
 

 



Welcome!
Welcome to Manchester and the 9th International Conference on Cognitive Modeling.
We hope you find the next three days enjoyable and stimulating. This year's
conference attracted a large number of high quality submissions on a wide range of
topics, making the task of categorising submissions into talks and posters extremely
difficult for the program committee. After two days of intense deliberation, we settled
on a program of 24 talks and 73 posters. However there was a class of submissions
that we thought were of sufficient quality that, if the schedule had permitted, could
also have been accepted as talks. To acknowledge this fact we have decided to
allocate time before the two poster sessions for the authors of these distinguished
posters to speak briefly and introduce their work.

In addition to the talk and poster sessions, this year's conference also features
invited talks by three leading figures in the cognitive modelling community: Nick
Chater, Dario Salvucci, and Lael Schooler, and two symposia. As usual, the
conference is preceded by a number of tutorials on different approaches to cognitive
modeling. All in all, we believe that this year's conference presents a strong program
of research that reflects a growing, vibrant international cognitive modelling
community. We hope that after participating in the conference you agree with this
assessment.

The efforts of many people have gone into producing this conference. The chairs wish
to thank the three invited speakers, Frank Ritter for organising the tutorials, the
many reviewers for their invaluable comments on the submissions and the
universities of Manchester, Huddersfield and Birkbeck, University of London for their
financial and administrative support. In addition, we wish to thank the following for
their contribution to the success of this conference:

Platinum Sponsors

Defence Science and Technology Laboratory

European Office of Aerospace Research and Development, Air Force Office of
Scientific Research, United States Air Force Research Laboratory

Gold Sponsors

The Society for the Study of Artificial Intelligence and Simulation of Behaviour

LispWorks

Silver Sponsors

The Cognitive Science Society
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Abstract 

Our interest in agent-based simulation is for social simulation, 
where the society-level outcomes emerge from the interaction 
of individuals.  In this tutorial, we aim to introduce the core 
concepts of agent-based social simulation, illustrated by a 
range of examples, before walking through a specific example 
with the participants so that they can experience these issues 
at first hand. 

Keywords: social simulation, social theory, agent-based 
modelling 

What is Agent-Based Simulation? 

Agent-based simulation (ABS) represents each individual 

with a separate encapsulated object in a simulation.  Beyond 

this, the definition of an “agent” varies quite widely, but in 

general they are seen to be autonomous, pro-active entities.  

Simulation outcomes emerge from the interactions between 

these entities, and often even quite simple interactions can 

give rise to complex system dynamics. 

The individuals that agents represent in a simulation need 

not be humans, and could be social actors of any type.  

Examples of entities that have been represented by agents in 

simulations range from individual cells and bacteria through 

to multi-national corporations.  Typically though in social 

simulation we are interested in modelling each individual 

person with a single agent.  At the same time, we are often 

interested in modelling the interactions of large numbers of 

individuals, and this forces a trade off between the detail of 

the individual models and the number of entities that can be 

modelled. 

Thus, while it is desirable for the agents to include models 

of various aspects of cognition (such as decision making, 

learning, belief representation, autonomous goals), it is 

necessary to pare them down to the bare minimum required 

to model the social interactions of interest.  By the standards 

of cognitive models many of the programs internal to each 

agent might be fairly simple, although some researchers in 

this area are investigating ways of including more detailed 

models of individuals within this type of simulation. 

Simulating Societies 

Our interest in ABS is to simulate how humans (or other 

social entities) might interact: for example, how complex 

coordination might be achieved through the interaction of 

essentially selfish agents (Edmonds, 2006).  Some of these 

models can be very detailed, including many different 

aspects of a particular observed social situation. In this case 

the result is more like a dynamic description within a 

simulation – a distributed representation that may 

incorporate many different kinds of evidence. 

Emergent Behaviour 

At the same time, complexity science has repeatedly 

shown how the interaction of fairly simple agents can result 

in complex (“emergent”) outcomes.  Thus, one stream of 

research in ABS is looking at how social systems might be 

understood in this way.  These tend to be quite abstract 

simulations with very simple agents, which are intended to 

encapsulate a general social theory, rather than to represent 

any particular observed social phenomena. 

Applying Social “Rules” to Other Networks 

One outcome of the study of emergent behaviour in 

human societies has been to transfer these principles to other 

social systems.  For example, when systems of 

independently programmed computers interact in a network, 

many of the same issues (trust, reputation, coordination etc.) 

that occur in human societies are found to be important.  

The previously mentioned work on cooperation between 

self-interested individuals, for example, has been used to 

develop algorithms for peer-to-peer computing systems that 

are robust against “cheaters” (Hales, 2006). 

Outline of the Tutorial 

This tutorial introduces the main ideas of ABS, 

highlighting the difficulties as well as the strength of these 

issues, drawing on many examples of ABS, from complex 

specific simulations, up to highly abstract simulations that 

encapsulate social theories.  In the second half of the 

tutorial, these ideas will be illustrated through the use of a 

concrete example.  Depending on the existing skills of the 

participants, there will be opportunities to implement their 

own realisation of this example. 
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Abstract
The  Neural  Engineering  Framework  (NEF;  Eliasmith  and 
Anderson,  2003)  provides  a  general  methodology  for 
developing efficient and realistic neural models that perform a 
specified task.   The framework  consists  of three quantified 
principles,  one for each of representation,  computation, and 
dynamics  in  neural  systems.   Adopting  these  principles 
provides a method for generating connection weights between 
groups of neurons that represent and transform state variables. 
In short, the NEF provides a neural compiler: a method for 
taking  a  high-level  description  of  a  neural  system  and 
deriving  a  plausible  organization  of  realistic  neurons  that 
realize this system.  Our tutorial introduces the principles of 
the  NEF  and  demonstrates  how  they  apply  to  cognitive 
modeling.   This  is  done through the  use of Nengo,  a  GUI 
neural simulation system, which supports an adjustable level 
of neural accuracy, Python scripting, and the analysis of the 
resulting models.

Keywords: Nengo; neural engineering; neural representation; 
control theory; neural cognitive modelling

The Neural Engineering Framework
As  cognitive  models  become  more  complex,  there  is  an 
increased demand for details at both the low and high levels. 
Traditionally,  focus  in  cognitive  modeling  has  been  on 
higher  levels  of  abstraction.  As  a  result,  researchers 
typically  posit  a  high-level  organizational  structure  which 
allows them to  consider  the information that  needs  to  be 
represented  and  the  transformations  that  are  required  for 
implementing hypothesized algorithms.  Ideally, however, a 
cognitive model should also make detailed predictions as to 
the firing  rates of  neurons implementing  the model,  their 
tuning  curves,  connectivity,  neurotransmitters,  and  other 
properties.

The Neural Engineering Framework (or NEF; Eliasmith 
and  Anderson,  2003)  provides  a  novel  approach  to 
addressing  this  typical  gap  in  cognitive  modeling.   It  is 
based on three principles of neural engineering:

1. Neural  representations  are  defined  by  the 
combination of nonlinear encoding (exemplified by 
neuron  tuning  curves)  and  weighted  linear 
decoding.

2. Transformations  of  neural  representations  are 
functions  of  variables  that  are  represented  by 
neural  populations.  Transformations  are 
determined  using  an  alternately  weighted  linear 
decoding.

3. Neural dynamics are characterized by considering 
neural  representations  as  control  theoretic  state 
variables.  Thus,  the  dynamics  of  neurobiological 
systems can be analyzed using control theory.

Each of these principles is considered under the assumption 
that  neural  systems  are  subject  to  significant  amounts  of 
noise. Therefore, any analysis of such systems must account 
for the effects of noise.

The core  idea  of  the  NEF is  to  consider  any cognitive 
system  as  containing  a  large  number  of  representations 
which change over time. How these representations change 
is dependent both on the external stimuli and on the other 
representations within the system.  A particular neural group 
can represent (via its spike pattern) a single scalar, a vector, 
or  even  a  function.   These  representations  are  inherently 
noisy,  and  accuracy  will  be  dependent  on  various  neural 
properties (although representational error has been shown 
to  be inversely linearly  related  to  the number  of  neurons 
used).

To  understand  how  these  representations  change  (i.e. 
define  a  transformation  of  a  representation),  the  NEF 
provides methods for defining weighted axonal projections. 
For instance, a given group might represent the product of 
the values being represented by two other groups which are 
projected to it (i.e. x(t) = y(t)*z(t),  where each variable is 
represented by a neural population).   Importantly, we can 
use  the  NEF  to  derive  the  linearly  optimal  connection 
weights to perform a wide variety of linear and nonlinear 
transformations.  Doing so makes it clear that the accuracy 
of  these  transformations  is  intimately  related  to  the 
observable  tuning  curves  of  the  neurons  involved.   This 
leads to models that are orders of magnitude more efficient 
than other approaches to neural representation,  and which 
are  a  closer  match  to  observed  neurological  data  (e.g. 
Conklin & Eliasmith, 2005; Fischer, 2005).

Applications
Initially, the main applications of this approach were in the 
domains of sensory and motor systems.  This has included 
the  barn  owl  auditory  system  (Fischer,  2005),  rodent 
navigation  (Conklin  &  Eliasmith,  2005),  escape  and 
swimming  control  in  zebrafish  (Kuo  & Eliasmith,  2005), 
and  the  translational  vestibular  ocular  reflex  in  monkeys 
(Eliasmith et al., 2002).  However, these same principles are 
now  being  applied  to  higher-level  cognitive  models.   A 
direct  extension  of  the  visual  working  memory  model 
(Singh & Eliasmith, 2006) has led to a neural model of the 
ACT-R  goal  buffer  (Stewart,  Tripp,  &  Eliasmith,  2008). 
More crucially,  the use of  Vector Symbolic  Architectures 
(Gayler,  2003)  has  allowed  for  the  representation  and 
manipulation  of  structured  symbol  trees  by  these  neural 
models.   This  neurally  realistic  cognitive  architecture 
(Stewart  & Eliasmith,  2009a)  resulted  in  a  model  of  the 
Wason  card  task  (Eliasmith,  2005)  and  ongoing  work 
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producing  an  efficient  production  system  using  realistic 
neural constraints (Stewart & Eliasmith, 2008; 2009b).

The  NEF  provides  an  exciting  new  tool  for  cognitive 
modelers  as  it  provides  a  technique  for  producing  direct 
neural  predictions  from  a  given  high-level  algorithmic 
description of a cognitive model.  Furthermore, it leads to 
important theoretical results as to the relationships between 
neural  properties  and  the  high-level  algorithms  they  are 
capable  of  implementing  (e.g.  the  relationship  between 
neurotransmitter  re-uptake  rate  and  the  time  constant  of 
neural transformations).

These  consequences  are  also  very  general,  as  the  NEF 
provides  techniques  that  can  be  applied  to  any  cognitive 
model.  It provides a structure for organizing the high-level 
description of a model, such that it can be implemented by 
realistic  spiking  neurons,  providing  meaningful  data  in 
terms  of  the  expected  spike  patterns,  time  course,  and 
accuracy.   We have made use  of  it  in  a  wide  variety  of 
contexts,  and  we  have  developed  tools  that  support  the 
creation and analysis of these models.  These tools can be 
applied  to  many existing  models  to  incorporate  low-level 
neural details into existing modeling research.

Software and Simulations
We have developed Nengo <nengo.ca>,  a freely available 
open-souce  Java-based  neural  simulator  that  supports  the 
NEF.  This allows for hand-on examples of the theoretical 
concepts  underlying  the  NEF.   Using  a  point-and-click 
interface,  we  can  create  neural  group,  configure  them to 
represent scalars and vectors, adjust their neural properties, 
and simulate their spiking activity over time.  We can also 
connect these neural groups via synapses so as to perform 
linear  and nonlinear  transformations  on these  values,  and 
store  information  over  time.   These  are  the  basic 
mechanisms required for a wide range of algorithms,  and 
form the basis for our models of sensorimotor systems and 
working memory.  Nengo can also be programmed using a 
Python interface,  allowing  for  quick  creation  of  complex 
models (Stewart, Tripp, & Eliasmith, 2009).

Furthermore, these basic tools can be used to implement 
the theory of Vector Symbolic Architectures (Gayler, 2003) 
using NEF.   This  involves  using high-dimensional  fixed-
length vectors to represent symbols and symbol trees.  The 
nonlinear  operation  of  circular  convolution  is  used  to 
manipulate these symbol trees.  This can be seen as a non-
classical  symbol  system,  capable  of  performing  the 
operations required for symbolic cognition.  The result is a 
scalable  and  efficient  neural  cognitive  architecture, 
constructed from these basic neural components.
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Overview
This tutorial covers a tradition of symbolic computational
modelling known as EPAM/CHREST, with its first member,
EPAM (Elementary Perceiver and Memoriser) developed by
Edward Feigenbaum in 1959. EPAM was used to construct
models of a variety of phenomena, providing the impetus to
develop the chunking theory (Chase & Simon, 1973; Gobet
et al., 2001), which has been an important component of the-
ories of human cognition ever since.

The history of computational modelling includes a variety
of approaches to describe human behaviour. The benefits of
encoding a theory as a computational model include a pre-
cise definition of how the behaviour is to be explained, and
a means of generating quantitative predictions for testingthe
theory. Examples include models of single phenomena (such
as Sternberg’s model of STM; (Sternberg, 1966)), integrated
models covering a wide range of different phenomena (such
as Soar (Newell, 1990) and ACT-R (Anderson & Lebière,
1998)), and over-arching principles, which guide the develop-
ment of models in disparate domains (such as connectionist
approaches (McLeod, Plunkett, & Rolls, 1998), or embodied
cognition (Pfeifer & Scheier, 1999)).

The group of models to be studied in this tutorial empha-
sise learning phenomena, and learning at a symbolic level.
EPAM was the precursor of the later CHREST (Chunk Hi-
erarchy and REtrieval STructures) system, and both are typ-
ically developed from large quantities of naturalistic input.
For example, in modelling expert perception of chess play-
ers, actual chess games are used (Gobet & Simon, 2000).
Similarly, in modelling the acquisition of syntax, large cor-
pora of mother-child interactions are employed to develop
the model’s long-term memory (Freudenthal, Pine, Aguado-
Orea, & Gobet, 2007).

The tutorial is structured so that participants will:

1. Acquire a complete understanding of the EPAM and
CHREST approach to computational modelling, and their
relation to the chunking and template theories of cognition;

2. Explore some key learning phenomena supporting the
chunking theory, based around experiments in verbal-
learning, categorisation and the acquisition of expertise;

3. Be introduced to an implementation of CHREST which
can be used for constructing models of their own data.

Further information about CHREST, supporting publications
and implementations can be found at:http://chrest.info

Chunking and Template Theories
A chunkis a ‘familiar pattern’, an item stored in long-term
memory. Chunks collect together more basic elements which
have strong associations with each other, but weak associ-
ations with other elements (Chase & Simon, 1973; Cowan,
2001). Miller observed (Miller, 1956) that short-term mem-
ory typically contains a limited number of pieces of infor-
mation, but the size of these pieces varies with context; this
observation lies behind the chunking theory. Chase and Si-
mon (1973) confirmed the presence of chunks in the recall of
chess positions, and the EPAM model provides a means of
learning, storing and retrieving such chunks.

The chunking theory has been extended to form thetem-
plate theory(Gobet & Simon, 1996, 2000). The extensions
include mechanisms to create retrieval structures, which use
specific retrieval cues to store and obtain information rapidly.
The template is a form of slotted schema, containing acore,
of stable information, andslots, containing variable informa-
tion. Where the chunking theory captures much of how the
average person learns in tasks such as verbal-learning, the
template theory further captures the way in which highly-
trained human experts perceive and identify patterns in their
domain of expertise.

A more detailed overview of the chunking and template
theories is contained in Gobet et al. (2001).

Implementation
CHREST comprises three basic modules:

• Input/output module, which is responsible for feature ex-
traction, passing the features to the long-term memory for
sorting, and guiding the eye movements;

• Long-term memory, which holds information in the form a
discrimination network; and

• Short-term memories, which hold pointers to nodes in the
long-term memory.

The key feature which distinguishes EPAM/CHREST
models is the discrimination network for storing and retriev-
ing information in long-term memory. Information input to
the models is assumed to form a list of subobjects, each of
which is either a further list of subobjects or else a primi-
tive. Once information has been stored within the network, it
becomes achunk, a ‘familiar pattern’. Tests in the discrimi-
nation network check for the presence of individual primitive
objects, or known chunks (which can be large lists of sub-
objects). The discrimination network is trained by exposing
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CHREST to a large set of naturalistic data. A typical network
for an expert in a complex domain will contain on the order
of 100,000 nodes.

CHREST extends on EPAM by collecting chunks together
when an internal node meets specific criteria relating to its
connections with other nodes within memory. A template
is then formed from the common information in the linked
chunks, with slots created for the variable information. Just
as EPAM was the computational embodiment of key aspects
of the chunking theory, CHREST implements essential as-
pects of the template theory.

Input can be provided to CHREST in one of two ways. As
a single pattern, which is provided in ‘one go’. These pat-
terns are input to the network and stored directly. The second
way is to use the in-built attentional mechanism, by which
CHREST scans an input array, such as a chess board, and
stores parts of the input array into memory. Short-term mem-
ory will then hold a set of chunks, each of which may hold
information about a different part of the chess board, and col-
lectively holding information about most of the board. The
attention mechanism in CHREST is described in Lane, Go-
bet, and Ll. Smith (2009).

CHREST is implemented in Lisp, and uses Tk to provide
a graphical interface. A graphical environment enables users
to create simple CHREST models by providing data within
an input data file. The implementation also supports more
complex tailored models which may be developed by writing
special-purpose code using the packages within CHREST.
Within the tutorial we will introduce participants to the graph-
ical environment, walk them through a number of provided
examples which will illustrate the workings of the architec-
ture and some samples of successful applications, and finally
describe the input data format for applying the environment
to new domains. A library and manual is provided to assist
users wishing to write more complex models.

Applications

The tutorial will cover a variety of experimental data to illus-
trate the theory and processes. We begin with human verbal-
learning processes, which were behind the development of
the first EPAM learning system. The interlinked learning op-
erations, which alternately extend or elaborate information
in the netwrok, are illustrated using applications in verbal
learning (Feigenbaum, 1959; Feigenbaum & Simon, 1984).
Further properties of the chunking network will be described
with reference to results from categorisation (Gobet, Rich-
man, Staszewski, & Simon, 1997), implicit learning and lan-
guage learning (Freudenthal et al., 2007; Jones, Gobet, &
Pine, 2007).

More elaborate models of expertise explore the interaction
between the learner and its external environment. We illus-
trate this aspect of the theory with models of chess exper-
tise, and in particular look at the recall task, which can reveal
many details of expert memory. This application is used to
describe CHREST’s attention mechanisms (Lane et al., 2009)

and how they relate to training the discrimination network.
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Abstract 

In a recent book, Pew and Mavor and the Committee on 
Human-System Design Support for Changing Technology 
(2007) proposed a revision to Boehm’s Spiral Model for 
system development.  This revision encourages considering 
the user within a system as a source of risk.  Where these 
risks are significant, this approach suggests ways to reduce 
the risk through appropriate studies of the user.  This tutorial  
provides a summary of this model and some of the insights 
and extensions of this model based on teaching it.  These 
insights are related to learning: learning by the field through 
using this approach to organize methods and techniques, 
learning by system development managers that there are 
sometimes risks related to humans using their systems (and 
implications for how to teach this), learning about designers 
as stakeholders, and learning by designers as lessons from one 
design are applied to later designs.  These insights and 
extensions suggest the importance of shared representations 
such as cognitive models for educating team members and for 
the system development process.   

Keywords: Human-system design; user models; 
representation 

Introduction 

In a recent book, Pew and Mavor and the Committee for 

Committee on Human-System Design Support for Changing 

Technology (2007) propose a revision to Boehm's Spiral 

Model for system development. I present here a summary of 

this model for system design. This report argues that not 

understanding aspects of the user can be a risk in system 

design.  Thus, where there are no user related risks, system 

designers do not need to worry about users. In other cases, 

where there are risks, the book presents approaches for 

reducing these risks. User models are a way to share 

knowledge about users across the design process. 

Intended audience.  This tutorial will be of interest to 

people interested in using models in industry as a shared 

representation, modelers interested in applications of 

models, and those interested in understanding the 

Committee's report as edited by Pew and Mavor. 

Prerequisite knowledge: This tutorial does not presume 

any prerequisite knowledge. Attendees may wish to have 

skimmed the book (which is available on the web page-at-a-

time for free), or have examined other work on system 

design. 

The Spiral Model 

The spiral model is an approach to system design that 

encourages increment development of systems in a spiral of 

requirements specification, technical exploration, and 

stakeholder commitment.  The spiral model is shown in 

Figure 1, where movement around the spiral represents time 

and commitment and work on the project.   

At each stage in development, the system development is 

accessed for risks to the system’s success.  The process is 

then targeted at reducing these risks.  Some risks may be 

technical, can we build it or can we build it for that price?  

In these cases, technical work is performed to reduce the 

risk through technical understanding.  Other risks can arise 

from historical events, which are hard to reduce, and from 

financial matters, which often can be reduced by setting up 

contracts at a known price. Risks can also occur due to not 

understanding user, their tasks, or their interaction with the 

system, which the report and this tutorial address.  

 

 

Figure 1.  The basic spiral model (Pew & Mavor, 2007).  

This revised system design model in Pew and Mavor 

(2007) has several key features, as noted in the book:  

(a) Systems should be developed through a process that 

considers and statisfices the needs of stakeholders.  This 

step is done in the Exploration and Evaluation stages.   

(b) Development is incremental and performed iteratively.  

These related aspects are shown in Figure 1 by the multiple 

loops representing the increasing resources committed to 

design and implementation, and through the five stages 

(Exploration, Valuation, Architecting, Development, and 

Operation).  These stages are incremental because 

movement from one stage to another depends upon a 

successful review   

(c) Development occurs concurrently, that is, multiple 

steps may be performed simultaneously.  Designers may 

implement one part of the system while testing another.   

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

6



(d) The process is mindful of risks during system 

development and deployment.  The level of risk is accessed 

repeatedly at milestones between stages.  Risk is used to 

manage the project—the level of effort and level of detail of 

work are driven by the level of risk.  Where there is no risk 

to system development, there is no need for effort to reduce 

risk.  For example, if the system being developed is similar 

to a known product, there may be no reason to explore 

further how to support users or how to manufacture it.   

Insights  

The committee did not set out to create human-system 

integration (HSI) teaching materials, but the resulting book 

can be used to teach about HSI, human-computer interaction 

(HCI), and human factors.  In teaching this material, the  

students and I found several extensions and insights.  

(a) The revised spiral model provides a framework for 

organizing much of HCI and HSI.  Most HCI methods can 

be cast as ways to reduce various types of risks, and most 

design processes cast as steps in the spiral.   

(b) The revised spiral model is not just normative, it is 

also descriptive.  That is, managers may already be working 

to reduce risk; it is just that they do not see the risks related 

to users because they do not understand users.  This insight 

suggests that it is likely to be more important to create 

materials to teach about incipient risks than it is to teach 

about the revised spiral model process itself.   

(c) Designers are stakeholders too.  Tools and approaches 

to reduce risks must support their understanding.  They are 

users of the process and their needs and capabilities are part 

of the development process.   

(d) One of the major results of using shared 

representations and analyses of systems while being 

designed may be learning of the design team and application 

to later designs. Thus, work on creating shared 

representations should not just include integration across the 

team and across the design process for a single project 

(which the book calls for), but also across designs over 

multiple projects. 

Summary 

The risk-driven incremental concurrent development model, 

the later version of the spiral model, provides a useful and 

safer way to create systems.  As a study aid, the model 

provides a new way to view HSI and HCI methods, design 

approaches, and development theories, and how to include 

them in system design.   

So, in this new view, the decision to do user research, 

review, or studies is based on system design risks. If the 

system development is predicted to be smooth and not 

novel, then little or no usability studies are required, and 

little or no should be done.  Where there is more risk, more 

work should be done given the resources.  But, the user-

related risk has be balanced against other risks.  The 

technology may in fact be riskier, and thus require more 

resources.  Or, as is often the case, the managers understand 

the technical risk.  

There are several corollaries to this.  The managers often 

must be educated about user risks, and we will need books 

and tutorials like this to help educate system designers about 

where and when their theories of users mismatch the world.   

We will need improved representations of users (shared 

representations) to use in the design process, similar to how 

blueprints are used in buildings.    
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Human behaviour is the product of two adaptive systems 
that generate and select actions beneficial to the organism. 
Through one of these systems, genetic selection, the species 
has acquired relatively stable psychological mechanisms. 
Through the other,  learning, individuals acquire the 
knowledge that determines behaviour on a moment to 
moment basis. Together these systems generate the complex 
behaviours that cognitive science seeks to explain. 
 Focusing on behaviour as the product of adaptation 
opens up possibilities for deep explanations that answer 
questions not only about how people behave but also why 
they behave as they do. These rational explanations are 
grounded in theories of the constraints on adaptation, 
including constraints derived from the observable structure 
of the task environment (either evolutionary or local). They 
are also grounded in one, or other, assumption of 
rationality, which is sometimes defined in terms of 
optimality criteria. The assumption of rationality is the 
point of departure for a range of approaches to 
understanding cognition and perception,  including rational 
analysis and related Bayesian approaches (Anderson, 1990; 
Anderson & Schooler,  1991; Oaksford & Chater, 2007), 
optimal motor control approaches (e.g.  Maloney, 
Trommershäuser, & Landy, 2007), as well as signal 
detection theory and ideal observer analysis (Giesler, 2003). 
Others, notably Simon (1955) and Gigerenzer, ABC 
Research Group and Todd (2000), focus on the adaptive 
benefit of heuristics given that rationality is limited by 
psychological bounds.
 The symposium will encourage discussion of relevant 
contributions made over the past 20 or so years and, further, 
will seek to expose the key unanswered questions. The 
remainder of this abstract provides brief descriptions of 
current contributors of the symposium speakers. 
 Anderson began to pursue the issue of how cognition 
might be adapted to the statistical structure of the 
environment in the late 1980s and soon published “The 
Adaptive Character of Thought" (Anderson, 1990).  The 
fundamental idea was that to understand human cognition 
we do not need to develop a theory of its mechanisms but 

only need to understand the statistical structure of the 
problems it faces. This effort has had successes in 
developing theories of human memory and categorization. 
In the memory domain, Anderson and Schooler (1991) 
collected statistics on the information-retrieval demands 
made on human memory and showed that behavioral 
functions mirrored these. In the case of categorization this 
lead to a program which accounted for a wide range of 
human data and which did well on a number of machine-
learning data sets. The rational analysis work played a 
major role in defining a better version of the ACT-R 
subsymbolic activation processes. Anderson realized that 
while these subsymbolic processes were tuned to the 
statistical structure of the environment, one needed an 
overall computational structure like ACT to understand 
how they interacted.
 Furthering his earlier work with Anderson, Schooler is 
now pursuing a modeling and empirical effort that,  in the 
context of David Marr's functional approach to 
understanding cognition, bridges two research programs 
grounded in an appreciation of the adaptive value of 
human cognition: The program on fast and frugal 
heuristics explores cognitive processes that use limited 
information to make effective decisions; and the ACT-R 
research program that strives for a unified theory of 
cognition. This work illustrates how a memory system that 
is tuned to automatically retrieve information can be 
exploited for a different purpose, namely making 
inferences about real objects in the world, based on meta-
cognitive judgments about how the memory system 
responds to stimuli (Schooler & Hertwig, 2005). This 
work provides a good point of departure to discuss the 
kinds of cognition that yield to a rational analysis and 
those that might not.
 Chater has argued that rationality is defined by the 
ability to reason about uncertainty. Although people are 
typically poor at numerical reasoning about probability, 
human thought, shaped through evolution, is sensitive to 
subtle patterns of qualitative Bayesian, probabilistic 
reasoning. In Bayesian Rationality (Oaksford & Chater 
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2007), the case is made that cognition in general, and 
human everyday reasoning in particular, is best viewed as 
solving probabilistic, rather than logical, inference 
problems. The psychology of “deductive” reasoning is 
addressed directly: It is argued that purportedly “logical” 
reasoning problems, revealing apparently irrational 
behaviour,  are better understood from a probabilistic point 
of view. Data from conditional reasoning tasks, for 
example, are explained by recasting these problems 
probabilistically. The probabilistic approach makes a 
variety of novel predictions which have been 
experimentally confirmed.
 Brighton’s research, e.g. Brighton and Todd (2008), 
focuses on modeling the computational processes that 
underlie adaptive behaviour. With Gigerenzer, Brighton 
views heuristics as cognitive processes that gain efficiency 
by ignoring information. In contrast to the widely held view 
that less processing reduces accuracy,  the study of 
heuristics shows that less information, computation, and 
time can in fact improve accuracy. Heuristics are 
ecologically rational when deployed in the right 
environment.  The “adaptive toolbox” provides a systematic 
theory of heuristics that identifies their building blocks and 
the evolved capacities they exploit. According to this 
program, while people have biased minds and ignore part of 
the available information, they can handle uncertainty more 
efficiently and robustly than an unbiased mind relying on 
more resource-intensive and general-purpose processing 
strategies.
 Lewis and Howes assume that individuals adapt 
rationally to a utility function given constraints imposed by 
their cognitive architecture and the local task environment 
(Howes, Lewis, Vera, accepted). This assumption underlies 
a new approach to modelling and understanding cognition
—cognitively bounded rational analysis—that sharpens the 
predictive acuity of general,  integrated, theories of 
cognition and action. Such theories provide the necessary 
computational means to explain the flexible nature of 
human behaviour, but in so doing introduce extreme 
degrees of freedom in accounting for data. The new 
approach narrows the space of predicted behaviours 
through analysis of the payoff achieved by alternative 
strategies, rather than through fitting strategies and 
theoretical parameters to data. Analyses of dual-task 
performance,  and the development and analysis of a new 
theory of ordered responses, yield several novel results, 

including a new understanding of the role of strategic 
variation in existing accounts of dual-task performance, 
and the first predictive, quantitative, account showing how 
the details of ordered dual-task phenomena emerge from 
the rational control of a cognitive system.
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Introduction 
Model comparison is becoming an increasingly common 
method in computational cognitive modeling. The 
methodology is seemingly straightforward: model 
comparisons invite the independent development of distinct 
computational approaches to simulate human performance 
on a well-defined task.  Typically, the benchmarks of the 
comparison are goodness-of-fit measures to human data that 
are calculated for the various models.  Although the 
quantitative measures might suggest that model 
comparisons produce “winners,” the real focus of model 
comparison is, or at least should be, on understanding in 
some detail how the different modeling “architectures” have 
been applied to the common task.  And in this respect, the 
seemingly straightforward method of model comparison 
becomes more complicated. 

The idea that a model comparison might be used to pick a 
winning approach resonates with common intuitions about 
model validation, namely, that a good fit is good evidence 
for the theory the model implements.  But to the extent that 
model comparisons seek to illuminate general features of 
computational approaches to cognition rather than to 
validate a single theory of cognition, they depart from the 
familiar mode of good fit, good theory.  Instead, a model 
comparison forces us to think about the science of 
modeling.  A good fit is thus relegated to a necessary 
requirement rather than an end in itself, and the focus shifts 
toward a deeper understanding of the modeling approaches 
themselves.  This shift brings into focus a host of new 
questions having to do with the relationship between model 
and architecture, theory and implementation, the relative 
contributions of the modeler and of the architecture to the 
final model, the role of parameter estimation in model 
development, the suitability of the simulated task to exercise 
features of the various architectures, the extensibility of the 
simulated task and the practical considerations that go into 
integrating disparate approaches within a common 

simulation environment.  In this symposium, we address 
these issues in the context of our own model comparison.   
Our ultimate goal is to evolve a formal methodology to 
ensure the soundness of future comparison efforts and 
develop an infrastructure to make such efforts an ongoing 
process rather than one-off events. 

Requirements 
We have direct experience from a number of modeling 
comparisons projects, including the AFOSR AMBR 
modeling comparison (Gluck & Pew, 2005) and the NASA 
Human Error Modeling comparison (Foyle & Hooey, 2008).  
We have also entered cognitive models into multi-agent 
competitions (Billings, 2000; Erev et al, submitted) and 
organized symposia featuring competition between 
cognitive models as well as mixed human-model 
competitions (Lebiere & Bothell, 2004; Warwick, Allender, 
Strater and Yen, 2008).  From these endeavors, we have 
gained an understanding of the required (and undesirable) 
characteristics of a task for such projects.  While previous 
model comparison efforts did illustrate the capabilities of 
some modeling frameworks, the tasks were often ill suited 
to that purpose for a number of reasons: 
• Some tasks demand a considerable effort just to model 

the details of task domain itself, which often results in a 
model whose match to the data primarily reflects the 
structure and idiosyncrasies of the task rather than the 
underlying cognitive mechanisms.  This does not serve 
the primary purpose of a model comparison effort, 
which is to shed light upon the merits of the respective 
modeling frameworks rather than the cleverness and 
diligence of their users. 

• Some tasks do not stretch model functionality beyond 
the conditions for which human data is available. The 
comparison effort can then be gamed by simply 
optimizing the model parameters to the data available, 
which puts frameworks that emphasize constrained, 
principled functionality at a disadvantage over those 
that permit arbitrary customization and 
parameterization. 
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• Likewise, some tasks are too specialized, emphasizing a 
single aspect, characteristic or mechanism of cognition 
and do not require the broad, integrated functional 
capabilities required of a general cognitive framework. 

• If no common simulation or evaluation framework is 
provided, each team can focus on the aspects of the task 
most amenable to their framework, at the cost of 
making a direct comparison all but impossible. 

• Finally, tasks for which no suitably comparable human 
data is available bias the effort toward a purely 
functional evaluation of model against model (rather 
than against data), which emphasizes performance at 
the expense of empirical fidelity. 

This experience has taught us that the desirable 
characteristics of a task for a model comparison include: 
• Lightweight, to limit overhead of integration, task 

analysis and knowledge engineering requirements. 
• Fast, to allow efficient model development and 

collection of large numbers of Monte Carlo runs. 
• Open-ended, to discourage over-parameterization and 

over-engineering of the model and test its 
generalization over a broad range of situations. 

• Dynamic, to explore emergent behavior that is not 
predictable from the task specification. 

• Simple, to engage basic cognitive mechanisms in a 
direct and fundamental way. 

• Tractable, to encourage a direct connection between 
model and behavioral data. 

Like other competitive benchmarks of human cognition 
(e.g. Robocup), the key is finding the right combination of 
simplicity, flexibility and emergent complexity. 

Comparison Challenge 
We believe the task we have selected, the Dynamic 

Stocks and Flows (Dutt & Gonzalez, 2007), meets these 
requirements and strikes the right combination between 
simplicity and complexity (Lebiere, Gonzalez, & Warwick, 
in press).  The instructions to participate in this comparison 
challenge are on a web site1, together with an executable 
version of the task, a text-based socket connection for 
models, and experimental data for a number of experimental 
conditions for model calibration.  We collected data on 
additional conditions that were used to test the submitted 
model’s generalization beyond the available conditions.  
Our focus in evaluating models was two-fold: quantitative 
measures of the models’ fit to the data in the generalization 
conditions, and qualitative assessment of the generality and 
constraints of the underlying theories in meeting the 
demands of the task. The best entries under each criterion 
were invited to describe their model in this symposium. 

Conclusion 
   A number of tests for a general theory of intelligence have 
been advanced (e.g. Cohen, 2005; Anderson & Lebiere, 
2003).  A key common aspect is to enforce generality in 

                                                             
1 http://www.cmu.edu/ddmlab/modeldsf 

approach, in order to prevent special-purpose optimization 
to narrow tasks and force integration of capabilities.  One 
can view that strategy as effectively overwhelming the 
degrees of freedom in the architecture with converging 
constraints in the data.  However, precise computational 
specifications of those tests have to tread a tight rope 
between requiring unreasonable amounts of effort in 
modeling broad and complex tasks and falling back into 
narrow task specifications that will again favor engineered, 
optimized approaches.  This model comparison challenge is 
our attempt at testing general cognitive capabilities in an 
open-ended manner by offering low barriers to entry in 
confronting different approaches with specific common 
problems that encourage integrated cognitive approaches. 

Acknowledgments 
This research was partially supported by the Advanced 
Decision Architectures of the Army Research Laboratory 
award number DAAD19-01-2-0009.  Many thanks to Hau-
yu Wong for her help in analyzing the data and to Mala 
Gosakan and Michael Matessa for their help in running the 
models. 

References 
Anderson, J. R. & Lebiere, C. (2003). The Newell test for a 

theory of cognition. Behavioral & Brain Sciences 26, 
587-637. 

Billings, D. (2000). The First International RoShamBo 
Programming Competition. ICGA Journal, Vol. 23, No. 
1, pp. 42-50. 

Cohen, P. (2005).  If Not Turing’s Test, Then What? AI 
Magazine 26(4): 61–67. 

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S., Hau, 
R., Hertwig, R., Stewart, T., West, R., & Lebiere, C. 
(submitted).  A choice prediction competition, for choices 
from experience and from description.  Journal of 
Behavioral Decision Making. 

Foyle, D. & Hooey, B. (2008).  Human Performance 
Modeling in Aviation.  Mahwah, NJ: Erlbaum. 

Gluck, K, & Pew, R. (2005).  Modeling Human Behavior 
with Integrated Cognitive Architectures.  Mahwah, NJ: 
Erlbaum. 

Dutt, V., & Gonzalez, C. (2007). Slope of inflow impacts 
dynamic decision making. Paper presented at the 
Conference of the System Dynamics Society. 

Lebiere, C., & Bothell, D. (2004).  Competitive Modeling 
Symposium: PokerBot World Series.  In Proceedings of 
the Sixth International Conference on Cognitive 
Modeling, Pp. 32-32. 

Lebiere, C., Gonzalez, C., & Warwick, W. (in press).  
Convergence and constraints revealed in a qualitative 
model comparison.  Journal of Cognitive Engineering and 
Decision Making. 

Warwick, W., Allender, L., Strater, L., & Yen, J. (2008). 
AMBR Redux:  Another Take on Model Comparison. 
Symposium given at the Seventeenth Conference on 
Behavior Representation and Simulation.  Providence, RI. 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

11



A Model of Probability Matching in a Two-Choice Task Based on Stochastic
Control of Learning in Neural Cell-Assemblies

Roman V. Belavkin (R.Belavkin@mdx.ac.uk)

Christian R. Huyck (C.Huyck@mdx.ac.uk)
School of Engineering and Information Sciences
Middlesex University, London NW4 4BT, UK

Abstract

Donald Hebb proposed a hypothesis that specialised groups of
neurons, called cell-assemblies (CAs), form the basis for neu-
ral encoding of symbols in the human mind. It is not clear,
however, how CAs can be re-used and combined to form new
representations as in classical symbolic systems. We demon-
strate that Hebbian learning of synaptic weights alone is not
adequate for all tasks, and that additional meta-control pro-
cesses should be involved. We describe an earlier proposed
architecture (Belavkin & Huyck, 2008) implementing such
a process, and then evaluate it by modelling the probability
matching phenomenon in a classic two-choice task. The model
and its results are discussed in view of mathematical theory of
learning, and existing cognitive architectures as well as some
hypotheses about neural functioning in the brain.

Keywords: Artificial Intelligence, Cognitive Science, Neu-
roscience, Decision making, Intelligent agents, Learning,
Bayesian modeling, Computational neuroscience, Human ex-
perimentation

Introduction
There exists a variety of artificial systems and algorithms for
learning and adaptation. Most of them can be classified as
sub-symbolic (e.g. Bayesian and connectionist networks) or
symbolic systems (e.g. rule-based systems). Known natu-
ral learning systems use neural networks, and therefore can
be classified as using sub-symbolic computations. A distin-
guishing feature of the human mind, however, is the ability to
use rich symbolic representations and language.

