature of the model; using ACT-R’s
memory system as a model of habituation; a more detailed
description of the spatial components; the gaze-following
itself; and the utility learning mechanism.

The reactive nature of the model The model itself is
completely bottom-up; there is no goal-directed or top-down
action in this model. The model was written in this manner
because early gaze-following seems to be emergent rather
than goal-directed (Triesch et al., 2006). Later models in the
developmental process will need to have a goal-directed
component.

Habituation in ACT-R When the model gazes at any
object (person, toy, etc.), it looks at that object until it can
recall the object before it attempts to look at a different
object. This is an approximation of habituation (Sirois &
Mareschal, 2002); several other researchers (Triesch et al.,
2006) use an exponential function that is remarkably similar
and formally equivalent to ACT-R’s model of memory
retrieval (Anderson, Bothell, Lebiere, & Matessa, 1998).

After the model gazes at and habituates to an object, it

starts to look for a new object.
Spatial Module As mentioned earlier, standard ACT-R has
only a rudimentary spatial ability. This ability is part of the
visual module. In the visual module, a visual description of
the object (a “what” component) and where that object is
located in screen coordinates (a “where” component) is
available (Byrne & Anderson, 1998). ACT-R’s what and
where system are used any time visual objects in the world
need to be attended to. Many successful models of attention
have been built using these mechanisms.

Unfortunately, the what and where components of ACT-R
are not sufficient to follow gaze, much less provide even
rudimentary spatial competency. As previously mentioned,
two spatial modules were added to ACT-R, the configural
module and the manipulative module.

The configural module is focused on the configuration of
objects in the world relative to self. Specifically, it allows

147

the model to determine how far away from self another
object is and what angle that object is from self. Configural
information changes dynamically as objects in the world
change or move (including the self-model). This
information is critical for navigation in general and spatial
cognition in an embodied context.

For gaze-following, the manipulative buffer provides the
orientation that a particular object is facing. Specifically,
the manipulative buffer provides information about what
direction a person is facing (body) or gazing (head).

The visual, configural, and manipulative modules are
linked symbolically so that different types of spatial
information about an object can be easily kept track of.
Gaze Following Gaze-following was implemented by
adding constraints to the visual search mechanism. As
implemented, gaze-following is a directed visual search
along a retinotopic vector. Given a starting point and either
an angle or an end point, the visual search will return the
location on an object somewhere along that line within some
tolerance. Note that this mechanism works in 3D space.

This simple mechanism allows the visual system to find
candidate objects along a gaze, or any potential
obstructions. These skills align nicely with Butterworth’s
developmental stages of gaze (Butterworth & Jarrett, 1991).
Utility Learning ACT-R is able to not only learn new facts
and rules, but also to learn which rule should fire (called
utility learning in ACT-R). It accomplishes this by learning
which rule or set of rules lead to the highest reward. ACT-R
uses an elaboration of the Rescorla-Wagner learning rule
and the temporal-difference (TD) algorithm. The TD
algorithm has been shown to be related to animal and
human learning theory. The elaboration in ACT-R is more
applicable for human learning and allows it to be more
easily incorporated into a production-system framework (Fu
& Anderson, 2006).

Briefly, any time a reward is given (e.g., for infants, a
smile from a caregiver), a reward is propagated back in time
through the rules that had an impact on the model getting
that reward. Punishments may also be given with a similar
time-course, but no punishments were given in this model.

For all models, we kept most of the ACT-R parameter
defaults. The parameters that were changed include the
base level learning (a decay value of .2 instead of the typical
default of .5), which allowed for a reasonable habituation
timecourse; utility noise (set at a reasonable .5) to allow
low-use productions to occasionally fire; and the utility
learning rate (set at .2) which allowed the productions to
converge to a stable expected utility within a reasonable
period of time (minutes instead of months).

A sample experimental model run

The first thing that the model does in an experimental trial is
to find a person (called a caregiver in this example). This
corresponds to the experimental procedure where the
experimenter got the infant’s attention (Corkum & Moore,
1998). The model looks at the caregiver until it has
habituated to that person, as described above. The caregiver



Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

looks at an object in the environment for 7 s or until the
model makes a decision about where to look.

When the model is “young” it has a favored rule set,
which is to locate, attend-to, and gaze at an object. The
object can be anything in the model’s field of view and it is
chosen randomly.

If the caregiver is looking at the same object that the
model decides to look at, the model is given a small reward.
If the caregiver is looking at a different object than the
model, no reward is given but the trial is completed and the
reward process begins anew.

Even though there is a favored rule to find an object and
gaze at it, the gaze-following rule competes with it. The
gaze-following rule has a much lower utility when the
model is young so it does not get an opportunity to fire very
often. However, because of the relatively high noise value
for utility (called expected-utility-noise in ACT-R), the
gaze-following rule does occasionally get a chance to fire.
If the gaze-following rule has a high enough utility to fire, it
attempts to follow the gaze of the caregiver to an object.

The gaze-following production wuses configural
knowledge to determine the caregiver’s distance and
orientation from itself. As long as the model attends to the
caregiver, the current information is available to the model.

The gaze-following production also uses manipulative
knowledge of the head of the caregiver to determine what
direction the caregiver’s head is facing. This information is
clearly important because without it the gaze of the
caregiver could not be determined. Note also that the model
assumes that the eyes are facing the same direction as the
head. For the experimental procedure discussed here, this
assumption is appropriate, but as children develop (by 1
year) they do differentiate between head pose and where the
eyes themselves are gazing (Brooks & Meltzoff, 2002).

With this information, the infant model looks from the
caregiver in the direction the head is facing. The model
then finds the first available object in that direction, which
is consistent with previous research (Butterworth & Jarrett,
1991). The model is again given a small reward. After
habituation to that object, the trial ends and the model looks
for another object to attend to.

Because the gaze-following production is correct more
often than the random production (which is accurate on
average  1/(number-of-objects), the  gaze-following
production slowly gains utility. However, it takes a period
of time before the combination of noise and utility allow the
gaze-following production to overtake and eventually
become dominant over the random-object production.

Modeling developmental progress

When the model is young, it has a handful of productions
that look around the world. Experience is simulated by
concentrating gaze-following learning such that a few
minutes is equal to 2 months. For the 6-7 m model, it was
given 80 seconds of experience with looking around a
simple world at objects and receiving feedback as described
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in the experimental run.  For the 8-9 m model, three
minutes of experience were given, and for the 10-11 six
model, six minutes of experience were given. Because the
rate of learning is dependent entirely on the utility learning
rate parameter, learning occurred quite quickly in this
model.  Utility learning rate could be scaled down
substantially to match actual infant learning time. In order
to do this correctly, however, it would be important to know
approximately how many times an infant attempts to follow
a gaze or how often an infant receives feedback or the infant
found something especially interesting to look at as well as
knowledge about the environment (e.g., the number of
objects).  Other researchers have come to a similar
conclusion concerning the importance of learning in gaze-
following (Corkum & Moore, 1998; Triesch et al., 2006).

At each age (6-7, 8-9, and 10-11 m), the model was put
through the exact same experimental procedure as Corkum
& Moore (1998). Note that the lighting up and rotating of
the toy provided a strong reward to the child, which is
modeled by joint attention during the training phase of the
procedure; no reward was given during the baseline phase,
so this was a relatively pure measure of age-related ability.

To provide some match to the experimental procedure, 21
models (corresponding to the 21 participants) were run at
each age group. However, to achieve stable results, the
model was run 10 times with no utility learning for the
baseline and after training conditions. This allowed the
model to be tested after different age or experimental related
amounts of practice yet maintain stable results.

Model fit

As is evident in Figure 1, the model matches the data quite
well; R = .95 and RMSD = .3. Critically, all model points
are within 95% confidence intervals of the data. The model
suggests that there is not a qualitative change in any child,
but that as children gain more experience they get better at
it. Interestingly, with a modest amount of experimental
training, the 8-9 m model also showed improvement
(though not, of course, as much as the 10-11 m model).
Again the model suggests that the reason for this is that 8-9
m children were at the “right” developmental age to take
advantage of the concentrated training. This training
allowed productions that occasionally fired during “real
life” to be focused and rewarded, which brought their utility
to surpass the random behavior they had before the
experiment started. Note again that the 6-7 m children did
not statistically improve. The model explanation for this is
that they simply had not had enough experience yet.

Embodied gaze following

The infant model at each stage of development was
trained using Player and then run on an embodied platform
(our robot). Movies are available at
http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobotsVideos.

php.
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General Discussion

We described an embodied model of gaze-following that is
not only functional but matches data from a classic gaze-
following paradigm and experiment. The primary advantage
of this model over previous models is that it has a very high
degree of cognitive plausibility. First, as Moore (2006)
suggested, it has an accepted model of visual attention.
Second, it has a psychologically plausible representation of
space that is critical to the success of the model. Third, this
model is embodied and runs on a physical robot, allowing
additional tests of the theory as well as added complexity.

Of the model’s 5 components (reactivity, habituation, the
spatial module, gaze-following, and utility learning), three
of them are absolutely critical to the success of the model.
The reactivity nature of the module is a theoretical
commitment to modeling young children, though the model
could be written using a top-down model. Likewise,
habituation is something that has been theoretically
proposed and empirically observed, though it is not a critical
component to the success of the model. The other three
components, however, are needed. The spatial component
integrates the spatial aspects of the task while the entire
system could not function without the ability to perceive
which direction a person is gazing. Because the
developmental progress is accounted for by utility learning,
it also is a necessary part of the model.

The model does make an interesting prediction: that 6 m
infants (and even younger) could learn to follow gaze with
enough practice. A core component to this prediction is that
the infant have enough patience to go through enough
training and the ability of young children to extract 3D
information from the world. It is believed that 6 m olds do
have this capability, but very young children do develop it.

This model also has several similarities to other infant
data. The model does not understand obstructions and
follows gaze to the first object along a path (Butterworth &
Jarrett, 1991). The architecture does have the capability,
however, to perform relatively precise gaze-following,
ignoring highly salient objects in the path (the ‘geometric’
stage; Butterworth & Jarrett, 1991). The current model can
not, however, follow gaze to a position outside its current
field of view (the ‘representational’ stage). The current
model has no true perspective-taking ability at all.

In order to provide the model with perspective taking
abilities, it would presumably need more goal-directed
cognition as well as more developed spatial capabilities.
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Abﬁract Points this game: 4 Trial 11 0f 16 Game 1 of 50
We consider a class of bandit problems in which Rt 0575 Retios 0500
a decision-maker must choose between a set of 1 1
alternatives—each of which has a fixed but unknown o o
rate of reward—to maximize their total number of [
rewards over a short sequence of trials. Solving these i
problems requires balancing the need to search for b b
highly-rewarding alternatives with the need to capitalize 10 ~ 100
on those alternatives already known to be reasonably r
good. Consistent with this motivation, we develop
a new model that relies on switching between latent
searchingand standingstates. We test the model over
a range of two-alternative bandit problems, varying
the number of trials, and the distribution of reward
rates. By making inferences about the latent states from
optimal decision-making behavior, we characterize how
people should switch between searching and standing.
By making inferences from human data, we attempt to
characterize how people actually do switch. We discuss | | l
the implications of our findings for understanding and
measuring the competing demands of exploration and . . ; ;
exploitatign in decisign-mgking. P Elgure 1: An example bandit probl_em, with t_wo alterna-
tives and 16 total trials. After 10 trials, the first alterna-
Keywords:  Bandit problems, exploration versus  tive on the left has 2 successes (lighter, green bar) and

exploitation, reinforcement learning, Bayesian graphical ; ; ;
models, human decision-making, optimal decision- 5 failures (darker, red bar), while the alternative on the

making right has 1 success and 1 failure.

Bandit Problems

Bandit problems, originally described by Robbins tivé may be the more rewarding one, even though much
(1952), present a simple challenge to a decision-makef€SS is known aboutit.
They must choose between a known set of alternatives As this example makes clear, finite-horizon bandit
on each of a series of trials. They are told each of theproblems are psychologically interesting because they
alternatives has a fixed reward rate, but are not told whagapture the tension between exploration and exploitation
the rates are. Their goal is just to maximize the total re-€vident in many real-world decision-making situations.
ward they receive over the series of trials. In this paperDecision-makers must try to learn about the alternatives,
we focus on short finite-horizon versions of the bandit Which requires exploration, while simultaneously satis-
problem, involving just a small number of trials. fying their goal of attaining rewards, which requires ex-
As an example of the challenge posed by these sortgloitation. In this way, studying human performance
of bandit problems, consider the situation shown in Fig- on bandit problems addresses basic questions, including
ure 1. Here there are two alternatives, and 16 total triald10w people search for information, how they adapt to
available to attain rewards. After 10 trials, one alterna-the information they find, and how they optimize their
tive has been chosen 8 times, and returned 3 successkghavior to achieve their goals.
and 5 failures, while the other alternative has been tried Human performance on bandit problems has been
just 2 times, for 1 success and 1 failure. Which alter-studied from a variety of psychological perspectives.
native should be chosen on the 11th trial? Choosing theEarly studies used models and experimental manipula-
first alternative exploits the knowledge that it quite likely tions motivated by theories of operant conditioning (e.g.,
returns rewards at a moderate rate. Choosing the se®rand, Wood, & Sakoda, 1956); later studies were in-
ond alternative explores the possibility that this alterna-formed by economic theories with a focus on deviations
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from rationality in human decision-making (e.g., Banks, decision-making. In trials in the first ‘exploration’ stage,
Olson, & Porter, 1997; Meyer & Shi, 1995); most re- alternatives are chosen at random. In the second ‘ex-
cently human performance on the bandit problem hagloitation’ stage, the alternative with the best observed
been a topic of interest in cognitive heuroscience (e.g.ratio of successes to failures from the first stage is cho-
Cohen, McClure, & Yu, 2007; Daw, O’'Doherty, Dayan, sen. The demarcation between these stages is determined
Seymour, & Dolan, 2006) and probabilistic models of by a free parameter, which corresponds to the trial at
human cognition (e.g., Steyvers, Lee, & Wagenmakerswhich exploration stops and exploitation starts.
in press).

One common finding is that people often switch flexi- Our Model
bly between exploration and exploitation, often choosingOur model preserves the basic idea of a latent explo-
alternatives in proportion to their reward rate, unless theyration or exploitation state guiding decision-making, but
are given strong incentives to maximize their reward bymakes two substantial changes. First, we allow each
repeatedly choosing the most-rewarding alternative (e.g trial to have a latent state, introducing the possibility of
Shanks, Tunney, & McCarthy, 2002). Typically, these switching flexibly between exploration and exploitation
experiments involve a large number of trials, and so oneto solve bandit problems. In our model, for example, it
plausible explanation for sub-optimal probability match- is possible to begin by exploring, then exploit, and then
ing is that people are allowing for the possibility that return for an additional period of exploration before fin-
rewards rates might change over time. This seems lesshing by exploiting. Indeed, any pattern of exploration
likely to be a confounding consideration in short-horizon and exploitation, changing trial-by-trial if appropriate, is
bandit problems, and so we are especially interested tpossible.
know if people switch between exploration and exploita- Second, we implement exploration and exploitation
tion for these problems. behavior using a more subtle mechanism than just ran-

Accordingly, in this paper we develop and evaluate adom search followed by deterministic responding. In
probabilistic model that assumes different latent statesparticular, for the two-alternative bandit problems we
guide decision-making for short-horizon bandit prob- consider, our model distinguishes between three differ-
lems. These latent states give emphasis either to searcbnt situations,
ing the environment, or to choosing the same alterna-

tive repeatedly, and so dictate how a decision-maker The Samesituation, where both alternatives have the

solves the dilemma in our introductory example, where
a well-understood but only moderately-rewarding alter-

native must be compared to a less well-understood buf

possibly better-rewarding alternative. Using the optimal

same number of observed successes and failures.

The Better-Worsesituation, where one alternative has
more successes and fewer failures than the other alter-
native (or more successes and equal failures, or equal

decision process, and human data, for a range of bandit
problems we apply our model to understand the best way
to switch between searching and standing, and how peo-
ple actually do switch, for short horizon two-alternative
bandit problems.

successes and fewer failures). In this situation, one
alternative is clearly better than the other.

The Search-Standgituation, where one alternative has
been chosen much more often, and has more successes

The outline of the paper is as follows. In the next sec-
tion, we present our model, including its implementation
as a probabilistic graphical model. We then report an ex-

but also more failures than the other alternative. In this
situation, neither alternative is clearly better, and the
decision-maker faces a dilemma. Choosing the better-

periment collecting human and optimal decisions for a
range of bandit problems. Next, we use the behavioral
data and our model to make inferences about the optimal
way to switch between searching and standing, and how
people actually do switch. Finally, we draw some con-Within our model, which alternative is chosen depends
clusions relating to simpler latent state models suggestedn the situation, as well as the latent search or stand state.
by our analysis. For thesamesituation, both alternatives have an equal
probability of being chosen. For thgetter-worsesitua-
A Latent State M odel tion, the better alternative has a high probability, given

Bandit problems have been widely studied in the fieldsPY & parametey, of being chosen. The probability the

of game theory and reinforcement learning (e.g., BerryWorse alternative is chosen is-ly.

1972; Berry & Fristedt, 1985; Gittins, 1979; Kaebling, T Lnwitvelv. o . _— _
ntuitively, our notion of searching is a form of exploration,

Littman, & Moore, 1996; Macready & Wolpert, 1998; 4nq our notion of standing is a form of exploitation. We use the
Sutton & Barto, 1988). One interesting idea coming from new terms, however, to emphasize that our search and stand de-
established reinforcement learning models is that of a la<isions have formal characterizations that are different defini-

tent state to control exploration versus exploitation be-tions of exploration and exploitation in reinforcement learning
havior algorithms. For exampleg-first uses simple random choices

. _— . as a model of exploration, whereas our approach is based on
In particular, the é-first’ heuristic (Sutton & Barto,  choosing specifically the alternative that is less well known in
1988) assumes two distinct stages in bandit problema search-stand situation.

understood alternative corresponds to standing; choos-
ing the less well-understood alternative corresponds to
searchind.
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a ) is
1/2 ifAissame

if A is better
A A e
Sij £ Sil;' ﬂ? —y ifAisworse

6 = if Ais search and; =0
—y ifAissearchand; =1
if Ais stand andz = 1
—vy ifAisstand andz = 0.
2 @ @ The shadedl;; node is the observed decision made,

dij = 1if alternative A is chosen ardj; = O if alternative
B is chosen, so thatj ~ Bernoulli(8;;).
In this way, the graphical model in Figure 2 provides

a probabilistic generative account of observed decision

dos behavior. It is, therefore, easy to use the model to make
9 inferences about latent search and stand states from deci-

sion data. In particular, the posterior distribution of the
j problems variable represents the probability that a decision-maker
has a latent search versus stand state oithhteial. In

\_ ¢ trials / the next section, we describe an experiment that provides
both human and optimal data suitable for this type of

Figure 2: Graphical representation of the latent state?nlysis.
model.

RP< P< kP

Experiment

Participants

For the search-standsituation, the exploration alter- e collected data from 10 naive participants (6 males, 4
native will be chosen with the high probabilityif the  females).
decision-maker is in a latent search state, but the ex-
ploitation alternative will be chosen with probability ~ Stimuli

if the decision-maker is in the latent stand state. In thiswwe considered six different types of bandit problems,
way, the latent state for a trial controls how decisions areg)| involving just two alternatives. The six bandit prob-
made each time the decision-maker encounters a searcm types varied in terms of two trial sizes (8 trials and
stand situation. 16 trials) and three different environmental distributions
. . (‘plentiful’, ‘neutral’ and ‘scarce’) from which reward
Graphical Model Implementation rates for the two alternatives were drawn.
We implemented our model as a probabilistic graphical Following Steyvers et al. (in press), we defined these
model in WinBUGS (Lunn, Thomas, Best, & Spiegel- environments in terms of Beta, ) distributions, where
halter, 2000), which makes it easy to do fully Bayesiana corresponds to a count of ‘prior successes’ @i
inference using computational methods based on postea count of ‘prior failures’. The three environmental dis-
rior sampling. The graphical model is shown in Figure 2, tributions are shown in Figure 3, and use valees- 4,
using the same notation as Lee (2008). B=2,a=B=1,anda = 2, = 4, respectively.