From an information-theoretic point of view, symbols are
elements of some finite set that are used to encode discrete
categories of sub-symbolic information. They enable com-
munication of information about the environment or a com-
plex problem in a compact form. One obvious benefit is that
with language, one can learn not only from one’s own expe-
rience, but also from experiences of others. The benefits of
reading a guidebook before going abroad are obvious.

The duality between sub-symbolic and symbolic ap-
proaches has been studied in cognitive science. There ex-
ists sub-symbolic (i.e. connectionist), symbolic (e.g. SOAR,
Newell, 1990) and hybrid architectures (e.g. ACT–R, Ander-
son & Lebiere, 1998) for cognitive modelling. These differ-
ent approaches, however, have not yet explained where the
symbols are in the human mind, or how the brain implements
symbolic information processing.

It was proposed by Hebb (1949) that symbols are repre-
sented in the brain not by individual neurons, but by cor-
related activities of groups of cells, calledcell assemblies
(CAs). The CABOT project set out to test and demonstrate

this idea in an engineering task by building an artificial agent,
situated in a virtual environment, capable of complex sym-
bolic processing, and implemented entirely using CAs of sim-
ulated neurons. Some of the objectives have already been
achieved and reported elsewhere (e.g. Huyck & Belavkin,
2006; Huyck, 2007; Belavkin & Huyck, 2008). The archi-
tecture and some of these works will be discussed in the next
section.

The work described in this paper is concerned with a partic-
ular aspect of the project — a stochastic meta-control mech-
anism that modulates Hebbian learning to allow for re-use
and combination of CAs into new representations, such as
learning logical implications (i.e. procedural knowledge). As
will be discussed in this paper, this cannot be achieved by
using a Hebbian learning mechanism alone. A unique con-
tribution of this work is evaluation of the meta-control mech-
anism in a cognitive model of the probability matching phe-
nomenon in a two-choice experiment (Friedman et al., 1964).
The results suggest that a proposed mechanism is a plausi-
ble model. Some neurophysiological studies and hypotheses
about the brain circuitry will be discussed supporting the bi-
ological plausibility of the architecture.

Cell-Assemblies as the Basis of Symbols

In this section, we outline some of the basic features of the
CABOT architecture as well as the CA hypothesis.

Neural Information Processing in CABOT

It is widely accepted that human cognition is the result of the
activity of approximately 1011 neurons in the central nervous
system (CNS) that interact with each other as well as with
the outside world via the peripheral nervous system (PNS).
Biological neurons are complex systems, and they have been
modelled with various levels of details. In our system, we use
fatiguing, leaky, integrate and fire (fLIF) neurons.

The ‘integrate and fire’ component is based on the classical
idea that the neuron ‘fires’ (or spikes) if its action potential,
A, exceeds a certain threshold valueθ: y = 1 if A≥ θ; y = 0
otherwise. The action potential,A, is a function of the in-
ner product (integrator):〈x,w〉 = ∑k

i=1xi wi , wherex∈ R
k is

the stimulus vector (pre-synaptic), andw∈ R
k is the synaptic

weight vector of the neuron. Here,R
k is ak-dimensional real

vector space, wherek is the number of synapses to the neu-
ron. We use binary signals, and thereforex is ak-dimensional
binary vector.
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The ‘leaky’ property refers to a more complex (non-linear)
dependency of the action potential on the pre- and post-
synaptic activity:

At+1 =
At

dt
+ 〈xt ,wt〉 , dt =

{

∞ if fired (yt = 1)
d ≥ 1 otherwise

Thus, the action potential is accumulated over several time
moments if the neuron does not fire. Parameterd ≥ 1 allows
for some of this activation to ‘leak’ away. This is the LIF
model (Maas & Bishop, 2001).

The ‘fatigue’ property refers to a dynamic threshold that is
defined as follows:

θt+1 = θt +Ft , Ft =

{

F+ ≥ 0 if fired (yt = 1)
F− < 0 otherwise

where valuesF+ andF− represent thefatigueand fatiguere-
coveryrates. Thus, if a neuron fires at timet, its threshold
increases, and it is less likely to fire at timet +1.

The fatiguing and leaky properties of the neural model al-
low for a non-trivial dynamics of the system. Repetitive stim-
ulation of excitatory synapses increases the probability of a
neuron to fire, even if the weights have small (positive) val-
ues. On the other hand, if the neuron fires repetitively, its
threshold increases reducing the chance of it firing again.
Thus, frequencies of pre- and post-synaptic activities areim-
portant factors in our system.

The weights,w, of a neuron can adapt according to the
compensatory learning rule (Huyck, 2007), which is an im-
plementation of the Hebbian principle (Hebb, 1949), where
wt+1 depends on the correlation between the pre-synaptic,xt ,
and the post-synaptic,yt , activities.

The above described properties are known characteristics
of biological neurons, and our model is a compromise be-
tween computational efficiency and biological plausibility
that is important for the emerging dynamics that we discuss.

Neural Cell-Assemblies
Networks of neurons can be used as general function approxi-
mators and applied in a variety of tasks including control, pat-
tern recognition and classification. Our system, CABOT, uses
recurrent, partially connected networks (a mesh) of fLIF neu-
rons with a largely pre-defined topology. The non-linearity
of the cells and the topology of the network leads to a com-
plex dynamics of the system similar to that in attractor and
recurrent nets (e.g. Hopfield, 1982), where some of the states
are more probable. These more ‘stable’ states can be charac-
terised by groups of neurons that remain significantly more
active than the other cells in the system. According to Hebb
(1949), we refer to such reverberating groups of cells ascell
assemblies(CAs).

In our system, the formation of CAs depends on the topol-
ogy of the network, and it is facilitated by the adaptation of
the weights between connected cells. Therefore, CAs can be
used for pattern classification of sensory stimuli (i.e. patterns
from external connections). This leads to functionalspecial-
isationof neurons in the network based on CAs — two cells

are functionally different if they belong to different CAs,even
though they are similar architecturally. Such specialisation is
observed in many neural networks, such as in self-organising
maps (Kohonen, 1982) and particularly in the human brain.
Note that CAs are not necessarily disjoint sets of cells. A sin-
gle cell may be a member of several overlapping CAs. This
feature can be used to encode hierarchies of patterns (Huyck,
2007).

An important property of CAs’ dynamics is their persis-
tence. When enough neurons fire to start the reverberating
circuit, the CA ignites. Once ignited, the activity within the
cells in a CA may be sufficient to support itself. Many vari-
ables can contribute to this effect. In particular, the fatigue
and recovery rate parameters in our system effect persistence.

A CA’s activity does not only depend on the external pat-
terns, but also on the activity of other CAs in the system as
they can ignite and extinguish each other. Thus, the activ-
ity of several CAs can be characterised by different patterns
of ignition order and so on. It was demonstrated earlier that
such state transitions in the system of CAs are sufficiently
controllable to implement a broad range of tasks simulating
symbolic processing that will be discussed below.

Symbols and Human Cognition
Many models of biological neurons suggest that synaptic
weights may represent the memory for statistical and sub-
symbolic information of the stimulus. In particular, in many
algorithms for training artificial neural networks (e.g. Oja,
1982), the weight vectorw ∈ R

k corresponds to one of the
principal eigenvectors of the covariance matrixE{xx†

} of in-
put vectorsx ∈ R

k that have been observed. On the other
hand, human cognition, and human knowledge in particular,
is encoded using symbolic representations, and the link be-
tween the symbols and neural models is less clear.

It was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, as discussed
in the previous section, CAs can be easily mapped to some
discrete categories of the stimuli, and their activity patterns
can model serial processing typical for symbolic algorithms.
Testing this hypothesis experimentally is one of the main ob-
jectives of the CABOT project. However, many challenges
had to be overcome to make a purely CA-based system per-
forming some non-trivial symbol processing task.

Previously, we reported a system performing a counting
task that consisted of 7 modules and 40 CAs (Huyck &
Belavkin, 2006). A more recent system, CABOT 2, is an
artificial agent functioning in a virtual 3D environment that
has a model of visual information processing, and is capable
of natural language processing and action selection (Belavkin
& Huyck, 2008). One of the advantages of such a CA-based
architecture is that neural CAs, that we associate with sym-
bolic representations, integrate also all the sensory (i.e. sub-
symbolic) information, which can be a natural solution to the
symbol groundingproblem. An associated phenomenon of
symbolic processing isgrounding transfer— combination
and re-use of existing symbols to form new representations.
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The re-use of symbols is also important for learning pro-
cedural knowledge. Indeed, a logical implication (i.e. a
production rule) may use combinations of symbols both in
the antecedent and the consequent, and generally there are
many more possible combinations than the number of rules
that are actually used. Hybrid architectures, such as ACT–R,
rely on statistical (sub-symbolic) computations to ‘filter’ out
the unwanted rules in the process calledconflict resolution.
In CABOT, associations between CAs are learnt due to the
Hebbian learning mechanism. However, as will be pointed
out below, this mechanism alone is not sufficient to imple-
ment learning of particular associations between CAs rep-
resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderating the
Hebbian learning, has been introduced (Belavkin & Huyck,
2008). Here, we use this mechanism to model the probability
matching phenomenon in a classical two-choice experiment,
and this way evaluate its plausibility.

Stochastic Meta-Control of Learning
Two-Choice Task
Let x, y1 andy2 be three symbols, wherex represents a stim-
ulus (antecedent), andy1, y2 represent two alternative re-
sponses (consequents). Thus, we have a conflict between two
implicationsx→ y1 andx→ y2 shown on the diagram below

x

��~~
~~

~~
~

  
@@

@@
@@

@

y1 y2

This is a simplest two-choice task (a more complex two-
choice task may involve a set of different stimuli). The
choice ofy1 or y2 is followed by some reinforcement event
E that may have different utility values (e.g. a success after
choosingy1 or a failure after choosingy2). Learning the as-
sociations between the choices and the utility values, such
as u(x → y2) ≤ u(x → y1), leads to a preferencey2 . y1,
and therefore learning rulex → y1. If the reinforcement
event is not deterministic, but occurs with some probability
P(E) = π ∈ [0,1], then the preference ofy1 to y2 may also
be stochastic. As demonstrated in many experiments with an-
imals and human participants, the frequency of choosingy1

adapts to probabilityπ of reinforcement with high utility —
a phenomenon referred to as theprobability matching. This
phenomenon can be explained based on the theories of opti-
mal statistical decisions (Wald, 1950) and information value
(Stratonovich, 1965).

Principles of Statistical Learning
Let us consider an abstract system with inputx∈ X and out-
puty∈Y. Any learning system can be characterised by some
optimisation criteria and information constraints (Belavkin,
2009). Optimisation corresponds to some preference relation
on the input-output pairs(x,y) ∈ X ×Y. In a deterministic
setting, this preference relation can be represented by a utility

functionu : X×Y → R, while in stochastic setting one con-
siders conditional probability distributionsP(u | x,y) on val-
ues of utilityu ∈ R. If the utility function u = u(x,y) or the
joint distributionP(u,x,y) is known (and henceP(u | x,y)),
then given inputx, the optimal output ˆy ∈ Y maximises the
expected utility:

ŷ(x) = arg max
y

EP{u | x,y}

whereEP{·} denotes the expected value with respect to dis-
tribution P (in the deterministic case,EP{u | x,y} coincides
with u = u(x,y)). Thegreedystrategy of always choosing the
optimal output can be expressed as follows:

P(y | x) =

{

1 if y = ŷ(x)
0 otherwise

(1)

Information constraints mean that either the utility function
u= u(x,y) or the distributionP(u,x,y) is not known. Instead,
one has some data from past occurrences of(u,x,y) ∈ R×

X ×Y which can be used to estimate ˜u(x,y) ≈ EP{u | x,y}.
In this case, the greedy strategy for choosing the system’s
output is not optimal. The optimal policy is the following
exponential (‘soft-max’) distribution (e.g. Belavkin, 2009):

P̂(y | x) = Q(y | x) exp{β ũ(x,y)−Ψ(β,x)} (2)

whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), parameterβ is related to
the amount of information available in the data, andΨ(β,x)
is defined from the normalisation condition (i.e.Ψ(β,x) =
ln∑Y Q(y | x) exp{β ũ(x,y)}). Distribution (2) is obtained by
solving the following variational problem

U(I) = sup
P
{EP{u} : I(P,Q) ≤ I}

where I(P,Q) is the Kullback-Leibler divergence of dis-
tribution P(u,x,y) from Q(u,x,y) representing information
amountI contained in the data. Parameterβ−1 appears in
the solution as the Lagrange multiplier related to information
constraintI by the derivative ofU(I):

β−1 = U ′(I) (3)

The function above is decreasing so thatβ−1
→ 0 (orβ → ∞)

as information increases. Note that the exponential distribu-
tion (2) converges to the greedy strategy (1) asβ → ∞.

Exponential distributions are often used for selecting the
output of a system in machine learning and stochastic optimi-
sation algorithms. It is also used in the ACT–R cognitive ar-
chitecture to model some stochastic properties of behaviour.
In particular, it was used in the ACT–R model of the two-
choice experiment, discussed below. However, the ‘tempera-
ture’ parameterβ−1 is usually set to some constant value or
determined from some arbitrary ‘annealing’ schedule. The
relation ofβ−1 to entropy of success in ACT–R was proposed
in (Belavkin, 2002/2003), and it was shown that it improves
the match between the models and data. The derivation of
optimal functionβ−1 = U ′(I) can be found in (Stratonovich,
1965) and more generally in (Belavkin, 2009).
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Meta-Control of Hebbian Learning

The output of a neuron depends on its weight vectorw∈ R
k,

which, according to Hebb’s hypothesis, adapts to the corre-
lation between the pre- and post-synaptic activitiesx andy
in the past. It is attractive to conclude, therefore, that Heb-
bian learning is a particular implementation of the statistical
learning. However, the utility is clearly missing in this de-
scription of neural plasticity. What criteria does such a pro-
cess of changing the weights optimise? If in a two-choice task
the system accidentally chooses the ‘incorrect’ cell-assembly
y2, then the weights associatingx with neurons iny2 increase
due to the correlation-based Hebbian learning. This can only
increase the chance ofx → y2 igniting in the future, even
though the reinforcing eventE following the choice ofx→ y2

has a low utility (i.e. a failure). Thus, some additional pro-
cess should be involved to increase the chance of the ‘correct’
combinationx→ y1 after the reinforcing eventE. Such a pro-
cess appears to be especially useful if the CA-based symbolic
representations, formed earlier, are to be re-used. Below we
describe a neural implementation of such a meta-control of
Hebbian learning based on the utility feedback (Belavkin &
Huyck, 2008) following principles of statistical learning.

Value // Explore

��
x1
...

xm

//

//

//

y1
...

yn

Figure 1: Components and connections of the Value and Ex-
plore modules controlling Hebbian learning of connections
between CAs in modulesX andY. Solid and dashed arrows
show excitatory and inhibitory connections respectively.

The meta-control process involves two specialised mod-
ules: Value and Explore. Their connections in the sys-
tem are shown on Figure 1. Here,X = {x1, . . . ,xm} and
Y = {y1, . . . ,yn} are sets of CAs representingm stimuli and
n responses respectively. Initially, there are excitatory con-
nections from every CA inX to all CAs inY, which means
that all pairs(x,y) (i.e. all rulesx→ y) are equally preferred.
Thus, given inputx∈ X, any responsey∈Y can be selected.
However, due to Hebbian learning, the connectionx → y is
reinforced if a particular pair of CAs ignite together, giving
the pair a higher chance to ignite together in the future. Thus,
simply by virtue of Hebbian learning, the system can learn
eventually to prefer some random pairs. The purpose of the
Value and Explore modules is to make this process selective
according to the utility value of the feedback.

The output activity of the Value module represents the util-
ity valuesu associated with the pair(x,y) selected on the pre-
vious step. The input of the module can be configured ac-

cording to the application (e.g. using sensory information).
The purpose of the Explore module is to randomise the ac-

tivity of the response CAs (i.e. CAs in setY). The Explore
module contains cells that can be active without any external
stimulation due to spontaneous activation. The cells in the
Explore module send excitatory signals to all CAs inY, and
the weights of these connections do not change. Thus, the
activity in the Explore module can trigger randomly any re-
sponse CA, and this process does not have a memory. The
Explore module implements the effect of parameterβ−1 in
the exponential distribution.

The Value module sends inhibitory connections to the Ex-
plore module, so that high activity of the Value cells may shut
down the activity in the Explore module. As a result, any re-
sponse CA that has been ignited in setY will persist longer
because it is less likely to be shut down by another CA. Such
a connectivity implements the following learning scheme: If
a particular pair(x,y) results in a high utility value, then high
activity of the Value module inhibits the Explore module, and
the responsible(x,y) pair is allowed to persist longer, and the
x→ y connection increases relative to others due to Hebbian
learning.

Learning the ‘correct’ rules (subsetR⊂ X×Y) contributes
to a better performance of the system (i.e. higher expected
utility). As a consequence, the average activity of the Value
module increases with time, while the activity of the Explore
module decreases. This dynamic also corresponds to a de-
crease of parameterβ−1 as information increases making the
system less random and more deterministic.

Modelling Probability Matching
To test how adequately the above mechanism can represent
properties of human cognition, we evaluate its performance
against data from a classic two-choice experiment due to
Friedman et al. (1964). The choice of this dataset was mo-
tivated not only by its quality and detailed description of
the procedures, but also because it was used to ‘calibrate’
stochastic properties of other cognitive architectures, such as
ACT–R (Anderson & Lebiere, 1998). The complete descrip-
tion of the experiment and data can be found in the original
paper (Friedman et al., 1964). Here we give a basic outline.

Experiment Description and Previous Work
In this experiment, participants were asked to select one of
two responses on presentation of a stimulus. After the re-
sponse was selected, a reinforcement eventE occurred with
probability P(E) = π that did not depend on the response.
Each participant had to perform this task in three sessions,
each session consisting of 8 blocks, each block consisted of
48 trials. The probabilityP(E) = π changed between each
48–trial block. This paper will report only simulations of re-
sults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
5 and 7 hadP(E) = .5, and blocks 2, 4, 6, and 8 were with
P(E)∈ {.1, .2, .3, .4, .6, .7, .8, .9} that was assigned according
to a random pattern. Thus, probabilityP(E) = π was alter-
nating between .5 and some value above or below .5 between
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Figure 2: Frequency of response (ordinates) as a function
of the probability of reinforcing this response (abscissae).
Points and error bars represent average response and stan-
dard deviations in 48–trials of two-choice task from 80 partic-
ipants, reported in (Friedman et al., 1964). Dashed line shows
frequency of the reinforcing event itself.

48-trial blocks. The data recorded the number of times Re-
sponse 1 was chosen in each 48-trial block.

Figure 2 shows the results of these experiments, reported
by Friedman et al. (1964). The charts show frequencies of
Response 1,F(R), and reinforcement events,F(E), as func-
tions of the control probabilityP(E) = π. One can see that the
frequency of the reinforcement eventF(E) approximates the
the control probabilityF(E)≈P(E). The response frequency
F(R) also matches the probabilityP(E), but it differs signifi-
cantly at the lower and higher ends of the range: WhenP(E)
is low (π = .1), the participants overestimate the probability
(F(R) ≥ P(E)); whenP(E) is high (π = .9), the participants
underestimate it (F(R) ≤ P(E)). Thus, the response appears
to be less certain than the reinforcing event.

As suggested by Anderson and Lebiere (1998), this ex-
perimental evidence indicates against using the greedy strat-
egy (1) for choosing the response. The data was modelled in
ACT–R by sampling responses from exponential distribution
with someβ−1 > 0. This agrees with equations (2) and (3),
whereβ−1

→ 0 only when informationI → supI . We now
describe a model of this experiment implemented in CABOT.

Model Description

The model used the architecture shown on Figure 1, where
moduleX consisted of CAs representing one or more stimuli,
and moduleY contained two CAs representing two alterna-
tive responses. There were excitatory connections with low
weights from moduleX to all CAs in moduleY. The weights
on these connections, however, could adapt according to a
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Figure 3: Comparison of response frequency produced by
the CABOT model with response frequency by participants
in (Friedman et al., 1964). RMSE=8.937%.

Hebbian rule increasing associationsx → y between active
CAs. The fatigue and leak parameters of theY network were
set in such a way that CAs ignite only when an external stim-
uli are present. The CAs inY inhibited each other so that only
one of the CAs inY was active at any moment. The Explore
module had excitatory connections with a small proportion
of cells in moduleY. These connections were distributed uni-
formly, and the weights did not adapt. Spontaneous activation
in the Explore module could randomly trigger any of the two
response CAs in moduleY. The activity of the Explore mod-
ule could be inhibited by the output activity from the Value
module that was triggered in each trial according to proba-
bility P(E) = π of the reinforcement event, controlled by the
experimental sequence.

When the Explore module is inhibited by the reinforcing
activity of the Value module, the active pair(x,y) is allowed
to persist longer, strengthening the connectionsx→ y relative
to other connections. We found that the robustness of this
effect depends on the time (i.e. number cycles) these CAs
are allowed to persist. In this model, it takes approximately
between 10–20 cycles for a response CA inY to ignite, and
if the Explore module is active, then the response CA may
change during another 10–20 cycles. In this experiment, the
system ran for 100 cycles per trial which was sufficient for
the control of learning to have a robust effect. The complete
code of the simulation is available online from the CABOT

project website.

Results

The model was used to simulate Sessions 1 and 2 of eight
48-trial blocks each with variable control probabilitiesπ
(Friedman et al., 1964). The results comparing response fre-
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quency of the model with the data are shown on Figure 3. The
model approximates the data fairly well (RMSE=8.937%)
showing the probability matching effect that also overesti-
mates and underestimates the low and high value of the con-
trol probability π respectively. Note that unlike the ACT–R

model, where the estimated parameterβ−1 in the exponential
distribution was constant (Anderson & Lebiere, 1998), the
activity of the Explore module randomising the response is
dynamic.

Conclusions
In this paper, we discussed the CABOT architecture and some
challenges associated with implementing the CA hypothesis
of symbolic processing in the brain. The problem of re-use
and combination of symbols, particularly in learning proce-
dural knowledge, pointed at one significant shortcoming of
the standard Hebbian learning mechanism — adaptation of
weights based purely on correlations does not take into ac-
count the optimisation criteria that a system may have to sat-
isfy. To resolve this problem, stochastic meta-control based
on utility feedback was introduced into the system.

It is attractive to speculate about the existence of the Value
and Explore modules in the brain. Some researchers have
proposed that tonically active cholinergic neurons in the basal
ganglia and striatal complex play an important role in con-
flict resolution and learning procedural knowledge (Granger,
2006). These neurons account for a small proportion of the
connections that are quite uniform and non-topographic, and
the activity of these neurons was suggested to play the role
of stochastic noise, similar to the activity of cells in the Ex-
plore module (see Fig. 1). Interestingly, the activation ofthe
tonically active cholinergic neurons is inhibited by the acti-
vation from the reward path, similar to the function of the
Value module in our system. Other studies of mechanisms
for exploratory behaviour in the brain are also in favour of
the exponential distribution model (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006).

Setting these speculations aside, this work has demon-
strated that the proposed mechanism can be used for control-
ling Hebbian learning in networks of relatively biologically
faithful models of neurons. The mechanism allows for se-
lective learning of connections between specialised groups of
cells (CAs), and following Hebb’s hypothesis it shows not
only that CAs can indeed be associated with symbols, but
also shows how such representations can be re-used and com-
bined to learn new knowledge. Simulation of the probability
matching effect has demonstrated that the mechanism is also
a plausible cognitive model. We anticipate that the proposed
architecture can also be used to model other psychological
phenomena, such as the effect of reinforcement values on
speed of learning, and this is one possible direction of our
future research.
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Abstract
The  majority  of  cognitive  models  support  some  form  of 
parameterization,  either  of  the  model  itself,  or  through 
architectural mechanisms. In order to fully understand these 
models, it is important to understand the model’s behavior as 
a result of parameter variation across a wide range of values. 
Even simple models become difficult to understand without a 
systematic method of exploring performance across parameter 
combinations, and scientists have turned to iterative methods 
to perform sweeps of these spaces.  As an alternative to an 
exhaustive, homogeneous search, we examined adaptive mesh 
refinement (AMR) to explore simple and complex parameter 
spaces  of  several  models  developed  within  ACT-R.  AMR 
allows  for  fewer  model  runs  with  minimal  loss  of 
information.  We  found  that,  with  appropriate  granularity, 
AMR  methods  can  provide  a  sufficient  computational 
exploration  of  a  performance  space  with  only  1%  of  the 
sampling  of  conventional,  homogeneous  parameter  sweeps. 
The  advantages  of  AMR  for  computationally  efficient 
exploration  of  the  performance  predictions  should  be  of 
benefit  and  interest  to  developers  and  users  of  cognitive 
architectures and cognitive models. 

Keywords: Adaptive  mesh  refinement;  Cognitive 
architecture;  Cognitive  model;  ACT-R;  Parameter  sweeps; 
visualization

Introduction
Although many discussions of cognitive modeling focus on 
the degree of fit to human empirical data, the point has been 
compellingly made that what a cognitive model does outside 
of the best-fitting parameter combination is just as important 
as  what  it  does at  the best-fitting parameter  combination, 
and  perhaps  even  more  so  (Roberts  &  Pashler,  2000). 
Information about how a model performs outside the best-
fitting  parameter  combination  provides  modelers  with 

information  about  how  likely  it  is  that  other  parameter 
combinations  result  in  a  comparable  fit.  It  also  gives 
modelers  information  about  the  full  range  of  behavior 
possible  from  the  model  and  how  different  parameters 
interact to generate possibly complex behavioral dynamics. 
Both  novice  users  of  a  cognitive  architecture  working  to 
understand model dynamics, and expert users of a cognitive 
architecture testing modifications to the theories embedded 
in  these  architectures  would  stand  to  benefit  enormously 
from  a  rapid  analysis  and  visualization  of  the  model 
performance spaces involved. However, cognitive modelers 
facing this problem are currently confronted with a lack of 
tools  that  support  exploring  that  space.  The  de-facto 
approach  to  cognitive  modeling is  more  often a focus on 
maximizing fit to human data. This is done through either 
hand-tuning  based  on the  intuition and  experience  of  the 
modeler or automated optimizing of the fit  of a cognitive 
model through approaches such as genetic algorithms, the 
conjugate  gradient  methods,  or  any  of  a  variety  of  other 
alternatives for optimization. Any of these approaches can 
be sufficiently successful, but they provide little data about 
the  performance  of  the  model  outside  of  the  ultimate 
parameter values used in presenting the final fit. 

Cognitive modelers need techniques and tools to support 
the  rapid  exploration  of  parameter  spaces  in  pursuit  of 
understanding of both models and architectures,  including 
methods that support  visualization of complex spaces that 
illuminate model and architecture behavior  in response to 
changes  in  parameters.  We  will  describe  an  integrated 
approach  to  these  explorations  that  we  have  developed 
across  our  previous  research  efforts  (e.g.,  Best,  Fincham, 
Gluck,  Gunzelmann,  & Krusmark,  2008).  First,  however, 
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we will turn to a discussion of exploring parameter spaces in 
the context of cognitive modeling.

Our  goal,  in  this  case,  is  to  understand  how  the 
architecture  and  model  behave  generally  and  at  the  best 
fitting  point  itself.  To  get  a  full  understanding  of  how a 
model  is  behaving  outside  of  the  best-fitting  parameter 
combination, one approach is to define the limits and step-
sizes  of  a  parameter  space  and  then  run  a  model  some 
number  of  times  at  each  parameter  combination  (an 
exhaustive,  homogeneous  search),  where  the  selected 
number of runs is intended to provide convergence on the 
underlying  prediction of  the model  and architecture.  This 
method produces an evenly sampled space that describes the 
overall  behavior  of  the  model.  However,  resources  (time, 
computation) are allocated evenly between informative and 
uninformative areas of the space. Informative areas are rich 
in  detail  relating  the  performance  of  the  model  or 
architecture to the underlying parameters. Uninformative (or 
less informative) areas of the space may take on a variety of 
different  characteristics,  such as  a degenerate  part  of the 
space  where  a  model  produces  no  responses  at  all.  The 
resources  spent  on  uninformative  areas  are  essentially 
wasted,  as  they  provide  little  additional  information. 
Furthermore, a reduction in granularity (step size) can result 
in  oversampling  of  the  parameter  space;  resources  are 
wasted in this case as well. Even worse, if the model is a 
preliminary version or prototype, significant effort could be 
expended exploring a space that could quickly be deemed 
uninteresting  (e.g.,  a  model  with  a  bug  that  produces 
spurious  results).  Adaptive  mesh  refinement  is  one 
technique that can be used to circumvent these issues and 
focus  resources  on  high  information  value  areas  of  the 
model and architecture space.

Adaptive Mesh Refinement
Adaptive  mesh  refinement  (AMR)  is  a  method  that  can 
differentially and intelligently allocate resources to areas of 
a  parameter  space  that  call  for  finer  resolution  in  the 
modeling based on the presence of more local complexity 
(Plewa  et  al.  2005).  Briefly,  the  entire  n-dimensional 
parameter space, which is defined using some set of finite 
bounds, is initially divided into geometrically regular cells 
at a very coarse level. The value of each dependent measure 
the model produces at the midpoint of each cell is estimated 
based  on  the  previously  sampled  value  of  the  dependent 
measures  produced  at  the  corners.  This  estimated  or 
expected value is then compared to the actual value sampled 
at the midpoint. If the expected and observed values at the 
midpoint  are  closer  than  a  predetermined  deviation 
threshold, changes in the dependent measure are estimated 
to  change  linearly  across  the  parameter  range  within  the 
cell,  and  the  dependent  values  for  all  target  parameter 
combinations  within  that  cell  are  populated  with  linear 
interpolation based on the sampled corners  and midpoint. 
Alternatively,  if  the difference  between the estimated and 
measured values for the dependent measure(s) exceeds the 
threshold, the cell is divided more finely and the process is 

repeated with the children cells. Ultimately,  this results in 
minimal  sampling  over  linear  portions  of  the  space  and 
maximal  (bounded)  sampling  over  areas  that  have  more 
complex surface characteristics (e.g., curvature, variability). 
The  stringency  of  the  threshold  chosen  determines  the 
amount of space sampled. For example, a small allowable 
deviation  such  as  1%  will  result  in  nearly  complete 
sampling of the space,  while a more lax criterion such as 
allowing up to 50% deviation before further refinement was 
pursued  would  result  in  almost  none  of  the  space  being 
sampled.  We  have  found  that  using  AMR  with  a  well 
chosen  refinement  threshold  can  result  in  a  100  fold 
reduction  of  resources  expended  without  a  corresponding 
reduction in the information value of the data gathered from 
the model parameter space, allowing for a rapid exploration 
of  parameter  spaces,  thereby  dramatically  shortening  the 
cognitive model revision cycle (Best et al. 2008).

AMR  techniques,  because  they  attempt  to  sample 
minimally, may produce local spikes in the data, especially 
when  applied  to  stochastic  models  such  as  the  ACT-R 
spaces described here (i.e., the means are less stable when 
using fewer model runs). We have found that the inclusion 
of smoothing as a post-process for AMR generally produces 
improved results, especially at lower sampling rates, since it 
uses information from the local neighborhood to cancel out 
noise present in the surface. We implemented smoothing, as 
is  commonly  done  in  digital  image  processing,  by 
combining  the  AMR  determined  value  of  a  dependent 
measure at a point in some proportion (e.g., ½ was  useful in 
many of  our  experiments)  with the average  of its  nearest 
neighbors on the AMR surface (Plewa et al. 2005).

As  parameter  spaces  become larger  and  more  complex 
(i.e., greater dimensionality and finer granularity), however, 
the required resources can prohibit  exploration, even with 
the gains from AMR. The main reason for this is that the 
scaling of a parameter space is exponential, and thus even 
relatively simple models may easily exceed the capacity of 
available computational resources in a typical lab setting. In 
this situation, high performance computing (HPC) must be 
leveraged,  in  combination  with  AMR,  if  a  timely 
exploration  is  to  be  performed.  HPC computing typically 
involves a large network or cluster of computers that  can 
perform  model  runs  in  parallel,  resulting  in  a  faster 
exploration of complex parameter spaces. This is especially 
useful  in the case of  cognitive model  explorations,  which 
can be described as “embarrassingly parallel”, a term used 
in the field of computational complexity that means that the 
processes to be parallelized (individual model runs) do not 
interact with each other (Dutra et al. 2003).

The remainder of our presentation will focus on applying 
AMR  to  a  set  of  task  models  of  increasing  complexity, 
demonstrating  the  utility  of  AMR  and  the  value  of 
parameter  exploration for understanding cognitive models. 
The three tasks we will describe are the Paired Associates 
Task (PAT), taken directly from the ACT-R tutorial  units 
(ACT-R Tutorials, 2009), the Psychomotor Vigilance Test 
(PVT; Dinges & Powell, 1985), and the Walter Reed Serial 
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Addition and Subtraction Task (SAST; Thorne et al., 1985). 
We now turn to these models and an exploration of their 
parameter spaces using AMR and HPC.

Parameter Space Descriptions
The  Paired  Associates  Task,  as  described  in  Anderson 
(1981) is  a  learning task that  involves  presentation of  20 
nouns associated with the digits 0-9. The pairs are presented 
once  during  a  study  session  and  then  presented  7  times 
during a testing session. The participant is scored on latency 
to correct response and proportion of correct responses out 
of the 20 pairs for each of the 7 presentations.

This task is used as the target of a modeling unit in the 
ACT-R tutorials  where  the  focus  is  on understanding the 
interactions of parameters related to activation in producing 
the memory behavior  of  the  ACT-R architecture  (and  its 
corresponding  explanation  of  human  memory).  However, 
the  modeling  task  itself  poses  a  challenge  to  the  novice 
cognitive modeler, and prospective modelers may leave the 
tutorial unit unsure of the interactions of the parameters, and 
possibly  even  somewhat  frustrated.  We  thus  chose  this 
model as a target to see if the methods we have developed 
could  be  quickly  applied  to  aid  in  understanding  the 
behavior of the architecture and model of this task.

In the ACT-R architecture, the latency of a retrieval from 
declarative memory is impacted by the activation of chunks, 
where that activation is a product of its base level activation 
and a noise factor.  The activation is also impacted by the 
rate  of  decay in  declarative  memory,  while  the  ability  to 
retrieve  activated  chunks  is  impacted  by  the  retrieval 
threshold, which determines an activation level below which 
chunks cannot be retrieved.  Of these parameters,  the base 
level learning parameter is typically left at a default value, 
leaving  us  three  parameters  to  choose  from  for  this 
exploration.  Their  behavior  is  given  by  the  following 
equations. The first equation relates the retrieval time to A, 
the activation of a chunk, and  F, the latency factor, while 
the second equation relates  the probability of  recall  for  a 
chunk  to  the  retrieval  threshold,  τ,  the  activation  of  the 
chunk, A,and the noise parameter of the system, s.

AFeTime −=

s
AChunk ii

e
retrievalP −

+
= τ

1

1)(

To allow for easy visualization, we chose to focus on only 
two  of  these  remaining  parameters,  fixing  the  noise 
parameter s at 0.5, and exploring the PAT space by varying 
the parameters for the retrieval threshold (τ) and the latency 
factor (F), as suggested in the tutorial instructions (ACT-R 
Tutorials, 2009). We explored levels of τ from -3 to 0 with a 
step size of 0.25 and levels of F from 0 to 0.45 with a step-
size of 0.025, resulting in a space with 13 levels of  τ,  19 
levels of F, and a total of 247 parameter combinations. 

Our general approach to understanding the efficiency and 
effectiveness of AMR methods, which we also used below 
with  the  PVT  and  SAST  models,  is  to  first  collect  100 
model runs at each parameter combination, and then divide 
these  into  a  “train”  and  “test”  portion  of  the  data.  The 
comparison of these two halves provides a baseline estimate 
of how well the data fit themselves (model stability), which 
can  be  expressed  as  a  baseline  Root  Mean  Square  Error 
(RMSE). AMR variants can then be compared against this 
baseline to see what additional error, if any, they produce.

Our exploration was conducted using software written to 
run the ACT-R models and collate the results automatically, 
allowing the experimenter to initialize experimental settings 
and  then  leave  the  software  to  continue  unaided.  The 
resulting data are then imported into R, which we used, or 
an alternative statistical analysis and visualization package.

Our focus is  on AMR methods,  but  to demonstrate  the 
efficiency  gain  these  methods  can  produce,  we  also 
conducted  an  exhaustive  homogeneous  sweep  of  the 
parameter space for comparison. Our hypothesis is that the 
same scientific  conclusions would  be  reached  with  either 
method, one using a fraction of the computational resources, 
and thus one source of evidence for this hypothesis will be 
in the quality of the conclusions a modeler might come to 
viewing the different  diagrams.  For this  purpose,  we will 
present  an  exhaustively  sampled  space,  labeled  “fully 
explored” (figure  1),  and a minimally sampled space that 
uses AMR to the full extent possible to reduce computation, 
labeled  “minimally  explored”  (figure  2).  In  addition,  we 
also present a visualization of the results of the smoothing 
post-process (figure 3).

Figures 1-3 are of the latency for the 8th simulated recall 
trial during the PAT, labeled “t8lat DV”, which we selected 
for presentation based on the obvious interaction between τ 
and  F. The gray spheres represent parameter combinations 
at which models were run.

These  figures  show  that  increasing  the  latency  factor 
produces a predominantly linear increase in reaction times 
when the retrieval threshold is less than approximately -2, 
but that higher values of the retrieval threshold (closer to 0) 
produce an interaction with the latency factor. In particular, 
the latency  for  retrievals  decreases  at  higher  values  of  τ, 
since more active chunks are retrieved more quickly or, in 
cases  when  a  failure  to  retrieve  a  chunk  happens,  the 
recognition that this is the case happens faster.

It is hard to imagine how a novice modeler might come to 
understand  this  space  by  manually  entering  parameter 
values and attempting to understand the rows of data that 
result, and thus for this reason alone we might suppose that 
the use of these methods is desirable. Further, the qualitative 
conclusion  that  can  be  reached  comparing  the  smoothed 
AMR results (figure 3) to the exhaustive results (figure 1) is 
obvious: the smoothed AMR surface contains much of the 
qualitative detail of the exhaustively sampled surface, but at 
a fraction of the computational cost, having been produced 
using only 1% of the runs present in the exhaustive graph.
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Figure 1: Fully explored parameter space

Figure 2: Minimally explored parameter space

Figure 3: Minimally explored parameter space - smoothed

The question, then, is this: What is the gain of using AMR 
in  terms  of  computational  resources  as  it  relates  to  any 
corresponding  loss  in  fidelity?  We  will  now  attempt  to 
answer  that  question  both  quantitatively  and 
comprehensively in the context of the three tasks we have 
worked with: the PAT, PVT and SAST. First, however, we 
will provide a brief background on these two new tasks.

The  Psychomotor  Vigilance  Test  involves  the 
presentation of a stimulus at known locations, but at random 
time intervals, and measuring the time it takes the subject to 
respond to that stimulus. Responses are binned into 20ms 
intervals  with false  starts  defined  as  reaction  times faster 
than 150 ms, lapses as reaction times slower than 500 ms, 
and sleep attacks as reaction times slower than 30 s. This 
task,  due to  its  cognitive  simplicity and sensitivity to the 
effects  of  sleep  deprivation  and  circadian  rhythm,  is 
commonly used to assess the impact of fatigue (e.g., Dinges 
& Powell, 1985; Van Dongen & Dinges, 2005).