The encompassing plates show the repetitions for the
trials within each problem, and the multiple problems Procedure

completed by a decision-maker. The square shadeg\e collected within-participant data on 50 problems for
nodess], S Fi'jA and Filj3 are the observed counts of g six bandit problem conditions, using a slight variant
successes and failures for alternatives A and B on thef the experimental interface shown in Figure 1. The
ith trial of the jth problem. The unshaded noglés the  order of the conditions, and of the problems within the
‘accuracy of execution’ parameter, controlling the (high) conditions, was randomized for each participant. All
probability that the deterministic heuristic described by 6 x 50= 300 problems (plus 5 practice problems per con-
our model is followed. The unshaderinodes are the dition) were completed in a single experimental session,
discrete latent indicator variables, with= 0 meaning  with breaks taken between conditions.
theith trial is in the explore state, argl= 1 meaning it
is in the exploit state. We assumed uninformative priorsOptimal Performance
y~ Uniform(0, 1) andz ~ Bernoulli(1/2). Given thea andP parameters of the environmental dis-
The double-bordere6; node is a deterministic func-  tribution, and the trial size, it is possible to find the opti-
tion of the S}, § , Fi’f, FiJB, y andz variables. It gives mal decision-making process for a bandit problem. This
the probability that alternative A will be chosen on the is achieved via dynamic programming, using a recursive
ith trial of the jth problem. According to our model, this approach well understood in the reinforcement learning
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Table 1: Posterior predictive agreement between the la-

Scarce Plentiful tent state model, and the optimal and human decision-
$ ) makers (DMs), for the three environments and two prob-
lem sizes.
2 Plentiful Neutral Scarce
a DM 8 16 8 16 8 16
! Optimal 95 .93 95 .94 92 .90
Neutral PH 96 .94 92 .92 84 .90
ST 99 .87 94 84 .93 .80
AH .89 .89 76 .75 71 .73
h 02 04 0% o8 1 MM 92 .88 92 .93 90 .94
Reward Rate Sz 92 .94 95 .92 .88 .91
MY 94 .95 92 .93 .89 .88
. . . EG 94 91 90 .90 .85 .89
Figure 3: The plentiful, neutral and scarce environmental
distributions of reward rates. MZ 97 .91 92 .88 93 .86
RW .89 .90 .86 .80 .84 .80
BM .93 .88 92 .87 .89 .90

literature (e.g., Kaebling et al., 1996). Using this ap-
proach, we calculated optimal decision-making behavior

for all of the problems completed by our participants. proximates the posterior probability that tta trial uses

; ; the stand state.
Modeling Analysis Figure 4 shows the posterior means of theariables

We applied the graphical model in Figure 2 to the opti- for the optimal decision process, and all 10 participants,

mal and human decision data, for all six bandit problemin all six experimental conditions. The experimental con-

conditions. For each data set, we recorded 1,000 postetitions are organized into the panels, with rows corre-

rior samples from the joint distribution of the unobserved sponding the plentiful, neutral and scarce environments,

variables. We used a burn-in also of 1,000 samples, andnd the columns corresponding to the 8- and 16-trial

multiple independent chains, to assess convergence. problems. Each bar graph shows the probability of an
stand state for each trial, beginning at the third trial (since

Basic Results it is not possible to encounter the search-stand situation

- ; ; until at least two choices have been made). The larger

Descriptive Adequacy A basic requirement of any bar graph, with black bars, in each panel is for the op-

cognitive model is that it can fit the observed data rea- - ! decici King d h ller b h
sonably well. To test the descriptive adequacy of the |atimal decision-making data. The 10 smaller bar graphs,
tent state model, we used a standard Bayesian approat‘fﬂth gray bars, corresponds to the 10 participants within

and evaluated its posterior predictive fit to the to all of that condition.
the human and optimal decision-making data (i.e., the nalysis
agreement between the model and data averaged over the o o
posterior distribution of the parameters). The levels of The most striking feature of the pattern of results in Fig-
agreement are shown in Table 1. It is clear that the latent'€ 4 is that, to a good approximation, once the optimal
state model is generally able to fit both human and opti-Of human decision-maker first switches from searching
mal behavior very well. There are some small suggestivd® Standing, they do not switch back. This is remark-
differences—scarce environments seem, for example, t8ble, given the completely unconstrained nature of the
be a little less well described, as does one participanfnodel in terms of search and stand states. All possible

(AH)—that are worthy of future investigation, but do not Seduences of these states over trials are given equal prior
affect our broad analyses in this paper. probability, and all could be inferred if the decision data

warranted.

Latent States Having checked the descriptive ade-  The fact that both optimal and human data lead to
quacy of the latent state model, our main interest is in they highly constrained pattern of searching and standing
change between latent search and stand states, as shoWtes across trials reveals an important regularity in ban-
by the inferred model param_ete’fs.The basic results it problem decision-making. We consider this finding
needed to address this question are summarized by th§st in terms of optimal decision-making, and then in
posterior mean of theg indicator variables, which ap- terms of human decision-making.

2We observed that the inferracparameter values were all Optimal Decision-Making The optimal decision pro-
close to 1, as expected, and do not report them in detail. cess results in Figure 4 show that it is optimal to be-
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Figure 4: Each bar graph shows the inferred probabilities of the stand state over the trials in a bandit problem. Each
of the six panels corresponds to an experimental condition, varying in terms of the plentiful, neutral or scarce envi-
ronment, or the use of 8 or 16 trials. Within each panel, the large black bar graph shows the stand probability for the
optimal decision-process, while the 10 smaller gray bar graphs correspond to the 10 participants.

gin with searching, then transition (generally) abruptly example, the optimal decision process for 8-trial prob-
to standing at some trial that depends on the nature ofems essentially switches from searching to standing at
the environment, and remain in the stand state for all ofthe 5th trial in the plentiful environment, but at the 4th
the remaining trials. The plentiful and scarce environ-trial in the neutral environment, and the 3rd trial in the
ments for 16-trial problems show a few trials where therescarce environment.

is uncertainty as to whether searching or standing is opti- . ) ) L

mal but, otherwise, it seems clear that optimal decision1Uman Decision-Making While the regularity in

making can be characterized by a single transition frorSWitching might not be surprising for optimal decision-
searching to standing. making, it is more remarkable that human participants

show the same pattern. There are some exceptions—
Itis also clear from Figure 4 that the optimal decision- both participants RW and BM, for example, sometimes
making must be sensitive to the environment in switch-switch from standing back to searching briefly, before
ing from searching to standing. In particular, as environ-returning to standing—nbut, overall, there is remarkable
ments have lower expected reward rates, the switch awagonsistency. Most participants, in most conditions, begin
from searching begins earlier in the trial sequence. Foby searching, and transition at a single trial to standing,
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which they maintain for all of the subsequent trials. Berry, D. A. (1972). A Bernoulli two-armed bandit.
However, while there is consistency over the partici- The Annals of Mathematical Statistie$3(3), 871—
pants in switching just once from searching to standing, 897.

there are clear differences between individuals in whemgerry, D. A., & Fristedt, B. (1985). Bandit prob-
that switch happens. For example, the participant SZ, in
all of the conditions, switches at a much later trial than
most of the other participants.

There also seem to be individual differences in terms
of sensitivity to the environment. Some participants

lems: Sequential allocation of experimentson-
don: Chapman & Hall.

Brand, H., Wood, P. J., & Sakoda, J. M. (1956). Antici-
pation of reward as a function of partial reinforce-

switch at differenttrials for different environments, while ment. Journal of Experimental Psycholog§2(1),

others—such as participant ST—switch at essentially the 18-22.

same trial in all experimental conditions. Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should

) ) | stay or should | go? exploration versus exploita-

Discussion tion. Philosophical Transactions of the Royal So-

Our basic findings involve both a regularity and a flexi- ciety B: Biological Science$62, 933-942.

bility in the way people (and optimal) decision-makers Daw, N. D., O’'Doherty, J. P., Dayan, P., Seymour, B.,
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Abstract

We extend a previously developed model of routine action
selection by incorporating functional components to support
behaviour in a simple non-routine task — sorting cards
according to a rule that must be discovered by the subject. A
minimal extension to the previous model, consisting of an
activation-based working memory/inference system in which
evidence is incorporated by simply exciting or inhibiting
relevant rule nodes, is demonstrated to be capable of
capturing basic performance on the task. The task is
commonly used in assessing frontal brain injury, and the
extended model is further shown to be capable of capturing
the gross behavioural characteristics of frontal patients.
However, it is argued that a purely activation-based working
memory cannot capture the requirements of more complex
tasks. The paper thereby demonstrates 1) how the basic
routine action model might be extended to more complex
behaviours, but 2) that such behaviours require more than
simple activation-based memory processes to structure non-
routine behaviour over time.

Keywords: Cognitive architecture; contention scheduling;
supervisory system; Wisconsin card sorting task; Frontal
dysfunction.

Introduction

Norman and Shallice (1986) argued, on the basis of
evidence from slips and lapses in naturalistic everyday
action and the more severe errors of patients with frontal
lesions, that action is controlled by two systems: a low-level
routine system (contention scheduling) which is responsible
for behaviour in routine or mundane situations when our
attention is not focused on action, and a higher-level non-
routine system (the supervisory system) which works by
biasing contention scheduling when acting in novel
situations or when it is necessary to avoid temptation. (See
Shallice (2006) for an updated overview of the account.) In
previous work we have developed a model of the contention
scheduling component of the theory, and shown how
everyday slips and lapses (Cooper & Shallice, 2000), as well
as the more flagrant errors of action that occur following
frontal (Cooper et al., 2005) and left parietal (Cooper, 2007)
brain injury, may be accounted for in terms of damage to
different parts of the contention scheduling system. Previous
computational work has not, however, considered in any
detail how the supervisory system might act to bias
contention scheduling in non-routine situations. This paper
begins to redress this omission by considering how the
contention scheduling model might be extended to capture
behaviour on a simple neuropsychological task that requires
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both inhibition of a prepotent response and generation of
novel (or at least novel with respect to the task) behaviours.

The task we consider is the Wisconsin Card Sorting Test
(WCST; Grant & Berg, 1948). Subjects in the task are
required to sort a series of cards, presented one at a time,
into four piles. Drawn on each card is a set of shapes (e.g.,
two red circles or four blue squares). The piles to which the
cards must be sorted are indicated by “target” cards. Each
target card differs with respect to the number, colour and
shape of items it depicts (see Figure 1). Thus subjects may
sort cards to match the targets on any of the three
dimensions. During the task, subjects are given feedback
after sorting each card, and are required on the basis of this
feedback to infer the correct sorting rule and use it for
sorting subsequent cards. The trick is that once the subject
correctly sorts 10 cards in sequence, the experimenter
changes the sorting rule without warning. The subject must
then use feedback to adjust his/her sorting rule. This is
more difficult than it might at first seem, as some cards
match the targets on multiple dimensions, so feedback can
be ambiguous. Even so, neurologically healthy subjects
have little difficulty on the task. For example, in a sample of
48 subjects tested at Birkbeck, mean sorting accuracy was
over 40 correct out of 64 cards. Patients with frontal lesions,
however, are known to perform poorly (see, e.g., Stuss et
al.,, 2000), frequently successfully determining the first
sorting rule but failing to change rules following negative
feedback, i.e., they make perseverative errors.

Target :
Cards: I I
i E N . il .
EEEEE o EE
g o pEE | EEE s
Sorted " mm “Eom
Cards: EE . EE
: “Hmm “Eom
g o . .
“Emm "
HE NN N E N NN N

Card to Sort:

Figure 1: The Wisconsin Card Sorting Test, after two
cards have been sorted according to the colour of their
symbols and as preparing to sort the third card.
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Extending the CS Model:
A Naive Model of WCST

We consider first a naive and somewhat minimal extension
of the contention scheduling model that is capable of
completing the WCST at levels comparable to
neurologically healthy adults.

Model Assumptions and Description

As discussed above, we assume that behaviour is the
product of a simple scheduling system capable of effecting
routine sequential behaviour (contention scheduling)
regulated or biased by a more complex system capable of
planning, reasoning and structuring behaviour in the pursuit
of intentions (the supervisory system). The contention
scheduling system has been described in detail elsewhere
(e.g., Cooper & Shallice, 2000; Cooper et al., 2005; Cooper,
2007). At its heart is a hierarchically structured interactive
activation network in which schemas that encode familiar
goal-directed action sequences compete for the control of
behaviour, with competition implemented through lateral
inhibition between sets of schemas that correspond to
alternate ways of achieving a desired goal or sets of
schemas that share cognitive or effective resource
requirements. The schema network is complemented by
further interactive activation networks in which nodes
represent objects (with separate object representation
networks for different abstract object functional roles). The
networks interact, such that schema nodes may excite object
representation nodes and vice versa. These interactions
encode actions that may be facilitated or afforded by the
state of the environment (e.g., that a card on the table might
be picked up, or that a card in hand might be placed on the
table).

The naive model of WCST assumes that the contention
scheduling system includes schemas for sorting cards
according to the different criteria (i.e., sort by colour, sort
by number and sort by form), and supplements it with a
minimal supervisory (or control) system capable of biasing
a specific sorting schema on the basis of positive or negative
feedback obtained during the task. The key component of
the minimal supervisory system is an activation-based
working memory system that contains nodes corresponding
to the different schemas that might be used for sorting the
cards. It is assumed that when a card is presented for
sorting, the most active working memory element biases the
corresponding schema within the contention scheduling
system, resulting in the card being sorted according to the
corresponding criterion (assuming that the scheduling
system is functioning correctly). Positive feedback from the
experimenter (indicating that the card was sorted correctly)
results in excitation of all working memory nodes consistent
with the attempt, while negative feedback (if the card was
sorted incorrectly) results in inhibition of all working
memory nodes consistent with the attempt. Thus, if the card
to be sorted depicts one green triangle, and the card is
placed under the left-most target card (which in the standard
test shows one red triangle), positive feedback will result in
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excitation of both the sort-to-number and the sort-to-form
working memory nodes, while negative feedback will result
in inhibition of both of these nodes.

In order to give behaviour coherence over time, we
assume that the activation of nodes within working memory
persists over time, but that this persistence is imperfect (i.e.,
activation decays). We also assume that the activation of
nodes is subject to noise. For simplicity we adopt for the
working memory component the same activation-update
equations used in the interactive activation networks,
namely:

p— i .
Arvi= 0(2 P,

where A, is the activation of a node on card sorting step ¢, I,
is the net input (excitation or inhibition plus noise) to the
node on card sorting step ¢, P is a persistence parameter (see
below) and G is a sigmoidal squashing function bounded
between 0 and 1 whose output, with zero net input, is 0.1.
With this activation-update equation, activation of
working memory nodes tends to 0.1 in the absence of any
net excitation or inhibition. Net excitation pushes the
activation of a node towards 1, while net inhibition
suppresses the activation of node towards 0. Given this
formulation, the behaviour of the supervisory aspects of the
model is determined by four parameters:
*  P: The persistence of working memory representations
across card sorting steps.
N: Standard deviation of noise added to the input of
working memory representations on each card sorting
step.
F.: Excitatory activation of matching working memory
representations following positive feedback — a non-
negative real number.
F;: Inhibitory activation of matching working memory
representations following negative feedback — a non-
negative real number.

Behaviour of the Model

As anticipated, with appropriate parameter settings the
model is capable of performing the WCST with relatively
few errors. Thus, in a typical run with P = 0.85, N=0.05, F,
=0.25 and F; = 0.75, the model succeeds in correctly sorting
approximately 55 cards out of 64, with all errors occurring
following a change in sorting category. This corresponds to
the upper limit of normal performance.

A full explanation of the model’s behaviour requires
explanations at the level of both working memory and
contention scheduling. We begin with working memory.
Figure 2 shows the activation profiles of working memory
elements over the complete duration of one administration
of the WCST (64 cards) with the above parameter settings.

! Additional parameters govern the behaviour of the contention
scheduling component of the model. For all simulations reported in
this paper we fix those parameters to the values used in other
recent work (e.g., Cooper et al., 2005; Cooper, 2007).
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Figure 2: Activation profiles of working memory elements over the duration of the WCST. Activation is plotted on the
vertical axis with processing cycles plotted on the horizontal axis.

Each step in the graphs (corresponding to approximately 40
processing cycles, see below) corresponds to the sorting of
one card. On the first step working memory elements
corresponding to all three sorting schemas have activations
close to resting levels, with only noise differentiating them.
In this example, the most active element is that which
corresponds to matching to form. This is therefore selected
as the initial rule. The corresponding schema within
contention scheduling then receives top-down excitation
from the supervisory system, resulting (as discussed below)
in the first card being placed under the target card that
shares the form feature. The first card depicts one green
triangle, so matching to form involves matching this card
with the left-most target card, which depicts one red
triangle. This is incorrect — colour is initially the correct
sorting criterion — so negative feedback is provided. This
results in inhibition of the working memory representations
of all schemas that are consistent with the current sorting
attempt. Note though that this attempt matched against two
criteria, sorting by form and sorting by number. Hence, the
working memory representations of both receive inhibition.
The working memory representation corresponding to
sorting by colour is the only one not to receive inhibition,
and hence is the representation that is most active when the
second card is presented. The second card is therefore sorted
by colour. Positive feedback results in excitation of this
working memory representation, ensuring that it remains the
most active, while the activations of the other nodes begin to
return to their resting levels.

The model continues sorting by colour, with feedback
occasionally providing support for multiple working
memory representations (when a card matches against more
than one criterion). Only when the criterion changes (after
ten successful sorts to the colour criterion) does sorting to
colour result in negative feedback. The representation of
sorting to colour in working memory is rapidly inhibited,
while the representation of sorting to form is excited
(through positive feedback when a card matches against the
form criterion). Once the activation of the representation of
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sorting to form exceeds that of sorting to colour (and sorting
to number) the model switches to sorting to form (i.e., on
presentation of a card, top-down excitation is passed to the
schema that corresponds to sort-by-form within the
contention scheduling system).

We turn now to the contention scheduling component.
Figure 3 shows the activation profile of schema nodes
within this component of the model over the first two
sorting events. On presentation of the first card, top-down
excitation is passed to the sort-by-form schema as described
above. This results in that schema’s activation rising to its
maximum level during the first few processing cycles. The
sort-by-form schema activates in turn the subschemas
corresponding to pick-up card and put-down card. It also
activates representations of cards in the object
representation networks (which are not shown in the figure).
Thus, the presented card (rather than, e.g., the target card) is
activated as the card to be picked-up and, once the presented
card is held, the target key card which matches this on the
form feature is activated as the destination for the put-down
card schema. The first card is therefore placed under the
left-most key card.

Processing is similar during sorting of the second card

f -
|/ A
AL

0 0
Figure 3: Activation profiles of schema nodes within
contention scheduling during two consecutive sorting
events. The vertical axis shows activation while the
horizontal axis shows processing cycles. The first peak
within each sorting event (cycles 12 and 56) corresponds to
picking up a card while the second corresponds to placing it
in the appropriate target pile (cycles 24 and 69).
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Figure 4: Contour maps showing the number of cards correctly sorted (out of 128), number of categories achieved and
classical perseverations when N is 0.1, P is 0.8, and F; and F, vary from 0.0 to 1.0. Data are averaged over 10 attempts at each
parameter combination.

(cycles 42 to 85), except that it is the sort-by-colour schema
that is most active, and hence the card that is being sorted is
placed under the target key card that matches it on the
colour feature.

Parameter Study 1: “Normal” Behaviour

The behaviour of this naive model depends upon the values
of the model’s four parameters. Thus, good performance
requires that inhibition following negative feedback (F;) is
substantially greater than excitation following positive
feedback (F,). If not, the model will perseverate following
negative feedback, as positive feedback during a run of
correct responses will result in the working memory
representation of the correct sorting criterion becoming
highly active, and it will take several consecutive errors
following a change in criterion for this activation to subside
and be exceeded by that of a competing sorting criterion. At
the same time, persistence must be relatively high. If it is
too low, behaviour on each card sort will be based primarily
on feedback from the previous trial — feedback that can be
ambiguous if a card matches against multiple criteria.

Given the potential complexity of interactions between
parameter values, two systematic surveys of the parameter
space were conducted. In parameter study 1, the model’s
susceptibility to standard perseverative errors was investi-
gated by varying F,, F; and P from 0.0 to 1.0 in steps of 0.1
with N at 0.1, 0.2 and 0.3. The model was run 10 times at
each point in the parameter space, and three dependent
variables — the number of correct sorts, categories achieved
and classical perseverative errors — were recorded for each
run of the model. In each case the model was required to
sort 128 cards, with the simulated experimenter changing
the sorting criterion whenever 10 consecutive cards were
sorted correctly. Thus, following Stuss et al. (2000) but
unlike most behavioural studies, the test was not terminated
after 6 categories had been achieved. Scoring was
automated by a separate program that implemented the
scoring algorithm described by Heaton (1981).

These simulations demonstrated that, for each value of N,
there are values for the other parameters that result in
accurate sorting with few errors (e.g., N=0.1, P=009, F; =
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0.1, F, = 0.8) that is similar to the behaviour of normal
participants. They also demonstrated, however, that the
model generates high numbers of perseverative errors (i.e.,
more than 1/3™ of responses) and achieves relatively few
categories when P is high and F; is low relative to F,. Thus,
Figure 4 shows contour maps for the number of cards
correctly sorted, number of categories achieved, and number
of perseverative errors when N is 0.1, P is 0.8, and F; and F,
vary from 0.0 to 1.0. From the figure, it can be seen that N is
0.1, Pis 0.8, F;is 0.1 and F, is 0.7, the model correctly sorts
60 to 80 cards (out of 128), obtains 5.0 to 7.5 categories, but
produces 40 to 50 perseverative responses.

Parameter Study 2: “Frontal” Behaviour

It is clear from parameter study 1 that the naive model is
susceptible to perseverative behaviour, at least when
persistence is high and feedback inhibition is low relative to
feedback excitation. While this echoes the behaviour of
certain frontal patients, the number or proportion of
perseverative errors alone is a coarse measure of behaviour.
Parameter study 2 therefore sought to evaluate the model’s
performance against a published dataset with a more fine-
grained scoring system, namely the dataset and scoring
system of Stuss et al. (2000).