The  Walter  Reed  Serial  Addition/Subtraction  Task 
involves presenting two single-digit  numbers  in sequence, 
followed by an operator – either a plus sign or minus sign. 
After  performing  the  operation,  participants  respond  with 
the ones digit of the answer, or the answer plus 10 if the 
result is negative. Time to correct responses and the percent 
of correct responses are measured.

As  we  did  with  the  PAT,  these  tasks  were  evaluated 
within the framework of AMR to determine the impact of 
AMR methods on accuracy and reduction of computational 
demands.  All  of  the  AMR methods  were  compared  to  a 
corresponding  exhaustive  parameter  sweep,  where  the 
exhaustive sweep used 100 model runs at each combination 
to establish a baseline: the exhaustive data were split in half 
and  compared  to  determine  how  well  the  data  fit 
themselves.  This  produced  a  baseline  Root  Mean  Square 
Error (RMSE) for the model runs against which AMR runs 
were  then  compared.  In  addition,  this  allowed  for  an 
efficiency metric which was simply the percent of the “full 
space”  that  was  explored  by  an  AMR  variant  (%  Space 
Sampled). The “full space” is one of the baseline halves and 
is  composed  of  50  model  runs  at  each  parameter 
combination.  Finally,  we  also  report  the  total  number  of 
model  runs  involved  in  each  of  the  spaces  and  AMR 
variants.  We  tested  several  variations  of  AMR  and 
smoothing  using  this  methodology.  In  particular,  we 
examined: 1) allowing the number of model runs to vary as 
a  property  of  local  variation  or  fixing  them  at  some 
particular n, 2) using local error bounds based on one or all 
dependent measures, 3) determining local error in dependent 
measure prediction based on absolute, relative, or statistical 
criteria,  4)  the impact  of modifying the smoothing radius 
and intensity, and 5) the impact of using 4-neighbors vs. 8-
neighbors in smoothing. Here we will only report specific 
instances due to space limitations.

The PVT and SAST spaces have been used to explore the 
ability  of  modifications  to  the  ACT-R  architecture  to 
account for the pattern of deficits exhibited by people under 
conditions  of  extended  wakefulness  (e.g.,  Gunzelmann  et 
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al.,  2007).  These  modifications  include  parameterized 
mechanisms,  which require careful  exploration to  provide 
an understanding of their potential impacts. The PVT space 
was  explored  using  4  parameters,  with  the  chosen 
granularity  of  these  parameters  resulting  in  a  parameter 
space  with  56,511  parameter  combinations.  Models  were 
run at each combination for the exhaustive parameter sweep. 
Similarly,  the  SAST  space  was  explored  by  varying  7 
parameters,  with  a  necessarily  coarser  granularity  (to 
partially offset the higher dimensionality) that resulted in a 
parameter  space  with  a  total  of  129,600  parameter 
combinations.  Models  were  run  at  each  of  these 
combinations for the exhaustive parameter sweep.

Table 1: Algorithm Performance Summary

Data Set

PAT 209.26% 1.07% 132
PVT 226.45% 1.32% 37,335
SAST 533.19% 1.09% 70,479

PAT 113.94% 10.20% 1,260
PVT 154.81% 8.40% 237,350
SAST 167.55% 9.72% 630,020

PAT 100.00% 100.00% 12,350
PVT 100.00% 100.00% 2,825,550
SAST 100.00% 100.00% 6,480,000

% Control 
RMSE

% Space 
Sampled

Total 
Model 
Runs

~ 1% 
Space 
Sampled

~ 10% 
Space 
Sampled

100% 
Space 
Sampled

In general, with only 10% of the space sampled, for the 
worst  case  additional  error  was  only 67.55% beyond  the 
error in the original data when compared to themselves. The 
granularity of the sampling, however, did interact, and the 
SAST model,  despite  having the  largest  parameter  space, 
also  had  the  coarsest  minimum  granularity.  That  is,  the 
SAST has only 6 levels per IV, so not much processing can 
be skipped, and skipping removes information. The result of 
this  was that,  at  very sparse sampling of  ~1%, the AMR 
algorithm never  proceeded  much beyond the initial  AMR 
corners,  producing a very rough approximation for SAST. 
The PVT space granularity fell  in the middle of the PAT 
and  SAST spaces,  and  allowed for  dramatic  compression 
with  very  little  loss  of  accuracy.  In  particular,  in  those 
spaces the error  was approximately only doubled (~200% 
RMSE)  when  compared  to  baseline  at  a  very  minimal 
sampling of  approximately 1% of the data  sampled.  This 
represents a two order of magnitude gain in time to get an 
answer  that,  while  approximate,  is  most  likely  extremely 
useful (and might, in the case of faulty models, obviate the 
need for ever collecting the other 99% of the data).

Taken as a whole, algorithm performance is fairly similar 
across spaces despite dramatic differences in the size of the 
model spaces. That is, the SAST space is several orders of 
magnitude larger than the PAT space, but the error terms are 
within an order of magnitude.

For all three parameter spaces, we explored the effects of 
performing the homogeneous sweep with a reduced number 
of model runs. These data are not presented due to space 
limitations. In all cases, however, AMR methods provided 
superior  results.  For  example,  running  2  models  at  each 
parameter  combination  results  in  reducing  the  space 
sampled  to  4%.  AMR methods  using  only 2  model  runs 
result in less space sampled and are more accurate as well.

We  also  explored  adaptively  changing  the  number  of 
model  runs  at  each  parameter  combination  based  on 
measures of local variation. This method ultimately results 
in focusing computational resources on portions of the space 
where the model returns spurious results. Increased model 
runs  in  these  areas  does  not  result  in  a  superior 
understanding  of  the  model;  AMR methods  predict  these 
noisy areas more efficiently through linear interpolation.

Conclusions
In this paper, we have demonstrated the application of AMR 
to  a  variety  of  modeling  contexts,  showing  both  the 
visualizations  that  can  be  produced  and  the  gains  in 
computational efficiency achieved through this method. In 
the case of the PAT, the AMR exploration brought  out  a 
nonlinear interaction that would most likely not be obvious 
from a set of tabled values, and would almost certainly be 
missed  by a  novice  modeler.  However,  through  applying 
AMR to this task model, we were quickly able to visualize 
and  understand  the  underlying  model  and  architecture 
dynamics as a result of examining the impact of varying the 
parameters  that  control  the  model  and  architecture.  This 
simply cannot be achieved by examining the fit of a model 
at a particular point in a parameter space.

The  PAT  could  certainly  be  approached  by  hand 
modifying  the  models  in  a  desktop  environment,  as  it  is 
during the ACT-R tutorials, or even through an exhaustive 
iterative  sweep  of  the  parameter  space,  but  we make the 
case  here  that  the  AMR  methods  can  produce  superior 
understanding  with  little  to  no  extra  investment  in 
computational  resources,  and  thus  they  are  clearly 
preferable to the alternatives.

As  parameter  spaces  become larger  and  more  complex 
(i.e.,  greater  dimensionality  and  finer  granularity),  the 
resources required to enumerate or sample from them can 
become prohibitive,  even with the gains  from AMR. The 
reason for  this is  that  the scaling of a parameter  space is 
exponential,  and  thus  even  relatively  simple  models  may 
easily  exceed  the  capacity  of  available  computational 
resources  in  a  typical  lab  setting.  It  is  evident  that  the 
number of model runs, as reported in Table 1, is a proxy for 
time. While Moore's Law was once considered a potential 
way  out  of  computing  bottlenecks  –  simply  waiting  for 
faster  processors  to arrive  could solve some issues – that 
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simply does not apply to problems that scale exponentially. 
Further,  though  processors  are  increasing  in  speed,  our 
cognitive architectures, models, and the task domains we are 
interested  in  are  also increasing  in  complexity,  and these 
effects largely cancel each other out. Thus, it is necessary 
both  to  improve  the  efficiency  of  our  methods  through 
approaches  such as  AMR, and  also to  leverage  resources 
that  combine  processors,  such  as  High  Performance 
Computing (HPC). HPC typically involves a large network 
or  cluster  of  computers  that  can  perform  model  runs  in 
parallel,  resulting  in  a  faster  exploration  of  complex 
parameter  spaces.  This  is  especially useful  in  the case  of 
cognitive  model  explorations,  which  can  be  described  as 
“embarrassingly  parallel”,  a  term  used  in  the  field  of 
computational complexity that means that the processes to 
be parallelized (individual model runs) do not interact with 
each other (Dutra 2003).

Fortuitously,  these  methods  also  provide  a  natural 
gateway  to  solving harder  computational  problems:  a 
problem formulated for AMR solution and visualization in 
the  desktop  environment  is  already  formulated  for  HPC 
solution and visualization.

The techniques described here demonstrate effective ways 
for  exploring  large parameter  spaces.  Indeed,  the  work 
described here could not have been conducted without these 
techniques. This is not to say, however, that the underlying 
exponential nature of cognitive modeling problems has been 
tamed.  Rather,  the  methods  here  provide  a  significant 
amount  of  leverage  to  a  scientist  who  has  managed  to 
reduce the effectively infinite space of cognitive models to a 
manageable size.
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Abstract 

A previously developed ACT-R/threaded cognition model of 
dual-task interference (Borst, Taatgen & Van Rijn, 2009) was 
used to predict neuroimaging data in four brain areas. These 
predictions were tested in an fMRI experiment, which 
confirmed the predictions in three of the areas. The fourth 
area, the intraparietal sulcus, showed a different pattern than 
predicted. To account for this, a new mapping of an ACT-R 
module onto a brain area was introduced: It was assumed that 
activation in the intraparietal sulcus not only depends on the 
problem state module, as is customary, but also on the visual-
location module. The resulting model fit well to the human 
data, confirming the model’s assumptions of dual-task 
interference. 

Keywords: fMRI, ACT-R, Problem State, Multitasking. 

Introduction 
Some tasks can be performed together effortlessly, like 
drinking coffee and listening to a talk, while other tasks 
interfere with each other, like talking to a colleague while 
writing a paper. The challenge for theories of multitasking is 
to explain why some tasks interfere with each other and 
some do not. Intuitively this is easy to explain: if tasks use 
the same cognitive resources they will probably interfere. 
This idea was formally implemented in the threaded 
cognition theory (Salvucci & Taatgen, 2008). In threaded 
cognition, multiple tasks (called ‘threads’) are active at the 
same time. Tasks can use several cognitive resources, like 
declarative memory and the visual system. These resources 
function in parallel (i.e., the visual resource can be used to 
perceive an object, while at the same time a fact can be 
retrieved from memory), but the resources themselves can 
only proceed in a serial fashion (i.e. the visual resource can 
only perceive one object at a time). Thus, if multiple tasks 
need the same resource, one of the tasks will have to wait 
for the other tasks, resulting in interference. 

Salvucci and Taatgen (2008) have shown that, in addition 
to perceptual and motor resources, two central cognitive 
resources cause interference in multitasking: declarative and 
procedural memory. Additionally, we have shown that 
another central cognitive resource, the problem state, also 
causes interference in multitasking (Borst & Taatgen, 2007; 
Borst, Taatgen, & Van Rijn, 2009). The problem state is 
used to maintain mental representations necessary for 
performing a task. For instance, when solving ‘2x-7=6’ the 
problem state is used to store the intermediate solution 
‘2x=13’. In our previous research, we let participants 
perform a subtraction and text entry task concurrently. Both 

tasks were presented in two versions: an easy version in 
which no problem state was required to perform the task and 
a hard version in which it was. When both tasks required a 
problem state, significantly more interference was observed 
than in all other conditions: response times and error rate 
increased. To account for these results a cognitive model 
was developed using threaded cognition and ACT-R 
(Anderson, 2007). 

In the current paper we set out to validate this model 
using neuroimaging data. First, the previously developed 
model was used to predict brain activation patterns in four 
brain regions. Subsequently, these predictions were tested in 
an fMRI experiment. Before we discuss these points, we 
will first explain how ACT-R models can be used to predict 
neuroimaging data. 

Using ACT-R to predict the BOLD response 
ACT-R (Anderson, 2007) describes human cognition as a 
set of independent modules that interact through a central 
production system. For instance, it uses a visual module for 
perception and a motor module to interact with the world. 
Besides these peripheral modules, there are several central 
cognitive modules: the procedural module that implements 
the central production system, the declarative memory 
module, the goal module, and the problem state module 
(sometimes called ‘imaginal module’). All modules operate 
in parallel, but a module in itself can only proceed serially.  

ACT-R models are usually tested on a behavioral level: if 
for instance reaction times and error patterns match the 
human data, it is concluded that a model gives a plausible 
account of the observed behavior. However, to find direct 
evidence for non-observable specifics of models, ACT-R 
has been extended to predict neuroimaging data (Anderson, 
2005). To predict brain activation data, or to be more 
precise, the Blood Oxygenation Level-Dependent (BOLD) 
contrast, the modules of ACT-R have been mapped onto 
small regions in the brain (about 12x12x12mm). The most 
important modules and associated brain regions for this 
study are listed in Table 1. 

The different modules are not constantly in use during the 
execution of an ACT-R model, but operate for short periods 
of time (in the order of hundreds of ms). It is assumed that 
when a module is active, it will drive a BOLD response in 
the associated brain region. This response is modeled by a 
gamma function, as is customary in fMRI research: 
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where m determines the magnitude of the BOLD curve, s 
the time scale, and a the shape. If D(t) is a 0-1 demand 
function that indicates whether a module is active at time t, 
the BOLD function can be calculated by convolving D(t) 
with the gamma function: 

€ 

B(t) = D(x)H (t − x)dx
0

t

∫  

It should be noted that we do not assume that modules in 
ACT-R exclusively drive activation in these regions, nor 
that activation in these regions is only due to the associated 
ACT-R modules. However, these regions have been the best 
indicators of activation in the ACT-R modules over a series 
of studies (see also Anderson, 2007). 

Predicting the BOLD response 
In this section we will describe how we used the model of 
Borst et al. (2009) to generate BOLD predictions. We will 
first describe the task in detail, followed by the model and 
the predictions. 

The task 
In the experiment participants had to perform a subtraction 
and text entry task concurrently (Fig. 1). Both tasks had two 
versions, an easy version in which participants did not have 
to maintain a problem state between responses, and a hard 
version in which they were required to maintain a problem 
state. Participants had to alternate between the tasks: after 
entering a number, the subtraction task was disabled, 
forcing participants to subsequently enter a letter. After 
entering a letter, the text entry task was disabled and the 
subtraction task became available again, etc. 

In the subtraction task, 6-digit column subtraction 
problems had to be solved in right-to-left order. In the easy, 
no problem state version, the upper term was always larger 
or equal to the lower term; these problems could be solved 
without ‘borrowing’. In contrast, the hard version required 
participants to borrow 3 times (see Fig. 1). The assumption 
is that participants used their problem state resource to keep 
track of whether a ‘borrowing’ was in progress. Solved 
columns were masked with #-marks to prevent display-
based strategies (i.e. reading previous columns again). 

For the text entry task, 6-letter words had to be entered. In 
the easy version the words were presented one letter at a 
time. Participants had to click the corresponding button on 
the keypad, after which the next letter appeared. In the hard 

version, a word appeared at the start of a trial. When a 
participant clicked on the first letter, the word disappeared 
and had to be entered without feedback (participants could 
neither see the word they were entering, nor how many 
letters they had entered). It was assumed that participants 
needed a problem state to keep track of the word and their 
position within the word (‘public, 4th position’). 

Before each trial, two colored circles were presented on 
the screen, one on the left and one on the right side, 
indicating whether the task on that side of the screen was 
going to be easy (green circle) or hard (red circle). 
Participants were instructed to act both quickly and 
accurately. The tasks were performed in all difficulty 
combinations: easy subtraction/easy text entry, hard/easy, 
easy/hard, and hard/hard. 

Three changes were made with respect to the original task 
of Borst et al. (2009) to make it suitable for the fMRI 
scanner: a) letting participants respond using a mouse 
instead of the keyboard, b) changing the length of the 
stimuli from 10 to 6 numbers / characters, and c) making the 
interface more compact to minimize head movement. 

The model 
We will now describe the ACT-R/threaded cognition model 
that Borst et al. (2009) developed to account for the task 
above. Of particular importance for the tasks at hand is 
ACT-R’s problem state module. This module can hold a 
problem state consisting of one chunk of information, which 
means that the module’s contents have to be replaced 
frequently when it is required by multiple tasks. A problem 
state is accessible at no time cost, but replacing a problem 
state takes 200 ms. If the problem state is replaced, the 
previous problem state is automatically moved to 
declarative memory. Thus, the total time to replace a 
problem state is 200 ms plus the time it takes to retrieve the 
problem state from memory. Therefore, the problem state 
resource constitutes a bottleneck in multitasking: switching 
problem states incurs a considerable time cost. 

The two tasks in the experiment were implemented as two 
threads in the model. Both threads use the visual module to 
perceive the stimuli and the manual module to operate the 
mouse and the keyboard. In the easy version of the 

Table 1. ACT-R modules and associated brain regions. 
ACT-R 
Module 

Brain Region MNI 
Coordinates 

Manual Precentral gyrus (BA 3) -37, -28, 51 
Visual Fusiform gyrus (BA 37) -22, -59, -15 
Declarative 
Memory 

Inferior frontal sulcus  
(BA 45/46) 

-42, 22, 21 

Problem State Intraparietal sulcus  
(BA 7/39/40) 

-23, -67, 36 

Figure 1. Screenshot of the experiment. 
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subtraction task, the model perceives the numbers, retrieves 
a fact from memory (e.g., 5–2=3) and enters the difference. 
In the hard version the model also starts by retrieving a fact 
from memory, if its outcome is negative (e.g., 3-6=-3) the 
model adds 10 to the upper term, stores in its problem state 
that a ‘borrowing’ is in progress, and retrieves a new fact 
(13–6=7). If the problem state indicates that a ‘borrowing’ is 
in progress, the model subtracts 1 from the upper term 
before the initial retrieval. 

In the easy version of the text entry task, the model 
perceives the letter and clicks on the corresponding button. 
In the hard version, the model has to recall for each 
response what the target word is and what the current 
position is within the word: it uses the problem state 
resource to store the word and the current position (‘public, 
4th position’). If it is in the hard condition, the model does 
not look at the display, but uses the word and position in its 
problem state. However, before it can enter a letter, it first 
has to retrieve an order fact to determine what the next letter 
is. After entering a letter, the model updates its problem 
state to reflect that it is one position further in the word. 

Because the model only needs multiple problem states in 
the hard/hard condition, and either zero (easy/easy) or one 
(easy/hard, hard/easy) in the other conditions, it predicts an 
over-additive effect of task difficulty on response times and 
accuracy. Constantly replacing the problem state in the 
hard/hard condition incurs a time cost, resulting in increased 
response times; furthermore, incorrect problem states are 
sometimes retrieved, resulting in errors. This model was 
used to generate BOLD predictions for the task, which we 
will describe next. 

A priori BOLD predictions 
As explained above, the different modules of ACT-R have 
been mapped onto brain regions. After changing the model 
to work with the new interface of the experiment (i.e. using 
the mouse instead of the keyboard), we generated 
predictions for four predefined regions. For these 
predictions we set the a and s parameters in the BOLD 
equation to 4 and 1.2, respectively. These are customary 
values in the literature, and as we did not fit our model to 
the fMRI data but predicted the data beforehand, there was 
no reason to alter these values. For the same reason the m-
parameter was not used for scaling, but left at 1. We will 
discuss the four most important predictions of our model: 
the manual module, the visual module, the problem state 
module, and the declarative memory module. The results are 
displayed in Figure 2; each panel shows the BOLD response 
over a complete trial (entering 6 letters and numbers). 

The predictions for the manual area, part of the precentral 
gyrus, are displayed in Figure 2A. While in all conditions 
the same number of responses has to be given, there are 
clear differences in the model predictions. This is caused by 
the fact that the individual responses in the more difficult 
conditions are spaced further apart in time (i.e., response 
times are higher). Consequently, the BOLD response has 
more time to decay between each response, resulting in 

longer but lower activation curves. This is in line with the 
fact that the area under the curve should be equal in all 
conditions, as it is proportional to the total time a module is 
active (Anderson, 2005), which is the same in each 
condition. 

For the visual module a similar pattern can be observed 
(Fig. 2B). However, here the hard subtraction/easy text 
entry and the easy subtraction/hard text entry conditions are 
switched. This is caused by two things: first, when text entry 
is hard, the model does not have to look at the screen to see 
what it has to enter, but already knows the word it is 
entering. Therefore, less visual processing is required in the 
hard text entry conditions as compared to easy text entry. 
Second, in the hard subtraction conditions, the model does 
more visual processing: after noticing that it has to borrow 
(by reading the upper and lower terms), it reads the upper 
term again to process the borrowing, and afterwards reads 
the lower term again to come up with the final response. 

Figure 2C shows the predictions for the problem state 
module. In the easy/easy condition the model does not use 
any kind of problem state, which accounts for the flat line. 
In both the easy/hard and the hard/easy conditions an 
intermediate activity level is predicted as a problem state 
has to be maintained for one of the tasks. In the hard/hard 
condition, the problem state has to be replaced on every step 
in a trial, because both tasks need to maintain a problem 
state. Thus, we expect much more activation in the 
hard/hard condition as compared to all other conditions: 
resulting in an over-additive interaction effect. 

A related interaction effect can be observed for the 
declarative memory module (Fig. 2D). In the easy/easy 
condition, the model only needs to retrieve simple 
subtraction facts, which are extremely fast retrievals, 

Figure 2. The BOLD predictions. 1 scan is 2 seconds. 
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resulting in almost no BOLD activity. In the easy 
subtraction/hard text entry condition, the model needs to 
retrieve both simple subtraction facts and facts about letter 
order in words, resulting in higher activation levels. In the 
hard subtraction/easy text entry condition the model needs 
to retrieve multiple subtraction facts on most of the steps in 
a trial, again predicting higher activation levels. In the 
hard/hard condition there is by far the most activation 
predicted, as not only the subtraction facts and letter order 
facts have to be retrieved, but also a problem state on each 
step.  

To summarize, the model predicts lower but more 
persistent activation levels for the harder conditions in the 
visual and manual modules, and higher activation levels for 
the harder conditions in the problem state and declarative 
memory modules. We will now describe the fMRI 
experiment we carried out to test these predictions. 

The Experiment 
Ten students from Carnegie Mellon University participated 
in the experiment. Because one of them had abnormal brain 
anatomy, 9 datasets are left for analysis (2 female, average 
age 22, range 19-24, right-handed). Informed consent as 
approved by the Institutional Review Boards at Carnegie 
Mellon University and the University of Pittsburgh was 
given before the experiment. Participants received $65. 

The 6-digit subtraction problems were generated anew for 
each participant. In the hard version, each subtraction 
problem featured 3 columns in which participants had to 
‘borrow’, answers were always 6 digits long. The words in 
the hard text entry condition were handpicked from a list of 
high frequent 6 letter words (CELEX database) to ensure 
that similarities between words were kept at a minimum. 
These stimuli were also used in the easy text entry task, 
except that the letters within the words were scrambled to 
create nonsense letter strings, under the constraint that a 
letter never appeared twice in a row. 

Each trial started with the presentation of a fixation cross, 
followed by two circles indicating the difficulty levels of the 
tasks, to avoid measuring ‘surprise-reactions’. The circles 
stayed on the screen for 5 seconds, after which the fixation 
cross was displayed again for 1 second. Afterwards, the 
subtraction and text entry tasks were presented. Participants 

had to start with the subtraction task, after which they had to 
alternate between the tasks. After entering the last response 
in each task, a feedback screen was shown for 3 seconds, 
indicating how many letters / numbers were entered 
correctly. Between trials there was a 13-17 second break, 
sampled from a uniform distribution. The start of the circles 
was aligned to the start of a scan, as was the start of the 
subtraction and text entry tasks. 

The experiment consisted of one practice block and six 
experimental blocks. The practice block was administered 
during the structural scanning, to familiarize participants 
with performing the task in the scanner. All blocks consisted 
of 12 trials, 3 per condition, fully randomized. Thus, the 
complete experiment consisted of 72 trials. On the day 
before the scan day, participants practiced the experiment 
for approximately 30 minutes outside the scanner. 

Results 
Only the data of the experimental phase were analyzed. 
Outliers in response times faster than 250 ms and slower 
than 9000 ms were removed from the data, after which we 
removed data exceeding 3 standard deviations from the 
mean per condition per participant (in total, 2.2% of the data 
was removed). All F- and p-values are from repeated-
measure ANOVAs, all error bars depict standard error.  

The left panel of Figure 3 shows the average response 
time per condition; black bars depict experimental data, grey 
bars model data. Response times are measured as the time 
between two mouse-clicks, that is, the time it takes to give a 
response after having given the previous response. First 
responses of each task were removed. An ANOVA revealed 
a significant interaction effect of Subtraction and Text Entry 
Difficulty (F(1,8)=6.1, p=.04). A subsequent simple effects 
analysis showed significant effects of Subtraction Difficulty 
when text entry was easy (F(1,8)=12.04, p<.01), and of 
Subtraction Difficulty when text entry was hard (F(1,8) = 
29.4, p<.001). The simple effects of Text Entry Difficulty 
did not reach significance. Thus, response times increase 
with subtraction difficulty, but even more when text entry 
was hard as well. The right panel of Figure 3 shows the 
accuracy data. No significant effects were observed, which 
is probably due to the low statistical power caused by the 
small number of participants, as such effects were observed 
in previous studies. 

The results are in line with our previous findings (Borst, 
et al., 2009) and with our hypothesis. However, the effects 
are slightly smaller than observed previously. 

The modeling results are displayed alongside the data in 
Figure 3. The model predicted an over-additive interaction 
effect because only one problem state can be maintained at a 
time.  This was indeed observed in the data. However, the 
model predicted a slightly larger effect, as it was fitted on 
the data of the previous experiment. 

Imaging data: confirmatory analysis 
The results in the left precentral gyrus, associated with the 
manual module, are shown in Figure 4A. The data resemble Figure 3. Behavioral results and model predictions. 
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the model closely: the easier the condition, the higher and 
broader the BOLD curve. This is explained by the fact that 
the responses are spaced further apart in the harder 
conditions, letting the activation decay between responses. 

 Figure 4B displays the BOLD responses in the fusiform 
gyrus, associated with the visual module. Again, higher 
activation levels were found for the easier conditions. The 
model predicted this, but it also predicted that the hard/easy 
and easy/hard conditions would switch position as 
compared to the manual module. While they are closer 
together, they did not switch completely. Presumably, the 
participants make less strict eye-movements than our model, 
and do more visual processing in the hard text entry 
conditions than predicted. 

In Figure 4C the results of the intraparietal sulcus 
(associated with the problem state module) are shown. As 
the area under the curves is proportional to the total time a 
module is engaged (Anderson, 2005), most activation is 
observed in the hard/hard condition, as the model predicted. 
However, the model obviously predicted a much larger 
effect, with a clear interaction effect between conditions. 

Finally, Figure 4D shows the activation in an area close to 
the inferior frontal sulcus, associated with the declarative 
memory module. Because four of our participants showed a 
negative BOLD response in the original area, we slightly 
changed the region to a nearby area where all our 
participants showed a positive BOLD response. This region, 
centered at x=-48, y=30, z=30, shows a response that 
roughly shows the same effects as our model: almost no 
activation in the easy/easy condition, and an increasing 
BOLD response with increasing difficulty. However, the 
effects were not as large as predicted. 

To summarize, we confirmed our main predictions that 
there are higher activation levels in the easier conditions in 
the visual and manual regions, and that an opposite effect 
can be observed in the problem state and declarative 
memory regions. However, the BOLD response in the 
problem state region was different from the predictions, and 
the effect in the declarative memory module was less 
pronounced.  

Imaging data: exploratory analysis 
Besides the confirmatory analysis, we also performed an 

exploratory analysis of the fMRI data. The results are shown 
in Table 2. At the top, regions are shown that were more 
active in the hard subtraction condition as compared to the 
easy subtraction condition (uncorrected p-value < 0.001 and 
contiguous voxel size > 20). First of all, we found a region 
around the intraparietal sulcus to be active both in the left 
and the right hemisphere. This region corresponds to the 
horizontal segment of the intraparietal sulcus (HIPS), which 
is an important circuit for numeric processing. Next, we 
found two regions around the right middle frontal gyrus that 
responded more in the hard subtraction condition than in the 
easy condition. The more anterior region partly overlaps 
with ACT-R’s declarative memory region. These regions 
conform to our expectations of more memory retrievals in 
the harder subtraction condition. The largest active region 
was found in the medial frontal cortex. It is known that this 
region is involved in cognitive control and decision making. 
Not surprisingly, participants need more extensive cognitive 
control in the hard subtraction condition, as they have to 
keep track of steps in the borrowing process. 

At the bottom of Table 2 regions are shown that are more 
active in the hard text entry condition as compared to the 
easy text entry condition (uncorrected p-value < 0.01 and 
contiguous voxel size > 20). More activation was found in 
the medial frontal cortex and the intraparietal sulcus; both 
regions partly overlap with the regions we found for the 
subtraction task. However, the region in the medial frontal 
cortex is more posterior and superior, and the parietal region 
is more central and was only found in the left hemisphere. 

Posteriori Model Fit 
One of the predictions of our model was an interaction 
effect in the posterior parietal cortex. However, instead of 

Table 2. Results of the exploratory analysis. 
Region Size in 

Voxels 
MNI coordinates 

(x,y,z) 
Hard Subtraction > Easy Subtraction (p < .001) 

Right Intraparietal Sulcus 102 36, -36, 33 
Right Middle Frontal Gyrus 56 39, 36, 24 
Medial Frontal Cortex 113 -3, 18, 48 
Left Intraparietal Sulcus 41 -45, -42, 39 
Right Middle Frontal Gyrus 49 27, 12, 57 

Hard Text Entry > Easy Text Entry (p < .01) 
Medial Frontal Cortex 77 -3, 12, 57 
Left Intraparietal Sulcus 35 -33, -48, 36 

Figure 4. fMRI results for the four regions. 
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clear differences, the data show quite similar curves. While 
the area under the curves does give an indication of more 
total activation in the more difficult conditions, the data 
look very dissimilar from our model predictions.  

From previous ACT-R/fMRI research it is known that 
activation in the problem state region often reflects visual 
processing (e.g., Kao & Anderson, personal communication; 
Sohn, et al., 2005), which is consistent with the literature on 
the posterior parietal cortex (e.g., Culham & Kanwisher, 
2001). Figure 5A shows activation in the left fusiform gyrus 
and the left posterior parietal cortex in the predefined 
regions of ACT-R during a simple stimulus-response task 
(Kao & Anderson, personal communication). In this task 
participants had to press a key in response to the appearance 
of a stimulus, without any further processing. As can be 
seen, activation was observed in the posterior parietal 
cortex. Because in this task no problem states are involved, 
the activation in the parietal cortex cannot have been caused 
by problem state activity. On this basis, we argue that 
activation in ACT-R’s parietal region is not only due to 
problem state related actions, but also to visual-spatial 
actions. This notion was operationalized by assuming that 
ACT-R’s visual-location module (which represents spatial 
information and was not mapped onto a brain region before) 
and the problem state module both cause activation in the 
posterior parietal cortex. 

To let our model make new predictions for the problem 
state region, we first calculated the influence of the visual 
system on the posterior parietal cortex in the data of Kao 
and Anderson. Linear regression showed that activation in 
the parietal cortex caused by the visual system was best 
predicted by taking .57 times the BOLD response of the 
fusiform gyrus. Next, we let the model predict activation in 
the parietal cortex by adding .57 times the activation of the 
visual-location module to the activation of the problem state 
module. The result can be seen in Figure 5B, showing a 
close fit to the data. 

Discussion 
In the current study we set out to confirm previous modeling 
results (Borst, et al., 2009) with an fMRI study. We used an 
existing experiment and cognitive model of the problem 
state bottleneck to generate a priori fMRI predictions. These 
model predictions turned out to be reasonably good 
indicators of activation in the visual, manual, and 
declarative memory regions of the brain. It should be noted 
that we did neither fit the model to the behavioral data, nor 
fit the model to the fMRI data. Usually, fMRI predictions 
are fitted to a model by calculating the best fitting a, s, and 
m parameters, but we thought it more informative to show 
our a priori predictions using default values. 

In the posterior parietal cortex, associated with the 
problem state module, we found a different pattern than 
predicted by the model. To account for the BOLD response 
in the posterior parietal cortex, we let activation in this 
region depend both on activity of the problem state module, 
as is customary, and on the visual-location module, which 

was not mapped to a brain area before. While it is in 
accordance with the literature to assume visual-spatial 
influences in the parietal cortex (e.g., Culham & Kanwisher, 
2001), the notion that the visual-location module influences 
the parietal cortex is tentative, and will have to be confirmed 
by new studies. Thus, while the resulting model outcome 
resembles the fMRI data, more experiments will be 
necessary to confirm the existence of a problem state 
bottleneck in the brain. 
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Abstract

Existing models of group behavior, in a variety of fields, leave
many open challenges. In particular, existing models often fo-
cus only on a specific phenomenon (e.g. flocking, pedestrian
movement), and thus must be switched depending on the goals
of the simulation. In contrast, we investigate a general cogni-
tive model of simulating group behaviors, based on Festinger’s
Social Comparison Theory (SCT), a prominent social psychol-
ogy theory. In previous work, we have show SCT covers a
variety of pedestrian movement phenomena. In this paper we
present evidence for SCT’s generality by describing the use
of the SCT model (using the Soar cognitive architecture) in
generation of imitational behavior in loosely-coupled groups.
Since the imitational behavior does not have clear standards of
evaluation, we propose a method for such evaluation. Based on
experiments with human subjects, we show that SCT generates
behavior more in-tune with human crowd behavior.

Introduction
Models of crowd behavior facilitate analysis and prediction
of the behavior of groups of people, who are in close geo-
graphical or logical states, and are affected by each other’s
presence and actions. Existing models of crowd behavior are
often simplistic, and typically not tied to specific cognitive
science theories or data. Moreover, existing computer sci-
ence models often focus only on a specific phenomenon (e.g.
flocking, pedestrian movement), and thus must be switched
depending on the goals of the simulation.

We propose a novel model of crowd behavior, based on So-
cial Comparison Theory (SCT) (Festinger, 1954), a popular
social psychology theory that has been continuously evolv-
ing since the 1950s. The key idea in this theory is that hu-
mans, lacking objective means to evaluate their state, com-
pare themselves to others that are similar. Similarity in SCT is
very loosely defined—indeed, much of the literature on SCT
addresses the exploration of different ways in which humans
judge similarity.

In this paper we describe the implementation and adapta-
tion of SCT the model in the Soar cognitive architecture. SCT
was implemented as a secondary parallel thread within Soar.
Whereas normally, operators are proposed (and selected) by
Soar based on their suitability for a current goal, in our agent,
operators were also proposed based on their suitability for
SCT. We also briefly discuss mechanisms in the architecture,
necessary for enabling SCT: a memory mechanism and an
exploration mechanism.

We evaluate the use of SCT in generation of imitational
behavior and show that SCT generates behavior in-tune with
human crowd behavior. As the imitational behavior does not

have clear standards of evaluation, we propose a method for
evaluation of imitational behavior. The SCT model was eval-
uated in studies with human subjects. The subjects ranked
SCT to be a middle-ground between completely individual
behavior, and perfect synchronized (“soldier-like”) behavior.
Independently, human subjects gave similar rankings to short
clips showing human crowds.

Background and Motivation
Social psychology literature provides several views on the
emergence of crowds and the mechanisms underlying its be-
haviors. These views can inspire computational models, but
are unfortunately too abstract to be used algorithmically.In
contrast, computational crowd models tend to be simplistic,
and focus on specific crowd behaviors (e.g, flocking). A
common theme in all of them is the generation of behavior
from the aggregation of many local rules of interaction, e.g.
(Reynolds, 1987; Yamashita & Umemura, 2003).

Social psychology.A phenomenon observed within crowds,
and discovered early in crowd behavior research, is that peo-
ple in the crowd act similar to one another, often acting in a
coordinated fashion which is achieved with little or no verbal
communications.

There are several psychological theories that explained this
coordinated behavior. For example, Le Bon (Le Bon, 1895)
emphasized a view of crowd behaviors as "Collective Mind"
that transform an individual who becomes a part of the crowd
into becoming identical with the others in the crowd. Le Bon
explains the homogeneous behavior of the crowd by two pro-
cesses:Imitation and Contagion. Allport, (Allport, 1924)
states that crowd behavior is a product of the behavior of like-
minded individuals. According to Allport’s theory, individu-
als become a part of the crowd behavior when they have a
"common stimulus" with people inside the crowd. Additional
explanation of coordinated crowd behaviors (Tajfel & Turner,
1986; Reicher, 2001) suggest that this coordination emerges
because people in the crowd share a common social identity.
Unlike Allport’s individualistic behavior of people in crowds,
Social Identity theory combines together the society aspects
with an individual aspects.

Computational models. Work on modeling crowd behav-
ior has been carried out in other branches of science, in par-
ticular for modeling and simulation. Reynolds (Reynolds,
1987) simulated bird flocking using simple, individual-local
rules, which interacted to create coherent collective move-
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ment. There are only three rules: avoid collision with neigh-
bors, match velocity with neighbors and stay close to the cen-
ter of gravity of all neighbors.

Blue and Adler (Blue & Adler, 2000) used Cellular Au-
tomata (CA) in order to simulate collective behaviors, in par-
ticular pedestrian movement. The focus is again on local in-
teractions: each simulated pedestrian is controlled by an au-
tomaton, which decides on its next action or behavior, based
on its local neighborhoods.

Helbing et al. (Helbing & Molnar, 1997; Helbing, Molnar,
Farkas, & Bolay, 2001) also focused on simulating pedestrian
movement. Each entity moves according to forces of attrac-
tion and repulsion. Pedestrians react both to obstacles andto
other pedestrians.

Yamashita and Umemura (Yamashita & Umemura, 2003)
take a different approach in simulating group panic behavior.
While inspired by Reynolds’ model, they propose a model
where each simulated person moves using three instincts: An
escape instinct, a group instinct and an imitational instinct.
According to Yamashita and Umemura, when a person is in
panic, she acts based on these instincts, simplifying the deci-
sion making process.

Our work differs from those described above in that we aim
to develop a general cognitive model of simulating group be-
haviors, one based on psychology. We have already shown
that our model covers pedestrian movement phenomena as
was presented in our previous work (Fridman & Kaminka,
2007), together with initial results on imitational behavior.
Here, we present additional evidence for such generality by
describing implementation in Soar, and evaluation of SCT
model on imitational behavior in loosely-coupled groups. We
discuss the full set of results, and the evaluation methodology,
in detail.

A Model of Social Comparison

Our research question deals with the development of a com-
puterized cognitive model which, when executed individually
by many agents, will cause them to behave as humans do in
groups and crowds.

We took Festinger’s social comparison theory (Festinger,
1954) as inspiration for the social skills necessary for our
agent. According to social comparison theory, people tend
to compare their behavior with others that are most like them.
To be more specific, when lacking objective means for ap-
praisal of their opinions and capabilities, people compare
their opinions and capabilities to those of others that are sim-
ilar to them. They then attempt to correct any differences
found.

We believe that social comparison theory may account for
some characteristics of crowd behavior:

Imitation. Using social comparison, people may adopt oth-
ers’ behaviors. Festinger notes (Festinger, 1954): "The drive
for self evaluation is a force acting on persons to belong to
groups, to associate with others. People, then, tend to move

into groups which, in their judgment, hold opinions which
agree with their own“.