Stuss et al. (2000) tested six groups of patients (four
groups with frontal lesions centred in different areas and
two non-frontal patient groups) and control participants on
three versions of the WCST, with increasing instructional
support on successive versions. In scoring participant
behaviour, errors were subdivided into four categories:
perseveration of preceding category (PPC: a response that
matches the previous sorting criterion but not the current
one), perseveration of preceding response (PPR: a response
that matches exactly the features matched on the
immediately preceding incorrect trial), set loss (an error
following attainment of the current sorting category, as
demonstrated by three consecutive correct responses, at
least one of which was non-ambiguous) and other errors.
Subtle differences between the various frontal groups were
observed. For example, when participants were told the
possible sorting criteria prior to the test (Stuss et al.’s 64A
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Figure 5: Goodness of fit plots for best fitting planes in F, x F; space for each of the three groups. The best fit to the inferior
medial group (IM: left panel) occurs with P = 0.40. The best fits for the frontal non-inferior medial (FNIM: centre panel) and
the non-frontal (NF: right panel) groups occur with P = 0.80.

condition), inferior medial patients achieved significantly
fewer sorting categories and produced significantly more set
loss errors than control and non-frontal patients, but they did
not make significantly more PPC or PPR errors. Other
frontal groups achieved even fewer categories and made
fewer set loss errors than the inferior medial patients, but
made significantly more PPC and PPR errors than the
inferior medial, non-frontal and control groups.

Parameter study 2 therefore explored the behaviour of the
model following variation of F,, F; and P using the scoring
system of Stuss et al. (2000). The aim was to replicate the
behaviour of each of Stuss et al.’s participant groups and
thereby further understand the possible nature of the deficit
in each case. Note, however, that Stuss et al. found no
significant differences in the pattern of behaviour between
their right dorsolateral, left dorsolateral and superior medial
groups — all three groups produced qualitatively similar
behaviour across the four dependent variables. These frontal
groups did differ, however, from the inferior medial group.
Our analysis therefore merges these groups. Similarly, Stuss
et al. found no significant differences between their left non-
frontal, right non-frontal and control groups. Our analysis
also merges these groups. This results in three groups:
inferior medial (IM), frontal non-inferior medial (FNIM)
and non-frontal (NF). Descriptive statistics for each group
based on the 64 A version of the task are shown in Table 1.

To explore the parameter space F, and F; were varied
from 0.00 to 1.00 at intervals of 0.05 and P was varied from
0.10 to 0.90 at intervals of 0.10. N was fixed at 0.10. The

Categor- PPC PPR Set Loss

ies Errors Errors Errors

NF 4.01 7.15 0.94 0.93
(0.44) (1.09) (0.68) (0.48)

1.08 24.27 11.68 1.14

FNIM 046 | 604 | (318) | (0.63)
M 2.60 10.60 2.90 2.60
(0.60) (1.70) (0.9) (0.70)

Table 1: Means (standard deviations) for WCST behaviour
of three patient groups (derived from Stuss et al., 2000)
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model was run 50 times with 64 cards to sort at each
combination of parameter values (totalling 21 x 21 x 9 x 50
= 198450 runs). Four dependent measures were collected
for each run (categories achieved, PPC errors, PPR errors
and set loss errors, all following definitions given in Stuss et
al., 2000). For each of the three groups and for each point in
parameter space, a goodness of fit measure was then
calculated as the maximum of the fits to the four dependent
measures, where the fit to each of the dependent measures
was calculated as the difference between the simulated
mean value of that dependent measure at the point in
parameter space and the observed mean value of that
dependent measure for the specific group divided by the
observed standard deviation of that dependent measure for
the group. Thus, a fit of less than one to any group would
correspond to a case where each of the four dependent
measures was within one standard deviation of the observed
group means. Figure 5 shows plots of this goodness of fit
measure for the best fits for each group in F, x F; space.

From Figure 5 it can be seen that the best fit to the IM
group is obtained when P is 0.40, F; is between 0.05 and
0.10 and F, is between 0.15 and 0.20. This fit is
approximately 1.5. A slightly better fit is obtained for the
FNIM group, of 1.0, when P is 0.80, F; is 0.00 and F, is
0.05. Only for the NF group is a fit of less than one
obtained, and when P is 0.80 this level of goodness of fit is
obtained for a wide region of F, x F; space (and this result
holds for other values of P > 0.70).

Discussion

The naive model has been shown to be capable of both
normal and frontal-like behaviour on the WCST (parameter
study 1), but the scan of the parameter space in parameter
study 2 found only modest fits for the two subgroups of
frontal patients, with the best fits in each case failing to be
simultaneously within one standard deviation for all
dependent measures. There may be good reason for this —
none of the subject groups is completely homogenous, and
even if all patients in a group can be argued to have a
qualitatively similar deficit, that deficit is likely to vary in
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degree. Nevertheless the naive model does provide some
insight into the deficits. Inferior medial frontal patients are
particularly prone to PPR errors and set loss errors. These
errors occur when excitation, inhibition and persistence are
all low. The latter provides a clear intuitive account of set
loss errors: if persistence is low it is likely that the model
will frequently fail to maintain a sorting rule, even after
successfully discovering the rule. If both excitation and
inhibition are low the model effectively makes little use of
either positive or negative feedback. This explains to some
extent the existence of perseverative errors. However, the
type of perseverative error depends upon maintaining some
record of a sorting rule. For PPR errors, this cannot be the
most recent successful sorting rule — that would result in
PPC errors. Rather, it is the rule apparently used
unsuccessfully on the previous trial. PPR errors are therefore
a more accurate reflection of failure to respond to negative
feedback than are PPC or classical perseverative errors.

General Discussion

In comparison with previous work, the model shares a
family resemblance with models inspired by the operation
of prefrontal cortex (e.g., Dehaene & Changeux, 1991;
Amos, 2000; Rougier et al., 2005). Like these models,
behaviour in the extended contention scheduling model is a
function of bias operating on a routine system that, in the
case of card sorting, embodies simple stimulus-response
links. The work presented here differs from the above,
however, in considering the behaviour of different frontal
subgroups as revealed by Stuss et al (2000).

The extended contention scheduling model does
moderately well at accounting for both normal and impaired
performance, but there are severe limitations to the working
memory module. Both basic assumptions — that working
memory comprises nodes corresponding to atomic symbols
and that evidence accrues only through processes of
excitation and inhibition — are problematic. Thus, the
approach does not generalize well to other non-routine
behaviours such as solving Tower of Hanoi problems,
which appear to require both the storage and manipulation
of structured information within working memory and the
manipulation of that information according to operations
more complex than simple excitation or inhibition.

Indeed, in an alternative extension of the contention
scheduling model to be reported elsewhere working memory
has been modelled as a collection of feature-value pairs
(similar to production system approaches). Space limitations
prevent a full description of the model. However, as with
the naive model presented here the alternative model was
able to capture normal and impaired performance on the
WCST. More critically, the working memory structures of
the alternative model allow it to be applied to other non-
routine tasks, including solving Tower of London problems
and generating random sequences of numbers — both non-
routine tasks that have frequently been discussed in the
literature on cognitive control. In these tasks, autonomous
functioning of the lower-level system supports the solution
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of one-move tower problems and the generation of
sequences of associated numbers (e.g., digits increasing by
two). Again, the role of the supervisory system is to
modulate behaviour. The system allows, in the first case, the
solution of tower problems where intermediate states are
required, and in the second, detection and inhibition of
stereotyped responses before they are produced. This is
achieved through operations on the content of working
memory which depend on relations between working
memory elements. It is unclear how the working memory
mechanisms of the naive model (or of other models such as
those mentioned above, and also the recent influential
working memory model of O’Reilly and Frank (2006))
might meet such a challenge.
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Abstract accumulation in the LBA is ballistic (i.e. without momermt-t

moment variability). This simplification, enables the deri
Brown and Heathcote (2008) proposed the LBA as the sim- ) P

plest model of choice and response time data. This claim was, 10N Of full analytic expressions for the model's full prabi

in part, based on the LBA requiring fewer parameters to fit ity density function. Despite this simiplificaiton, Browma
most data sets than the leading alternative, the Ratcliff diffu- Heathcote (2008) show that the LBA is able to account for
sion model (Ratcliff & Tuerlinckx, 2002). However, parameter b h K d i hoi ks (Ratcliff & Roud
counts fail to take into account functional form complexity, or ~P€Nchmark data from two-choice tasks (Ratcli ouder,
how the parameters interact in the model when being estimated 1998; Ratcliff, Gomez, & McKoon, 2004) LBA parameters

from data. We usegp, or the “effective number of parame- — haye also been shown to have neural correlates (Forstmann et
ters”, calculated from Markov Chain Monte Carlo samples, to

take these factors into account. We found that in a relatively ~&l-» 2008; Ho, Brown, & Serences, submitted). o
simple, simulated, data set and on average in a complex, real,  Brown and Heathcote (2008) also claimed the LBA is sim-

?hagall_;(z that the diffusion had fewer effective parameters than pler because, when fiting standard two-choice data, it re-
L . ) . ) _quired one less parameter than the most recent version of
{i(ceéwn?égil ggg‘s)llg)r:itr;odels, response time; Bayesian statis- e giffusion model (Ratcliff & Tuerlinckx, 2002). Myung
and Pitt (1997), however, explain that the number of free pa-
A wide range of experimental tasks involve a decision befametersk, does not necessarily provide a full indication of
tween at least two alternatives. Some believe that the pronodel complexity. Specificallyk fails to take into account
cess behind making simple decisions is the same regardlefignctional form complexity (i.e., differences in flexabylbe-
of what the decision is about. The most successful class dfveen different mathematical functions), or how the parame
theories about simple decision processes are evidence acders interact when parameters from the model are estimated
mulator models. There are many types of evidence accumdrom data. Spiegelhalter, Best, Carlin, and van der Linde
lator model that differ slightly from one another. However, (2002) proposed a method to address these aspects of model
the central assumption common to all is that, when makingomplexity using the deviance information criterion (DIC)
a decision about a stimulus, evidence is gradually accumwuand an associated estimafs, of the effective number of
lated for each alternative response. Once there is enoughodel parameters. These quantities are estimated usiRg pos
evidence for one particular response that response is made€fior samples obtained by Bayesian Markov Chain Monte
and the time taken to accumulate that evidence is the decfarlo (MCMC) methods. We use these methods to investi-
sion time. The most frequently applied evidence accumulatogate the claim that the LBA is a “simpler” model of the de-
model for decisions between two alternatives is the Rétclif cision process. To begin we provide a brief overview of the
diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 1998; diffusion and LBA models.
Ratcliff & Tuerlinckx, 2002). For example, Ratcliff and eol .
leagues have used the diffusion model to account for the de- Overview of Models

cision process in lexical decision tasks (Ratcliff, Gom&z, consider the following example — participants are shown a
McKoon, 2004), recognition memory tasks (Ratcliff, 1978), patch of 64x64 pixels, each of which are either white or black
to investigate the effects of aging on cognitive perforneanc and the asked whether the stimulus is mostly bright or mostly
(e.g. Ratcliff, Thapar, & McKoon, 2004). Ratcliff, Segrave dark. The Ratcliff diffusion model begins by assuming that
and Cherian (2003) also present neural evidence consistephrticipants sample information continuously from thensti
with the diffusion model. ulus. Each sample of information counts as evidence for one
Brown and Heathcote (2008) recently proposed an alternagf the two responses and is used to update an evidence total,

tive evidence accumulator model of the decision process: thsayx, shown by the irregular line in the left panel of Figure 1.
Linear Ballistic Accumulator (LBA) model. The LBA was

proposed as a simpler model of decision than the diffusion !Brown and Heathcote (2008) also show that the LBA is able to
model. The claim of simplicity was based in part on the factaccount for decisions between more than two alternatives becasue

that the LBA | f noise in the decisi it allows one accumulator for each choie. As the Ratcliff diffusion
atthe assumes one [ess source ot noise In the deCISIQlpde| has not been extended to the multiple choice case we will

process. That is, in constrast to the diffusion model, ewide focus on the two choice case.
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Ratcliff Diffusion Model Linear Ballistic Accurnulator Model
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A Respond
"dark’ Accumulator
N(v,s) 'bright’
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Accumulator
"dark’

Respond
0 'bright’

0 >

Accumulation timg ——»

Parameters
1. upper response boundary, a 1. upper response boundary, b
2. non-decision time, Te, 2. non-decision time, Tg,
3. between-trial variability in drift rate,n 3. between-trial variability in drift rate, s
4. mean of between-trial drift rate distribution, v 4. mean of between-trial drift rate distribution for
5. between-trial variability in starting point, s, correct response,
6. between-trial variability in non-decision time, s, 5. mean of between-trial drift rate distribution for
7. within-trial variability in drift rate, s incorrect response, %
8. centre of start point distribution, z 6. value of uniform start point distribution, A

Figure 1: Overview of the diffusion and LBA models (left anght panel, respectively)

Total evidence begins at some starting point; z, and evi-  accumulator has no effect on the other accumulator(s). The
dence that favours a “bright” response decreases the value amount of evidence an accumulator begins with on each trial
x and evidence for a “dark” response increases the value of is sampled (separately for each accumulator) from thevater
Evidence accumumlation continues urtieaches one of the [0,B]. The evidence in each accumulator increases at a linear
response boundaries, the horizontal lines at®iorFigure 1.  rate determined by the drift rate parametegsand vy, for

The choice made depends upon which boundary was reachdatjght and dark responses, respectively. Accumulation con

a for “dark” and O for “bright” response. The time taken to tinues until evidence in one accumulator reaches a response
make the choice is the accumulation time plus a non-decisiobhoundary,a® which is usually assumed to be the same for
time component]Je, composed of things such as encodingall accumulators. The accumulator which reaches the bound-
time and the time taken to make a motor response. ary first selects its associated response and accumulatien t

Consider a stimulus composed of almost 100% white pixPlus non-decision timeTer, gives the reaction time. As in
els. When a participant samples from this stimulus almost althe Ratcliff diffusion model, the drift rate is assumed toyva
of the evidence will favour a “bright” response, and so thebetween-trials according to a normal distribution with mea
accumulation total will quickly increase towards The av- v and standard deviatian
erage rate of this accumulation is called thét rate, v, and To sum up, the diffusion model has the parameters
variability in moment-to-moment accumulation is assunted t (8,2 Sz, Ter, &,V,S,n) and the LBA has the parameters
take the valus. Ratcliff (1978) added the additional assump- (&, B, Ter, V1,V2,1), Wherey; refers to the mean drift rate in
tion that drift rate also varies from trial-to-trial accard to  the accumulator for thig, response. The parameterisation for
a normal distribution with meaw and standard deviatiog. ~ €ach model, however, differs depending on the design of the
Ratcliff and Rouder (1998) incorporated between-triai-var data from which the data were obtained. There is, therefore,
ability in the start point of acccumulation, assuming thial- no fixed difference in the number of parameters between the
lows a uniform distribution ong— %, z+ %]_ Finally, Ratcliff =~ models. There are, however, parameterisations of these mod
and Tuerlinckx (2002) included between-trial variability ~ €ls which are commonly applied. For example, when there is

non-decision tim@g in the form of a uniform distribution on  no bias for one response over the other therzfierameter of
[Ter — %,Ter + %]_ the diffusion model can be fixed &t reducing the number of

In the LBA there are separate accumulators gathering evil®€ parameters in the diffusion model by one. Also, in order
idence for each of the “bright” and “dark” responses. Thesd© Solve a scaling property common to all evidence accumu-
accumulators are assumed to be linear, ballistic and imdepe'ator models, thes parameter is generally fixed at 0.1. Sim-

nt. That means eviden mulation h linearimcreas— .~ L
dent atmeans evidence accumulation has alinear increa 2In previous applications of the LBA andB have been labelled

with no within-trial variability (i.e,. is ballistic rathethan  , ang A, respectively. We adopt this alternative labelling here to
stochastic as in the diffusion model), and accumulatiomi& 0 facilitate equality in parameter names across models.
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ilarly, when fitting the LBA, drift rates for correct and erro of posterior samples. DIC can be expressed in two parts as

responses tend to be assumed equal for both choices unld38C = D(0) + 2pp, wherepp = D(6) — D(8), whereD(8) is
the choice corresponds to an experimental manipulatign, (e. a measure of misfit between data and model predictions, and
word vs. non-word in a lexical decision task or studied vs.2pp is a penalty for the “effective” number of parameters in
unstudied in a recogniton memory task). Drift rates for erro the model (Spiegelhalter et al., 2002). Tpg measure ad-
responses are also typically assumed to be fixed at one minjissts the number of parameters in the model to take account
the drift rate for correct response, solving the scalingprty  of functional form complexity. Larger values pf indicate a
for the LBA. This means when the LBA has been applied thermore complex model able to potentially predict a greater the
usually only one drift rate parameter is estimated- the drifrange of patterns of data. A better model, which achieves a
rate for correct responses. Based on these standard parantb@lance between fit and complexity, has a smaller DIC.
terisations, Brown and Heathcote (2008) concluded that the Posterior sampling for both the Ratcliff diffusion and LBA
LBA uses one less parameter than the diffusion model to aonodels have been implemented using the Bayesian MCMC
count for data typical of two-choice tasks. This finding, eom program WinBUGS (diffusion: Vandekerckhove et al., 2008;
bined with some apparently simpler structural assumptiond.BA: Donkin, Averell, Brown, & Heathcote, 2009). We use
led Brown and Heathcote (2008) to conclude that LBA wasthese implementations to calculate DIC gmsl allowing us
simpler than the diffusion model. We now explore whetherto compare the functional form complexity between the mod-
the pp measure of model complexity agrees with the author'sels. Because DIC anpp are dependent on the data to which
conclusions. the models are applied we will present the results of fits to
two different sets of data: simulated data generated by the
Model Complexity diffusion model, and a benchmark data set from Ratcliff and

i i Rouder (1998).
An overly complex model can provide an excellent fit to a

given set of data, yet still not be considered to give a satisf Estimating pp and DIC for the LBA and
ing account of the underlying process. In particular, a more . :

complex model can “overfit” the data by fitting the random Diffusion Models

error specific to a particular sample as well as the structur&mulated Data

due to the underlying processes. Becasue only the structrgne first set of data were generated from a diffusion process
re-occurs in new data, overfitting limits the model's ailit  \yith parameters given in Table 1. Our simulated data set was
terms of prediction. Myung (2000) suggests that at least tWontended to mimick data from a two-choice task with a single
factors contribute to model complexity — the number of pa-experimental factor where stimuli were varied so as to only
rameters in the model and the functional form of the modelgffect the difficulty of the task. This meant that only theftdri
which determines how the parameters interact. FUnCtioanate paramete,v, was allowed to vary across the three con-
form complexity can differ between models with the samegitions. All other parameters, sz, Ter, &, S,1) Were assumed
number of parameters when one model is able to produce @ pe constant across all conditions. We also fizéal be 2,
wider range of predictions than the other. In any particularepresenting unbiased responding. This parameterisgtion
experimental design, the degree to which the effects of-funcstandard for fitting data from experiments which have a sin-
tional form complexity are observed depends on the interacgle within-subjects condition which varies from trial-tidal
tion between model and data. (e.g. Ratcliff, Gomez, & McKoon, 2004). The simulated data
A number of model selection methods take into ac-can be thought of as coming from a single participant who
count functional form complexity. We will focus on one completed 1000 trials in each of the three difficulty condi-
such measure: the Deviance Information Criterion (DIC)tions.
(Spiegelhalter et al., 2002). DIC has been applied across When fitting both the diffusion model and the LBA model,
a wide range of fields including psychology (e.g., Myung, parameters were fixed to match the assumptions made when
Karabatsos, & Iverson, 2005). Vandekerckhove, Tuer“lﬂCngenerating the data; so only drift rate was allowed to
and Lee (2008) used DIC to compare various instantiationgary between the three difficulty conditions. This means
of the diffusion model. The DIC can be considered thethat for the diffusion model we have eight free parameters
Bayesian version of the Akaike Information Criterion (AIC; (a,s,, Ter, &, N, V1,V2,V3), and for the LBA seven free param-
Akaike, 1973), but with a complexity penalty term which eters(a, B, Ter, 1, V1,V2,V3). Unbiased responding in the LBA
takes into account functional form complexity, rather thancorresponds to having the same valuesi@ind B for each
simply counting the number of free parameters, as in AIC. response. Posterior samples were obtained for both mod-
DIC can be computed from MCMC samples of a model’'sels using their WinBUGS implementations. For each model
posterior parameter distributions. L@tepresent such a sam- three chains each containing 10,000 MCMC samples were
ple. Deviance can be written 8§6) = —2logL(y|6), where  collected, with the first 3,000 samples for each chain were
L(y|6) represents the likelihood of data vecyagiven param-  discarded as burn-in. Visual inspection of the chains sug-
eters®. ThenD(B) is the deviance of the estimated poste-gested that after burn-in samples collected from each chain
rior mean parameters al0) is the mean of the distribution were from the same stationary distribution, which we now
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assume to be the true posterior distribution. We fit diffusion and LBA models seperately to data from
three individual participants, each of whom completed al-
most 8000 trials. Both models have previously been fit to
fhe Ratcliff and Rouder (1998) data sets using non-Bayesian
estimation techniques (diffusion: Ratcliff & Rouder, 1998
LBA: Brown & Heathcote, 2008). We used very similar pa-
rameterisations to that used in the original fits with thnee e

Table 1: Mean of posterior samples for parameters from th
diffusion and LBA models for fits to data generated from dif-
fusion model. DIC angbp are also reported for each model.