Contagion. One implication of SCT is the formation of ho-
mogeneous groups. Festinger writes (Festinger, 1954): "The
existence of a discrepancy in a group with respect to opinions
or abilities will lead to action on the part of members of that
group to reduce the discrepancy".

To be usable by computerized models, social comparison
theory must be transformed into a set of algorithms that,
when executed by an agent, will proscribe social compari-
son behavior. A first step towards this goal has been take
by Newell, who examined the axioms of social comparison
(Newell, 1990), a subset of which appears here:

1. When lacking objective means for evaluation, agents com-
pare their state features to those of others.

2. Agents compare themselves to those who are more similar;
comparison increases with similarity.

3. Agents take steps to reduce differences to the objects of
comparison.

Newell argued that these axioms are not social, in the sense
of requiring active interaction between the agents. Rather,
they utilize uni-directional observations and actions by the
comparing agents.

We turn these abstract axioms into a concrete algorithm.
The algorithm is described in (Fridman & Kaminka, 2007),
and we provide only a brief description here. Each observed
agent is assumed to be modeled by a set of features and their
associated values. For each such agent, we calculate a simi-
larity values(x), which measures the similarity between the
observed agent and the agent carrying out the comparison
process. The agent with the highest such value is selected.
If its similarity is between given maximum and minimum
values, then this triggers actions by the comparing agent to
reduce the discrepancy:

1. For each known agentx calculate similaritys(x)

2. c← argmax s(x), such thatSmin < s(c) < Smax

3. D← differences between me and agentc

4. Apply actions to minimize differences inD.

SCT Implementation in Soar
We implemented SCT in the Soar cognitive architecture
(Newell, 1990). Soar was connected to the GameBots virtual
environment (Kaminka et al., 2002). Here, multiple agents,
each controlled by a separate Soar process (each executing
SCT) can interact with each other in a dynamic, complex, 3D
virtual world (see Figure 1).

A detailed discussion of Soar’s role as a cognitive architec-
ture is beyond the scope of this paper. We provide a very brief
overview here, and refer the interested reader to (Newell,
1990) for additional details.
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Figure 1:Soar agents in the GameBots environment. Each
agent has limited field of view and range, and may move
about and turn.

Soar has two components: A graph-structured working
memory, and a set of user-defined production rules that test
and modify this memory. Efficient algorithms maintain the
working memory by executing rules that match existing con-
tents. All the agent’s knowledge, sensor readings, and de-
cisions are recorded in the working memory. Soar operates
in a classic sense-think-act cycle, which includes a decision
phase in which all relevant knowledge is brought to bear to
propose, and then select, anoperator, that will then carry out
deliberate mental (and sometimes physical) actions. Once the
operator finishes its actions, it is automatically de-selected
(terminated), and the cycle repeats. Unlike simple produc-
tion rules, whose effects on working memory are temporary,
operator-induced the actions of rule firings on working mem-
ory (and in turn, on physical actions) are persistent, even after
the operator has been de-selected. Overall, a Soar agent’s be-
havior is the result of the sequential selection of operators,
each performing an action on the environment and/or internal
memory.

For our experiments, several basic task-oriented operators
were implemented, to allow the agents to move about, turn to-
wards each other, measure distances to others, etc. Thus one
thread of control, always running, is in control of the agent’s
actions towards whatever tasks it was given.

SCT was implemented as a secondary parallel thread
within Soar (Figure 2). Whereas normally, operators are pro-
posed (and selected) by Soar based on their suitability for a
current goal (e.g., through means-end analysis), in our agent
operators were also proposed based on their suitability for
SCT. In other words, at every cycle, a Soar agent would con-
sider operators that advance it towards its goal. In our im-
plementation, it would also consider operators that seek to
minimize perceived differences to other agents.

Thus SCT-proposed operators compete with the task-
oriented operators for control of the agent. This may ap-
pear to contradict Festinger’s theorizing that social compar-
ison comes into play only when people are at an impasse.
However, this is not the case. By setting Soar’s decision pref-
erences to prefer SCT-proposed operators only when no task-
oriented operators are available, one gets the behavior pre-
dicted by Festinger’s theory. Further exploration of this issue
is beyond the scope of this paper.

The SCT thread proposed operators by following the algo-
rithm described previously, though in a way that is adopted

Sensor Input

Propose
Task Operators

Select
Operator

Execute
Operator

Sense

Act

Think

Propose
Operators to Minimize

Differences

Figure 2: The Soar sense-think-act decision cycle, SCT
process highlighted.

for Soar’s decision cycle: At every cycle, for each observed
agent and for each difference, the SCT process would propose
an operator that would minimize the difference. Then, a set
of preference rules is triggered that ranks the proposals based
on feature weight. Additional rules prefer the most similar
agent (that is still not sufficiently similar). Thus at the end,
only one SCT operator is supported.

Here additional cognitive components became necessary.
Suppose an agentX decided to turn towards the same angle
as an agentY that is next to it. Due to the limited field-of-view
of X, it would lose track ofY once it makes the turn. From
that point on, it could no longer keep track ofY, to mini-
mize additional differences. This would cause it to become
overly reactive, turning about immediately to seekY again,
or to select a different operator altogether (now thatY could
no longer be imitated).

We thus found it necessary to utilize two mechanisms: (i)
a memory mechanism that keeps track of the whereabouts
of agents, once seen; and (ii) an exploration mechanism that
occasionally would turn towards remembered agents, to pro-
vide an update on their state (for the purpose of comparison).
Both of these mechanisms (memory and exploration) are of
course present in many cognitive architectures, and are not
necessarily linked to SCT. We thus leave discussion of such
mechanisms outside of this paper.

Modeling Imitational Behavior
An attractive feature of social comparison is its hypothesized
prevalence in human group behavior, i.e., its generality across
different behaviors. Indeed, we believe that the SCT model
we present in this paper is sufficiently general to account for
a wide variety of group behaviors. This is in contrast to many
existing computational models, that typically focus on spe-
cific tasks.

In previous work (Fridman & Kaminka, 2007) we eval-
uated the use of the SCT model in generation of pedes-
trian movement phenomena like bidirectional movement and
movement in groups with and without obstacles. The SCT
model accounts for group formation in pedestrians that are
inter-related, a phenomenon not addressed by previous mod-
els. And where previous techniques apply, SCT shows im-
proved results.
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Here, we discuss in detail the implementation in Soar, and
the evaluation methodology, providing additional evidence
for such generality by describing the application of the SCT
model to the problem of generating imitational behaviors in
loosely-coupled groups. Unlike individual imitation, where
one agent imitates a role model, crowd imitational behavior
spreads across a group of individuals who dynamically se-
lect role models for imitation, from the level of observable
actions to the level of unobservable internal mental attitudes
(e.g., goals). Here, imitation occurs more loosely, as the role
models do not necessarily intend to play their role, and in-
deed may not even know that they are being imitated. Also,
the imitators potentially switch their role-model targetsfrom
one moment to the next. Psychology literature describes such
imitational behavior as one of the keystones of crowd behav-
iors (Le Bon, 1895).

In order to simulate imitational behavior we used position
and direction as the agents’ feature set. For each observed
agent and for every difference found, the SCT process pro-
poses a corrective operator to be performed in order to min-
imize the difference in the selected feature. In this task, the
corrective operators were ’move-to’ (minimizing distanceto
the observed agent, correcting position differences) and ’turn-
to’ (imitating angle of the observed agent).

In addition to the proposed SCT operators, Soar also pro-
poses operators based on their suitability for the current goal,
and based on an exploration mechanism which proposes op-
erators seeking new information. In this task, goal operators
were ’turn-to’ (a random angle); the exploration mechanism
operators turned towards previously seen agents.

We used Soar preference rules to rank the feature weights
such that the position feature gets higher priority than direc-
tion. This means that a closest agent is considered to be more
similar, however the chosen feature for correction is direc-
tion. TheSmax value was unbounded, which means that there
is no such thing as too similar. In our case Soar can pro-
pose corrective operator with value equal to zero if there is
no correction to make with respect to the observed agent. We
used additional Soar preference rules to give higher priority
to exploration mechanism operators than to goal operators.
Thus, each agent prefers the SCT operators (’turn to’) and
in the case when there are no seen agents (i.e. there is no
proposed SCT turn-to operator) an agent will prefer the ex-
ploration mechanism operators, and only afterwards the goal
operators. The resulting simulated behavior has the agents
standing in their initial locations, turning to some direction or
doing nothing.

Evaluation of imitational behavior

We conducted experiments to evaluate whether SCT can in-
deed generalize to account for imitational behavior in groups.
Unlike the pedestrian movement domain, where clear mea-
sures are available for objective measurement of the success
of a model (e.g., flow, lane changes), imitational behavior
does not have clear standards of evaluation.

We propose a method for evaluation of imitational behav-
ior. We propose a questionnaire composed of general ques-
tions and specific tasks related questions. The general ques-
tions can be used as a common method for evaluation of all
kinds of imitational behaviors. We rely on experiments with
human subjects, which judged the human crowd behavior and
the resulting SCT behavior in comparison to completely indi-
vidual behavior (i.e., arbitrary decisions by each agent, inde-
pendent of its peers), and to completely synchronized behav-
ior (i.e., all agents act in complete unison).

The first hypothesis underlying the experiments was that
groups controlled by SCT would generate behavior that
would be ranked somewhere in-between the individual and
perfect-coordination models, i.e., that SCT would generate
behavior that would be perceived as coordinated, but not per-
fectly so. Another hypothesis is that human crowd behavior
would also be ranked somewhere in-between the individual
and perfect-coordinated behaviors.

To examine the first hypothesis, we created three screen-
capture movies of 11 Soar agents in action. All movies were
shot from the same point of view, and showed the agents in
the same environment. In all screen-capture movies there is
one blue agent that stands in front and turns up to 90◦ left or
right. All others are red agents that act according to one of
the models.

In one movie (individual), the red agents act completely
independently of each other, randomly choosing an angle and
turning to it. In another (unison), the red agents act in almost
perfect coordination, turning towards the same angle as the
blue agent almost instantaneously (small timing differences
result from asynchronous responses of the simulated environ-
ment). Finally, in theSCTmovie, the red agents act according
to our model as described above.

These experiments were carried out using 12 subjects
(ages: 18–40, mean: 28; male: 6; additional 4 subjects
dropped due to technical reasons). Each subject was given
a brief description of the appearance of the environment and
agents, sometimes aided by a snapshot from a movie (e.g., as
in Figure 1). The subjects were told that the purpose of the
experiment was to evaluate the use of perception models em-
bedded in the agents; that there was a red dot—visible to the
agents but not to the subjects—that moves about on the walls
surrounding the group. The agents’ goal is to individually lo-
cate this dot, and then track it in place by turning around. The
purpose of the cover story was to focus the attention of the
subjects away from group behavior and imitation, so as to not
bias the results. After the description, the movies were shown
to the subject.

After each movie, the subjects were asked to fill a short
questionnaire (described below) based on what they saw.
Each movie was shown only once. The order of presentation
of movies was randomly selected for each subject, to control
for learning and order effects. The questionnaire includedthe
following questions:

1. If there is only one red dot in the room, to what degree did
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all agents see it? (1 - nobody saw the red dot; 6 - all agents
saw it)

2. To what degree were the movements of the agents random?
(1 - not random at all; 6 - very random)

3. To what degree was there cooperation between the agents?
(1 - no cooperation at all; 6 - full cooperation)

4. To what degree was there agreement between the agents?
(1 - no agreement at all; 6 - full agreement)

5. To what degree were the agents coordinated in terms of the
direction of their movements? (1 -no coordination at all; 6
- fully coordinated)

6. How quickly did the agents find the red dot? (1 - dot not
found at all; 6 - immediately found)

7. To what degree were the agents related to each other? (1 -
no relation at all; 6 - tight relation)

8. Do you see any leaders? If so, how many? (1-11) (1- one
leader; 11 - all agents are leaders, i.e., no leader).

In this experiment, the subjects were asked to grade the
movies on an ordinal scale of 1–6, with 1 being a low score
(typically associated with more individual behavior), and6
being a high score (typically associated with perfect unison).
In order to keep consistency in presentation of results, the
scale of the second question (Non-Random) was reversed.
The results of the last question (Number of leaders) are pre-
sented separately due to inconsistency in scale with other
questions.

Agents results

In general, the responses to the questions in this experiment
have placed SCT between the individual and unison models.
Results are summarized in Figure 3(a) and 3(b). The ques-
tions in Figure 3(a) are associated with agents’ performance
on a given task. In the presented questionnaire the number of
questions are 1, 3, 4 and 6. Figure 3(b) refers to more general
questions (i.e. the same questions that were used in human
crowd movie). In questionnaire the relevant numbers of ques-
tions are 2, 5, and 7. The categories in the X-axis correspond
to questions given to the subjects. The Y-axis measures the
median result. Each bar correspond to compared model and
as explained above we compare SCT model to Individual and
Unison models.

(a) (b)

Figure 3: Results of questionnaire on agents performance.

The results clearly demonstrate that the SCT model lies
in between the individual and perfect-unison model. While
in some questions it appears to be somewhat closer to the
individual model, it is significantly different from it at the
α = 0.05 significance level (t-test, one-tailed).

Figure 4(a) shows the results for the question on the num-
ber of leaders. The median result for the individual was 11
(i.e., every agent is a leader, or in other words, no leader).
For the unison model, the median result was 1. For the SCT
model, the median result was 3. In this question the SCT
model result is very close to the Unison model. According
to t-test (one-tailed) the SCT model significantly differs from
the Individual model (p = 0.02). However, in comparison to
Unison model there is no significance found (p = 0.3).

We conducted an additional experiment, in which static
images—snapshots from the movies—were shown to sub-
jects who were then asked how many red dots were present,
based on the number of different directions in which agents
were watching. The results of this experiment are summa-
rized in Figure 4(b). Again the categories in the X-axis corre-
spond to question given to the subjects. The Y-axis measures
the average of median results that belong to each model.

Again the results demonstrate that the SCT model lies in
between the individual and perfect-unison model and it sig-
nificantly differs from the individual model (p= 0.011, t-test,
one-tailed) and from perfect-unison model (p = 0.012, t-test,
one-tailed).

(a) Number of leaders in
screen-capture movies.

(b) Screen snapshot results.

Figure 4: Additional results for the simulated agents.

Human crowd experiment

Another hypothesis underlying the experiments is that human
crowd behavior would also be ranked somewhere in-between
the individual and unison models. To examine this, we search
for a human crowd movie where individuals perform the same
action as in simulated agents movies. We used a news clip
movie which shows people, grouped together, standing and
waiting for some event to occur. The only action they perform
in the movie is to turn occasionally.

This experiment was carried out using 12 subjects differ-
ent than in the screen-capture movies experiments. Each sub-
ject, after viewing a human crowd movie (Figure 5(a)) was
asked to fill the same questionnaire as in previous experi-
ments. However, since in the human crowd movie there was
no cover story about red dot, there were some irrelevant ques-
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tions that were dropped out. The remaining questions are
more general and not tied to a specific task.

(a) A human crowd. (b) Results: News clip.

Figure 5:Human crowd.
Results are summarized in Figure 5(b). As in previous

results, the categories in the X-axis correspond to questions
given to the subjects and the Y-axis measures the median re-
sult.

We compare the human crowd results to the individual and
perfect-unison models results. It appears to be significantly
different from the individual model in all questions (p =
0.000016,p = 0.000033, andp = 0.04, respectively; t-test,
one-tailed). However, in comparison to the perfect-unison
model, the results of the coordination and non-random ques-
tions are significantly different(p = 0.0034, andp = 0.0003,
respectively; t-test, one-tailed). The results of the relationship
question shows no significant different between the perfect-
unison and the news-clip movie (p = 0.44).

In response to the question “Do you see any leaders? If so,
how many?”, the median result in human crowd movie was
1.5. It appears to be significantly different from the individ-
ual model (p= 0.001, t-test, one-tailed) but not in comparison
to the perfect-unison (p = 0.374). When the subjects were
asked to qualitatively discuss their answer to this question,
many subjects reported that they don’t see any leader, how-
ever “one must be present outside of the view of the movie,
since the crowd is waiting for something or someone”. How-
ever, when they were asked to refer to only people seen in
the movie, the answer was that there were several subgroups
in the seen crowd. While this qualitative answer is similar
to the answer we received in asking similar questions about
the simulation movies, we do not believe that this necessarily
suggests that the SCT model is completely accounting for re-
alistic behavior. In the future, we will focus more explicitly
on the issue of subgroups, by adding the following question
to the questionnaire: “Are there any subgroups? If so, how
many?”.

Summary and Future Work
This paper presented a model describing crowd behavior, in-
spired by Festinger’s social comparison theory (Festinger,
1954). The model intuitively matches many of the charac-
teristic observations made of human crowd behavior. We pre-
sented an implementation of SCT model in Soar cognitive
architecture, for experiments in imitational behavior. Though
there is a lack of objective data against which the model can
be evaluated, results of experiments with human test subjects
are promising and seem to match intuitions as to observed be-

havior. The subjects ranked SCT to be a middle-ground be-
tween completely individual behavior, and perfect synchro-
nized (“soldier-like”) behavior. Independently, human sub-
jects gave similar rankings to a short news clip showing hu-
man crowds.
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Abstract 
This paper brings together work in modeling episodic 
memory and reinforcement learning. We demonstrate that is 
possible to learn to use episodic memory retrievals while 
simultaneously learning to act in an external environment. In 
a series of three experiments we investigate learning what to 
retrieve from episodic memory and when to retrieve it, 
learning how to use temporal episodic memory retrievals, and 
learning how to build cues that are the conjunctions of 
multiple features. Our empirical results demonstrate that it is 
computationally feasible to learn to use episodic memory in 
all three experiments, and furthermore, that learning to use 
internal episodic memory accomplishes tasks that 
reinforcement learning alone does not. These experiments 
also expose some important interactions that arise between 
reinforcement learning and episodic memory.  

Keywords: Artificial Intelligence; Cognitive Architecture; 
Episodic Memory; Intelligent Agents; Reinforcement 
Learning. 

Introduction 
In this paper, we study possible mechanisms for learning to 
use the retrieval of knowledge from episodic memory. This 
unifies two important related areas of research in cognitive 
modeling. First, it extends prior work on the use of 
declarative memories in cognitive architecture where 
knowledge is accessed from declarative memories via 
deliberate and fixed cued retrievals (Wang & Laird, 2006; 
Anderson, 2007; Nuxoll & Laird, 2007) by exploring 
mechanisms for learning to use both simple and conjunctive 
cues. Second, it extends work on using reinforcement 
learning (RL) (Sutton & Barto, 1998) to learn not just 
control knowledge for external actions, but also to learn to 
control access to internal memories.  

 Earlier work has investigated increasing the space of 
problems applicable to RL algorithms by including internal 
memory mechanisms that can be deliberately controlled: 
Littman (1994) developed an RL agent that learned to 
toggle internal memory bits; Pearson et al. (2007) showed 
that an RL agent could learn to use a simple symbolic long-
term memory; and Zilli & Hasselmo (2008) developed a 
system that learned to use both an internal short-term 
memory and an internal spatial episodic memory, which 
could store and retrieve symbols corresponding to locations 
in the environment. All three cases demonstrated a 
functional advantage from learning to use memory. 

Our work significantly extends these previous studies in 
four ways: first, our representation is fully relational, which 
complicates both the structure of episodic memory and RL; 
second, our episodic memory system automatically captures 

all aspects of experience; third, our system learns not only 
when to access episodic memory, but also learns 
conjunctive cues and when to use them; and fourth, it takes 
advantage of the temporal structure of episodic memory by 
learning to advance through episodic memory when it is 
useful (this property is also shared by the Zilli & Hasselmo 
system, but for simpler task and episodic memory 
representations).  

Our studies are pursued within a specific cognitive 
architecture, namely Soar (Laird, 2008), which incorporates 
all of the required components: perceptual and motor 
systems for interacting with external environments, an 
internal short-term memory, a long-term episodic memory, 
an RL mechanism, and a decision procedure that selects 
both internal and external actions. In comparison, ACT-R 
(Anderson, 2007) has many similar components but does 
not have an episodic memory. Its long-term declarative 
memory stores only individual chunks, and it does not store 
episodes that include the complete current state of the 
system. To do so would require storing the contents of all 
ACT-R’s buffers as a unitary structure, as well as the ability 
to retrieve and access them, without having the retrieved 
values being confused with the current values of those 
buffers. Moreover, ACT-R’s declarative memory does not 
inherently encode the temporal structure of episodic 
memory, where temporally consecutive memories can be 
recalled (Tulving, 1983). While the work presented in this 
paper is specific to learning to use an episodic memory, 
similar work could be pursued in the context of ACT-R by 
learning to use its declarative memory mechanism. 
However, we are unaware of existing work in that area, and 
even if there were, it would fail to engage the same issues 
that arise with episodic memory.  

Background 
Soar includes an episodic memory that maintains a complete 
history of experience (Nuxoll & Laird, 2007), implemented 
so as to support efficient memory storage and retrieval 
(Derbinsky & Laird, 2009). “Snapshots” of Soar’s working 
memory, which is a relational graph structure, are 
automatically stored in episodic memory so that learning is 
not required to control how and when information is stored.  

To retrieve an episode, a cue is created in working 
memory by Soar’s procedural knowledge, which is encoded 
as rules. A cue is a relational structure that describes a 
subset of working memory elements that may exist in an 
episode. The cue is compared to the stored episodes, and the 
episode that best matches the cue is retrieved to working 
memory. If there are multiple episodes with the same degree 
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of match, the most recent of those episodes is retrieved. 
Once an episode is retrieved to working memory, other 
knowledge (such as procedural knowledge) can access it.  

After performing a cue-based retrieval, the agent can use 
the unique temporal structure of episodic memory and 
retrieve the next episode, providing a mechanism for the 
agent to move forward through its memories, recalling 
sequences of experiences, in addition to specific instances.  

Although it is straightforward to create agents that use 
episodic memory for a variety of purposes (Nuxoll, 2007), 
this requires endowing the agent with knowledge as to when 
to access episodic memory and what structures should be 
used for cueing retrievals. In this research, we study the 
possibility of learning when to use episodic memory as well 
as learning which cues to use from experience using Soar’s 
RL mechanism. Soar uses a type of RL called Q-Learning 
(Nason & Laird, 2005). Q-Learning learns the value for 
potential actions using temporal-difference updates of 
reward (Sutton & Barto, 1998) and in Soar this can be used 
to learn to control external actions as well as internal actions 
that retrieve information from episodic memory. 

Well World 
In order to explore how an agent might learn to use an 
internal episodic memory, we constructed several tasks 
within a domain we call “Well World.” The domain is 
simple enough to be tractable for an RL agent, but rich 
enough such that episodic memory can potentially improve 
performance. The goal in Well World is to be safe when not 
thirsty, and to quench thirst as soon as possible when thirsty.  

In Well World, the agent moves between objects and can 
consume resources, such as water or shelter if they are 
present. The agent perceives the object that is present at its 
current location, features of the object (including resources 
that are present), and adjacent objects that it can move to.  

Figure 1 shows the base Well World environment. There 
are two wells which can provide the water resource (“r: 
water” in the Figure). Well 1 is currently empty, while well 
2 has water available. There is also a shelter, which allows 
the agent to feel safe when the agent is not thirsty.  

 

 
Figure 1: Objects, resources, and adjacency in Well World. 

 
An agent in Well World possesses two internal drives: 

thirst and safety. When its thirst is quenched, an agent’s 
thirst drive is 0; on every time step after it has been 
quenched, the thirst drive is incremented by a small amount. 
After passing a threshold, the agent is thirsty until it 
quenches its thirst, which requires that the agent move to a 
well object that contains water and consume water from it.  

Only one well contains water at any given time; once 
water is consumed from a well, it is empty and water 

becomes available in the other well. In Figure 1, well 2 has 
water available while well 1 does not. Once the water at 
well 2 is consumed, well 2 will be empty while well 1 will 
have water available, and so on. 

The agent’s other internal drive is to feel safe. The agent 
satisfies this drive when not  thirsty or when it consumes the 
safety resource from the shelter (which is always available). 

Two of Well World’s characteristics make it challenging 
for RL: the agent can only perceive the status of the object 
in its current location, and wells alternate in containing 
water and being empty. To perform optimally, an agent 
must maintain a memory of the environment (the status of 
the wells) – something a conventional RL agent lacks. 

Reinforcement in Well World 
The reward signal used by an RL agent in Well World is 
determined by the state of the agent’s internal drives, as 
well as changes in the states of those drives. Reinforcement 
in Well World is internally calculated by the agent based on 
its internal drives, rather than determined by the 
environment as in a conventional RL setting.  

The most important aspects of the agent’s reward 
structure are that: there is a cost for taking external actions 
and it is greater than the cost of internal actions; there is a 
reward for not staying at the wells when the agent is not 
thirsty; there is a significant reward for performing the 
action (consuming water when thirsty) that is made possible 
by the episodic retrieval; and there is no explicit reward for 
using episodic memory, rather such control knowledge must 
be learned while seeking to satisfy thirst. The reward values 
are as follows. External actions result in -1 reward, while 
internal actions result in -0.1 reward. On every time step 
that the agent is thirsty, it receives -2. On every time step 
that the agent is not thirsty and consumes the safety 
resource, it receives +2. Finally, the agent receives +8 for 
satisfying its thirst. Concurrent rewards (e.g. the agent is 
thirsty and takes an external action) are summed together. 

Experiments in Well World 
Within the Well World domain, we developed a suite of 
three experiments to evaluate various strategies for using 
episodic memory. In the first experiment, we tested an 
agent’s ability to learn to select a single cue for episodic 
memory retrieval. The second experiment tested an agent’s 
ability to learn to use the temporal aspects of episodic 
memory retrievals. The third experiment investigated the 
agent’s ability to create a conjunctive cue (i.e. a cue that 
contains more than one feature). This set of experiments 
investigated all of the ways retrievals can be used to access 
Soar’s episodic memory. Before discussing the experiments 
and results, we present the details of our agent. 

Agent Design and Implementation 
To explore learning to use episodic memory, we created a 
Soar agent. In our agent, procedural knowledge determines 
what actions can be taken in the external environment as 
well as what actions can be taken to access the internal 

Well 1 
r: water, 
   empty 

Well 2
r: water,
   avail. r: safety, 

   avail. 

Shelter 
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episodic memory. On each time step of the environment, the 
procedural knowledge proposes applicable actions based on 
the agent’s current perception of the environment and its 
internal state. It proposes consuming resources that are 
present, and it proposes moving to any adjacent objects. 
There are two internal actions that it can propose for 
controlling episodic memory (depending on the experiment, 
as described below): create a cue to initiate a retrieval, or if 
there has been a retrieval, advance episodic memory 
forward in time. In experiments where the agent must learn 
which retrieval cue to use, multiple retrieval actions are 
proposed, one for each cue. 

The decision procedure selects actions probabilistically, 
based on what has been learned by Q-learning. A central 
problem in RL is the exploitation vs. exploration trade-off 
(Sutton & Barto, 1998) - an agent must balance between 
choosing actions based on what it has already learned 
(exploitation), with choosing other actions to gain more 
knowledge about the effects of those actions (exploration). 
Our agent uses a linearly decaying exploration rate; initially, 
the agent selects a random action half of the time and the 
other half selects actions according to their learned values. 
As time goes on, the agent takes random actions less often. 

Although the Well World is presented in terms of 
“water,” “thirst,” “empty,” and “wells,” the agent does not 
know the semantics of these terms. To the agent, consuming 
water is simply a possible action that it can take; it must 
learn that it is good to consume water when thirsty, that 
water is available at a particular well, and so on. 

In contrast to many learning systems that are “reset” after 
a performance or learning trial, our agent has a continual 
existence and once it begins acting in the environment, it 
continues to move about Well World, performing actions, 
until the end of the experiment. 

Instead of using episodic memory, the agent could have 
maintained task-specific events in working memory (such as 
which well the agent last consumed). This memory would 
provide the agent with sufficient knowledge to learn to act 
in the domain. However, this approach requires task-specific 
background knowledge while our approach is completely 
general and applies to any task without additional task-
specific knowledge.  

Results presented in this paper are the average of 250 
trials, were smoothed with 4253 Hanning, and normalized 
so that an average reward of 0 per action is optimal.  

Learning to Retrieve Episodic Memories 
The first experiment tests the basic behavior of using RL to 
learn to use an internal episodic memory, and its purpose is 
to determine whether an RL agent can learn what to retrieve 
and when retrieval is appropriate. In this experiment, an 
agent must learn to retrieve information from memory using 
a single cue, where the retrieved episode provides sufficient 
information to perform the task. In one condition, there is 
only one cue available to the agent to use for retrieval; in 
another, the agent selects from six possible cues, only one of 
which is useful. 

In Well World (Fig. 1), the optimal policy (where a policy 
is a mapping of every state, or situation, to an action) is for 
the agent to move to the shelter and consume the safety 
resource when it is not thirsty, and to move to the well that 
contains water and consume water there when it is thirsty. 
As agents are unable to perceive which well contains water, 
an agent that does not possess an internal memory does not 
know which well it must move to and wastes time while 
trying to find available water. An agent that possesses an 
internal memory, however, can retrieve the episode for the 
last visited well. 

Figure 2 shows the results under the following conditions: 
only the correct cue is available to be learned (labeled “No 
distracters”); the correct cue and five distracters are 
available to be learned (“5 distracters”); and a baseline 
condition in which episodic memory is lesioned and all 
retrievals fail (“Lesioned ep. mem.”). 

 

 
Figure 2: Performances of agents learning to retrieve 

episodic memories. 
 

When only a single cue is available for retrieval, the agent 
quickly learns both to act in the environment and to use its 
internal memory so as to receive the maximum amount of 
possible reward (it follows the optimal policy). When 
distracter cues are present, the agent learns more slowly but 
also converges to the optimal policy. These results indicate 
that the agent can learn to use its internal memory while 
simultaneously interacting with its environment.  

Learning to Retrieve What Happened Next 
A unique aspect of episodic memory is that events are 
linked and ordered temporally. In Soar’s episodic memory, 
memory retrievals can be controlled temporally by 
advancing to the next (or previous) memory after 
performing a cue-based retrieval, providing a primitive 
envisioning or planning capability where the agent can use 
its prior history to predict potential future situations. 
Through RL, the system has the potential of learning when 
and how to perform such primitive planning.  

In the previous experiment, agents retrieved episodic 
memories of the last time that they had perceived the water 
resource, which was sufficient information to determine 
which well to move to in order to find water. An alternative 
strategy, explored in this experiment, is to retrieve a 
situation that closely resembles the agent’s current situation 
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and then advance to the next memory to remember what the 
agent did the last time that it was in a similar situation.  

In this experiment, the agent has available the normal 
actions in the environment (moving and consuming 
resources). It also has two internal actions available to it: a 
cue-based episodic memory retrieval, which uses structures 
from its current perceptual state to retrieve the most recent 
situation that most closely resembled its current situation; 
and an action (called advance) that retrieves the next 
episode (the episode that was stored after the episode most 
recently retrieved). Thus, the agent must learn when to do a 
cue-based retrieval and when to advance its retrieval, and 
these actions are always competing with the other actions.  

For this task, the optimal policy for the agent when it is 
not thirsty is to move to the shelter and consume the safety 
resource. When it becomes thirsty, the optimal policy is to 
perform a retrieval cued by its current state, which results in 
the agent remembering the last time it was thirsty at the 
shelter. The next step is to perform an advance retrieval, 
which results in the agent remembering where it moved to 
after it was last thirsty at the shelter. This is followed by 
moving to the other well, where the agent will find water, as 
the well that it previously visited will be empty. 

An important characteristic of this task is that the agent 
must learn to use its memory while simultaneously learning 
to act in the world. The best policy for memory usage 
depends on the agent’s prior actions in the environment; if 
the agent does not visit and consume resources in the 
appropriate order (i.e. follow the optimal policy for external 
actions), then the agent is not guaranteed to gain useful 
information from internal memory retrievals. 

The performances of the agent under three conditions are 
plotted in Figure 3: using a fixed policy to automatically 
advance episodic memory after a cue-based retrieval, 
making only the initial cue-based retrieval open to learning; 
learning when to select both retrieval and advance actions; 
and a baseline comparison where episodic memory is 
lesioned.  

There are several features of the results in Figure 3 worth 
further discussion. First, the performances of both agents 
that use episodic memory are very similar. This was 
unexpected. The agent that learns to use the temporal action 
has a larger action space, which implies that it would 
initially perform worse than the agent that had a fixed policy 
to advance to the next memory after retrieving. Second, the 
agents reach asymptotic performance after about 4,500 
actions, but do not reach the optimal level of performance. 
Third, while the agents are exploring while selecting actions 
(until the 4,000th action), the agent that deliberately selects 
actions outperforms the agent that has a fixed policy to 
advance after retrieving. Fourth, there is a dramatic 
improvement in performance just after exploration ends. 
The agent retrieves episodes from memory that are similar 
to its current situation, and uses its past actions to determine 
how to act in the present situation. If the agent takes an 
exploratory action when it is thirsty or is not at the shelter 
when it becomes thirsty because of an exploratory action, 

then the behavior that results is no longer correct. In effect, 
although exploration of the problem space is necessary for 
the agent to learn, it hinders the agent’s performance in the 
task and once there is no exploration the agent can perform 
significantly better. 
 

 
Figure 3: Performances of agents using temporal control 

of episodic memory after retrieval. 
 
All four of these phenomena are explained by the 

difficulty of the learning problem that was identified above - 
for the agent to learn the optimal policy for using its internal 
memory, it must also learn a near optimal policy for acting 
in the environment. The learning problem is partially 
observable, in that the effects of the agent’s memory actions 
depend on the history of the agent’s actions in the 
environment, but the agent cannot perceive that history. The 
agent is faced with a conundrum: it must learn how to use 
its memory while settling on a good policy in the 
environment, but it must also settle on a good policy in the 
environment without knowing how to use its memory. Often 
the agent is successful in learning to simultaneously control 
both memory and external action, but occasionally the agent 
is unable to converge to the best policy. 

The asymptotic behavior of the agent is very near to 
optimal, which demonstrates that the agent still learns to 
perform relatively well in the environment. In fact, in all 
trials the agent converged to one of two policies: the optimal 
policy, or a policy in which the agent uses episodic memory 
retrievals to toggle a conceptual bit, as in the agents in 
Littman (1994) and Pearson et al. (2007). In this second 
policy, when the agent becomes thirsty, it immediately 
moves to one of the wells (the same well every time). If the 
well contains water, it consumes it; if not, it performs a 
retrieval and moves back to the shelter. At the shelter, the 
agent now knows that it has performed a retrieval and 
instead of moving to the same well again (the one that it just 
visited and knows is empty), it moves to the other well and 
consumes water there. Essentially, the agent learns which 
well to move to when it is thirsty based on whether a 
retrieval has been performed, and not based on the contents 
of what was retrieved. 

From Figure 3 it is also clear that the agent requires many 
more actions before converging to near-optimal behavior in 
comparison with the agents from the previous experiment. 
For the agent to converge to the optimal control policy, it 
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must explore significantly longer than in the previous 
experiment; however, as noted above, this exploration can 
hinder the agent’s performance in the task as well. We 
investigated how different exploration policies affected the 
agent’s convergence to the optimal policy and the results are 
presented in Table 1. In all three cases, the rate of random 
action selection decays linearly over time. Table 1 presents 
data gathered when random action selection decayed over 
500 steps, 5,000, and 50,000. These results suggest that 
there are important interactions between the exploration rate 
decay and learning that need to be pursued in future work. 

 
Table 1: Percentage of trials that converged to optimal 

memory control policy when using temporal control for 
different periods of exploration. 

 
Condition 500 5,000 50,000 
Fixed 26% 60% 25% 
Deliberate 36%  71% 38% 

Learning To Construct a Retrieval Cue 
In the first experiment, one condition involved the agent 
learning to select between multiple cues when retrieving 
from memory. In the second experiment, the agent used 
cues with more than one feature (multiple features of its 
current state) in order to retrieve from memory. The purpose 
of this third experiment is to investigate whether an agent 
can learn to select multiple features to use as cue, 
combining aspects of both previous experiments. 

In order to test this capability, it was necessary to extend 
the base Well World configuration so that there were more 
wells and more features that could be used for retrieval. A 
third well was added to the environment, and a color feature 
was added to all objects; the modified environment is shown 
in Figure 4. As in the base environment, only wells 1 and 2 
ever contain water, and they continue to alternate between 
full and empty as before. Well 3 is always empty and never 
contains water; it was added to the environment to serve as 
a distracter to the agent when it performs a cue-based 
retrieval with features not present on the other two wells. 

 

 
Figure 4: Well World modified with an additional well 

and an additional feature, color. 
 

In this task, the optimal policy when the agent is not 
thirsty is still to navigate to the shelter and consume safety. 
When thirsty, the agent must construct a cue containing 

features corresponding to the two wells that can contain 
water in order to determine which well it visited last; these 
features are “resource: water” and “color: blue”. After 
retrieving the memory of the last blue well that it visited, the 
agent must then navigate to the other blue well and consume 
water there to satisfy its thirst. 

If the agent constructs a cue with some other combination 
of features, the result of its retrieval depends on its previous 
behavior – but the retrieved episode will not provide 
sufficient information for the agent to determine which well  
to visit next, because the agent must always visit the red 
well before visiting the shelter. As Soar’s episodic memory 
mechanism is biased towards more recent episodes when 
multiple memories are perfect matches to the cue, building a 
cue that contains only “resource: water” or “color: blue” 
will not result in the agent remembering the last well that it 
visited (assuming that it has moved back to the shelter). 
Color: blue will lead to the retrieval of the shelter, while 
retrieval of resource: water will lead to retrieval of well 3.  

The performances of the agent that constructs retrieval 
cues in the modified Well World are shown in Figure 5 for 
three conditions: learning to construct a cue from the two 
correct possibilities (“No distracters”), learning to construct 
a cue when two distracters are present, and a baseline where 
episodic memory is lesioned. In the two conditions, there 
are different sets of features with which an agent may 
construct the cue: the first has only the two correct features 
available (resource: water, and color: blue), while the other 
also has their complements (resource: water/shelter, and 
color: blue/red). Cues can contain any combination of 
features so the agent must learn to construct the cue from 
the correct combination in both cases. 

 

 
Figure 5: Constructing cues with more than one feature in 

order to retrieve from episodic memory. 
 
The agent converges to the optimal policy under both 

conditions, more slowly when two distracter features are 
present, as expected. These results indicate that an agent can 
learn to build conjunctive cues from raw features, and use 
them in a task to retrieve from episodic memory. 

Discussion and Conclusions 
Although in all three experiments the agent is faced with 
learning to use its memory while acting in the environment 
(and thus affecting what information will be retrieved from 
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Shelter 

r: water, empty 
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memory in the future), the interaction of memory and action 
in the environment is significantly more intertwined in the 
second experiment. There, the agent’s past actions directly 
impact the usefulness of information retrieved from episodic 
memory. In all experiments, the agent learns very early on 
to consume safety when it is not thirsty, and to immediately 
move to the shelter as soon as it is not thirsty. In the first 
and third experiments, this means that when the agent 
retrieves an episode from memory using features of a well 
as a cue, it will typically be the well that it last consumed 
water from. However, in the second experiment, the agent is 
retrieving memories of the first action that it took to quench 
its thirst, and not the memory of when it finally managed to 
quench it. It not only takes  longer to learn how to best act in 
this setting, but the eventual result is that sometimes instead 
of converging to the optimal policy it instead converges to a 
local maximum in the policy space. One issue for future 
research that we identified in the second experiment is that 
our approach lacks task-independent strategies for 
controlling exploration. 