Parameter Data Diffusion LBA

a 125 128 250 ceptions. First, for the diffusion model we included betwee
s,/B 044 034 432 trial variability in non-decision time. This variability & in-

n 133 123 237 cluded in the diffusion model as it has been standard peactic

T 435 432 237 since Ratcliff and Tuerlinckx (2002). Second, for the LBA

5 196 196 B both the upper bound of the uniform distribution of starting

v 1 103 609 point of accumulationB, and response threshoky,were al-

Vo 23 226 74 lowed to vary between speed and accuracy conditions. Brown
V3 363 369 882 and Heathcote (2008) assumid- a in the speed-emphasis
DIC - 183.76 4755 condition, but we found that fit was greatly improved by re-
PD ) 5.97 6.81 moving this constraint. For the diffusion model we followed

Ratcliff and Rouder (1998) and assumed that only boundary
separationawas allowed to vary between speed and accuracy
Table 1 contains mean posterior samples for each parameenditions. Third, we found that the diffusion gave much bet

ter for both the diffusion and LBA models. The average pos-+er fits to data by estimating between-trial variability tars
terior diffusion model parameter samples are close to the pgoint of accumulation for speed and accuracy conditions sep
rameters used to generate the data, as expected. The averagately. This contrasts with Ratcliff and Rouder (1998) ap-
posterior LBA parameters are close to parameters estimatggtoch, wheres, was fixed af/20 for both speed and accuracy
using non-Bayesian methods of fitting (e.g. maximum likeli- conditions.

hood estimation) to the same data set. For both models, only drift rate was allowed to vary
DIC andpp values are also given in Table 1. As one mightpetween brightness conditions. Although there were 33
expect, the DIC for the diffusion model is smaller than theprightness conditions in the original data, the conditions
DIC value for the LBA model (-183.76 and -47.55, for dif- \were collapsed to seven since visual inspection suggested
fusion and LBA respectively), suggesting that the diffusio that the majority of brightness levels which were ei-
model provides a better account than the LBA of data simuther very difficult or very easy were homogenous in RT
lated from a diffusion process. Quite unexpectedly, howeve and accuracy. This meant that for the diffusion model
the po value for the diffusion model is also smaller than that (gag,, agq, Sy Spgs Ters &, 1) Were free parameters, and for
for the LBA model,pp equal to 597 and 681 respectively. the LBA (8acc, Bspd; Bace, Bspd, Ter, 1) Were free parameters.
This suggests that — despite the diffusion model having morgyhen combined with the seven drift rate parameters com-
free parameters than the LBA model — when functional formmgn to both models, there were 14 free parameters for the
complexity is taken into account, the number of “effective” giffusion model, and 13 free parameters for the LBA model.

parameters is actually smaller than that of the LBA model. A single chain of 10,000 samples was collected for each of
At least for these simulated data, from a very simple expery, o | BA and diffusion models, with the first 3,000 samples
?mental design, the results seem clear - the diffusion modekic.orded from analysis as burn-in. Again, visual inspecti
is less complex than the LBA. As previously stated, how-q¢ yhe chain confirmed that stationarity after burn-in. Fa®l
ever, functional form complexity depends upon the datadein ., ntains mean posterior parameter values for each model and
modelled. We turn now to actual data, to a data set. which haéach participant. Though, for brevity we do not present them
become a benchmark data set for models of choice and rgjre piots of model predictions and data confirm that the av-
sponse time (Brown & Heathcote, 2008; Vandekerckhove eérage parameter values provide a good fit to the data. The

al., 2008). quality of fit between model and data was greater for the dif-
Ratcliff and Rouder’s (1998) Data fusion model than the LBA. This is reflected in DIC apd
values reported in Table 2: for all participants the diffusi

Ratcliff and Rouder (1998) performed a simple brightnesshwodel had a smaller DIC value than the LBA models

discrimination task with two within-subject factors: binig

i i . i e .
NEess ar_1d instructions The_re were 33 levels of brlghnesis_us 3Donkin, Brown, and Heathcote (2009) have shown that an LBA
determined by the proportion of white vs. black pixels in &model where the sum of correct and error drift rates are not over-
64x64 display (brightness was varied randomly from trigl-t constrained to be one can provide a large improvement in quality of

trial). Between blocks of trials, participants were given i fit: This comes, however, at the expense of an increase in the num-
’ ber of free parameters. Since we wish the present discussion to be a

structions on \_Nhether to respond with an emphasis on speggirospective look at the claims of Brown and Heathcote (2008) we
or an emphasis on accuracy. discuss this no further here.
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Table 2: Mean of posterior samples for parameters from tffiesittn and LBA models for fits to individual participant®fm
Ratcliff and Rouder (1998). DIC angb are also reported for each model.

IE Diffusion .256 .061 .066 .006 155 245 1813478 11.93
LBA .603 .215 373 116 .263  .107 - -229311.59

KR Diffusion .249 .065 .023 .015 A53  .227  .1523793 10.05
LBA .615 .223 .383 .143 341 123 - -1327 12.79

NH Diffusion .246 .086 .078 .003 213 259 1725938 11.85
LBA A79 251 27 121 307 129 - -487011.15

was the case in the simulated example the decrease betweerfirst, we used numerical integration of the Winbugs re-
the nominal and effective number of model parameters dusults for the diffusion model in order to equate the focus of
to functional form complexity was greater for the diffusion inference for each model. The WIinBUGS code given by
(-2.7 on average) than the LBA (-1.2 on average). Overall\andekerckhove et al. (2008) for the diffusion model imple-
when applied to real data coming from a more complicatednents start point variability and non-decision time vaittgb
design, the diffusion model tended to require fewer “effect hierachically —that is, by drawing a sample for each of these
parameters” (11.3 on average) than the LBA model (11.8 omparameters for each trial performed by a participant on each
average). At the level of individual participants, howewee = MCMC iteration. This approch was necessitated because the
see thapp was smaller for the LBA than the diffusion model Ratliff diffuison does not have an analytic likelihood when

for two out of three participants. these sources of between-trial variability are included. |
] ) contrast, the WinBUGS code takes advantage of the LBA's
Discussion mathematical simplicity by using an analytic expression fo

DIC is a model selection criterion which attempts to seleett the likelihood of the LBA model which integrates out all
model which is best able to predict new data. DIC, pada forms of between-trial variability. This difference makég
measure of model complexity, can be calculated from MCMcdeviances for each model produced by WinBUGS incommen-
Samples from the deviance Of posterior parameter distribusurate; for the diffusion model this deviance focuses on the
tions. The pp measure takes into account functional form particular set of trials Observed, whereas for the LBA the de
complexity, and can be thought of as the effective number o¥iance is appropriate for the population of possible triats
parameters used to fit the data. When using data simulatd¥nce prediciton of performance by each subject performing
from the diffusion model with a simple experimental design,NeWw trials. As the latter focus is clearly more appropriate f
the diffusion model, perhaps surprisingly, had a smatigr  OUr purposes we numerically integrated the deviance fdr eac
value than the LBA model. In other words, for our simu- diffusion model posterior sample and used these integrated
lated data set the diffusion model was simpler than the LBAdeviances to calcualte DIC anmg.
in terms of functional form complexity. When the models Second, the prior distributions for diffusion model param-
were fit to benchmark data from Ratcliff and Rouder (1998)eters are based on the range of parameter values estimated
which model was simpler differed between participants. Foffrom all of the published diffusion fits found by Matze and
two out of three participants the LBA required fewer effeeti Wagenmakers (submitted). Priors for LBA parameters were
parameters. Averaging over participants, however, sugdes obtained from simulations which took the range of diffusion
the diffusion model was simpler. model parameters from Matze and Wagenmakers (submitted)
There are a number of technical details associated witland mapped them onto changes in LBA parameters. This
DIC and pp should be addressed. Spiegelhalter et al. (2002)yave a range of LBA parameters to be used as priors which
state that DIC angbp are appropriate when: the distribution may account for approximately the same range of patterns
of posterior samples are approximately normal, and the modef data. In both cases the prior distribution of parameters w
provides a reasonable account of the data. We have alreadgsumed uniform within these ranges. These prirors are info
addressed the second point, i.e. the posterior parametees w mative not only in excluding parameters outside the allowed
providing good predictions of data. In the models presentedange, but also because the width of the range of allowed pa-
here the posterior distributions for each parameter gJagel  rameters determines the contribution made by the priordo th
proximate normal distributions, making it more likely thla¢  posterior deviance. A narrower range reduces posterior de-
joint distribution of these parameters are also approxétgat viance and hence improves DIC. The large sample sizes that
normally distributed. DIC angbp are also dependent on the we examined means that the contribution of the prior is dom-
prior distribution used and the “focus” of our analysis. Weinated by the likelihood of the data when determining pa-
have made an attempt to make these factors equivalent acrassneter estimates within a model. However, this does not
models. necessarily mean that differences in the prior for each node
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are not influential on thelifference in posteior deviance be-  ods for fitting the linear ballistic accumulatdvlanuscript
tween models, and hence DIC. In ongoing work we are imple- Submitted for Publication.

menting “vague” priors (i.e., priors with approximatelyuady  Donkin, C., Brown, S., & Heathcote, A. (2009). The over-
probability across a very broad range of parameters for both constraint of response time modeManuscript Submitted
models) in order to test the sensitivity of our results to the for Publication.

prior specification. Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von

In summary, we have provided a relatively preliminary in- Cramon, D. Y., Ridderinkhof, K. R., et al. (2008). The
vestigation into the complexity of models of choice and re- striatum facilitates decision-making under time pressure
sponse time using a Bayesian model selection criterion. The Proceedings of the National Academy of Science, 105,
criterion, DIC, and an associated measure of model complex- 17538-17542.
ity that takes into account differences in funcitonal fopg, Ho, T., Brown, S., & Serences, J. (submitted). Domain gen-
are relatively easy to apply becasue it can be directly cal- eral mechanisms of perceptual decision making in human
culated based on MCMC samples from posterior model pa- cortex. Journal of Neuroscience.
rameter distributions. If we consider simplicity as thegan Liu, C. C., & Aitkin, M. (2008). Bayes factors: prior sensi-
of potential data patterns which a model can predict, our re- tivity and model generalizabilityJournal of Mathematical
sults suggest that it may have been premature to claim that th Psychology, 52, 362—375.

LBA is the simplest model of choice and response time. OuMatze, D., & Wagenmakers, E. J. (submitted). Psychological
results suggest that for these models a simple count of param interpretation of exgaussian and shifted wald parameters:
eters will not suffice, and that more investigation is reedir A diffusion model analysisManuscript submitted for pub-
Functional form complexity based on prediction, howewer, i  lications.

not the only aspect which might define a model’s simplicity. Myung, 1. J. (2000). The importance of complexity in model
For example, the mathematical tractability of the LBA, whic  selection. Journal of Mathematical Psychology, 44, 190—
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Abstract

Everyday life demands explanations and predictions from
everybody all the time. Using experience based knowledge, the
human mind is well suited to draw the required causal inferences.
However, due to failures in the past, such inferences are usually
drawn under uncertainty and come along with different degrees of
confidence. We present an ACT-R model describing the cognitive
processes of induction and deduction for a prediction task in a
simple, simulated technical environment. While ACT-R provides
excellent mechanisms to capture causal learning and causal
inferences, no process has been defined yet to account for the trust
humans put in their predictions. Based on the availability heuristic
by Tversky and Kahneman (1973), we propose an approach for
modeling different levels of trust by using a temporal module from
Taatgen, van Rijn and Anderson (2007), thus relating availability
to retrieval time and confidence judgments. The forecasts of our
model are compared with the results of an empirical study and
nicely fit the experimental data.

Keywords: causal models; uncertainty; inductive learning;
availability heuristic, temporal module; time estimation.

Introduction

The explanation of a current state of the world by events in
the past and the prediction of future events from a present
situation are fundamental qualities of human cognition. We
follow the assumption proposed by many others that such
reasoning processes are based on causal models (e.g.,
Waldmann, 1996) and proceeded under uncertainty (e.g.
Einhorn & Hogarth, 1982). Two factors determine how
much trust we put in an explanation or a prediction.

The first factor is the perceived amount of missing
information in a given situation. This case applies when a
causal model demands more data than currently available.
Experiments by Thiiring and Jungermann (1992) as well as
Jungermann and Thiiring (1993) demonstrated that such
situations appear as ambiguous and lead to a reduction of
confidence people have in their causal inferences.

The second factor is not an attribute of the situation, but of
the causal model itself. Causal models — as any other kind of
mental model — may be incomplete or even incorrect
(Norman, 1983), hence leading to faulty conclusions.
Obviously, deficient models are not trustworthy. Confidence
requires success, i.e., “...it’s the model’s ability to make
accurate predictions that is the ultimate measure of the
model’s value” (Chown 2006, p. 69). This value can be
characterized as the reliability of the model. To summarize,
the ambiguity of the situation at hand and the reliability of
the causal model currently employed determine the strength
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of confidence we have in the conclusions we draw. If we
want to predict this confidence, we require a formal basis
for modeling the influence of both factors. In the former
studies by Thiiring and Jungermann, rule-based systems
served as such a basis and were used to describe the
structure of a causal model. This approach was well suited
to characterize ambiguous situations by the degree of
matching between data and the conditional parts of the rules
and to predict the content and confidence of causal
inferences drawn from them. The reliability of a model, on
the other hand, proved as more complicated to handle.
Especially when we tried to describe how rules are formed
in the course of inductive learning and which psychological
mechanisms influence the confidence of causal judgments
based on such rules “under construction”, it became
apparent that a comprehensive cognitive framework is
needed to cope with the complexity of the matter.

The cognitive architecture ACT-R (Anderson, Bothell,
Byrne, Douglass, Lebiere & Qin, 2004) provides such
framework. We will use it to demonstrate how simple rule-
based causal models can be built from induction and how
predictions can be derived from such models. Special
emphasis will be placed on the issue of how the success
(respectively failure) of predictions in the course of learning
influence the reliability of the rules and the confidence
people place in their inferences.

Modeling Objectives

To model induction, predictions and confidence, three basic
objectives must be achieved.

(i) To ensure inductive learning, not only the current
situation must be represented in the ACT-R model, but
preceding situations must be accounted for as well. In
addition, the success or failure in coping with these
situations must be captured. (ii) The ACT-R model must be
able to make predictions. A prediction can be characterized
as a statement about a future state of the world in terms of
specific propositions. Since predictions are made under
uncertainty, the ACT-R model must be able to combine a
propositional content with a degree of confidence. To
achieve this, reliability as well as ambiguity must be
considered by the ACT-R model (although the latter is not
emphasized here). (iii) In case of incorrect predictions, the
ACT-R model must provide mechanisms to modify the
causal knowledge structure if new evidence is available. To
put the objectives into practice and to implement an ACT-R
model with the ability to generate predictions with different
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degrees of confidence, we have to refer to experimental
data.

The Experiment

The empirical basis of our approach are data obtained in an
experiment by Thiiring, Drewitz and Urbas (2006) that
tested the following assumption: When a causal model is
induced from observations, inferences deduced from that
model are usually probabilistic and their uncertainty is
influenced by the observer’s former experience with the
model. The results of this experiment were extensively
discussed in Thiiring et al. (2006) to clarify the interplay of
induction, deduction and confidence judgments.

In the experimental task, the participants had to acquire the
causal model of a technical system, i.e., the cooling system
of a power plant. The system could run properly (state OK)
or not (state MALFUNCTION) and consisted of four
pumping devices (subsystems A, B, C and D). Information
about the subsystems was displayed on four dials (Fig. 1)
which could be turned on (A, D) or off (B, C). Each dial
represented the state of a subsystem that was either "up’ (A),
’down’ (D), or unknown’ because its dial was switched off
(B, C). While each of the factors A, B and C was causally
relevant at some point of the experiment, factor D was a
random variable serving as a distractor, which was
introduced to obtain a sufficient level of task complexity. In
each trial, participants were shown a combination of dials as
in the left part of figure 1. Based on this information, they
first predicted the state of the overall system by pressing one
of two buttons ’OK’ or "MALFUNCTION’, and then rated
their confidence by adjusting a slider. After submitting their
confidence rating, a status message informed them about the
correct system state as shown in the right part of figure 1.

Subsystem A SubsystemB Subsystem A Subsystem B
OFF O D) OFF @ OFF O « OFF @
G| Py (H)on =\ &l yon

Subsystem C Subsystem D Subsystem C Subsystem D
o e o o\% oFf ® o o\%
Hou Son h Tou (Son h

System State

1) judgement

rrrrrrr

MALFUNCTION
2)confidence

MALFUNCTION

Figure 1: Screen layout of the experiment.

Using the feedback they received in each trial, participants
could gradually develop a causal model representing the
relation between the state of the subsystems (A, B, C, D)
and the state of the entire system (OK or
MALFUNCTION). In the first phase of our study, a simple
model was induced in which just the proper functioning of
one subsystem (e.g., A) was required for the faultless
running of the cooling. Our participants learned this model
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fairly quickly from the data. In figure 8, the curve labeled
“human” shows their mean confidence ratings (transformed
into percentage values). Data points in the upper half of the
figure represent ratings for the prediction “OK”, those in the
lower part for the prediction “MALFUNCTION”. Note that
the ratings start well above zero, because three trials in
which A was coupled to OK were used in advance to
acquaint the participants with the experimental setting.
Starting from there participants soon reached a high and
stable level of confidence (i.e., mean values between 70%
and 80% with some exceptions due to the random condition
D). At the end of this learning phase, information was
provided which reduced the reliability of the model, i.e., in
the trials 26-31 the feedback was contrary to the initial
system behavior. Consequently, our participants’ confidence
in their predictions dramatically decreased and some of
them even predicted a state contradictory to the rule they
had learned before.

In the second phase of the experiment, information was
provided that allowed for expanding the simple ’'mono
causal’ model into a more extensive one. This was either an
‘or-model’ capturing multiple alternative causes each of
them being sufficient for the effect, or an ‘and-model’
representing a conjunction of several causal conditions each
of them being necessary for the effect. When the new model
was reinforced over several trials, confidence ratings raised
to a level similar to the one of the mono causal model at the
beginning (see fig. 8 and 9). When the reliability of these
models was reduced (trials 31-35 and 45-49), the same
effects occurred as in phase one, i.e., confidence ratings
dropped again.

According to our first objective, the ACT-R model must be
able to capture the cognitive processes of knowledge
acquisition in this experiment, which are distinguished by
the fact that people revise and expand their causal model
when new facts become available.

Knowledge Acquisition

We propose three mechanisms of knowledge acquisition
complementing each other, with each of them being
necessary to form and diversify a causal model.

Inductive Learning

The first mechanism can be characterized as inductive
learning. Within their natural environments, people make
observations and store them in memory. Observing the same
constellation of events repeatedly strengthens their
associative relation in the memory trace. Thus, rudimentary
causal models are constituted that guide further
observations. In our experiment, these models could be
described in terms of simple rules such as “if A is up then
the system is OK” or “if A is down then a MALFUNCTION
occurs”.

Deductive Reasoning

Inductive learning is closely related to deductive reasoning.
When a rule has been formed via induction, its reliability is
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tested via deduction, thus creating a circle in which these
two mechanisms take turns in forming a causal model. In
each deduction, available data are matched with the rules
and a conclusion is drawn. Those rules, which have been
reliable in the past, are chosen over less reliable ones. In the
first phase of our experiment, the rule “if A is up then the
system is OK” produced a correct prediction whenever A
was up, while the rule “if D is up then the system is OK”
did not, because the relation between D and the system state
was random.

Though reliable rules should be chosen most frequently, less
reliable ones can get a chance when their conditions are
matched by the current data. When this happens, the
confidence that is placed in the prediction should be less
compared to the confidence in a prediction derived from a
reliable rule. For example, the confidence in predicting a
well functioning system when “D is up” should be lower
compared to a situation when “A is up”.

To summarize, reliability serves two purposes. It determines
which rules are chosen over others and it tunes the confi-
dence people place in their predictions. Both these functions
must be implemented in ACT-R to explain the data of our
experiment and to achieve the second objective stated
above, i.e., the derivation of the propositional content of a
prediction in combination with a specific degree of confi-
dence based on the experienced reliability of the model.

Rule Revision

While the reduction of confidence placed in a prediction is
one consequence of the failure of a rule, the revision of the
rule itself is another one. Changing the content or the
structure of a rule is the third mechanism required to des-
cribe the forming of a causal model. Revisions only make
sense in the light of new evidence, i.e., when the failure of a
rule coincides with the observation of new conditions that
must be satisfied in addition to (or instead of) the conditions
that have been accounted for so far. In this case, the rule in
question is altered. In our experiment, this happened in the
second phase where simple mono causal models where
expanded to an “or-model” or an “and-model”. To attain our
third objective, such changes must be accounted for when
causal models are developed in ACT-R.

Overview of the ACT-R Model

The three mechanisms were implemented in the framework
provided by ACT-R 6.0. Figure 2 displays the cyclic
concept we used to establish the cognitive flow of control
for performing the successive trials in our experiment. The
nodes represe