In all experiments, the cost of an internal action is less 
than the cost of external action in the environment. The 
rationale behind this decision is that it takes significantly 
more time to act in the world than it does to perform an 
internal action. Although internal rewards are structured in 
this way, we have gathered results (not presented here in the 
interest of space) that demonstrate that this feature of our 
reward structure does not affect the eventual learned 
behaviors, but does serve to speed up the learning process 
by encouraging the selection of internal actions initially. 

These three experiments demonstrate that RL can be 
applied successfully to learn to use internal actions over an 
episodic memory mechanism while simultaneously learning 
to act in its environment. Additionally, RL alone cannot be 
successfully applied to those same tasks, demonstrating that 
there is a functional advantage to combining RL with an 
episodic memory in some settings. We also demonstrated 
that RL can be used to learn when to retrieve, learn which 
cue to use for retrieval, learn when to use temporal control, 
and learn to build a cue from a set of possible features. 

More broadly, this research opens up the possibility of 
extending the range of tasks and behaviors modeled by 
cognitive architectures. To date, scant attention has been 
paid to many of the more complex properties and richness 
of episodic memory, such as its temporal structure or the 
fact that it does not capture just isolated structures and 
buffers but instead captures working memory has a whole. 
Similarly, although RL has made significant contributions to 
cognitive modeling, it has been predominantly used for 
learning to control only external actions. This research 
demonstrates that cognitive architectures by incorporate 
both episodic memory and RL, they can learn behavior that 
is possible only when they are combined. 

Although our research demonstrates that it is possible to 
learn to use episodic memory, it also raises some important 
issues. Learning is relatively fast when the possible cues 
lead to the retrieval of an episode that contains all of the 

information that an agent requires in order to determine how 
to act in the world. When retrieving episodes that most 
closely match the current state and then using temporal 
control of memory to remember what happened next, 
however, learning is slower and does not always converge 
to the best possible behavior. Learning to use episodic 
memory to project forward is difficult – requiring many 
trials to converge and without a guarantee that optimal 
behavior will be achieved. Do these same issues arise in 
humans or do they have other mechanisms that avoid these 
issues? One obvious approach to avoid the issues 
encountered in our experiment is to use one method, such as 
instruction or imitation, to initially direct behavior so that 
correct behavior is experienced and captured by episodic 
memory, and then learning to use those experiences would 
probably be much faster.  
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Abstract 

Fatigue has been implicated in an alarming number of motor 
vehicle accidents, costing billions of dollars and thousands of 
lives. Unfortunately, the ability to predict performance 
impairments in complex task domains like driving is limited 
by a gap in our understanding of the explanatory mechanisms. 
In this paper, we describe an attempt to generate a priori 
predictions of degradations in driver performance due to sleep 
deprivation. We accomplish this by integrating an existing 
account of the effect of sleep loss and circadian rhythms on 
sustained attention performance with a validated model of 
driver behavior. Although quantitative empirical data for 
validation are lacking, the predicted results across four days 
of sleep deprivation match qualitative trends published in the 
literature, and illustrate the potential for making useful 
predictions of performance in naturalistic task contexts that 
are relevant to real applied problems. 

Keywords: Driver Behavior; Fatigue; Computational Model; 
Sustained Attention; Sleep Deprivation. 

Introduction 
Accidents on roadways in the United States account for a 
distressingly high number of fatalities and substantial cost 
on an annual basis (Horne & Reyner, 1999; Klauer, Dingus, 
Neale, Sudweeks, & Ramsey, 2006; NTSB, 1995; Pack et 
al., 1995). According to a National Highway Transportation 
Safety Administration report, nearly 25% of these accidents 
can be wholly or partially attributed to the effects of 
drowsiness or fatigue on driver attention, judgment, and/or 
performance (NTSB, 1995). 

The alarmingly high cost of fatigue in the context of 
driving has been one motivation for studies to better 
understand changes in cognitive performance stemming 
from extended time awake (sleep deprivation), insufficient 
sleep (sleep restriction), and being awake at times of the day 
when the body is predisposed to sleep (circadian 
desynchrony; Dijk, Duffy, & Czeisler, 1992; Van Dongen & 
Dinges, 2005a; 2005b). This research has succeeded in 

identifying characteristic consequences of fatigue on 
cognitive performance. However, there remain significant 
limitations in the capacity to make valid predictions about 
performance in novel task contexts based on a history of 
time awake and circadian rhythms (Dinges, 2004; Van 
Dongen, 2004). 

Our computational modeling research has been targeted at 
addressing some of these current limitations in predictive 
validity. Much of this research addresses significant 
theoretical challenges associated with understanding the link 
between cognitive processes and fluctuations in overall 
cognitive arousal, or alertness (e.g., Gunzelmann, Gross, 
Gluck, & Dinges, 2009; Gunzelmann, Gluck, Kershner, Van 
Dongen, & Dinges, 2007). However, we are also addressing 
the issue of how these theoretical insights can be used to 
make a priori quantitative performance predictions in novel, 
naturalistic task contexts, based upon the mechanisms and 
parameters that have been identified (e.g., Gunzelmann, 
Byrne, Gluck, & Moore, 2009; Gunzelmann & Gluck, in 
press) 

In the research presented here, we evaluate the capacity to 
make predictions about degradations in driver performance 
associated with an extended period of total sleep 
deprivation. We discuss the implications of our research in 
the context of potential applications of a predictive capacity 
in the domain of driving. In the next sections, we describe 
our model of driving behavior, our theoretical mechanisms 
for fatigue, and how they are integrated to allow for the 
generation of quantitative predictions of behavior. We then 
compare the model’s predictions with qualitative trends in 
the empirical literature, demonstrating that the a priori 
predicted trend in the integrated model are aligned with 
those published results. 

Driver Model 
The first component of our exploration of driving and 
fatigue is the ACT-R driver model (Salvucci, 2006), a 
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computational model of driver performance developed in 
the ACT-R cognitive architecture (Anderson, 2007; 
Anderson et al., 2004), which serves as a psychological 
theory and simultaneously a computational framework for 
specifying and simulating human behavior models. The 
driver model is based on a control law of steering behavior 
(Salvucci & Gray, 2004) that visually encodes two salient 
points on the roadway: a near point in the lane center 
immediately in front of the vehicle; and a far point such as 
the vanishing point on a straight road, the tangent point on a 
curved road, or the lead vehicle when present. The control 
law describes how steering can be realized by keeping the 
far point stable while keeping the near point both stable and 
centered in the current lane. 

The driver model that uses this control law relies on a 
fundamental component of the ACT-R architecture – the 
production system that represents central cognition. Central 
cognition in ACT-R operates through a series of conflict 
resolution cycles to produce cognitive processing and 
behavior. During each cycle the subset of productions 
whose conditions match the current system state is 
identified. The “system state” is represented by the contents 
of a set of buffers that provide limited-bandwidth 
communication between central cognition and peripheral 
information processing modules such as perception and 
motor action. Within this set of matching productions, the 
one with the highest “utility value” is selected and its 
actions are executed, provided that it exceeds the ACT-R 
“utility threshold” parameter. The default duration for these 
cycles is 50 ms. 

The driver model uses successive iterations of four ACT-
R production rules to represent the control law of steering 
behavior. Specifically, these four rules comprise a control 
update cycle during which the model (1) encodes the near 
point, (2) encodes the far point, (3) updates steering and 
acceleration according to the control law, and (4) checks the 
vehicle’s current stability as measured by the lateral velocity 
and position of the near and far points. If the vehicle is not 
yet stable, the model immediately initiates another control 
update; otherwise, the model waits approximately 500 ms to 
initiate the next control update. 

The driver model has been shown to account well for 
driver behavior with respect to curve negotiation and lane 
changing (Salvucci, 2006). The most critical aspect of the 
model for our purposes here is the execution time for a 
control update cycle: A single cycle requires approximately 
200-250 ms, including 50 ms for each production rule firing 
(as dictated by ACT-R theory) plus some additional time for 
visual encoding. The update cycle time can increase, 
however, when attention is divided between driving and 
some secondary task, thus resulting in degradations in driver 
performance. For example, recent work has shown how 
dialing a phone (Salvucci, 2001; Salvucci & Taatgen, 2008) 
and rehearsing a memorized list of numbers (Salvucci & 
Beltowska, 2008) affects the driver model’s performance; in 
both cases, concurrent execution of the secondary task 
interferes with processing of the driving task, thereby 

increasing the update cycle time and degrading performance 
(measured by, e.g., lateral deviation from lane center or 
brake response time to an external event). As we will 
describe, proposed mechanisms for fatigue in ACT-R can 
also prolong or delay the update cycle, leading to similar 
degradations in driver performance. 

Mechanisms for Fatigue 
The driver model provides a validated basis for making 
predictions about driver behavior. In independent research, 
efforts have been made to identify mechanisms within ACT-
R to account for the impact of sleep loss and circadian 
rhythms on cognitive processing. In some of this research, 
we have focused on central cognitive mechanisms 
associated with the production execution cycle 
(Gunzelmann, Gross, et al., 2009). To account for changes 
associated with decreased alertness, we have integrated 
mechanisms in ACT-R that create opportunities for brief 
breakdowns in cognitive processing called microlapses.. In 
addition, we proposed a secondary process to represent the 
influence of explicit effort, which decreases the likelihood 
of a microlapse but also increases the probability of using 
lower-cost, less effective strategies in pursuit of achieving 
the goal. 

The mechanisms in the fatigue model are based on the 
theoretical perspective that fluctuations in overall alertness 
or arousal can be associated with changes in utility values 
for selecting and executing production rules in ACT-R’s 
central production system. Utility values are decreased, 
which increases the likelihood that no action will be taken 
on a given cycle. This situation leads to a microlapse, which 
is formally defined as a gap in cognitive processing lasting 
for the duration of one cognitive cycle (approximately 50 
ms). 

To account for the potential benefits of increased effort, a 
second parameter is manipulated – the utility threshold – 
which sets the minimum utility value required for a 
production to fire. Decreasing the utility threshold 
instantiates greater effort by making it more likely that some 
production will successfully fire. However, this 
manipulation also increases the probability that a suboptimal 
action (a production with a low utility) will be executed 
instead (see Gunzelmann, Gross, et al., 2009). 

To evaluate the validity of our account, we compared the 
model’s performance to human data on a sustained attention 
task across 88 hrs of total sleep deprivation. The model 
captured the important features of the human data, including 
explanations for small increases in the median of 
appropriately fast responses and increasing probabilities of 
false starts, slowed responses (lapses), and complete failures 
to respond (sleep attacks). The task, model, and results are 
described in detail in Gunzelmann, Gross, et al. (2009). 

Integration 
The mechanisms for fatigue instantiate a theory of changes 
in central cognitive processing resulting from fluctuations in 
alertness attributable to sleep loss and circadian rhythms. 
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Meanwhile, the model of driver behavior provides a 
validated account of mechanisms and processes involved in 
skilled driving. Importantly the ACT-R driver model relies 
on procedural knowledge for successful performance, 
including staying within its lane. As a result, an opportunity 
exists to bring together an existing model of driver behavior 
with an existing account of fatigue to explore the 
implications of fatigue on driving behavior. This 
opportunity represents an important step in the evolution of 
computational architectural accounts of cognitive 
phenomena, and illustrates the potential utility of unified 
theories that integrate theoretical insights from various 
domains of psychological research. 

The integration of the driver model and fatigue 
mechanisms was a straightforward process. The 
implementation of the driver model was altered to run on a 
high-performance computer but was not changed with 
respect to its core behavior. The driver model is similar to 
the sustained attention model in that neither makes 
extensive use of declarative memory, simplifying the 
account by eliminating the need to consider potential 
influences of fatigue on declarative knowledge access (e.g., 
Gunzelmann et al., 2007). The fatigue mechanisms were 
taken directly from Gunzelmann, Gross, et al. (2009) and 
applied to the driver model. Thus, our procedural fatigue 
mechanisms alone provide the moderating effects in the 
driving model. 

The actual effects of the fatigue mechanisms center on the 
production selection and execution phases of the production 
cycle in ACT-R. Proportional scaling of utility values 
during the selection phase of the driver model creates 
situations where the matching production with the highest 
utility fails to exceed the utility threshold. Thus, no 
production is executed on that cycle, producing a microlapse 
as described above. This is the key component in our 
theoretical account of performance declines associated with 
fatigue because it provides an account, based upon a single 
mechanism, of phenomena in the sleep research community 
that have been associated with cognitive lapses and 
cognitive slowing (e.g., Dinges & Kribbs, 1991). Parameter 
manipulations associated with fluctuations in alertness 
influence the frequency of microlapses, and microlapses 
lead to the performance changes exhibited by “tired” 
models. 

In cases when a microlapse occurs with no other ongoing 
processes in any of ACT-R’s information processing 
modules, the microlapse is accompanied by additional 
attenuation of utility values. The noise component of the 
utility values allows subsequent conflict resolutions to 
potentially match a production and continue model 
execution. However, this does not always occur, and as each 
successive decline in alertness further reduces the possibility 
of utilities rising about the threshold, a model can quickly 
spiral into a state analogous to sleep. In the model described 
in Gunzelmann, Gross, et al. (2009), this mechanism is 

critical in capturing the most substantial breakdowns in 
cognitive processing (i.e., sleep attacks).  

In the sustained attention task, long periods of time go by 
– as long as 10 seconds – where the model is simply waiting 
for a stimulus event. In contrast, the processing in the driver 
model incorporates a constant monitoring behavior, which 
leads to cognitive processing in modules outside central 
cognition throughout the task. Peripheral processing does 
not affect the occurrence of microlapses, but does prevent 
any progressive declines in utility values over the course of 
a 10-minute driving session. The implication is that our 
model currently does not capture changes in performance 
that may be expected over the course of a 10-minute driving 
episode (i.e., time on task effects). However, our focus is on 
making truly a priori predictions, and so we leave them 
unchanged in the model runs described below. 

In the next section, we evaluate the impact of our fatigue 
mechanisms on the driver model. Recall that the driver 
model realizes the continuous control law through four key 
productions. It is in this control update cycle that the fatigue 
mechanisms are most influential, since microlapses increase 
the overall update cycle time. As will be shown, even brief 
delays in cognitive activity can amount to significant and 
potentially devastating behavioral impacts. 

Model Evaluation 
To evaluate the model, its behavior was assessed in the 
context of a driving scenario described in Salvucci and 
Taatgen (2008). In the task, the driver steered down a 
single-lane highway, keeping the vehicle as centered as 
possible in the roadway. The vehicle moved at a constant 
speed that was not controlled by the driver, thus focusing 
the task particularly on lateral control. One key measure of 
performance in the task is lateral deviation: the root-mean-
squared error between the lane center and the vehicle’s 
lateral position within the lane. The baseline driver model 
navigating this environment exhibits an average lateral 
deviation of approximately 15 cm across a 10-minute 
driving scenario (see Salvucci & Taatgen, 2008). 

To produce predictions of driver behavior and 
performance, we used parameter values for the fatigue 
mechanisms that were estimated in our research on 
sustained attention (e.g., see Gunzelmann, Gross, et al., 
2009). Specifically, the model for that research was able to 
account for human sustained attention performance at 2 
hour intervals across 88 hours of total sleep deprivation. As 
an initial assessment of the driver model, we used the 
parameter values from sessions occurring shortly after 
participants awakened on the baseline day of the study, and 
from sessions occurring after 24, 48, and 72 hrs of total 
sleep deprivation (0800 on each of 4 consecutive days). The 
model was run 200 times using each of those parameter sets, 
leading to reliable measures of central tendency in the 
performance measures as well as evidence regarding the 
variability in fatigue effects across 10 minute driving 
sessions. 
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To assess the performance, the lateral deviation of the 
model was recorded for each second during each model run. 
Figure 1 shows a histogram of these deviation values as a 
function of degree of sleep deprivation (0, 24, 48, and 72 
hrs). Perhaps surprisingly, the distributions are not radically 
different. Note however, that on the left side of the 
distribution the proportion of lower deviation values (3-12 
cm) decreases with increasing sleep deprivation. The overall 
trend is toward an increasingly skewed distribution, where 
performance is basically normal most of the time, but 
diverges more often and to a greater extent as sleep 
deprivation increases. This pattern of results matches the 
data from the sustained attention task that we have used in 
developing the mechanisms applied to the driver model in 
this paper (see Gunzelmann, Gross, et al., 2009). 

While the distributions in the larger deviations (21-80 cm) 
are not very different, clear differences emerge in the 
categories representing the largest deviations. Lane 
violations (“LV” in the figure) represent points when some 
portion of the vehicle had crossed the lane line (i.e., the 
vehicle overlapped the adjacent lane). The proportions of 
lane violations more than double for Days 2 and 3 of sleep 
deprivation as compared to the baseline day or a single night 
without sleep. The final category, lane shifts (“LS” in the 
figure), represent points during which the vehicle has moved 
an entire lane’s width laterally — clearly a substantial 
degree of driver performance error. Whereas the Baseline 
and Day 1 conditions exhibit no lane shifts, there appear a 
small number of lane shifts in Day 2, and in Day 3, 3% of 
all lateral deviation values sampled are in this category. This 
means that 3% of the time, the model is driving completely 
out of its intended lane (possibly off the road or possibly 
into oncoming traffic). 

To better understand the nature of this performance in 
terms of the driver model and fatigue mechanisms, Figure 2 

shows a histogram of update times for the driver model in 
each condition — that is, the amount of time needed for the 
model to complete its four-production control update cycle. 
As was the case for lateral deviation, the distributions shift 
with increasing sleep deprivation such that update times 
reflecting cycles that are not interrupted (200-300 ms) 
become less frequent and longer update times become more 
prevalent. The increase in update times arises because  
production rules are more likely to fall below threshold 
under the influence of fatigue mechanisms, thus missing an 
opportunity to fire during a conflict resolution cycle. 

 

 
Figure 2: Distribution of model update times as a function 

of number of days of total sleep deprivation (TSD). 
 

 
Figure 1: Proportion of 1-second samples of lateral deviation falling into each of the specified bins. The last 
two categories represent instances where (1) the vehicle is partway out of the proper lane (a lane violation, 

“LV”), and (2) the vehicle’s deviation is more than a full lane width off (a lane switch, “LS”). Separate 
lines represent 0, 24, 48, and 72 hours of total sleep deprivation (TSD). 
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Comparison to Human Performance 
To evaluate the model predictions in the context of actual 
human driver performance, we compared the model’s 
performance to published results from a study of fatigued 
driving (Peters, Kloeppel, & Alicandri, 1999). Peters et al. 
(1999) measured lane violations during conditions of 
restricted sleep and sleep deprivation. Figure 3 compares the 
pattern of results from Peters et al. (1999) to the data from 
our model. The data from Peters et al. (1999) are frequency 
counts of lane violations, while the data from the ACT-R 
model reflect proportions of 1-second samples of lane 
deviation that exceeded the threshold for a lane violation. 
Though these measures are slightly different, they are 
closely related, and the pattern of results is identical (r=.99). 

 

 
Figure 3: Lane violations from Peters et al. (1999) compared 
to the proportion of lane deviation samples classified as lane 

deviations or lane shifts in the model. 
 
The Peters et al. experiment protocol was slightly 

different than the strict total sleep deprivation protocol 
assumed in our model predictions. Participants in Peters et 
al. (1999) were allowed four hours of sleep on the first 
night, between the Baseline Day and Day 1, whereas the 
parameters in the model assume total sleep deprivation. This 
could have some impact on the quantitative results, but the 
overall pattern would be similar in either case. The pattern is 
similar for both the human data and the model: only a slight 
performance decrement in Day 1, but a much larger 
decrement in Days 2 and 3. While the above caveat 
concerning the experiment protocol differences should be 
noted, these results suggest that the integration of the driver 
and fatigue models indeed captures an important aspect of 
fatigued driver behavior. 

Conclusions and Future Directions 
The model described in this paper exhibits declines in 
performance when mechanisms are implemented to 
represent the deleterious effects of sleep loss on central 

cognitive functioning. The foundation is a validated model 
of skilled driver behavior (Salvucci, 2006). That model is 
augmented with a set of mechanisms that account for 
changes in central cognitive processing that result from 
increased levels of fatigue associated with time awake and 
circadian rhythms (Gunzelmann, Gross, et al., 2009). 

The primary contribution of this research is the 
demonstration that it is possible to make truly a priori 
predictions regarding the effects of extended wakefulness on 
performance in complex, dynamic tasks. The qualitative 
changes in the model’s performance are identical to the 
performance changes observed in human participants 
attempting to drive after extended periods of partial or total 
sleep deprivation. The results go beyond intuitive notions 
regarding degradations in cognitive processing and 
performance as time awake increases by providing 
quantitative estimates about the actual impact of those 
changes on performance in the driving task. 

Of course, qualitative comparisons of overall performance 
falls short of the rigorous evaluation of the model that we 
would like to perform. However, the current research effort 
represents a critical step in the process of using 
computational cognitive modeling to make predictions 
about human cognition and behavior in naturalistic task 
contexts. The modular design of ACT-R facilitates this 
convergence of research efforts by providing an 
infrastructure that allows new theoretical components (like 
the account of fatigue) to be added seamlessly to the 
architecture. Once added, these new components, or 
modules, influence the model’s behavior to the extent that 
the proper conditions arise to activate the mechanisms. In 
this case, the mechanisms for fatigue have a substantial 
impact on model behavior. Importantly, the impact appears 
to be in line with human data on a similar task in the 
research literature. 

A major goal of research on fatigue is to develop an 
understanding of the impact of sleep loss that is useful in 
making predictions regarding the consequences for 
performance in applied settings. At the outset, we cited the 
enormous cost of fatigue – both in dollars and lives – on 
highways in the United States. A better understanding of the 
relationship between fluctuations in alertness and changes in 
observable human behavior has the potential to greatly 
reduce this cost, potentially saving thousands of lives. 
Moreover, driving is not the only area where the potential 
benefits exist. In many applied settings, lack of sleep and 
circadian desynchrony may lead to disastrous consequences 
(e.g., Caldwell, Caldwell, Brown, & Smith, 2004; Dinges, 
1995). Accurate predictions of the consequences of fatigue 
could help to avert some of these potential tragedies. 
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Abstract

The fundamental mammalian behaviours of perception, recog-
nition, recollection, and all other psychological phenomena are
intrinsically related to the basic cognitive tasks of memorisa-
tion and association. Based on Hebb’s Cell Assembly (CA)
theory, it is believed that concepts are encoded as neuronal
CAs in mammalian cortical areas. This paper describes a se-
ries of simulations that demonstrate various associative mem-
ory tasks using CAs based on biologically plausible fatiguing,
Leaky, Integrate and Fire neurons. The simulations show the
ability of CAs to form, retain and recollect basic concepts and
multiple and sequential associations.
Keywords: Cell Assemblies; Multi-associative memory; fLIF
neurons

Introduction
Associative memory is a fundamental cognitive process. The
concepts in memory and the associations between them are
learned. These concepts and associations are critical to cog-
nitive processing.

Like all cognitive processes, associative memory must
have a neural basis, but neural models of associative memory
are rare and surprisingly incomplete. Cell Assemblies (CAs)
can account for many cognitive phenomena, including asso-
ciative memory. Concepts can be stored as CAs (see Section
CAs and auto-associative memory), and associations can be
stored in connections between CAs.

Associative memory has a wide range of properties. Con-
cepts can be connected in one to one, one to many, and many
to many relationships. Associations can be context sensi-
tive. In this paper, simulated CAs are used to explore these
properties performing different tasks including a simple spa-
tial cognitive mapping task. Cognitively, a good associative
memory model should be capable of priming, differential as-
sociations, timing, gradual learning and change, encoding in-
stances, and many such processes. The model simulations do
not account for these phenomena, but this is the beginning of
an exploration of a model that will (see Section Discussion
and conclusion).

Background
Human associative memory is remarkable. Throughout life,
new concepts are learned and new associations formed. Any
given concept is associated with many other concepts, and
retrieval of an associated concept can be based on a combi-
nation of the base concept and the context. Priming studies,
for example, show the memory system supports a wide range

type and strength of associations between concepts. Memory
retrieval and formation of associations are rapid processes.

Simulated neural models of associative memory are not
currently capable of many of the tasks described in the prior
paragraph. Closely related connectionist models have how-
ever been used to perform some of them.

CAs and auto-associative memory
Hebb (1949) hypothesised that the CA is the neural basis of
concepts, and the CA is central to most neural models of
memory. The theory proposes that objects, ideas, stimuli and
even abstract concepts are represented in the brain by simulta-
neous activation of large groups of neurons with high mutual
synaptic strengths (Wennekers & Palm, 2000). If an external
stimulus excites a sufficient number of neurons of an exist-
ing CA, it can result in the spreading of activation within the
CA, in turn igniting it due to recurrent activity and high mu-
tual synaptic strength. The CA can then remain active even
after the stimulus is removed. This reverberating behaviour
accounts for short term memory.

CAs are learned using the Hebbian learning rule, whereby
modifications in the synaptic transmission efficacy are driven
by the correlations in the firing activity of pre-synaptic and
post-synaptic neurons (Gerstner & Kistler, 2002). When ex-
ternal stimuli are presented to a network, synaptic strength
between neurons are adjusted so as to gain more strength
if they undergo repeated and persistent activation or firing,
gradually assembling them into a group, a CA. This forma-
tion of CAs accounts for long term memory. Thus, the CA
hypothesis provides a structural and functional account for
such cortical processes.

While still unproven, there is significant evidence and
wide spread agreement that CAs are the neural basis of con-
cepts. This includes a range of neural recording mechanisms
(Abeles, Bergman, Margalit, & Vaddia, 1993; Bevan & Wil-
son, 1999; Pulvermuller, 1999).

The CA is a form of auto-associative memory. In auto-
associative memories, an initial state is allowed to settle into
a stored memory, allowing subsequent noisy input to retrieve
a stored pattern. The Hopfield Model illustrates this property
(Hopfield, 1984). A network of units that are well connected
with bidirectional weighted connections is used to store a
set of binary patterns (typically using a Hebbian calculation).
When an initial set of neurons is switched on, in the discrete
version of the system, activation spreads through the system
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based on the weighted connections. In most cases the system
will settle into a stable state with no neurons switching be-
tween on and off. If the input pattern is close to a stored pat-
tern, it will settle into that pattern’s state, thus functioning as
a content-addressable memory. Neurons may also belong to
multiple CAs. Hopfield patterns that share on-bits are models
of CAs that share neurons.

While CAs are critical for the model of multi-associative
memory described in this paper, they are not the solution. The
question is how different CAs are associated with each other.

Multi-associative memory
Auto-associative memory is not typically what is meant by
associative memory. Instead, associative memory is gener-
ally a shortened form (usually implicitly) of multi-associative
memory; this has also been called hetero-associative memory.
Psychologically, memories are not stored as individual con-
cepts, but large collections of associated concepts that have
many to many connections (Anderson & Bower, 1980). Each
memory (CA) is associated with many other memories (CAs).

CAs and multi-associative memory
Even though CAs account for memory formation, their pre-
cise neural dynamics are far from perfectly understood. As
explained in the Section CAs and auto-associative memory,
neurons may belong to different CAs, and if they are repeat-
edly co-activated by different versions of the same stimulus,
they tend to become associated (Hebb, 1949). This is based
on the notion that events that occur together repeatedly should
somehow belong together. Wennekers and Palm (2000) ex-
plained that every time these events occur in conjunction,
they drive certain subgroups of neurons, their correlated fir-
ing should be learned, and, by that, respective groups should
become associatively connected.

Repeated co-activation of neurons can lead to the forma-
tion of CAs. Similarly, repeated co-activation of multiple
CAs results in the formation of multiple and sequential as-
sociations, and sometimes new CAs. When an external stim-
ulus activates a CA, it might lead to the activation of neurons
that ignites a different CA that is not directly stimulated. This
forms the rudimentary, neural level explanation of associative
memory. Humans constantly retrieve and form associations
with whatever sensory input they receive for the purpose of
perception, understanding and reasoning.

Multi-associative memory models
Many multi-associative memory models have been proposed.
A select few models are reviewed below.

Non-Holographic Associative Memory is an early multi-
associative memory model (Willshaw, Buneman, & Longuet-
Higgins, 1969). It is a well-connected network that can learn
to map input bit patterns to output bit patterns using a Heb-
bian learning mechanism. In CA terms, input CAs are con-
nected to output CAs via learned one way associations. This
is a one step model. The Linear Associator (Kohonen, 1977)
is a similar model that, like many other models, encodes

memories in well connected systems. The brain is not well
connected, but it is often argued that it is broken into com-
partments that are well connected (Amit, 1989).

The Multi Modular Associative Memory (Levy & Horn,
1999) used well connected modules and analysed the storage
capacity of a system with items stored in multiple modules.
It showed that such a multi modular network is resilient to
corrupted input, based on their observation that natural asso-
ciated memories remain resilient to a great extent in humans
who suffer from focal damage. They concluded that multi
modular networks are necessary for meaningful implementa-
tion of associative neural networks. This is supported by evi-
dence that shows that the memory for a given word is stored
in multiple areas of the brain (Pulvermuller, 1999).

The Valiant model (Valiant, 2005) is a graph theoretical
model of memorisation and association based on four quan-
titative parameters associated with the cortex: the number of
neurons per concept; number of synapses per neuron; synap-
tic strengths; and number of neurons in total. It is assumed
that neurons are randomly connected. The learning algorithm
provided is biologically implausible, but the model shows
that random graphs allow a method of assigning new mem-
ory items and associative relationships between the items.

The Jets and Sharks simulation (McClelland, 1981) uses
the interactive activation model (Rumelhart & McClelland,
1982) to simulate associative memory. In the model, each
concept is represented by a node, and connections are made
between nodes to show how closely related these are. The
system is not well connected. Activation spreads between the
nodes via the weighted connections. The information to be
encoded concerns two hypothetical groups (Jets and Sharks),
group members, and some of their demographic characteris-
tics. The system can act as a content-addressable memory
system. So, the features of an individual group member can
be activated as input, and the individual’s representation will
quickly become activated by the spread of activation. Addi-
tionally, prototypical effects can be derived (Rosch & Mervis,
1975). So, if the Shark concept is stimulated, activation will
spread and eventually, the prototypical shark will become
more active than other individuals. The individual that shares
most features with other Sharks is the prototypical member.

This has been a brief review of multi-associative memory
models. It has been known for 40 years that simulated neu-
ral systems can encode multi-associative memories, but it has
become apparent that well connected systems are not a good
model of the brain. This has been addressed by partition-
ing the system into modules, and by using sparsely connected
random graphs. These models however do not account for a
range of associative memory characteristics that the human
memory system exhibits, for instance, context effects.

The simulator
This section briefly describes a computational model that
simulates CAs using fLIF neurons. Like all models, it is a
simplification of the mammalian neural architecture, but has
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proven successful in modelling many cognitive phenomena.

The fLIF neural network
The fLIF neuron model (Huyck, 2007) encompasses many
properties of the biological neuron. The CAs used in the
experiments described in this paper emerge from fLIF neu-
ral networks. The model is an extension of the LIF (Leaky
Integrate and Fire) model (Maas & Bishop, 2001; Gerstner,
2002). fLIF neurons collect activation from pre-synaptic neu-
rons and fire on surpassing a threshold, that is, they integrate
and fire. On firing, a neuron loses its activation level, other-
wise the activation leaks gradually, resembling the behaviour
of a biological neuron.

The activation A of a neuron i at time t is:

Ait =
Ait−1

δ
+ ∑

j∈Vi

wi js j (1)

The current total activation is the activation from the last time
step divided by decay factor δ, plus incoming activation. This
new activation is the sum of the active inputs s j of all neurons
j ∈Vi,Vi being the set of all neurons connected to i, weighted
by the connection from neuron j to i. The neuron fires when
the accumulated activation A exceeds a threshold θ, and firing
neurons do not retain activation. Firing is a binary event, and
activation of wi j is sent to all neurons j to which the firing
neuron i has a connection. Fatiguing causes the threshold to
be dynamic, θt+1 = θt + Ft . Ft is positive (F+) if the neuron
fires at t and negative (F−) if it does not.

The network architecture
Two of the three the simulations discussed in this paper par-
titions the network into subnetworks; the context simulation
uses only one subnet. The subnets are made of fLIF neu-
rons and the number of neurons vary between subnets. Intra-
subnet synapses are based on biologically inspired distance
biased connections. This topology makes it likely for a neu-
ron to have excitatory connections to neighbouring neurons,
and less likely to far away ones. The subnet is a rectangu-
lar array of neurons with distance organized toroidally. In-
hibitory connections within a subnet and all inter-subnet con-
nections are set randomly. The connectivity rule for excita-
tory neurons is given by equation 2. There exists a connection
between neuron i and j of a network only if Ci j = 1.

Ci j = 1, if r < (1/(d ∗ v)) (2)
Ci j = 0, if not

where r is a random number between 0 and 1, d is the neu-
ronal distance and v is the connection probability. This indi-
cates that connections in a network are influenced by distance
between neurons and the connection probability factor. Dis-
tance d = 5 throughout all the simulations, as it has been ob-
served to work well. Inspired by biological neural topology,
long distance intra-network connections are also present, con-
nected by long distance axons with many synapses (Church-
land & Sejnowski, 1992).

In each of the simulations, networks are divided into mul-
tiple CAs using unsupervised Hebbian. The CAs are orthog-
onal and represent different concepts, and this is in response
to training stimuli. Neurons in different CAs do have excita-
tory connections to other CAs, based on the connection rule
(Equation 2), but the learned weights are low because neurons
in different CAs rarely co-fire. Once learned, when a CA is
externally activated, it typically inhibits all inactive CAs in
the same network via learned inhibitory connections. Sim-
ilarly, simultaneous co-activation of CAs increases the con-
nection strength between them, creating associations.

Learning in the network
CAs in a network are learned by a correlatory Hebbian learn-
ing rule (Huyck, 2004), whereby synaptic connection weights
are modified based on the following equation:

∆+wi j = (1−wi j)∗λ (3)
∆−wi j = wi j ∗−λ (4)

wi j is the synaptic weight from neuron i to j and λ is the learn-
ing rate. During each cycle, weights change based on the state
of pre-synaptic and post-synaptic neurons. If both neurons
fire, the weights increase as per the Hebbian rule (Equation
3). If only the pre-synaptic neuron fires, weights decrease as
per the anti-Hebbian rule (Equation 4). These two rules act
together, changing wi j, gradually increasing the likelihood of
j firing if i fires. Without reverberation, the weight would
reflect the likelihood that neuron j fires when neuron i fires.

The network parameters used in the simulations are pre-
sented in the table 1. The decay parameter has a link to bio-
logical data, but the others have been selected via a search of
the space. In particular, the fatigue parameters are different
across the three experiments described below.

Table 1: Network parameters

Parameter Symbol Value
Learning rate λ .10

Activation threshold θ 4.5
Fatigue F+ = F− .80

Decay factor δ 1.2
Neuronal distance d 5

Simulations
This section describes three sets of simulations. These sim-
ulations demonstrate that the model is capable of supporting
complex associations.

Jets and Sharks
This is a CA based implementation of a modified version of
the classic Jets and Sharks model that uses five members in
each of the hypothetical (Jets or Sharks) groups. The orig-
inal experiment had 27 members, but 10 randomly selected
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member were used here to demonstrate feasibility. Each of
the members and their attributes are encoded as CAs in dif-
ferent subnets. A unique Person CA represents each member
and their attributes, namely Name, Age, Education, Marital
status, and Occupation. There is a one-to-one relationship
between each Person and their Name CA. A subset is illus-
trated in Figure 1.

Art - Jet, 40’s, Junior High, Single, Pusher
Phil - Shark, 30’s, College, Married, Pusher

Figure 1: Two people in Jets and Sharks. Circles refer to sub-
nets, names to orthogonal CAs, and arrows to connections.

Each CA is mutually exclusive and is made up of 200
neurons. Inter-subnet connections are random, initially low-
weight excitatory connections. The CAs and their associa-
tions are learned by external stimulation and co-activation of
each Person CA and their attributes simultaneously for 200
cycles, in succession.

Multiple memory retrieval tests were conducted. For in-
stance, when the Name CA of Art is externally stimulated, it
propagates activation to Art’s Person CA. The particular Per-
son CA, having learned excitatory connections to different
attributes, causes activation to further propagate throughout
the network, gradually activating all corresponding attributes
of Art. On 15 runs, the correct results were retrieved for each
of the 10 people. This shows one to one associations (e.g.
Art to his name), one to many (e.g. Art to all his properties)
and many to many (e.g. Pusher is activated by many people
along with other properties).

Similarly, when the attribute Shark is externally activated,
it propagates activation to all Person CAs having that at-
tribute, and the immediate effect is that all Shark members
ignite Though these CAs do not share neurons, multiple CAs
in a subnet may be simultaneously active. Gradually, activa-
tions stabilise through competition between CAs. One Person
CA is found to have more activation than others, emerging as
the prototypical Shark. The network was tested 15 times to
obtain the prototypical Jet and Art emerged to be so, through-
out. The same was done for Sharks and Nick emerged to be
prototypical 9 times and Ned, 6 times. This is because both
members share the most features with other members of the
group, and hence emerge to be prototypical members.

Context sensitive association
Most associative memory models, focusing solely on associ-
ations, usually neglect to acknowledge the inherent types of

associations that exist. A concept may be associated to many
others, but the types of associations may vary from concept to
concept. The association of cat to mammal is not the same as
fur to mammal. As a step towards simulating different types
of associations and eventually implicit labelled associations,
a model capable of differentiating associations based on con-
texts was developed.

Figure 2: Initial and Learned state of CAs

Figure 2 shows the network setup, the physical connection
before (A) and after (B) the CAs and their associations are
learned. A single network holds all the 5 orthogonal CAs,
namely Hungry, Not Hungry (states), Salivate, Lie down (ac-
tions) and Food (object). Since all the CAs are in the same
network, they have excitatory and inhibitory connections with
each other. The parameters in the simulation are those from
Table 1, except the fatigue parameters have been modified.
F+ = F− = 0.4. Initially, patterns corresponding to each of
the CAs are presented for 300 cycles so that they are learned
independently. When a CA is active, it inhibits all other CAs
in the network via learned inhibitory connections. When one
CA is active and another is inactive, inter-CA connection
weights are decreased. The associations between CAs are
learned by co-activation for 300 cycles each, that is, by acti-
vating three CAs (object, state, action) simultaneously, in the
following manner:

Food + Hungry⇒ Salivate
Food + Not Hungry⇒ Lie down

This mimics the behaviour of a hypothetical dog that salivates
when food is presented when hungry, and lies down ignoring
food when not hungry. After the associations are learned,
context sensitive behaviour is tested in the following manner:
when Food and Hungry are externally stimulated, Salivate ac-
tivates, suppressing Lie down. The tests were repeated on
100 different network configurations, and action CAs (Sali-
vate, Lie down) activated correctly 83 times with an average
of 84.6 neurons firing.

Igniting any one CA leads to activity in one associated CA,
and in less than 20% of trials the third associated CA. No
unassociated CAs have been activated in simulations.
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Cognitive spatial mapping using sequential memory
Cognitive spatial mapping is a psychological process by
which an individual acquires, stores, recalls and decodes in-
formation about the relative locations and attributes of a spa-
tial environment for the purpose of spatial navigation (Downs
& Stea, 1973). A simplified version of this complex process
was implemented, where a virtual agent navigates a 3D vir-
tual world by recognising, memorising, associating and rec-
ollecting rudimentary landmarks. The parameters in the sim-
ulation are those from Table 1, except the fatigue parameters
have been modified. F+ = F− = 0.1. The change of these
parameters between the three simulations has merely been an
engineering decision based on a simple exploration of the pa-
rameter space. It is likely that different topologies using the
same parameters would have also produced similar results.

Figure 3 shows the top view of the virtual world, its 4
rooms, 4 coloured doors, and the exploration path the agent
takes. The agent’s path is fixed and it lacks the ability to turn
back and only moves forward.

Figure 3: Top view of the virtual world

In the learning mode, the agent explores the world, learn-
ing rooms, doors and Room-Door-Room sequences in the pro-
cess. A simple vision system detects doors and door colours,
and triggers learning actions, helping the agent navigate.

Figure 4 illustrates the gross subnetwork topology of the
spatial mapping module, excluding other subnets of the agent.
The solid arrows show physical inter-subnet connections
(random, low-weight excitatory connections). RoomNet1
and RoomNet2 store instances of the rooms the agent vis-
its. DoorNet stores the doors encountered and SequenceNet,
encodes the sequences of visits. ColourNet has CAs that
represent colours recognised by the agent, and GoalNet en-
codes the target door, which the agent searches for while in
the test mode. The greyed areas show a sample sequence,
where the agent has learned the association Room1←→Red-
Door←→Room2 by co-activation. The dashed lines represent
learned connections with increased synaptic weights.

The CAs representing rooms, doors and sequences in cor-
responding subnets are made up of 200 neurons each, and are
learned as the agent explores. In the learning mode, when
the agent encounters a door, a 5-step learning process is trig-

Figure 4: Cognitive spatial mapping network setup

gered: 1) The agent encodes its present location as a CA
in both the RoomNets; 2) It learns the door, forming a CA
in the DoorNet; 3) The agent associates the colour of the
door in the ColourNet with the newly formed door CA; 4)
The agent moves to the next room and learns the room (as in
Step 1); 5) It then encodes the passage it just made as a CA
in the SequenceNet, as in PreviousRoom-ConnectingDoor-
PresentRoom. This process is repeated until the agent is back
at its starting position. Each of the CAs are learned by stim-
ulation lasting 300 cycles, triggered by the visual cues the
agent reviews. Associations are learned by co-activation, as
described in the previous simulations. For instance, passages
are learned by simultaneously activating the corresponding
sequence CA in the SequanceNet, pre-entrance room CA
in RoomNet1, the connecting door CA in DoorNet and the
present room CA in RoomNet2, for 300 cycles.

In the test mode, the agent is instructed to go to a room ran-
domly chosen from the 4 rooms. This is done by externally
stimulating the target room CA in RoomNet2. This causes the
corresponding sequence CA to activate, which in turn acti-
vates the associated room CA in RoomNet1 and the connect-
ing door CA in DoorNet. When the door CA becomes active,
the goal CA is activated externally, leaving them to remain si-
multaneously active for 300 cycles, causing them to become
associated. As a result of this association, the goal CA be-
comes active whenever the corresponding door CA activates.
The active door CA that the agent has set as its goal is the door
that leads to the target room. With the goal in memory, the
agent moves forward, looking for the target landmark (door).
When the target door appears in the agent’s visual field, the
corresponding door CA in DoorNet activates, immediately
causing the goal CA to activate due to the previously learned
association, indicating achievement of the goal. With this, the
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agent reaches the target room and the test ends.
The agent could have failed by stopping prematurely, or

continuing beyond the target room. However, it correctly
reached a the target room all 30 times the test was repeated.

Spatial cognitive mapping is an important associative task.
The task is also important for agents, and this cognitive map-
ping module is currently being incorporated into our current
Cell Assembly roBot (CABot3), an agent in a video game
based solely on fLIF neurons.

Discussion and conclusion
These simulations show that CAs emerging from model fLIF
neurons are capable of learning and retrieving core memories,
in the form of CAs, and associations between them. The Jets
and Sharks simulations show that the model can handle one
to one, one to many, and many to many relations. The sec-
ond set of simulations show that the model is capable of han-
dling context sensitive associations, and the third set shows
that it is capable of a basic form of cognitive mapping, using
multi-associative sequential memories. This is the first neural
model that simulates all the these processes.

While these are useful capabilities, the model does not ex-
hibit the wide range of behaviours that human associative
memory does. Human memories have varying strengths, and
so do the associations. Instances of types (tokens) can be
learned. Types, associations and tokens are all forgettable.
All of these behaviours occur in measurable times. It is
planned that future work will include all of these behaviours.

In the simulations described in this paper CAs were or-
thogonal, that is, neurons were in only one CA, and associa-
tions were maintained solely by synapses between neurons in
the associated CAs. Another type of association is possible,
where CAs are associated by sharing common neurons and
subcategorisation associations have been stored using shared
neurons in CAs (Huyck, 2007) . For example, the concept
Cat shares neurons with the concept Mammal because of the
association that a Cat isA Mammal. It is likely that such over-
lapping CAs are important for a good neural implementation
of multi-associative memory.

Other properties may also be necessary to achieve the full
range of associative memory behaviours. For instance, global
inhibitory mechanisms might be needed to manage spreading
of activation and prevent all neurons firing simultaneously.
None the less, the current simulations show simulated neural
systems can perform a range of associative memory tasks.
The authors leave the reader with these questions: what tasks
does an associative memory perform, and what are good tests
to show that a system performs these tasks?
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Abstract 

The non-word repetition test has been regularly used to 
examine children’s vocabulary acquisition, and yet there is no 
clear explanation of all of the effects seen in non-word 
repetition. This paper presents a study of 25 5-6 year-old 
children’s repetition performance on three non-word 
repetition tests that vary in the degree of their lexicality. 
EPAM-VOC, a model of children’s vocabulary acquisition, is 
then presented that captures the children’s performance in all 
three repetition tests. The model represents a clear 
explanation of how working memory and long-term linguistic 
knowledge interact in a way that is able to simulate 
performance in non-word repetition. 

Keywords: Computational modelling; Non-word repetition; 
Child development. 

Introduction 

One ability that sets the human species apart from other 

species is that of language. However, the learning of 

language is a complicated process that involves at least the 

following processes. First, the learner must identify where 

words begin and end from speech that is often continuous. 

Second, the learner must store the newly identified words in 

their long-term lexicon. Finally, the learner must acquire the 

rules of syntax and grammar that govern the way in which 

their lexicon words can be combined. It is the second of 

these three processes that this paper is focused: the process 

of vocabulary learning. 

Research that examines vocabulary learning is 

proliferated with tests of non-word repetition – a test that 

involves nonsense words being spoken aloud to the 

language learner, who must repeat them accurately. The test 

involves non-words since one can be certain that the child 

has never encountered the sequence of sounds before, hence 

providing a true test of vocabulary learning. Furthermore, 

studies of vocabulary involving non-word repetition have 

primarily focused on children, since the vast majority of 

language learning occurs early in one’s development.  

Non-word repetition research  

Non-word repetition tests were originally developed to 

examine the influence of phonological working memory on 

the vocabulary learning process. For example, Gathercole 

and Baddeley (1989) showed that repetition accuracy 

improved between the ages of 4 and 5 years, and 

performance declined as non-word length increased for both 

ages. Both of these findings were interpreted in terms of 

phonological working memory: an improvement with age 

could be explained by an increase in memory capacity; and 

a decrease in performance as non-word length increased 

could be explained by the decay of items in working 

memory.  

However, subsequent research has shown that the child’s 

existing lexical knowledge plays a major role in their non-

word repetition ability. Gathercole (1995) re-analysed the 

non-words in the original test by separating them into 

“wordlike” and “non-wordlike” non-words based on adult 

subjective  ratings of wordlikeness. She found that children 

performed significantly better for non-words that were 

wordlike. Although wordlikeness is a subjective measure, 

even when more objective measures are used, there are still 

clear differences between non-words that share substantial 

lexical features with words compared to those that do not. 

For example, if one actively distinguishes non-words based 

on their constituent phoneme combinations – having one set 

that contain highly frequent combinations of sounds versus 

a set containing relatively infrequent combinations – there 

are clear performance differences, with children regularly 

finding the high-frequency non-words easier to repeat (e.g. 

Edwards, Beckman & Munson, 2004; Vitevich, Luce, 

Charles-Luce & Kemmerer, 1997). 

It would therefore seem that non-word repetition, and in 

turn vocabulary acquisition, can be affected by both 

phonological working memory and long-term lexical 

knowledge. There are at least two prominent explanations of 

vocabulary acquisition that explain repetition performance 

in terms of both processes. 

Explanations of non-word repetition performance 

Since non-word repetition performance is affected by an 

interaction between working memory and long-term 

memory, any explanation of performance must provide 

some detail of how these two processes interact. Gathercole 

(2006) explained this interaction using the idea of 

phonological frames. Phonological working memory is used 

to store linguistic stimuli (e.g. non-words in the repetition 

test) and when these items decay, long-term linguistic 

knowledge is relied upon to help bolster the decaying 

representations in working memory. Since non-words that 

are wordlike, or that contain highly-frequent sounds, will 

share more information with lexical items in long-term 

memory, it is these items that gain more help from existing 

vocabulary knowledge. That is, the support provided by the 

phonological frames of existing vocabulary items increases 

as the amount of overlap in shared features (to non-words) 

increases.  

An alternative explanation of vocabulary learning shares 

many features with Gathercole’s idea of phonological 

frames, yet is more explicit in its detail. Jones, Gobet and 

Pine’s (2007, 2008) EPAM-VOC is a computational model 
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of vocabulary learning that concretely specifies how 

phonological working memory and long-term phonological 

knowledge interact.  Long-term knowledge is represented 

by “chunks” of phoneme sequences – as the model is 

subjected to more and more linguistic input, these chunks of 

phonemes become larger and larger. Phonological working 

memory is represented by a fixed amount of chunks that can 

be stored. Hence, early on in the model’s learning, EPAM-

VOC is able to store only a limited amount of linguistic 

information in working memory since the chunks at this 

point in time will not be large sequences of phonological 

information. Later on in learning, the phoneme sequences 

within chunks will be relatively large, and so an increased 

amount of information can be stored in working memory 

even when the number of chunks remain the same. This 

explanation of vocabulary learning puts forward the idea 

that improved performance with age arises due to an 

increased amount of linguistic knowledge. However, the 

model also explains wordlikeness and frequency effects 

quite easily. Phoneme sequences that appear regularly in the 

child’s language will be represented within the model as 

relatively large chunks, whereas low frequency sequences 

will not. Therefore non-words that contain high frequency 

sequences can be stored in working memory using few 

chunks, giving rise to an increase in the likelihood of their 

correct repetition over non-words containing low frequency 

sequences. A similar explanation can be used for wordlike 

versus non-wordlike non-words. The former, since they bear 

great resemblance to words, are likely to be represented 

within the model using fewer chunks than non-wordlike 

non-words. 

The current paper 

EPAM-VOC has thus far been used to successfully simulate 

the non-word results of Gathercole and Baddeley (1989) 

plus a non-word set devised for children between 2 and 5 

year of age. However, neither of these tests were 

specifically designed to vary in their lexicality. Since 

research has shown that non-word repetition is strongly 

influenced by the lexical nature of the non-words involved, 

this paper examines EPAM-VOC’s repetition performance 

across three sets of non-words that vary in the degree of 

their lexicality. The remainder of this paper is as follows. 

First, the model itself is detailed so that the reader has more 

extensive knowledge of its workings. Second, a new study 

of 5-6 year-old children’s repetition is described that 

presents three different non-word repetition tests that vary in 

the extent of their lexicality. Third, the results of the 

children are compared to the results of the model. Finally, a 

discussion of the results are given. 

EPAM-VOC: A model of vocabulary learning 

EPAM-VOC is a model of vocabulary learning that is based 

on the EPAM modelling architecture (Feigenbaum & 

Simon, 1984). This architecture has been used to 

successfully simulate human behaviour in a range of 

psychological domains (see Gobet et al., 2001). 

Furthermore, the modelling environment has been 

successfully applied to syntax acquisition as well as 

vocabulary acquisition (e.g. Freudenthal, Pine & Gobet, 

2006; Freudenthal, Pine, Aguado-Orea & Gobet, 2007). The 

model presented here is an updated version of that described 

by Jones, Gobet and Pine (2007, 2008), since that model did 

not have an explicit articulation process. 

Representing long-term knowledge 

Knowledge within EPAM-VOC is represented as a 

hierarchy of chunks that contain phoneme sequences. 

Chunks that are lower down in the hierarchy contain larger 

sequences, and hence EPAM-VOC can be equated to a tree-

like structure. The model begins with knowledge of all of 

the constituent phonemes in English, since there is good 

reason to believe that even at an early age, children have 

knowledge of the phonemes of their language (Bailey & 

Plunkett, 2002). 

An example hierarchy of chunks is given in Figure 1. 

Here it can be seen that the model knows the phoneme 

sequence for the word “Toys” (T OY Z). Note that we 

represent phonemes using the phoneme set in the CMU 

Lexicon Database (available at 

www.speech.cs.cmu.edu/cgi-bin/cmudict) rather than the 

International Phonetic Alphabet. This is chiefly because the 

database allows the semi-automatic conversion of spoken 

utterances into their phonemic equivalent (this will be 

detailed later when the input regime for the model is 

covered).  

 

 

 

 

 

 

 

 

 

 

Figure 1: Graphical representation of EPAM-VOC having 

been presented with “Toys” (T OY Z) twice as input. 

Chunks are represented by ellipses and links are represented 

by arrows. Note that although only five phonemes are 

represented as single phoneme chunks (K, OY, T, Z and P) 

the model knows all phonemes in English as individual 

chunks. 

 

Representing phonological working memory 

Working memory in this version of EPAM-VOC is no 

longer limited to a set amount of chunks. Instead, there is a 

set amount of activation that is spread over the chunks that 

are in working memory (c.f. Cowan, 1997). However, we 

base this activation on time, since there is solid research to 

indicate that items in working memory have a temporal 

duration of 2,000 ms unless rehearsed (e.g. Baddeley, 

Thomson & Buchanan, 1975) and there is solid research that 
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places timing estimates on accessing a chunk and accessing 

its constituent phonemes (Zhang & Simon, 1985). 

For any given input, EPAM-VOC’s long-term knowledge 

is accessed in order to convert the input into a series of 

chunks (i.e. representing the input sequence in as few 

chunks as possible). Each chunk is then assigned an access 

time – 400 ms to access the chunk and a further 30 ms to 

access each constituent phoneme bar the first (e.g. given the 

long-term knowledge of Figure 1, “Toys” would be 

allocated 460 ms, whereas the single phoneme “K” would 

be allocated 400 ms). Once the input has been represented in 

as few chunks as possible, and each chunk has been 

assigned an access time, then a pointer to each chunk is 

placed in working memory. The total access time is 

calculated by summing the access times for all chunks. 

When this total exceeds 2,000 ms, then there is a probability 

of less than 1.0 that a chunk can be correctly accessed from 

its pointer (when learning or articulating, the model requires 

the chunk to be accessed from its pointer in working 

memory).  

Let us take the input “My toys are here” as an example 

(phonemic representation: “M AY T OY Z AE R H IY R”) 

and the knowledge in Figure 1. Only “T OY Z” exists as a 

multi-phoneme chunk, and this is assigned an access time of 

460 ms. All other phonemes (“M”, “AY”, “AE”, etc.) are 

assigned an access time of 400 ms – there are a total of 8 

chunks required to represent the input, in a total access time 

of (7*400 ms)+(1*460 ms)=2,560 ms. The probability of 

subsequently accessing a chunk from its pointer is the 

temporal duration of working memory divided by the total 

time required to access all of the chunks: 

2,000/2,560=.78125. 

To summarise, any given input is converted into as few 

chunks as possible using EPAM-VOC’s long-term 

knowledge of phoneme sequences. This matching process 

takes a certain amount of time, and the result of the process 

is that a pointer to each chunk is placed in working memory. 

Since working memory only contains pointers to chunks, 

any process that requires the actual information in the chunk 

(e.g. when learning or articulating items in working 

memory) must access the chunk itself. The accurate access 

of information in a chunk is probabilistic, dependent upon 

whether the total access time for all chunks exceeds the 

2,000 ms time limit of working memory. 

Learning phoneme sequences 

During learning, any given input is coded into as few 

chunks as possible, and pointers to the chunks are placed in 

working memory (as described above). The learning process 

then examines each pair of pointers to see if a phoneme 

sequence can be learnt that combines the information within 

each chunk pairing. This can only be done if each chunk is 

correctly accessed, but if this is the case, a new chunk is 

learnt whose contents are the combination of both chunks. 

Let us use the input “Toys” (“T OY Z”) as an example. 

When EPAM-VOC first begins its learning, it only knows 

single phonemes as chunks, and therefore “T OY Z” would 

be represented in working memory using three pointers to 

three chunks (one pointer to each of “T”, “OY” and “Z”). 

Since the time to encode the three chunks is 400 ms for each 

(totalling 1,200 ms and therefore within the 2,000 ms limit) 

then the subsequent accessing of the information within the 

chunks will be completely accurate. EPAM-VOC takes each 

pair of pointers in turn and tries to learn something from 

them. The first pair are “T” and “OY”. The “T” chunk is 

accessed, and then a link to a new chunk is placed below the 

“T” chunk. The link will specify the additional information 

that is being learnt (“OY”) and the new chunk contains the 

joint set of information (“T OY”). The next pair of chunks 

(“OY” and “Z”) are then examined, and in a similar vein, a 

new chunk “OY Z” is learnt. Should “T OY Z” be presented 

to EPAM-VOC a second time, it can now be represented as 

two pointers to the chunks “T OY” and “Z”. The learning 

from this pair of pointers would result in a new chunk “T 

OY Z” being added below the “T OY” chunk, and the 

resulting network would be that shown in Figure 1. 

Let us now see how learning progresses when the access 

time exceeds the 2,000 ms limit. Take the previous example 

sequence “My toys are here” (“M AY T OY Z AE R H IY 

R”) and the long-term knowledge of Figure 1. It was already 

determined that there was a .78125 probability of accessing 

a chunk that related to a pointer for this input. Since the 

pointers in working memory are analysed in a pairwise 

fashion, then if one pointer cannot access its associated 

chunk, no learning can be accomplished for that pointer. For 

example, if the pointer to the chunk “AY” failed, then 

EPAM-VOC could not learn the sequence “M AY” or the 

sequence “AY T OY Z”.  

Articulating phoneme sequences 

In order for a phoneme sequence to be articulated, it must 

first be represented in working memory as a series of 

pointers to chunks (as described above). In the same way as 

for learning, each chunk needs to be correctly accessed from 

its pointer, otherwise an incorrect articulation takes place. 

However, even if each chunk is correctly accessed, the 

chunk may still be incorrectly articulated based on its 

frequency. EPAM-VOC maintains a frequency for each 

chunk based on the number of times that the chunk has been 

accessed. We assume that the articulation of phonemes in a 

chunk is based on the frequency of that chunk – those 

chunks that are low in frequency will attract more errors 

than chunks that are high frequency. Correct articulation of 

an input sequence (e.g. a non-word) is only achieved when 

all of the relevant chunks are correctly encoded into 

phonological working memory, and all of the phonemes are 

correctly articulated from each chunk based on the 

frequency of the chunk. 

Training the model 

The model uses naturalistic speech input based on the 

maternal input from 12 sets of mother-child interactions to 

2-3 year-old children (Theakston, Lieven, Pine & Rowland, 

2001). All input is converted into the phonetic alphabet of 
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the CMU Lexicon Database, as discussed previously. 12 

simulations are carried out, one for each set of mother’s 

input. However, since comparisons are going to be made to 

5-6 year-old children, additional input was sought from 

paternal interactions with 5 year-old children plus input 

from reading material for children of this age group (e.g. 

Snow White).  

During training, the model was presented with the same 

amount of input as per the original maternal input. However, 

as learning progressed, more and more of the maternal input 

was replaced with input that reflected that which a 5-6 year-

old child would receive.  

Since the input to the model can vary based on which 

utterances from the mother were chosen for replacement, 

and which input from the 5-6 year-old input set was chosen 

as the replacement, then the model was run ten times for 

each “mother”. This ensures that the results from the model 

are replicable and are not simply based on an advantageous 

input set. Similarly, the non-word repetition tests are carried 

out ten times for each simulation, since there are 

probabilistic elements to both encoding and articulation. 

There were therefore, for any non-word in a non-word 

repetition test: 12 mothers * 10 simulations runs * 10 

attempts at each non-word = 1,200 repetitions of each non-

word. 

 

5-6 year-old children’s repetition performance 

Participants 

25 5-6 year-old children (5;4-6;8, M=6;1; 10 male, 15 

female) who all scored within normal ranges on the British 

Picture Vocabulary Scale (Dunn, Dunn, Whetton & Burley, 

1997). All children were English monolinguals and had no 

hearing difficulties, as reported by their school teacher. 

Materials 

The CNRep (Gathercole, Willis, Baddeley & Emslie, 1994) 

that includes non-words that are considered high in 

lexicality since they include syllables that are either real 

words (e.g. thickery) or morphemes (e.g. glistering). The 

non-words in this test are either single consonant (e.g. 

sladding) or clustered consonant (e.g. glistow). There were 5 

non-words of each type at each of three lengths (2-4 

syllables). 5-syllable non-words were excluded because 

children at this age had difficulty in repeating non-words of 

this length. 

The non-word test of Dollaghan, Biber and Campbell 

(1995) that contain 3-syllable non-words. 6 non-words 

contained a real-word syllable (e.g. bathesis) and 6 changed 

one phoneme in the non-word so that it was entirely non-

lexical (e.g. fathesis). This test is considered medium in 

lexicality. 

A new non-word repetition test that was entirely non-

lexical and that contained two sets of 3-syllable non-words: 

8 that were low frequency (e.g. latmunoz) and 8 that were 

very low frequency (e.g. wegnerterk). The non-words in 

each set were matched for syllable structure, number of 

phonemes, age of acquisition of the phonemes, and number 

of consonant clusters. The average log frequency was lower 

for very low frequency non-words than low frequency ones 

(.51 vs. .44, t(7)=3.92, p<.01) using a procedure for 

measuring bi-phone frequency similar to that of Luce and 

colleagues (e.g. Jusczyk, Luce & Charles-Luce, 1994; 

Vitevich, Luce, Charles-Luce & Kemmerer, 1997). This test 

was considered to be low in lexciality. 

Design 

The CNRep had two independent variables: non-word type 

(single or clustered) and non-word length (2, 3, or 4 

syllables). The Dollaghan non-words had one independent 

variable (lexicality: lexical or non-lexical). The new non-

word test also had one independent variable (frequency: low 

or very low). The dependent variable in all cases was 

repetition accuracy. 

Procedure 

All children were tested individually on a one-to-one basis 

in a quiet area of their school. Each non-word repetition test 

was carried out on a separate day. For the CNRep, the 

original recordings were maintained, but for the other two 

repetition tests the non-words were recorded by a speaker 

native to Nottingham. The instructions for each set of non-

words are given below, and were the same for each non-

word test. Children’s responses were recorded onto a Sony 

ICD-MX20 digital voice dictaphone for later analysis. 

“Hello, in a few seconds you will hear a funny made up 

word. Please say the word aloud yourself as soon as you 

hear it.” 

Results 

For each repetition test, two sets of results are shown for the 

model: the average of all of the 1,200 simulations, plus the 

average of 12 simulation runs (one from each mother). The 

12 runs are included since statistical analyses are based on 

these – the nature of the 1,200 simulations means that they 

show little variance, since they are all based on a similar set 

of input data. The selection of the single simulation on 

which to base statistical analyses was pseudo-random – that 

is, the individual 1,200 simulation runs were narrowed 

down to those that approximated the average of all 1,200 

runs when taken as a whole, and one run (the first run for 

each mother together with the seventh of the ten duplicate 

repetitions) was randomly chosen from that set. 

Figure 2 shows the children’s results for the CNRep 

together with the results from EPAM-VOC. A 2 (non-word-

type: single or clustered) x 3 (non-word-length: 2, 3, or 4 

syllables) repeated measures ANOVA was performed on the 

children’s data. There was a significant effect of non-word-

type (F(1,24)=43.5, p<.001), showing that performance was 

better for single consonant non-words, and a significant 

effect of non-word-length (F(2,24)=26.7, p<.001), showing 

that performance was better for short non-words. There was 

no interaction between the two (F(2,48)=1.8, p>.05). For the 
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model, there was also the same effect of non-word-type 

(F(1,11)=5.5, p<.05) and non-word length (F(2,22)=9.8, 

p<.001), with no interaction between the two (F(2,22)=.3, 

p>.05). 

 
Figure 2: Non-word repetition performance (%) for the 

CNRep and for the two sets of model runs. The numeric on 

the x-axis denotes the number of syllables (2, 3, or 4) and 

the alphabetic character denotes the non-word type 

(S=single consonant, C=clustered consonant). 

 

Figure 3 shows the children’s and model’s performance 

for the Dollaghan non-words and the new set of non-words. 

For the Dollaghan non-words, the children showed no 

difference in their ability to repeat lexical and non-lexical 

non-words (t(24)=.6, p>.05). The same was found in the 

model (t(11)=.6, p>.05). For the new set of non-words, there 

was no difference in children’s repetition accuracy between 

low and very low frequency non-words (t(24)=.1, p>.05). 

Again, the same result was found in the model (t(11)=.5, 

p>.05). 

 

 
Figure 3: Non-word repetition performance (%) for the 

Dollaghan and new non-words, for the children and the two 

sets of model runs. L=Dollaghan, Lexical non-words; 

NL=Dollaghan, Non-Lexical non-words; LF=Low 

Frequency new non-words and VLF=Very Low Frequency 

new non-words. 

 

Discussion 

Figures 2 and 3 show that the model provides a very close 

fit to the repetition data of 5-6 year-old children. The central 

finding is that the statistical analysis of the model’s data 

mirrors that of the children: clear effects are found for the 

non-words of the CNRep whereas no effects are found for 

the other repetition tests. The results from each set of non-

words will now be discussed in turn. 

The CNRep results are exactly those found in 4 and 5 

year old children (e.g. Gathercole & Baddeley, 1989): 

performance improves for single consonant non-words and 

for non-words of fewer syllables. In fact, this set of findings 

is rather robust since they persist in older age groups also 

(e.g. Briscoe, Bishop & Norbury, 2001). Both the previous 

version of EPAM-VOC and the new version presented here 

are able to simulate these findings, suggesting that a 

reasonable account of working memory and its interaction 

with long-term linguistic knowledge is sufficient to capture 

the behaviour shown in the CNRep. 

For the Dollaghan non-words, the original study showed 

an effect of lexicality for 10 year-old children (Dollaghan, 

Biber & Campbell, 1995). Not only do the children in this 

study not show this lexicality effect, the model itself also 

does not capture it. The model puts forward an explanation 

for the lack of effect, in that the lexical items (e.g. bath) are 

not robust enough in terms of their frequency of use to cause 

improved performance for non-words containing a lexical 

item. It would be interesting to take the learning in the 

model a stage further to the type of input older children may 

receive to then see if lexical effects emerge. 

For the new set of non-words, there was no effect of 

frequency in either the children or the model. This shows 

that frequency effects are not picked up by children of this 

age, although they may well be for older children.  

In summary, EPAM-VOC replicates the findings of 5-6 

year-old children on three different non-word repetition tests 

varying in the degree of their lexicality. It now needs to be 

seen whether the errors made in children’s repetitions are 

also mirrored by the model – if this is the case, then EPAM-

VOC may prove to be a very strong explanation of the way 

in which children are learning vocabulary. 
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Abstract
Experiments on visual search have demonstrated the existence 
of a relatively large and reliable memory for which objects 
have been fixated;  an indication of this memory is that revisits 
(fixations on previously fixated objects) typically comprise 
only  about 5% of fixations. Any cognitive architecture that 
supports visual search must  account for where such memory 
resides in the system and how it can be used to guide eye 
movements in  visual  search. This paper presents a simple 
solution  for the EPIC architecture that is consistent with the 
overall requirements for modeling visually-intensive tasks 
and other visual memory phenomena. 

Keywords: visual search;  cognitive modeling; eye 
movements. 

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. Many human-computer 
interaction tasks require such visual search to be made in a 
visual environment that is must simpler than natural scenes. 
For example, a particular icon coded by color, shape, and 
other attributes must be located on a screen and then clicked 
on using a mouse. This domain combines relative simplicity 
of the visual characteristics of the searched-for objects with 
practical relevance: the task is a natural one in the sense that 
such activities are very common in current technology. 
Visual search is so heavily relied on in many computer-
based systems that it probably is a major bottleneck in 
system performance. Thus understanding in detail how 
visual search works in such domains can lead to better 
system designs. In addition, if visual search can be 
understood in the context of a comprehensive computational 
cognitive architecture, then it will add to our knowledge of 
human perception, cognition, and action in the especially 
rigorous and coherent way characteristic of computational 
cognitive architectural modeling. 

Visual Search and Active Vision
In a laboratory visual search task, a display of objects is 

presented, and the participant must locate a particular object 
specified by perceptual properties and make a response 
based on whether such an object is present or exactly which 
properties it has (e.g.  the specific shape). In most 
experiments, the display is static and contains some number 
of objects,  only one of which is the target that must be 
responded to; the others are distractors. The properties of 
the display or the displayed objects are manipulated,  and 
reaction time (RT) and/or eye movements are measured. The 
empirical literature on this task was dominated for a long 
time by studies that measured only RT, and often for 

tachistoscopically presented displays that ruled out eye 
movements, but more recently the cost of eye movement 
data collection has decreased to the point that it has become 
much more common, and deservedly so. While any 
behavioral measurement only indirectly reflects the mental 
processes that produce it, RT is clearly much less diagnostic 
of what goes on during visual search than eye movements. 
Furthermore, tasks in which the eye is free to move about a 
static display in a naturalistic manner,  typical of eye 
movement studies of visual search, will be more 
representative of the normal operation of the visual system 
and the role of attention in visual activity. This point was 
argued eloquently by Findlay and Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity; it is markedly different from traditional 
approaches to visual attention which have ignored both the 
role of eye movements and extra-foveal information.

A key process in visual search is choosing the next object 
for inspection. A variety of studies (see Findlay & Gilchrist, 
2003, for a review) have shown that this choice is not at all 
random; rather the color,  shape, size, orientation, or other 
visual properties of objects influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance or eye guidance. In the active vision 
framework, these properties are available in extra-foveal or 
peripheral vision to some extent, meaning that visual 
attention, which in the context of normal visual activity is 
almost synonymous with where the eye is fixated, is a 
process of selecting for detailed examination one of a large 
number of objects currently perceived to be in the visual 
scene, and doing this selection on the basis of the visual 
properties available in extra-foveal vision. 

Fixation Memory
An important fact about visual guidance in visual search 

tasks is that an object that was previously fixated will be 
only rarely selected for a new fixation. This is an old result 
in eye movement studies (e.g. Barbur, Forsyth, & Wooding, 
1993), but it did not receive much attention until the 
controversial Horowitz and Wolfe (1998) claim that "Visual 
search has no memory." They compared search RTs of a 
static display with a changing display, in which the objects 
changed positions during search, and found no difference in 
RT. If the visual search mechanism remembered where it 
had already inspected, it should be disrupted if the objects 
changed location; the RT being unaffected argues that the 
search was not disrupted,  which means in turn that there was 
no memory for the previous fixations. Peterson, Kramer, 
Ranxiao, Irwin, and McCarley (2001) countered with a 
study demonstrating that "Visual search has memory". They 
recorded eye movements during search of a static display, 
and discovered,  as earlier studies had noted, that revisits 
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were rare, meaning that the previous fixations were 
remembered in some way. 

Encoding failures trigger revisits. Peterson et al. went 
further with a detailed analysis showing that most revisits 
were made immediately after only one intervening fixation, 
which rules out memory failure as the cause of a revisit. 
Rather, Peterson et al. proposed that revisits were due to 
encoding failures: soon after fixating an object and moving 
on to the next,  the person would realize that the previous 
object had not been fully encoded, and so would revisit it. 
Using a Monte-Carlo model, they demonstrated that this 
explanation accounted for the statistical structure of the 
revisits considerably better than either a no-memory or 
memory-failure model.

Search strategies dominate.  Several subsequent studies 
(e.g. von Mühlenen, Müller & Müller, 2003; Geyer, von 
Mühlenen,  & Müller, 2006) using RT, eye tracking, and 
changing displays make it clear that the Horowitz and Wolfe 
results were an artifact of how the changing displays would 
force a change in task strategy.  If the display is changing, 
the only way to perform the task successfully is use a 
strategy that compensates, such as to "wait and see" whether 
the target appears in a subset of the display.  In other words, 
the changing display paradigm forces a strategy that 
produces a no-memory effect.  Regardless of the 
methodological issues and the merits of the results, an 
important implication is that making use of memory for 
previous fixations is not "hard-wired" in the visual system, 
e.g. at the oculomotor level, but rather is an optional feature 
of a visual search task strategy.

Objects, not locations. Additional studies (e.g. Beck, 
Peterson, & Vomela, 2006) have attempted to determine 
whether what is remembered on each fixation is the 
location, the identity, or the properties of the objects. 
However, it should be clear that in a changing-display 
paradigm, if objects are identified in terms of their 
properties (e.g. shape), then they are "teleporting" from one 
location to the next, which is not a natural input to the visual 
system. Hulleman (2009) performed the most elegant and 
naturalistic test of whether fixation location was 
remembered simply by having the objects move around on 
the display during search similar to the Pylyshyn & Storm 
(1988) multiple object tracking paradigm. He observed 
almost no difference in search rates compared to a static 
display. This strongly suggests that fixation locations 
themselves were not remembered, since the objects were 
continuously changing location. The conclusion would seem 
to be that previously fixated objects are being remembered, 
where object identity persists over changes in location. In a 
naturally static display, such as the Peterson et al.  (2001) 
paradigm, the issue does not arise: objects retain their 
location and properties.

Large capacity. The consensus of the empirical literature 
at this point is that memory for previous fixations exists. 
Moreover, it has a fairly large effective capacity. The 
Peterson et al. study involved twelve objects, half of which 
would have to be visited on the average. Results described 
in Kieras and Marshall (2006) involved 48 objects for two 
targets, with low revisit rates. Takeda (2004) estimated the 
capacity as high as 20 objects. This effective capacity is 

much more than the typical estimates for working memory, 
and so-called visual working memory in particular (e.g. 
Luck & Vogel, 1997) which has been estimated as holding 
only about four objects in a change-detection paradigm.

The locus puzzle. From the point of view of cognitive 
architecture, this result presents a serious quandary. Where 
is this capacious and reliable memory situated, and how 
does it work? Is it a special-purpose memory, or is it simply 
a by-product of some other memory function? These 
questions were addressed as part of program of detailed 
quantitative modeling of visual search tasks using the EPIC 
architecture, which was developed to represent perceptual-
motor constraints on performance as fully as cognitive 
constraints, and so is well-suited to the goal. This work with 
EPIC visual search models focussed on representing how 
multiple stimulus attributes could guide visual search 
through conjunctive feature guidance, and how to represent 
their differential availability at the retinal level. These 
models were successful at accounting for detailed results in 
very simple tasks such as Findlay's (1997) first-saccade 
conjunctive search, searching very large displays of 100 
multiattribute objects as in Williams (1967), and searching 
dense displays of 48 complex objects (Kieras & Marshall, 
2006). However, in these models, the memory for fixations 
was represented in an unsatisfactory ad hoc manner. This 
paper presents a detailed model for the Peterson results to 
show how the fixation memory could be a side function of a 
memory system that is already present.

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance provides a general framework for simulating a 
human interacting with an environment to accomplish a 
task. Due to lack of space, the reader is referred to Kieras & 
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for 
a more complete description of EPIC. Figure 1 provides an 
overview of the architecture, showing perceptual and motor 
processor peripherals surrounding a cognitive processor; all 
of the processors run in parallel with each other. To model 
human performance of a task, the cognitive processor is 
programmed with production rules that implement a strategy 
for performing the task. When the simulation is run,  the 
architecture generates the specific sequence of perceptual, 
cognitive, and motor events required to perform the task, 
within the constraints determined by the architecture and the 
task environment. 

Figure 2 expands the visual processor shown in Figure 1. 
The eye processor explicitly represents differential retinal 
availability in terms of acuity functions that specify which 
visual properties of objects are currently visible as a 
function of the current position of the eye and the size of the 
object. The currently available visual properties for each 
object are represented in the sensory store; the perceptual 
processor then encodes the properties of each object, 
possibly in relation to other objects, and passes the encoded 
representation on to the perceptual store where they are 
available to the cognitive processor to match the conditions 
of production rules. The perceptual store thus contains the 
current representation of the visual world that cognition can 
reason and make decisions about, especially decisions about 
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where to move the eyes next by commanding the ocular 
motor processor. The perceptual store retains the 
representations for all objects currently visible, with more 
information and detail about those that have been fixated.

When the eyes move away from an object, the properties 
of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 
longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store.  But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 

The concept is that as the eyes move around the visual 
scene, a complete and continuous representation of the 

objects currently present in the visual situation will be built 
up and maintained in the perceptual store, allowing the 
cognitive processor to make decisions based on far more 
than the properties of the currently fixated object. The 
notion that this information persists for a considerable time 
as long as the scene is present in supported by studies 
summarized by Henderson & Castelhano (2005) in which a 
visual scene is continuously present,  but using a gaze-
contingent forced-choice paradigm, subjects are tested for 
their memory of a previously fixated object in a naturalistic 
scene; retention times at least several seconds long were 
observed.

Modeling Fixation Memory
The earliest attempts to fit models with the EPIC 

architecture for visual search in several tasks determined 
that some kind of fixation memory is required in order to 
account simultaneously for basic measures such as the 
number of fixations, search time, and distribution of 
fixations on objects with different properties (e.g. Kieras & 
Marshall,  2006).  In order to include fixation memory, these 
earliest models simply "tagged" each object in memory to 
designate that it had already been fixated and then made an 
occasional random fixation to produce a revisit.  This is an 
unsatisfactory ad-hoc solution.

The model presented here examines a more interesting 
possibility,  namely that the perceptual store,  which 
represents the current visual scene, could serve as a memory 
for fixations. That is, if the object has been fixated,  then its 
representation would include the relevant property of the 
object; if the object was the target, the search would stop as 
soon as this was determined. But if it was not, then the next 
object to be examined can be chosen from the set of objects 
currently lacking information about the property in question. 
Thus by choosing objects whose properties are unknown, 
previously fixated objects will not be revisited. 

However, since the encoding of the fixated objects is not 
perfectly reliable, there will be occasions when a previously 
fixated object will be lacking the target property,  and so will 
get visited again. This concept is the basis for the simple 
statistical model presented by Peterson et al. (2001); the 
explicit cognitive architectural model presented here 
provides a generalization to other visual search tasks, and in 
addition, clarifies some aspects of their results.

Model for the Peterson Task
Figure 3 shows the EPIC model display of the physical 

visual situation consisting of the stimuli for a single trial in 
the Peterson task after several fixations. The stimuli on each 
trial were twelve objects presented in random locations on a 
static display; eleven were distractors,  consisting of rotated 
L-shapes, and one was the target, a T-shape rotated either to 
the left or to the right. The participant's task was to locate 
the T  shape and press a key depending on whether it was the 
left- or right-rotated shape. Figure 3 shows how the objects 
were quite small, being 0.19° in visual angle size,  and were 
widely spaced, a minimum of 4.9° apart. Participants with 
normal vision would thus have to fixate each object 
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individually to recognize it. Because of space limitations, 
the very small shapes are obscured in the figure. 

The EPIC model to fit the data comprised a choice of (1) 
visual acuity parameters, (2) an encoding process in the 
visual perceptual processor,  (3) a parameter for the encoding 
failure rate, (4) a parameter for the decay time of visual 
properties in the perceptual store that are no longer sensorily 
supported, and (5) a set of production rules that 
implemented the visual search strategy. Each of these model 
inputs will be described briefly.

(1). The visual acuity parameters for this situation are 
very simple,  specifying that the shape of an object was 
available only in the fovea,  while the location of an object is 
available throughout the visual field,  meaning that any 
object can be selected as a fixation target. The object color 
plays no role in the task, but its availability was left at the 
default value. Figure 4 shows the effects of the acuity 
functions for the same display as in Figure 3.

(2, 3).The perceptual processor encodes the objects by in 
terms of the recognized shapes for distractors and targets, 
which are then stored in the visual perceptual store where 
they become available for production rules to match on. The 
Peterson et al. encoding failure concept is represented as 
follows: with some constant probability, the encoding could 
fail and result in a partial encoding that retains some 
information about whether a distractor or target was present, 
but not enough to identify the actual shape. For example, a 
partial encoding for distractor could be that two line 
segments were joined at the ends, while a partial encoding 
for a target could be that one line segment joined another in 
the middle. For purposes of display in the model, these 
partial encodings are represented by partially rotated L and 
T shapes. The probability of partial encoding of targets and 
distractors is assumed to be the same. 

(4). After encoding, if the eye is then moved to a different 
object, the actual shape quickly becomes unavailable, and 
the encoded shape is marked as no longer having sensory 
support. The encoded property then disappears from the 
perceptual store after the time specified by the decay time. 
In accordance with the Henderson and Castelhano (2005) 

Figure 3. An example of the physical situation in a Peterson et al. 
(2001) task trial after several fixations as depicted in EPIC's 
display. The concentric circles show the current location of the 
eyes; the small inner circle has a 1° radius corresponding to the 
conventional fovea size; the outer circle is a calibration ring with 
10° radius. The sizes of the overall display and the search objects 
are shown to scale, so the objects are indeed very small. 

 
Figure 4. An example of the contents of the sensory store 
corresponding to the lower right corner of Figure 3. Objects whose 
location, but no other properties, are known are represented as 
light gray open circles (top two). Objects which are close enough 
to the current fixation point to have their black color available, but 
not their shape, are represented as black open circles (right hand 
two). Both the shape and the color are available for the currently 
fixated object. 
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results, this parameter is assumed to be a few seconds in 
magnitude, though for purposes of model fitting for this 
data, it was made as small as possible. 

(5).  The visual search strategy in the model is an 
application of a basic strategy, shown in Figure 5, that has 
been used in several EPIC visual search models. There are 
two threads of execution. Nomination rules in the first 
thread propose objects to fixate based on available visual 
properties, and also nominate a random choice. Choice rules 
then pick a single candidate from the nominated objects 
according to a priority scheme, and launch an eye 
movement to the chosen candidate. The rules in the second 
thread wait for all relevant properties of the fixated 
candidate to be fully visible and either respond if it is a 
target,  or discard the candidate if not. The overlapped 
processing provided by the two threads enables the time 
between successive eye movement initiations to be short, 
about 250 ms, which is commonly observed in high-speed 
visual search tasks.

For the Peterson model, the strategy chooses objects for 
the next fixation according to the following simple scheme: 
Only objects not being currently inspected are considered. If 
an object is partially encoded as a target, it is given first 
priority for the next fixation, followed by an object not 
encoded as a distractor (either no encoding at all or partially 
encoded as a distractor), followed by an object chosen at 
random. Thus the strategy favors possible targets, then 
unvisited or partially encoded objects, and avoids objects 
fully known to be distractors. Figure 6 summarizes the 
model by showing the contents of the perceptual visual store 
corresponding to Figure 3, right before a target revisit.

Results
Figure 7 shows the observed and predicted results for this 

model, with the observed data from Peterson et al. (2001) 
shown as solid points and lines with 95% confidence 
intervals. The graph shows the proportion of fixations that 
are revisits as a function of lag, the number of fixations 
between the original and the revisit. Thus most of the 
revisits occur after fixating one intervening object. The total 
number of revisits is shown in the upper curve, and the 
number of revisits on targets in the lower curve. 

The predicted values from the model are shown as open 
points and dotted lines. The model parameter values were 
chosen by iteration to produce a good fit with 10,000 
simulation trials per run. The fit of the model predictions is 
very good; almost all of the predicted values are within the 
confidence intervals; the R2 and standard error of prediction 
is 0.986 and 0.001 for Revisits, and 0.999 and 0.000 for 
Target Revisits. The parameter values producing this fit are 
0.14 for the probability of encoding failure, and 4000 ms for 
the decay time of properties in the perceptual store. Any 
shorter decay time produces an increase in the number of 
predicted revisits at very long lags.

A comparison to the Peterson et al.  2001 model is useful. 
Although they reported the number of target revisits, they 
modeled only the total number of revisits, and so did not 
attempt to account for the fact that most of the immediate 
revisits are due to revisits to the target. Exploration with a 
variety of strategies and parameter values makes it clear that 
to fit both curves, the model must make the distinction 
between partially encoded targets and partially encoded 
distractors. Partially encoded targets must be favored for 
revisits, and partially encoded distractors treated similarly to 
unvisited objects — otherwise,  there is no way to fit both 
curves simultaneously.  That is, if possible targets are not 
favored for a revisit, then parameters that fit the overall rate 
of revisits far underpredict the proportion of target revisits. 

 

Figure 6. An example of the contents of the perceptual store after 
several fixations corresponding to the upper left corner (left panel) 
and lower right corner (right panel) of Figure 3. Two objects 
whose color is known to be black, but whose shape is unknown are 
represented as black open circles. Previously fixated objects have 
encoded shapes available. In the right panel, three distractors have 
been fixated, including the current one. In the left panel, there is a 
partially encoded target at the top left, and partially encoded 
distractor in the center right, represented as partially rotated 
shapes. The strategy is about to move the eyes back to the 
previously visited target.
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In fact, according to the model, the revisit data for all 
objects are the sum of two underlying functions: Partially 
encoded distractors are revisited only because they are 
treated like unvisited distractors, yielding a shallow descent 
in revisits as a function of lag (imagine the total revisits 
curve for lags 2 to 12 extrapolated back to lag 1). But 
partially encoded targets are revisited immediately, 
producing the sharp descent from lag 1 to lag 2.  The sum of 
these two trends produces the sharp-then-shallow curve for 
total revisits which was modeled by Peterson et al. The 
current EPIC model always revisits partially encoding 
targets immediately, and never favors partially encoded 
distractors over unvisited distractors. It might be possible to 
improve the fit slightly by using different encoding failure 
parameters for targets and distractors,  and a more subtle 
choice strategy, but the current model fits the data 
acceptably well with few free parameters and a simple 
strategy. 

Conclusion
The Peterson et al. (2001) experiment is fundamental in 

that it well isolates a set of basic processes underlying visual 
search that a successful cognitive architecture must be able 
to explain naturally. The present EPIC model demonstrates a 
how memory for fixations can emerge from the operation of 
a strategy for choosing the next object based on a persistent 
visual store of information about previously fixated objects. 
In this task, the only relevant properties of the objects is 
their location, whose wide availability makes it possible to 
choose an previously unvisited object for fixation, and the 
shape, visually available for only the one object foveated at 
a time. This model works by relying on the persistence of 
the perceptual encoding in the visual store and a simple 
strategy that maximizes task performance by making the 
most efficient use of partial encoding results. 

The persistent visual store needs to be present in the 
architecture to allow cognition to reason about the entire 
visual situation. Its persistence is required for this 
architectural function, and is consistent with other empirical 
results such as those surveyed by Henderson and Castelhano 
(2005). 

Thus the architectural puzzle posed by the existence of 
fixation memory can be solved by relying on this otherwise-
required store; no special architectural mechanism is need to 
account for fixation memory. Models currently being 
refined for other visual search tasks (such as that described 
in Kieras & Marshall, 2006) show that this concept of 
fixation memory scales to more complex displays, objects, 
and search tasks.
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Abstract
The EPIC computational cognitive architecture was among 
the first to propose representing motor movement constraints 
explicitly in the form of motor processors that implemented a 
specified time course for the preparation, initiation, and 
production of movements.  A key feature of this proposal was 
that movements were specified in terms of features, and 
movement preparation time was linear with the number of 
features that had to be prepared before a movement  was 
initiated. While successful  in modeling many high-speed tasks 
involving choice reaction times with keypress  responses, 
serious difficulties appeared in modeling high-speed visual 
search tasks involving saccades and mouse movements. A 
reappraisal of the basis for EPIC's assumptions requires a 
critical change: visually aimed manual and ocular movements 
require no feature preparation time.

Keywords: cognitive architecture; motor processing; motor 
features; S-R compatibility; spatial compatibility

Introduction
The EPIC architecture for human cognition and 

performance provides a general framework for simulating a 
human interacting with an environment to accomplish a 
task. Due to lack of space, the reader is referred to Kieras & 
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for 
a more complete description of EPIC. Figure 1 provides an 
overview of the architecture, showing perceptual and motor 
processor peripherals surrounding a cognitive processor; all 
of the processors run in parallel with each other. To model 
human performance of a task, the cognitive processor is 
programmed with production rules that implement a strategy 
for performing the task. When the simulation is run,  the 

architecture generates the specific sequence of perceptual, 
cognitive, and motor events required to perform the task, 
within the constraints determined by the architecture and the 
task environment. Components of EPIC, especially the 
motor processors, have been incorporated into other 
cognitive architectures that use their own cognitive 
processor.

Motor Feature Preparation
Meyer and Kieras (1997) argued that a cognitive 

architecture must explicitly represent the constraints on 
motor activity in order to comprehensively account for task 
performance.  They specified these constraints in the EPIC 
cognitive architecture in terms of motor processors that 
were equal in status to perceptual processors and the 
cognitive processor.  These motor processors,  one for each of 
the manual, ocular, and vocal motor modalities, accept 
symbolic movement commands from a production-rule 
cognitive processor, and then generate simulated 
movements that are inputs to a simulated task environment. 
Their characterization focussed on the temporal constraints, 
not on how muscle activity would be controlled, and can be 
summarized as follows:

1. Movements are described in terms of motor features, 
such as the direction and distance of a pointing movement, 
or the hand and finger used for a button-pushing movement. 
The type of movement, the style,  was considered the 
dominant feature within each movement modality.

2. When a movement is commanded, the motor processor 
prepares each feature serially, requiring a constant time per 
feature, estimated as 50 ms. When all features have been 
prepared, the movement is initiated. After an initiation time 
delay (also estimated as 50 ms), the mechanical movement 
begins.

3. Once prepared, the features for a movement are 
retained in the motor processor. If a movement is repeated, 
its features do not have to prepared, and the movement can 
be initiated immediately. 

4. The motor processor can be commanded to prepare one 
or more movement features in advance; these are stored in 
the motor processor.  When the movement is commanded, 
the previously prepared features do not have to be prepared, 
allowing the movement to be initiated sooner by the amount 
saved in preparation time.

5. The feature preparation mechanism is used for the 
motor processors in all modalities; the only difference is in 
the specific feature structure of different movements 
possible in each modality.

Meyer and Kieras based the motor processor assumptions 
on the available literature on motor control (see Rosenbaum, 
1991 for an overview). Because the motor control area is 
seriously under-researched (Rosenbaum, 2005), the only 
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Figure 1. The overall structure of the EPIC architecture. 
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useful theoretical concept available was Rosenbaum's theory 
of motor feature programming, and so it was adopted. 
However, any cognitive architect has to go beyond the 
specific literature to some extent by simplifying and 
generalizing the empirical effects and available theory to 
produce a conceptually and practically manageable 
architecture. Uniformity of mechanism is a compelling first 
approximation as well. Meyer and Kieras therefore assumed 
that feature preparation held for all motor modalities and 
that the per-feature time was constant and uniform for all 
features and modalities. They also proposed the specific 
features for various movements and postulated 
dependencies between them. For example, manual pointing 
movement features could not be re-used in eye movement 
feature preparation; changing hands or fingers could reuse 
the remaining manual features, but changing the style of 
manual movement requires all features to be prepared. 

Kieras and Meyer successfully constructed many EPIC 
models for high-speed choice reaction tasks, especially dual 
tasks, with these motor processors (summarized in Meyer & 
Kieras, 1999).  Depending on the details of the task, motor 
feature preparation time often set a substantial constraint on 
other processes in the models, especially if features could be 
prepared in advance. However, since many experiments are 
done with the exact required response movement 
randomized over trials, the net effect of feature preparation  
usually is simply to produce an average preparation time 
that serves as a component in the overall latency of 
response. Also most of the modeled experiments involved 
button presses, typically using laboratory methodology in 
which the stimulus location is constant and the fingers are 
pre-positioned on the alternative response keys, meaning 
there is little or no eye or hand movement.

Since EPIC has been one of the few cognitive 
architectures that attempted to represent motor processes 
and constraints, even in highly abstracted form, its analysis 
of motor processing has been explicitly adopted in other 
architectures, in particular, the widely used ACT-R/PM and 
current ACT-R architectures (e.g. Anderson & Lebiere, 
1998). Thus the status of EPIC's characterization of motor 
processing has broad relevance and concern to the cognitive 
architecture community as a whole. This paper presents why 
a major revision in this characterization is required: visually 
aimed manual and ocular movements require no feature 
preparation time.

Symptoms of the Problem
When models for high-speed visual search tasks were 

constructed, it proved to be extremely difficult to fit basic 
latency data given the constraints on ocular feature 
preparation.  For example, models were constructed for 
Findlay's (1997) results for latency and accuracy in the first 
saccade in a conjunctive visual search task. Findlay 
observed that the latency of the first saccade was only about 
250 ms, which was quite difficult to obtain in the EPIC 
architecture with its standard timing parameter values. Due 
to the syntax and semantics of the production rules, two 
production rule cycles are required to identify the target of 
the eye movement,  for a total of 100 ms. A motor initiation 
requires 50 ms. An eye movement in the task required 

preparing an average of one feature, for an additional 50 ms. 
The total is 200 ms, which leaves only 50 ms total for 
stimulus transduction and recognition, which seems 
implausibly short — 100 ms seems a more reasonable 
perceptual processing time. 

In a more complex visual search task (such as in Kieras & 
Marshall,  2006), there are enough eye and hand movements 
that feature preparation time can sum to several hundred ms 
in the total RT. A more complex task strategy will also 
require more production rule firings to choose the next 
fixation target, making it even more difficult to fit the 
commonly observed 250 ms delay between successive 
saccades, even if multithreaded production rule strategies 
are deployed.

While the difficulty of programming a model is not  
normally grounds for rejecting a model, it is significant if 
the difficulty is due to a cognitive architectural feature. A 
cognitive architecture is supposed to capture the underlying 
mechanisms and processes of human activity; it is natural to 
expect that simple activities should have reasonably simple 
representations in the architecture. So undue difficulty in 
constructing a model for a straightforward task is a strong 
suggestion that the architecture is incorrect. 

In the case of the visual search task modeling,  it was 
observed that setting the feature preparation time to zero for 
aimed manual and ocular movements gave the strategy 
programming adequate "breathing room" in fitting the data. 
This led to a re-examination of empirical literature behind 
this basic feature of EPIC's motor processors to see if the 
original reasons for the motor feature programming were 
still justifiable.

Reappraising the Literature

Manual movement feature preparation
The seminal experimental demonstration of motor feature 

preparation is Rosenbaum (1980) in which participants 
made button-press movements in response to precues and 
cues. The experimental task is diagrammed in Figure 2. On 
each trial,  the participant received a precue which specified 
some of the putative features of the movement, then a cue, 
which specified the exact movement,  whereupon the 
participant made the response movement. The latency of the 
initiation of the movement was recorded.  More specifically, 
as shown in Figure 2, the response buttons were a set of 
eight buttons arranged in two parallel rows, one on the right, 
and one on the left, running forwards towards the display, 
and rearwards towards the participant. The two center 
buttons in each row were the "home" buttons; at the start of 
the trial, the participant held each home button down with 
their left- and right-hand index fingers, and in response to 
the cue, moved one of the fingers to the response button; the 
time of release of the home button is the RT. The buttons 
were color-coded; the participant was practiced in 
associating the color codes with the physical location of the 
buttons. The response cue was a colored disk appearing on 
the display that designated which button to press. 

The precue was presented on the display before the cue, 
and consisted of three letters,  one for each putative feature 
of the movement which Rosenbaum described as Direction, 
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Arm, and Extent.  For example, FRN stood for forward, 
right, near, which completely specifies the features of the 
movement to be made; in contrast, XRX specifies only a 
single feature,  right.  The participant was practiced in 
interpreting the precues. The logic of the paradigm is that 
when the cue appeared, the participant would have to 
prepare the remaining features before the movement could 
be initiated. Figure 2 shows additional examples of precues 
that vary the number of features that would have to be 
prepared before the movement could be initiated. The more 
features needing to be prepared, the greater the latency 
should be,  and the results confirmed the prediction: zero, 
one, two and three features produced latencies of about 300, 
450, 550, and 700 ms respectively. However, there were 
subtle and confusing specific-feature effects: different 
features appeared to require different times to prepare 
(ranging from 150 to 200 ms), and some features required 
different times depending on their values; for example, near 
movements were initiated faster than far movements,  and 
more so if more features had to be prepared. Thus while 
demonstrating feature preparation time effects, the effects as 
presented were a complex mixture of general and specific 
effects.

Theorists of choice RT  paradigms usually postulate a 
response selection stage of processing in which the stimulus 
is mapped to the response to be made. Motor feature 
preparation would follow response selection and should be a 
distinct process. However, it is clear that performing this 

task requires some complex mappings - first from the letter 
codes to movement features,  and then from the cue color to 
the button. An immediate question that arises is the extent to 
which the effect of the precue is actually a response 
selection effect - maybe the precue is assisting response 
selection, not movement preparation.

To eliminate the possibility that purely cognitive response 
selection effects were responsible for the latency effects, 
Rosenbaum conducted a second, decision task, experiment 
in the participant viewed the precue and then the cue, and 
rather than making the response movement, made a vocal 
response for whether or not the cue was valid (consistent 
with) the precue. The resulting RTs showed a strong effect 
of the number of precued features, but no effect of the 
specific features or feature values. Even though he primary 
effect of number of features was present in both 
experiments, Rosenbaum claimed that the lack of feature-
specific effects meant that response selection effects were 
not responsible for the differences in movement RTs. 
However, this argument is hard to understand – the feature 
preparation concept would not seem to require feature-
specific effects, which in any case are hard to explain. 
Additionally, the logic of deciding which movement to 
make would seem to overlap a lot with deciding whether the 
movement could be made. The present author correlated the 
mean decision RT with the mean movement RT for each 
precue condition, and discovered that 91% of the variance in 
movement RT is accounted for by the decision RT. This 
strongly suggests,  contrary to Rosenbaum's claim, that most 
of the movement RT is accounted for by some form of 
response selection process,  even if there are specific feature 
effects.

Response Selection Effects: S-R compatibility
A long-studied aspect of response selection is S-R 

compatibility, which can be described as the ease with 
which the mapping from stimulus to response can be made. 
See Proctor & Vu (2006) for a recent review, and 
Rosenbaum & Newell (1987) or John, Rosenbloom, & 
Newell (1985) for computational model accounts of some 
forms of S-R compatibility. One feature of Rosenbaum's 
task is that both the precues and the cues would require a 
complex mapping to the actual response movements. 
Goodman and Kelso (1980) examined this issue in a critical 
but usually overlooked response to Rosenbaum. They first 
replicated Rosenbaum's results using color words or number 
labels for the target buttons. In a second study they used a 
precue and cue display, diagrammed in Figure 3, consisting 
of an array of lights in the same spatial arrangement as the 
response buttons. Precues were indicated by illuminating the 
lights corresponding to the buttons consistent with the 
precued movement features. For example, the FRN precue 
would illuminate the single light for the button 
corresponding to the three features, while XRX precue 
would illuminate all the lights for the right-hand side of the 
button set. The cue would then consist of the single light for 
the to-be-pressed button. This presentation has an especially 
powerful form of S-R compatibility termed spatial 
compatibility – the spatial properties of the stimulus map 
directly to the spatial properties of the response.

 

Example Precues

Cue for response

Movement Features 
to be prepared

0 features

FRN

2 features
Direction
Extent

XRX

1 feature
Arm

FXN XXX

 3 features
Arm

Direction
Extent

Movement to cued 
button

Figure 2. The Rosenbaum task. First a precue appears – 
four example are shown. Then appears a color-coded cue 
designating the button to be pressed. Depending on the 
precue, some number of movement features must be 
prepared, then the participant moves the left or right index 
finger from the home button to the designated button. The 
response buttons are hidden from the participant's view.
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Compared to Rosenbaum's and the replication 
presentations. this spatially-compatible presentation of 
precue and cue information drastically reduced the effect of 
number of precued features. In contrast to the 300-700 ms 
range of Rosenbaum's latencies, the range was only about 
250-350 ms.  

S-R compatibility is normally assumed to be a response-
selection process; there is nothing in the movement feature 
concept that suggests S-R compatibility would be involved. 
That is, once the response has been selected, the spatial 
similarity of the stimulus to the response should be 
irrelevant to computing the movement features.   This is a 
further strong suggestion that Rosenbaum's effects were 
actually response-selection effects rather than movement 
preparation effects.

Response Selection Effects: Hick's Law 
A second major aspect of response selection difficulty is 

the number of possible responses in the selection set, long 
codified as Hick's Law (Hick, 1952),  which states that the 
RT in a choice reaction task is proportional to log2 of the 
number of alternative (possible) responses.  One 
consequence is that if the number of possible responses is 
held constant, then the RT  should be constant. This would 

take ordinary response selection effects out of the picture, 
leaving only motor feature programming to produce RT 
differences. Thus, Goodman and Kelso (1980) conducted an 
additional experiment that held the number of possible 
responses constant at two. Using the same compatible 
display, they precued two possible responses by precuing 
both possible values of a single feature, such as illuminating 
the lights for both right and left forward near buttons. Also 
included were ambiguous precues that illuminated two 
lights, but which had no feature values in common, such as 
left-rearward-far and right-forward-near. These results were 
highly persuasive: the movement RTs were virtually 
identical at about 300 ms for all feature precue types, 
including the ambiguous precues.  Apparently the specific 
movement features involved were irrelevant; what matters is 
only the difficulty of response selection, governed in this 
case by the number of possible responses. 

It is also an old result that Hick's Law effects disappear in 
the presence of high S-R compatibility (Teichner & Krebs, 
1974). Goodman & Kelso's highly compatible presentation 
of cues and precues drastically reduced the putative feature 
programming effects,  and when the number of alternatives 
was held constant, they disappeared altogether. 

This suggests that other aimed movement tasks in which 
S-R compatibility is manipulated might shed light on 
whether movement feature preparation is involved.  That is, 
if S-R compatibility results in no Hick's Law effects, then 
there would be no response selection effects to be confused 
with feature preparation, and then perhaps other evidence of 
motor feature preparation would be visible, such as a 
movement latency long enough to have "room" for 
something like 50 ms or more per feature, and evidence of 
feature reuse, as described above, in which a repeated 
movement could be initiated more quickly. 

Dassonville, Lewis, Foster, and Ashe (1999) had 
participants make joystick movements to place a cursor on 
visible targets arranged in a circle around the starting 
position, with various cues that differed in compatibility. In 
highly compatible mappings,  there was no effect of the 
number of possible targets (no Hick's Law effect) and a 
latency of only about 300 ms. If the cue/response was 
repeated, the second response was substantially faster in the 
incompatible mappings, but not in the compatible mappings. 

Wright, Marino, Belovsky, and Chubb (2007) had 
participants move a physical stylus from a starting point to 
one of several target pads arranged in an arc.  The movement 
target and response cue was indicated by illuminating the 
pad, a perfectly compatible S-R mapping. There was no 
Hick's Law effect of the number of targets, the latencies 
were about 250 ms, and there was little or no effect of 
repetitions. 

These results all point to the same conclusion: The motor 
feature preparation hypothesis states that features should 
require substantial time to prepare before a movement could 
be initiated and then could be reused in subsequent 
movements. Instead the effects are due to response selection 
effects described by Hick's Law, and when these effects are 
removed by highly compatible specifications of movement 
targets, reuse effects disappear, and the movement is 
launched so rapidly that there is no time to spare from other 

 

Example Precures

Cue for response

Movement Features 
to be prepared

0 features 2 features1 feature  3 features

Movement to cued button

Figure 3. The Goodman & Kelso version of the Rosenbaum 
task. First a precue appears on an array of lights that 
matches the layout of the response buttons. The top light 
indicates a precue (vs. cue) display. Then in the same array 
appears a cue designating the button to be pressed. 
Depending on the precue, some number of movement 
features must be prepared, then the participant moves the 
left or right index finger from the home button to the 
designated button. 
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aspects of EPIC's architecture for feature programming to 
occur.

The same story for eye movements
A parallel story appears in the case of eye movements. 

Another key demonstration of motor feature programming 
was Abram & Jonides (1988) who applied the Rosenbaum 
feature preparation paradigm to saccade preparation. The 
movement task, illustrated in Figure 4, consisted of a 
saccade to one of four targets, two on each side of the 
fixation point at different distances. The precue and cue 
were shown in four circles, two on each side of the fixation 
point,  inside the actual targets.  The saccade responses 
required were anti-saccades — the eye movement had to be 
made in the opposite direction from the precue or cued 
direction,  an S-R incompatibility. The saccade latencies 

increased by about 50 ms per feature preparation required, 
consistent with the feature preparation model. But in a 
second experiment, they required compatible response 
saccades, and held the number of precued alternatives 
constant at two. While there were some feature-specific 
differences, the saccade latency was basically constant 
across number of precued features, corresponding to the 
Goodman & Kelso (1980) results with the number of 
possible responses held constant. Again the feature-
preparation effect seems to be confounded with a response 
selection effect.

What if the cue and response are more compatible? As 
illustrated in Figure 5, Crawford and Mueller (1990) used 
targets that were six lights,  three on each side of the fixation 
point.  A precue consisted of a background illumination 
around the possible target; the cue was illuminating the 
target light itself; in response, the participant made an eye 
movement to the illuminated target.  The precue locations 
were either the same as the target (valid),  different from the 
target (invalid),  or at the fixation point (neutral), and 
presented either 100 ms or 500 ms before the cue. The 
results were very short latencies (about 250 ms), a small 
benefit of valid or neutral precues if the precue-cue delay 
was short, and no effect at all if it was long. Such an effect 

would not be expected from the motor feature preparation 
concept - if anything, the benefit of the precue should be 
larger with more time. Rather the delay results suggest some 
low-level visual effect on saccade initiation. 

Additional studies further clarify the compatibility effects 
for eye movements.  Lee, Keller, and Heinen (2005) had 
participants make eye movements to memorized color-
coded locations in a circular array given a color cue, not 
unlike Rosenbaum's approach. Hick's Law effects were 
observed. Kveraga, Berryhill,  and Hughes (2002) and 
Kveraga, Boucher,  and Hughes (2005) used targets arranged 
in a circle or semicircle, and the movement cue was co-
located with the target,  producing no Hick's Law effect. 
However, if anti-saccades or key presses were required to 
the same stimuli, Hick's Law effects were obtained.

The results for eye movements point to the same 
conclusion as for aimed manual movements: Effects 
suggesting motor feature preparation for eye movements are 
better explained as response selection effects accounted for 
by Hick's Law, and when these effects are removed by 
highly compatible specifications of movement targets, there 
is no evidence of feature preparation and the movement is 
launched so rapidly that there is no time to spare for feature 
programming to occur.

Conclusion

It was wrong
Empirically,  once the target has been visually identified, 

an aimed manual movement or eye movement can be 
quickly launched to it without any S-R translation or motor 
feature programming delays; there is no evidence of feature 
programming effects. In terms of the EPIC architecture, 
once the production rules have identified the target of a 
movement as an object currently visible, and passed the 
identity of that object to the motor processor in a movement 
command, the movement will be initiated without any 
feature programming time. There seems to be no reason to 
maintain feature preparation delays for aimed movements in 
the architecture at the cost of making the models 
substantially more difficult to fit to important classes of 
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Antisaccade 
response

Start

Figure 4. The Abram and Jonides task. The trial starts with 
the participant fixating the central cross. A precue is then 
presented showing e.g. the direction and both possible 
extents of the movement. Then a cue appears designating 
the actual movement target, one of the four small outer 
circles. The participant responds by fixating the target at the 
same distance but opposite direction as the cue.
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Start

Figure 5. The Crawford and Mueller task. The trial starts 
with the participant fixating the central cross. A precue is 
then presented, e.g. a valid cue designating the future 
movement target. Then a cue appears designating both the 
actual movement target and acting as the stimulus for the 
movement. The participant responds by fixating the target.
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data, especially in the high-speed performance tasks that 
motivated the design of EPIC. This original feature of EPIC 
was simply an incorrect overgeneralization. Fortunately, the 
solution is simple: set the per-feature preparation time for 
saccades and aimed manual movements to zero.

Implications for previous models
What effect does this change have on previous models 

built with EPIC? As mentioned earlier,  most of the models 
in the original Meyer & Kieras (1997, 1999) work used 
keypress responses, which are not affected by this correction 
because they would not seem to be aimed manual 
movements (but see Welford, 1971). 

Furthermore, because experimental results are typically 
aggregated over specific response movements, the net effect 
is that previous models using aimed manual movements or 
eye movements have a variable component of response time 
that instead of being due to movement preparation, has to be 
reattributed to stimulus encoding or response selection. At 
this point the theoretical implications appear to be minor.

Should feature preparation be discarded for keypress 
movements as well? Unfortunately, this question cannot be 
easily answered because the motor control literature remains 
so sparse (Rosenbaum, 2005) that we are still in the earliest 
stages of our theoretical understanding of how movements 
are performed. An interim heuristic would be to assess 
whether keystroke feature preparation can be replaced by 
changing the response selection strategy.
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Abstract

When individuals learn facts (e.g., foreign language vocab-
ulary) over multiple sessions, the durability of learning is
strongly influenced by the temporal distribution of study
(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). Computa-
tional models have been developed to explain this phenomenon
known as the distributed practice effect. These models pre-
dict the accuracy of recall following a particular study sched-
ule and retention interval. To the degree that the models em-
body mechanisms of human memory, they can also be used
to determine the spacing of study that maximizes retention.
We examine two memory models (Pavlik & Anderson, 2005;
Mozer, Pashler, Lindsey, & Vul, submitted) that provide dif-
fering explanations of the distributed practice effect. Although
both models fit experimental data, we show that they make ro-
bust and opposing predictions concerning the optimal spacing
of study sessions. The Pavlik and Anderson model robustly
predicts that contracting spacing is best over a range of model
parameters and retention intervals; that is, with three study ses-
sions, the model suggests that the lag between sessions one
and two should be larger than the lag between sessions two
and three. In contrast, the Mozer et al. model predicts equal
or expanding spacing is best for most material and retention
intervals. The limited experimental data pertinent to this dis-
agreement appear to be consistent with the latter prediction.
The strong contrast between the models calls for further em-
pirical work to evaluate their opposing predictions.
Keywords: distributed practice effect; optimization; study
schedules

Introduction
In educational settings, individuals are often required to
memorize facts such as foreign language vocabulary words.
A question of great practical interest is how to retain knowl-
edge once acquired. Psychologists have identified factors in-
fluencing the durability of learning, most notably the tempo-
ral distribution of practice: when individuals study material
across multiple sessions, long-term retention generally im-
proves when the sessions are spaced in time. This effect,
known as the distributed practice or spacing effect, is typi-
cally studied via an experimental paradigm in which partici-
pants are asked to study items over two or more sessions, and
the time between sessions—the interstudy interval or ISI—
is varied. Retention is often evaluated via a cued recall test
at a fixed lag following the final study sessionthe retention
interval or RI (Figure 1).

Typical experimental results are shown in the data points
and dotted lines of Figures 2a (Glenberg, 1976) and 2b

(Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008). In both ex-
periments, participants studied material at two points in time,
with a variable ISI, and then were tested following a fixed
RI. The graphs show recall accuracy at test as a function of
ISI for several different RIs. The curves, which we will refer
to as spacing functions, typically show a rapid rise in mem-
ory retention as ISI increases, reach a peak, and then gradu-
ally drop off. From the spacing function, one can determine
the optimal ISI, the spacing of study that yields maximal re-
tention. The exact form of the spacing function depends on
the specific material to be learned and the RI. The distributed
practice effect is obtained over a wide range of time scales:
ISIs and RIs in the Glenberg study are on the order of seconds
to minutes, and in the Cepeda et al. study are on the order of
weeks to months. On the educationally relevant time scale
of months, optimally spaced study can double retention over
massed study. Thus, determining the optimal spacing of study
can have a tremendous practical impact on human learning.

Pavlik and Anderson (2005; 2008) used the ACT-R declar-
ative memory equations to explain distributed practice ef-
fects. ACT-R supposes a separate trace is laid down for each
study and that the trace decays according to a power function
of time. The key feature of the model that yields the dis-
tributed practice effect is that the decay rate of a new trace
depends on an item’s current memory strength at the point in
time when the item is studied. This ACT-R model has been
fit successfully to numerous experimental datasets. The solid
lines of Figure 2a show the ACT-R fit to the Glenberg data.

Mozer, Pashler, Lindsey, and Vul (submitted) have recently
proposed a model providing an alternative explanation of the
distributed practice effect. In this model, when an item is
studied, a memory trace is formed that includes the current
psychological context, which is assumed to vary randomly
over time. Probability of later recall depends in part on the
similarity between the context representations at study and
test. The key feature of this model that distinguishes it from
related past models (e.g., Raaijmakers, 2003) is that the con-
text is assumed to wander on multiple time scales. This
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Figure 2: Results from (a) Glenberg (1976) and (b) Cepeda et al. (2008) illustrative of the distributed practice effect. The dotted lines
correspond to experimental data. The solid lines in (a) and (b) are the ACT-R and MCM fits to the respective data. (c) A contour plot of recall
probability as a function of two ISIs from ACT-R with parameterization in Pavlik and Anderson (2008).

model, referred to as the multiscale context model (MCM),
has also been successfully fit to numerous empirical datasets,
including the Glenberg study. In Figure 2b, we show the
MCM prediction (solid lines) of the Cepeda et al. data.

Both ACT-R and MCM can be parameterized to fit data
post hoc. However, both models have been used in a predic-
tive capacity. Pavlik and Anderson (2008) have used ACT-R
to determine the order and nature of study of a set of items,
and showed that ACT-R schedules improved retention over
alternative schedules. Mozer et al. (submitted) parameter-
ize MCM with the basic forgetting function for a set of items
(the function relating recall probability to RI following a sin-
gle study session) and then predict the spacing function for
the case of multiple study sessions. Figure 2b is an example
of such a (parameter free) prediction of MCM.

Most experimental work involves two study sessions,
the minimum number required to examine the distributed-
practice effect. Consequently, models have mostly focused
on this simple case. However, naturalistic learning situations
typically offer more than two opportunities to study material.
The models can also predict retention following three or more
sessions. In this paper, we explore predictions of ACT-R and
MCM in order to guide the design of future experiments that
might discriminate between the models.

Study Schedule Optimization
A cognitive model of the distributed practice effect allows us
to predict recall accuracy at test for a particular study sched-
ule and RI. For example, Figure 2c shows ACT-R’s prediction
of recall probability for a study schedule with two variable
ISIs and an RI of 20 days, for a particular parameterization of
the model based on Pavlik and Anderson (2008). It is the two-
dimensional generalization of the kind of spacing functions
illustrated in Figures 2a and 2b. Recall probability, shown by
the contour lines, is a function of both ISIs. The star in Figure
2c indicates the schedule that maximizes recall accuracy.

Models are particularly important for study-schedule opti-
mization. It is impractical to determine optimal study sched-
ules empirically because the optimal schedule is likely to de-
pend on the particular materials being learned and also be-
cause the combinatorics of scheduling n + 1 study sessions

(i.e., determining n ISIs) make it all but impossible to explore
experimentally for n > 1. With models of the distributed prac-
tice effect, we can substitute computer simulation for exhaus-
tive human experimentation.

In real-world learning scenarios, we generally do not know
exactly when studied material will be needed; rather, we have
a general notion of a span of time over which the material
should be retained. Though not the focus of this paper, mod-
els of the distributed practice effect can be used to determine
study schedules that maximize retention not only for a partic-
ular prespecified RI, but also for the situation in which the RI
is treated as a random variable with known distribution. The
method used in this paper to determine optimal study sched-
ules can easily be extended to accomodate uncertain RIs.

Pavlik and Anderson ACT-R Model
In this section, we delve into more details of the Pavlik and
Anderson (2005; 2008) model, which is based on ACT-R
declarative memory assumptions. In ACT-R, a separate trace
is laid down each time an item is studied, and the trace decays
according to a power law, t−d , where t is the age of the mem-
ory and d is the power law decay for that trace. Following n
study episodes, the activation for an item, mn, combines the
trace strengths of individual study episodes:

mn = βs +βi +βsi + ln

(
n

∑
k=1

bkt−dk
k

)
,

where tk and dk refer to the age (in seconds) and decay asso-
ciated with trace k, and the additive parameters βs, βi, and βsi
correspond to participant, item, and participant-item factors
that influence memory strength, respectively. The variable bk
reflects the salience of the kth study session (Pavlik, 2007);
larger values of bk correspond to cases where, for example,
the participant self-tested and therefore exerted more effort.

The key claim of the ACT-R model with respect to the
distributed-practice effect is that the decay term on study trial
k depends on the item’s overall activation at the point when
study occurs, according to the expression:

dk(mk−1) = cemk−1 +α,

where c and α are constants. If spacing between study trials
is brief, the activation mk−1 is large and consequently the new
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study trial will have a rapid decay, dk. Increasing spacing can
therefore slow memory decay of trace k, but it also incurs a
cost in that traces 1...k−1 will have substantial decay.

The model’s recall probability is related to activation by:

p(m) = 1/(1+ e
τ−m

s ),

where τ and s are additional parameters. The pieces of the
ACT-R model relevant to this paper include 3 additional pa-
rameters, for a total of 10 parameters, including: h, a transla-
tion of real-world time to internal model time, u, a descriptor
of the maximum benefit of study, and v, a descriptor of the
rate of approach to the maximum.

Pavlik and Anderson (2008) use ACT-R activation predic-
tions in a heuristic algorithm for scheduling the trial order
within a study session, as well as the trial type (i.e., whether
an item is merely studied, or whether it is first tested and then
studied). They assume a fixed intersession spacing. Thus,
their algorithm reduces to determining how to best allocate a
finite amount of time within a session.

Although they show a clear effect of the algorithm used
for within-session scheduling, we focus on the complemen-
tary issue of scheduling the lag between sessions. The ISI
manipulation is more in keeping with the traditional concep-
tualization of the distributed-practice effect. Fortunately, the
ACT-R model can be used for both within- and between-
session scheduling. To model between-session scheduling,
we assume—as is true in controlled experimental studies—
that each item to be learned is allotted the same amount of
study (or test followed by study) time within a session.

Pavlik and Anderson (2008) describe their within-session
scheduling algorithm as optimizing performance, yet we
question whether their algorithm is appropriately cast in
terms of optimization. They argue that maximizing proba-
bility of recall should not be the goal of a scheduling algo-
rithm, but that activation gain at test should be maximized so
as to encourage additional benefits (e.g., improved long-term
retention). We believe that had Pavlik and Anderson (2008)
sought simply to maximize probability of recall at test and
had more rigorously defined their optimization problem, they
would have seen results of the ACT-R within-session sched-
uler even better than what they achieved. In light of these
facts, we contend that our work is the first effort to truly opti-
mize memory retention via cognitive models.

Multiscale Context Model
One class of theories proposed to explain the distributed-
practice effect focuses on the notion of encoding variabil-
ity. According to these theories, when an item is studied, a
memory trace is formed that incorporates the current psycho-
logical context. Psychological context includes conditions of
study, internal state of the learner, and recent experiences of
the learner. Retrieval of a stored item depends partly on the
similarity of the contexts at the study and test. If psycholog-
ical context is assumed to fluctuate randomly, two study ses-
sions close together in time will have similar contexts. Conse-
quently, at the time of a recall test, either both study contexts

will match the test context or neither will. A longer ISI can
thus prove advantageous because the test context will have
higher likelihood of matching one study context or the other.

Raaijmakers (2003) developed an encoding variability the-
ory by incorporating time-varying contextual drift into the
Search of Associative Memory (SAM) model and used this
model to explain data from the distributed-practice literature.
The context consists of a pool of binary-valued neurons which
flip state at a common fixed rate. This behavior results in ex-
ponentially decreasing similarity between contexts at study
and test time as a function of the study-test lag.

In further explorations, we (Mozer et al., submitted) found
a serious limitation of SAM: Distributed-practice effects oc-
cur on many time scales (Cepeda et al., 2006). SAM can ex-
plain effects for study sessions separated by minutes or hours,
but not for sessions separated by weeks or months. The rea-
son is essentially that the exponential decay in context simi-
larity bounds the time scale at which the model operates.

To address this issue, we proposed a model with multi-
ple pools of context neurons. The pools vary in their rela-
tive size and the rate at which their neurons flip state. With
an appropriate selection of the pool parameters, we obtain a
model that has a power-law forgetting function and is there-
fore well suited for handling multiple time scales. The notion
of multiscale representations comes from another model of
distributed-practice effects developed by Staddon, Chelaru,
and Higa (2002) to explain rat habituation. We call our
model, which integrates features of SAM and Staddon et al.’s
model, the Multiscale Context Model (MCM).

MCM has only five free parameters. Four of these pa-
rameters configure the pools of context neurons, and these
parameters can be fully constrained for a set of materials to
be learned by the the basic forgetting function—the function
characterizing recall probability versus lag between a single
study opportunity and a subsequent test. Given the forget-
ting function, the model makes strong predictions concerning
recall performance at test time given a study schedule.

MCM predicts the outcome of four experiments by Cepeda
et al. (in press, 2008). These experiments all involved two
study sessions with variable ISIs and RIs. Given the ba-
sic forgetting functions for the material under study, MCM
accurately predicted the ISI yielding maximal recall perfor-
mance at test for each RI. Although MCM is at an early
stage of development, the results we have obtained are suf-
ficiently promising and robust that we find it valuable to ex-
plore the model’s predictions and to compare them to the
well-established ACT-R model.

Comparing Model Predictions
Having introduced the ACT-R model and MCM, we now turn
to the focus of this paper: obtaining predictions from the two
models to determine whether the models are distinguishable.
We focus on the most important, practical prediction that the
models can make: how to schedule study to optimize mem-
ory retention. We already know that the models make sim-
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ilar predictions in empirical studies with two study sessions
(one ISI); we therefore turn to predictions from the models
with more than two sessions (two or more ISIs). Even if the
models make nonidentical predictions, they may make pre-
dictions that are quantitatively so similar the models will in
practice be difficult to distinguish. We therefore focus our ex-
plorations on whether the models make qualitatively different
predictions. Constraining our explorations to study schedules
with three study sessions (i.e., two ISIs), we test whether the
models predict that optimal study schedules have expanding,
contracting, or equal spacing, that is, schedules in which ISI
1 is less than, greater than, or equal to ISI 2, respectively. For
the sake of categorizing study schedules, we judge two ISIs to
be equal if they are within 30% of one another. The key con-
clusions from our experiments do not depend on the precise
setting of this criterion.

In all simulations, we used the Nelder-Mead Simplex
Method (as implemented in Matlab’s fminsearch) for find-
ing the values of ISI 1 and ISI 2 that yield the maximum recall
accuracy following a specified RI. Because this method finds
local optima, we used random restarts to increase the likeli-
hood of obtaining global optima. We observed some degen-
erate local optima, but for the most part, it appeared that both
models had spacing functions like those in Figures 2a and 2b
with a single optimum.

Our first exploration of the models’ spacing predictions
uses parameterizations of the models fit to the Glenberg
(1976) data (Figure 2a for ACT-R, not shown for MCM). Be-
cause the models have already been constrained by the exper-
imental data, which involved two study opportunities, they
make strong predictions concerning memory strength follow-
ing three spaced study opportunities. We used the models to
predict the (two) optimal ISIs for RIs ranging from ten min-
utes to one year. We found that both models predict contract-
ing spacing is optimal regardless of RI. The spacing func-
tions obtained from the models look similar to that in Figure
2c. Because the models cannot be qualitatively discriminated
based on the parameters fit to the Glenberg experiment, we
turn to exploring a wider range of model parameterizations.

Randomized Parameterizations

In this section, we explore the predictions of the models
across a wide range of RIs and model parameterizations, in
order to determine whether we can abstract regularities in the
models’ predictions that could serve to discriminate between
the models. In particular, we are interested in whether the op-
timality of contracting spacing predicted by both models for
the Glenberg paradigm and material is due to peculiarities of
that study, or whether optimality of contracting spacing is a
robust parameter-independent prediction of both models.

Methodology. We performed over 200,000 simulations for
each model. In our simulations, we systematically varied the
RIs from roughly 10 seconds to 300 days. We also chose ran-
dom parameter settings that yielded sensible behavior from
the models. We later expand on the notion of “sensible.”
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Figure 3: The distribution of qualitative spacing predictions of
ACT-R (upper panel) and MCM (lower panel) as a function of RI,
for random model variants. Each point corresponds to the percent-
age of valid model fits that produced a particular qualitative spacing
prediction.

For the ACT-R model, we draw the parameters βi, βs, βsi
from Gaussian distributions with standard deviations speci-
fied in Pavlik and Anderson (2008). The parameters h, c, and
α are drawn from a uniform distribution in [0, 1]. The study
weight parameter b is fixed at 1, which assumes test-practice
trials (Pavlik & Anderson, 2008). Remaining parameters of
the model are fixed at values chosen by Pavlik and Anderson
(2008). For MCM, we vary the four parameters that deter-
mine the shape of the forgetting function.

To ensure that the randomly generated parameterizations of
both models are sensible—i.e., yield behavior that one might
expect to observe of individuals studying specific materials—
we observe the forgetting function for an item studied once
and then tested following an RI, and place two criteria on the
forgetting function: (1) With an RI of one day, recall proba-
bility must be less than 0.80. (2) With an RI of thirty days, re-
call probability must be greater than 0.05. We thus eliminate
parameterizations that yield unrealistically small amounts of
forgetting and too little long-term memory.

Results. Results of our random-parameter simulations are
presented in Figures 3 and 4. The upper graphs of each fig-
ure are for the ACT-R model and the lower graphs are for
MCM. Figure 3 shows, as a function of the RI, the proportion
of simulations that yield contracting (red curve), expanding
(green curve), and equal (blue curve) optimal spacing. The
ACT-R model (Figure 3, upper) strongly predicts that con-
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tracting spacing is optimal, regardless of the RI and model
parameters. In contrast, MCM (Figure 3, lower) suggests
that the qualitative nature of the optimal study schedule is
more strongly dependent on RI and model parameters. As
the RI increases, the proportion of expanding spacing pre-
dictions slowly increases and the proportion of equal spacing
predictions decreases; contracting spacing predictions remain
relatively constant. Over a variety of materials to be learned
(i.e., parameterizations of the model), MCM predicts that ex-
panding spacing becomes increasingly advantageous as the
RI increases.

Each scatter plot in Figure 4 contains one point per ran-
dom simulation, plotted in a log-log space that shows the val-
ues of the optimal ISI 1 on the x-axis and the optimal ISI
2 on the y-axis. In other words, each point is like the star
(point of optimal retention) of Figure 2c, plotted for a unique
parameterization and RI. The two solid diagonal lines repre-
sent the decision boundary between the different qualitative
spacing predictions. Points between the decision boundaries
are within 30% of each other (in linear space) and fall under
the label of equal spacing. Points above the upper diagonal
line are classified as expanding spacing, and points below the
lower diagonal line are classified as contracting spacing. The
color of the individual points specifies the corresponding RI.

The spacing functions produced by the ACT-R model are
fairly similar, which is manifested not only in the consistency
of the qualitative predictions (Figure 3, upper), but also the
optimal ISIs (Figure 4, upper). The relationship between
optimal ISI 1 and optimal ISI 2 appears much stronger for
the ACT-R model than for MCM, and less dependent on the
specific model parameterization. Not only do we observe a
parameter-independent relationship between the optimal ISIs,
but we also observe a parameter-independent relationship be-
tween the RI and each of the ISIs. The apparent linearity in
the upper panel of Figure 4 translates to a linear relationship
in log-log space between RI and each of the optimal ISIs. The
least-squares regression yields:

log10(ISI1) = 1.0164log10(RI)+0.5091
log10(ISI2) = 1.0237log10(RI)+0.9738

with coefficient of determination (ρ2) values of 0.89 and 0.90,
respectively. We emphasize that these relationships are pre-
dictions of a model, not empirical results. The only empirical
evidence concerning the relationship between RI and the op-
timal ISI is found in Cepeda et al. (2006), who performed a
meta-analysis of all cogent studies of the distributed-practice
effect, and observed a roughly log-log linear relationship be-
tween RI and optimal ISI for experiments consisting of two
study sessions (one ISI). Were this lawful relationship to ex-
ist, it could serve as an extremely useful heuristic for edu-
cators who face questions such as: If I want my students to
study this material so that they remember it for six months
until we return to the same topic, how should I space the two
classes I have available to cover the material?

In further contrast with ACT-R, MCM’s optimal ISI predic-
tions are strongly parameter dependent (Figure 4, lower). Is
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Figure 4: Optimal spacing predictions in log-space of ACT-R (up-
per figure) and MCM (lower figure) for random parameter settings
over a range of RIs. Each point corresponds to a parameter setting’s
optimal spacing prediction for a specific RI, indicated by the point’s
color. The black lines indicate the boundaries between expanding,
equal, and contracting spacing predictions.

this result problematic for MCM? We are indeed surprised by
the model’s variability, but there are no experimental data at
present to indicate whether such variability is observed in op-
timal study schedules for different types of material (as rep-
resented by the model parameters).

Although ACT-R shows greater regularity in its predictions
than MCM, as evidenced by the contrast between the upper
and lower panels of Figure 4, note that both models make op-
timal spacing predictions that can vary by several orders of
magnitude for a fixed RI. No experimentalist would be sur-
prised by the prediction of both models that optimal spacing
of study for a given RI is material-dependent, but this point
has not been acknowledged in the experimental literature, and
indeed, the study by Cepeda et al. (2008) would seem to sug-
gest otherwise: two different types of material yielded spac-
ing functions that appear, with the limited set of ISIs tested,
to peak at the same ISI.

Another commonality between the models is that both
clearly predict the trend that optimal ISIs increase with the
RI. This is evidenced in Figure 4 by the fact that the long
RIs (red points) are closer to the upper right corner than the
short RIs (blue points). Although the experimental litera-
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ture has little to offer in the way of behavioral results using
more than two study sessions, experimental explorations of
the distributed-practice effect with just two study sessions do
suggest a monotonic relationship between RI and the optimal
ISI (Cepeda et al., 2006).

Discussion
In this paper, we have explored two computational models
of the distributed practice effect, ACT-R and MCM. We have
focused on the educationally relevant issue of how to space
three or more study sessions so as to maximize retention at
some future time. The models show some points of agree-
ment and some points of fundamental disagreement.

Both models have fit the experimental results of Glenberg
(1976). With the parameterization determined by this fit, both
models make the same basic prediction of contracting spacing
being optimal when three study sessions are involved. Both
models also agree in suggesting a monotonic relationship be-
tween the RI and the ISIs. Finally, to differing extents, both
models suggest that optimal spacing depends not only on the
desired RI, but also on the specific materials under study.

When we run simulations over the models’ respective pa-
rameter spaces, we find that the two models make remarkably
different predictions. ACT-R strongly predicts contracting
spacing is best regardless of the RI and materials. In con-
trast, MCM strongly predicts that equal or expanding spacing
is best, although it shows a greater dependence on both RI
and the materials than does ACT-R. This stark difference be-
tween the models gives us a means by which the models can
be evaluated. One cannot ask for any better set-up to pit one
model against the other in an experimental test.

In reviewing the experimental literature, we have found
only four published papers that involve three or more study
sessions and directly compare contracting versus equal or
contracting versus expanding study schedules (Foos & Smith,
1974; Hser & Wickens, 1989; Landauer & Bjork, 1978; Tsai,
1927). All four studies show that contracting spacing leads
to poorer recall at test than the better of expanding or equal
spacing. These findings are consistent with MCM and incon-
sistent with ACT-R. However, the findings hardly allow us to
rule out ACT-R, because it would not be surprising if a post-
hoc parameterization of ACT-R could be found to fit each of
the experimental studies.

Nonetheless, the sharp contrast in the predictive tenden-
cies of the two models (Figure 3) offers us an opportunity to
devise a definitive experiment that discriminates between the
models in the following manner. We conduct an experimental
study with a single ISI and parameterize both models via fits
to the resulting data. We then examine the constrained mod-
els’ predictions regarding three or more study sessions. If
ACT-R predicts decreasing spacing and MCM predicts equal
or increasing spacing, we can then conduct a follow-on study
in which we pit the predictions of two fully specified models
against one another. We (Kang, Lindsey, & Pashler, in prepa-
ration) have just begun this process using Japanese-English

vocabulary pairs that Pavlik and Anderson (2008) have mod-
eled extensively with ACT-R. Without extensive simulation
studies of the sort reported in this paper, one would not have
enough information on how the models differ to offer an ap-
proach to discriminate the models via experimental data.
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Abstract 

It has been shown that between-trial effects in Stroop-like 
interference tasks are caused by differences in the amount of 
cognitive control. Trials following an incongruent trial show 
less interference, an effect suggested to result from the 
increased control caused by the previous trial (the Gratton 
effect). In this study we show that cognitive control not only 
results in a different amount of interference, but also in a 
different locus of the interference. That is, the stage of the 
task that shows the most interference changes as a function of 
the preceding trial. Using computational cognitive modeling 
we explain these effects by a difference in the amount of 
processing of the irrelevant dimension of the stimulus. 

Keywords: Picture-word interference; Gratton effect; 
Cognitive control; Dual-task study (PRP); ACT-R; RACE/A. 

Introduction 
Picture-word interference is a Stroop-like interference effect 
that is observed when participants are asked to provide the 
name of a picture, while they should also try to ignore a 
word that is inscribed in the picture (e.g., Glaser & 
Düngelhoff, 1984). The common finding is that reaction 
times are increased if word and picture bear a categorical 
relationship, as opposed to when they do not bear a 
relationship. In addition, reaction times are decreased when 
word and picture are identical, that is, describe the same 
object. In many respects, this is analogous to the Stroop 
effect, in which color naming reaction times are increased 
for trials in which the word also is a color name, as opposed 
to trials in which the word is not a color name. Also, in 
Stroop experiments a decrease in reaction times is found 
when word and ink color refer to the same color name. 

Many theories ascribe the congruency effect – the 
increased reaction times as a result of a categorical 
relationship between the word and the picture – to the 
semantic relation between picture and word (e.g., Glaser & 
Düngelhoff, 1984; Roelofs, 1992; Van Maanen & Van Rijn, 
2007). A word that is a category-member of the picture 
(e.g., “dog” and a picture of a cat) makes picture naming 
harder than an unrelated word (e.g., “book” and a picture of 
a cat), resulting in increased reaction times. In addition, the 
congruency effect has also been ascribed to a failure to 
suppress the more automatic word reading response (e.g., 
Lovett, 2005; MacLeod & Dunbar, 1988). Thus, because it 
is hard to not read a word, it will interfere with a response 
on the color or picture, resulting in increased reaction times. 

The amount of suppression of the automized reading 
response has been hypothesized to be under cognitive 
control (e.g., Botvinick, Braver, Barch, Carter, & Cohen, 
2001). This means that a control mechanism exists that 
dynamically adapts the amount of suppression of the 
reading response to the task demands.  

For instance, the influence of cognitive control is 
observed as a between-trial effect in congruency tasks, in 
which the congruency effect is decreased in trials following 
an incongruent trial. This effect has been interpreted as an 
increase in control, resulting from the increased difficulty of 
the task (Verguts & Notebaert, 2008). Similarly, the 
congruency effect is increased after congruent trials, 
suggesting a relaxation in control of the reading response. 
This particular between-trial effect is referred to as the 
Gratton effect (Gratton, Coles, & Donchin, 1992). 

Experiment 
To study the locus of the interference leading to the Gratton 
effect, we re-analyzed a picture-word interference 
experiment in a Psychological Refractory Period (PRP) 
paradigm (Van Maanen, Van Rijn, & Taatgen, submitted). 
In a PRP design, participants are asked to perform two tasks 
sequentially. The first task is often relatively simple, 
whereas the second task is the task of interest (the main 
task). The interval between the stimulus onsets of the two 
tasks is manipulated (Stimulus Onset Asynchrony or SOA). 
A typical finding, known as the PRP effect (Telford, 1931) 
is a negative correlation between SOA and response latency 
on the main task. Responses to the first task are typically 
unaffected by varying the SOA. 

The PRP effect has been explained by the assumption that 
both tasks share a cognitive resource that can only be used 
by one task at a time (e.g., Pashler, 1994; Welford, 1967). 
Thus, the second task is delayed because the first task still 
requires a critical resource, as illustrated by Figure 1. As the 
interval between the tasks increases, the delay becomes 
smaller, resulting in a faster main task response. 

The PRP design has been used to study the locus of 
various effects (e.g., for PWI, Dell'Acqua, Job, Peressotti, & 
Pascali, 2007; for word frequency and age of acquisition 
effects, Dent, Johnston, & Humphreys, 2008; for the Stroop-
effect, Fagot & Pashler, 1992). For PWI, it was found that 
the locus of interference was located before the singular 
resource that both tasks share. The reasoning behind this is 
that a small interval between the first and the second task 
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generates a large delay in processing of the second task 
(referred to as “cognitive slack”), in which the interference 
that is present in PWI can be resolved. If the interval 
between the tasks increases, the delay in processing of the 
second task disappears, and therefore the interference 
becomes apparent in the reaction times. Following this 
logic, no congruency effect at small SOAs (but a 
congruency effect at larger SOAs) would mean a locus 
before the singular resource, whereas a congruency effect at 
every SOA would mean a locus after the singular resource. 
We applied the same reasoning to study which processing 
stages in a PWI task are affected by cognitive control. 

Methods 
To study the locus of the Gratton effect in picture-word 
interference, we re-analyzed the data from a previous 
experiment (Van Maanen, Van Rijn, & Taatgen, 
submitted).1 In this experiment, participants were required 
to perform a tone classification task and a PWI task 
concurrently. For the tone classification task, participants 
had to classify a tone as either low, medium, or high pitch 
by pressing the b, n, or m keys respectively with the index, 
middle and ring fingers of the right hand. For the PWI task, 
participants were required to name an image in which a 
word was written in the center, and ignore the word. Of each 
image, three PWI stimuli were created that consisted of the 
image, with a word written in the center of the image. The 
words were selected as follows: For the Related condition, 
category members of the image descriptors were selected. 
The words for the Unrelated condition were then selected 
from the CELEX lexical database (Baayen, Piepenbrock, & 
Van Rijn, 1993), and matched to the related distractors with 
respect to word length (plus or minus 1 letter) and word 
frequency (plus or minus 10%). For the Congruent 
condition, Dutch translations of the most common English 
picture names were used. 

In addition to the Relatedness condition (Related, 
Unrelated, Congruent), we also manipulated the interval 
between the tone presentation and the PWI-stimulus 
presentation (SOA), which could be either 100ms, 350ms, 
or 800ms. These SOAs were chosen to ensure the PRP 
                                                             

1 The submitted manuscript contains an extensive description of 
the experiment. The manuscript can be downloaded from 
http://www.ai.rug.nl/~leendert/pubs. 

effect. Importantly, the correct response order was stressed, 
to ensure that participants responded to the tone first and to 
the PWI-stimulus second. 

Results 
We excluded trials according to the following criteria: 
Responses that were more than three standard deviations 
from a participants’ mean were excluded (2.1% on the PWI 
stimulus, and 2.3% on the tone, respectively). Trials in 
which the responses were in the incorrect order were also 
excluded (5.3%). Overall, 7.7% of the trials were excluded. 
In this paper, we will only focus on the effects on the PWI 
task, and not discuss the effects on the secondary tone 
classification task. 

For each trial, we determined the relatedness between 
picture and word on the previous trial (Previous). An 
analysis of variance (ANOVA) showed significant main 
effects of Relatedness (the congruency effect), and of SOA 
(the PRP effect), but not of Previous (FRelatedness(2,42) = 50, 
p<0.001; FSOA(2,42) = 104, p<0.001; FPrevious(2,42) = 1.3, 
p=0.28). However , there was a Relatedness times Previous 
interaction present (FRelatedness x Previous(4,84) = 4.0, p=0.005), 
representing the Gratton effect. In addition, there was an 
effect of SOA on the Relatedness condition (FSOA x 

Relatedness(4,84) = 2.5, p=0.047), as well as a significant three-
way interaction between SOA, Relatedness, and Previous 
(FSOA x Relatedness x Previous(8,168) = 3.4, p=0.001). 

A visual inspection of the data (Figure 2) shows that the 
three-way interaction appears as a difference in the 
congruency effect at the small SOAs (100ms and 350 ms) 
between the trials directly following a Congruent trial 
(“post-C” in Figure 2) and the trials following a Related trial 
(“post-R” in Figure 2). Where the post-C trials do not show 
a congruency effect at small SOAs (t<1), the post-R trials 
do (paired t-test, t=3.2, df=43, p=0.002). The Gratton effect 
is visible at SOA=800ms as a smaller congruency effect for 
post-R trials then for post-C trials.  

Discussion 
The lack of a consistent pattern in the responses on the trials 
following an Unrelated trial (the post-U trials) can be 
explained by individual differences in how participants 
adapt their control. Some participants might treat Unrelated 
trials similar to Congruent trials (because they are both non-
conflicting). Other participants might adapt their control on 
post-U trials similar to the control in post-R trials, following 
the similarity between related PWI and unrelated PWI 
stimuli (both incongruent). A mixture of these two strategies 
could explain the data found for the post-U trials. 

The experiment shows that in PWI, the Gratton effect is 
present as an interaction between congruency and the 
previous trial. However, for trials immediately following a 
Congruent trial, the congruency effect disappears at small 
SOAs, whereas for trials following a Related trial, the effect 
remains. Similar observations have been interpreted as a 
different effect locus (e.g., for Stroop and PWI, Dell'Acqua 
et al., 2007; for word frequency and age of acquisition 
effects, Dent, Johnston, & Humphreys, 2008). Therefore, 

 
Figure 1: Diagram of the PRP design. The top bar 

indicates processing of the first task. The bottom bar 
indicates processing in the second task. S1: stimulus of task 

1; S2: stimulus of task 2; R1: response on task 1; R2: 
response on task 2; SOA: Stimulus Onset Asynchrony 
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the experiment suggests that the locus of the congruency 
effect in PWI is influenced by the previous trial. In the 
following section, we will present a computational cognitive 
model that accounts for this apparent shift in locus in terms 
of a difference in processing speed between conditions. 

A Cognitive  Model of the Gratton Effect 

RACE/A 
The basis of our computational model of the Gratton effect 
is a recent model of declarative memory retrieval that we 
have developed (Van Maanen, 2009; Van Maanen & Van 
Rijn, 2007; Van Maanen, Van Rijn, & Taatgen, submitted). 
The model – termed Retrieval by Accumulating Evidence in 
an Architecture or RACE/A – describes memory retrievals 
as a sequential sampling process (Ratcliff, 1978). In 
addition, RACE/A assumes that the dynamics of the 
retrieval process are constrained by other cognitive 
processes that co-occur with a particular retrieval process. 
This aspect is captured by integrating the sequential 
sampling process in the cognitive architecture ACT-R 
(Anderson, 2007). 

The accumulation process can be characterized by two 
equations that determine the long-term dynamics and the 
short-term dynamics of the activation. The short-term 
dynamics are mediated by the presence or absence of stimuli 
and spreading activation from other chunks. During a 
retrieval process, the activation of chunks that match a set of 
retrieval conditions gradually accumulates until a certain 
decision criterion (explained below) has been reached. The 
chunk that has been decided upon is retrieved from 
declarative memory, and the accumulation of activation 
stops. Because no new activation is being accumulated, the 
short-term component of the activation of all chunks decays. 
The short-term activation dynamics can be represented by a 
drift, a starting point, and a decision boundary, which will 
be discussed below. 
Drift Drift in RACE/A is the reflection of the current 
demands of the environment. Thus, drift is a function of 
stimuli, as well as the currently active declarative facts. All 
facts and stimuli, which will collectively referred to as 

sources of activation, continuously spread excitatory 
activation towards associated chunks. This means that a 
chunk that has more sources of activation (more evidence) 
or sources with more activation (“stronger” evidence) will 
accumulate faster than a chunk with less sources of 
activation or sources with less activation. In the absence of 
evidence for a particular chunk, the short-term activation 
will decay. The drift in RACE/A is also determined by a 
logistically distributed noise sample, adding stochasticity to 
the system. These considerations are reflected by Equation 
1, which may be referred to as the drift equation (Usher & 
McClelland, 2001). The drift equation captures the 
dynamics of short-term activation (C) of one chunk (chunk 
i) over time. 

 

  (1) 
 
 

In this equation, the decay of short-term activation is 
expressed by α, which should be a value in the range [0,1]. 
The spreading activation component is a sum of the 
activation of other chunks (Aj), weighted by the associations 
that exist with chunk i (Sji). Note that this differs from the 
implementation in ACT-R, in which only the chunks in 
buffers spread activation. In RACE/A, all chunks may 
spread activation. The spreading activation component is 
scaled by a factor β that determines the overall 
accumulation speed. The noise is expressed by εi.  

Starting point The starting point of the accumulation 
reflects the prior probability that a chunk is needed. This is 
reflected by ACT-R’s base-level activation equation 
(Equation 2, Anderson, 2007), which incorporates the usage 
history of a chunk. Chunks with a high base-level activation 
start the accumulation of activation at a higher starting 
point, and are thus more likely to be retrieved from memory. 
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Figure 2: Response times as a function of SOA for the Relatedness conditions. U: Unrelated; R: Related; C: Congruent. 
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it greatly exceeds the current level of short-term activation. 
For this reason, the net activation of each chunk in the 
system can be described as 

  
   (3) 

 

indicating that the activation of a chunk is the maximum of 
the need probability of a chunk (reflected by Bi) and the 
accumulating evidence for that chunk (reflected by Ci). 

Decision Boundary The decision boundary in RACE/A is 
relative to the activation of competitors in the system. This 
choice reflects the insight that if multiple memory 
representations are relevant, responding becomes more 
difficult (Hick, 1952; Luce, 1986). This is reflected by 
Equation 4, which expresses the conditions under which a 
decision will be made. If the activation of a certain chunk 
(chunk i in Equation 4) exceeds the activation of all 
competitors (j, including i) by a certain ratio θ (referred to 
as the decision ratio), then that chunk is retrieved from 
memory. The ratio between the activation of one chunk and 
the summed activation of all competitors reflects the relative 
likelihood of a chunk, and will be referred to as the Luce 
ratio for that chunk (Luce, 1963). The duration of the 
retrieval process constitutes the interval between the onset 
of the retrieval process (when the request for a retrieval is 
made) and the moment at which the Luce ratio of one chunk 
exceeds the decision ratio. 

 
    (4) 
 

The Model 
The model concurrently performs the tone classification task 
and the PWI task. The tone classification task was modeled 
using ACT-R's standard auditory perception module. If a 
tone is presented, the model processes auditory information, 
and retrieves a memory trace that encodes the appropriate 
stimulus-response mapping (that is, which button to press 
given the perceived tone). Finally, the model made a motor 
response to press the correct button. 

When the PWI-stimulus is presented, the model activates 
conceptual representations in response to the image, and 
activates a lemma representation in response to the word 
(e.g., Roelofs, 1992). Because lemmas spread activation to 
the conceptual representations that relate to them, the 
presentation of a distractor word causes interference at the 
conceptual level. The decision boundary that determines 
retrieval from memory becomes harder to reach for the 
conceptual representation of the picture, increasing the 
retrieval time. The different activation levels of the target 
chunk versus competing chunks determine the latency 
difference between the related and unrelated PWI 
conditions. In the related condition, the concepts of the 
target and the distractor spread activation to each other. This 
mutual excitation causes both activation values to increase, 
making it even harder to reach the decision boundary. In the 

unrelated condition mutual excitation is not present. 
Therefore, there is less competition and a faster retrieval in 
the unrelated than in the related condition. 

In order to name the image, the relevant concept has to be 
retrieved from memory. Once a concept has been retrieved, 
the model initiates a response, but not before the selection of 
the appropriate tone-to-button mapping for the tone 
classification response has been retrieved. This ensures that 
the model displays cognitive slack time in which 
interference in the first processing stage may be resolved. 

 In processing the PWI response, the model first retrieves 
a lemma representation that encodes the syntactic 
information associated with the desired response, than it 
retrieves a motor program to articulate the desired response. 
Thus, to complete the task the model needs to do three 
memory retrievals. 

Simulation Results 
The model is similar to a previous model of a PRP study of 
PWI (Van Maanen, Van Rijn, & Taatgen, submitted). 
However, in the current model we manipulated the speed of 
word processing relative to the speed of picture processing. 
Following Botvinick et al. (2001) we assumed that a 
previous conflict trial leads to more cognitive control, 
leading to more suppression of the reading response. Thus, 
high control in the model means a low value for the 
parameter controlling word processing speed. On the other 
hand, if the previous trial was congruent, we assume a 
relaxation of control, resulting in less suppression of the 
reading response and a high value of the parameter that 
controls word processing speed (low control).  

Figure 3 presents the model behavior for high and low 
control, respectively. Similar to the pattern in the data 
(Figure 2), the model shows no interference effect for the 
high control condition (analogous to the post-R trials), 
whereas it shows an interference effect for the low control 
condition (analogous to the post-C trials). In our simulations 
we ignored the post-U condition from the experiment, since 
we assume that behavior in that condition was a mixture of 
behavior from post-C trials and post-R trials. 
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Figure 3: Simulation results for low control (left) and high 
control condition (right). R: Related; U: Unrelated; C: 

Congruent. 
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The explanation for this effect follows directly from the 
dynamics of the activation of the chunks (conceptual and 
lemma information) in the model. Retrieval times for the 
concept and lemma information are determined by the 
activation ratio (the Luce ratio) between the chunks. Thus, a 
high Luce ratio in favor of the relevant chunk (the one 
associated to the correct response) leads to a fast retrieval. A 
high Luce ratio is reached by a large difference in 
processing speed fo the two stimulus dimensions, 
hypothesized to reflect high control (Figure 4, High 
Control). A high ratio in favor of the irrelevant chunk, or a 
low ratio in favor of the relevant chunk leads to slower 
retrievals. The competition between chunks results from 
mutual excitation of the competing chunks. Therefore, 
strong competition results in high activation of the 
competing chunks, and also in a high activation difference 
(Figure 4, Low Control). As a result, a subsequent retrieval 
of the same chunk will be faster, because the starting points 
of accumulation of activation of the competing chunks 
differ more than at the start of the first retrieval. A similar 
argument can be constructed for chunks that are strongly 
associated, as are the concept chunks and lemma chunks in 
our model. An initial concept retrieval already influences 
the activation at the start of the subsequent lemma retrieval. 

Figure 5 presents the activation dynamics of four chunks 
in the model over time. the top panel (Low control) presents 
a prototypical model run in which the word processing 
speed is high, the bottom panel (High control) presents a 
model run in which the word processing speed is low. 
Figure 5 illustrate how a fast retrieval in the first stage of the 
PWI process may lead to a slow retrieval in the later stages, 
resulting in a  shift of the overall interference pattern. 

Discussion & Conclusion 
Although we implemented the effect of more cognitive 
control as a lower speed of word processing relative to 
picture processing, we make no claims on the exact 
mechanism. Besides actual slower perceptual processing, 
another possibility could be that more cognitive control 
results in active inhibition of the undesired response. 
However, similar to our current implementation this would 

result in less competition, and our results would not differ. 

Analogy with Stroop and PWI 
The results from our study show a remarkable analogy with 
the results from experiments that studied the difference 
between the Stroop effect and PWI. Dell’Acqua et al. (2007) 
found an early locus of interference in PWI, similar to the 
post-C condition in our experiment.  By contrast, Fagot and 
Pashler (1992) found a late locus of interference in the 
Stroop task, similar to our post-R condition. In a previous 
study, we explained this difference by a difference in 
processing speed between colors and images (Van Maanen 
& Van Rijn, 2008; Van Maanen, Van Rijn, & Borst, 
submitted). The cognitive models in that study showed that 
both Fagot and Pashler’s data and Dell’Acqua et al.’s data 
could be explained by one model that maintained a lower 
processing speed for color information than for picture 
information. 

Our current results suggest that it may not be the speed of 
perceptual processing per se that is important in shifting the 
locus of interference, but rather the difference in speed 
between the two stimulus dimensions (words and pictures 
for PWI). In the current model, the processing speed of the 
word and picture differed more for the low control than for 

 
Figure 4: The activation dynamics in RACE/A. 

 
Figure 5: A simulated trial for the low control condition (top) and the high control condition 

(bottom). The grey areas indicate the duration of every memory retrieval during a trial. 
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the high control condition. This was explained by more 
suppression of the reading response in the high-control 
condition. In the Stroop/PWI model, the processing speed 
for the PWI condition differed more than for the Stroop 
condition. This was explained by the faster processing of 
colors than of pictures, and hence a greater difference in 
processing speed between words and pictures in PWI than 
between words and colors in Stroop. 

Conclusion 
The experiment demonstrated that the Gratton effect is not 
only present as a difference in interference effect size after 
Congruent and Related trials, but also entails a shift in the 
locus of the interference. The absence of observable 
interference at small SOAs in the post-C trials suggests that 
the locus of interference in those trials is in an early 
processing stage, but is absorbed in the cognitive slack time 
that is created by the PRP design. The presence of 
observable interference in post-R trials suggest that the 
locus of interference is late, after the bottleneck that is 
created by the PRP design. 

Our simulations suggest a mechanism for this shift in 
locus. The simulations show that if the speed with which 
words are processed is high, the locus of interference is 
early, whereas a low processing speed for words results in a 
late locus. The processing speed for words was 
hypothesized to be under cognitive control, where an 
increase in control leads to a decrease in word processing 
speed, and vice versa. These results suggest that the 
specifics of the stimulus determine the magnitude and 
spacing of interference over the entire task, a result which 
may be extended to the Stroop/PWI literature as well. 
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Abstract 
When averaging the estimates of individuals, the aggregate 
can often come surprisingly close to the true answer. We are 
interested in extending this “wisdom of crowds” phenomenon 
to more complex situations where a simple strategy like 
taking the mode or mean of responses is inappropriate, or 
might lead to bad predictions. We report the performance of 
individuals in a series of ordering tasks, where the goal is to 
reconstruct from memory the order of time-based events, or 
the magnitude of physical properties. We introduce a 
Bayesian version of a Thurstonian model that aggregates 
orderings across individuals, and compare it to heuristic 
aggregation techniques inspired by existing models of social 
choice and voting theory. The Bayesian model performs as 
well as the heuristics in reconstructing the true ordering, and 
has the advantage of being well calibrated, in the sense that it 
gives more confident responses the closer it is to the truth. 

Keywords: Bayesian Modeling; Rank Ordering; Consensus; 
Wisdom of Crowds; Rank aggregation. 

Introduction 
When Galton first surveyed English fair-goers in 1906, it 
was a novel curiosity that their estimates of the dressed 
weight of an ox, when averaged, closely approximated the 
true weight (Galton, 1907). Subsequently, many 
demonstrations have shown that aggregating the judgments 
of a number of individuals often results in an estimate that is 
close to the true answer. This phenomenon has come to be 
known as the “wisdom of crowds” (Surowiecki, 2004). The 
wisdom of crowds idea is currently used in several real-
world applications, such as prediction markets (Dani et al., 
2006), spam filtering, and the prediction of consumer 
preferences through collaborative filtering.  

Many wisdom of crowds demonstrations have involved 
situations where a single numerical quantity needs to be 
estimated. In these cases, a robust estimate of the central 
tendency of individual estimates can be  an effective 
aggregation method (Yaniv, 1997). Other situations have 
involved recovering the answers to multiple choice 
questions. For example, on the game show "Who Wants to 
be A Millionaire", contestants are given the opportunity to 
ask all members of the audience to answer a multiple choice 
question. In this case, an aggregation method based on the 
modal response can be quite effective. Over several seasons 
of the show, the modal response of the audience 

corresponded to the correct answer 91% of the time. More 
sophisticated approaches have been developed, such as 
Cultural Consensus Theory (e.g., Romney, Batchelder, 
Weller, 1987), that additionally take differences across 
individuals and items into account when aggregating 
multiple choice answers. 

In this paper, we extend the wisdom of crowds idea to the 
more complex problem of rank ordering. Is it possible to 
recover the correct order of events or physical properties 
from a large number of independent individual responses? 
How confident can we be that these aggregations represent 
the ground truth? 

Aggregating rank order data is not a new problem. In 
social choice theory, a number of systems have been 
developed for aggregating rank order preferences for groups 
(Marden, 1995). Preferential voting systems, where voters 
explicitly rank order their candidate preferences, are 
designed to pick one or several candidates out of a field of 
many. These systems, such as the Borda count, perform well 
in aggregating the individuals' rank order data, but with an 
inherent bias towards determining the top members of the 
list.1 However, as voting is a means for expressing 
individual preferences, there is no ground truth. The goal for 
these systems is to determine an aggregate of preferences 
that is in some sense “fair” to all members of the group.  

Relatively little research has been done on the rank order 
aggregation problem with the goal of approximating a 
known ground truth. In follow-ups to Galton's work, Gordon 
(1924) and Bruce (1935) tested a large number of 
individuals in psychophysical ordering tasks. They found 
that the group estimate approximates the ground truth better 
as the size of the group increases. Interestingly, these 
authors used the Borda count voting method (without 
making this connection to voting theory explicit in their 
work) to aggregate the rank orderings of individuals. 
Romney et al. (1987) also developed an informal 
aggregation model for rank order data based on Cultural 
Consensus Theory, using factor analysis of the covariance 
structure of rank order judgments. With this, they were able 
to partially recover the correct order of 34 causes of death in 

                                                           
1 This is necessary to satisfy the Condorcet Criterion, which 

requires that a top ranked candidate selected by a voting system 
should be a candidate who has more votes when compared to every 
other voter on the ballot (Shepsle & Bonchek, 1997) 
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the US on the basis of the individual orderings of 36 
subjects. 

 We present empirical and theoretical research on the 
wisdom of crowds phenomenon for rank order aggregation. 
We conduct an empirical study where people are asked to 
rank order the occurrence of events (e.g., US presidents by 
term of office2) or the magnitude of some physical property 
(e.g., rivers by length). Most importantly, no 
communication between people is allowed for these tasks, 
and therefore the aggregation method operates on the data 
produced by independent decision-makers.  

Importantly, for all of the problems there is a known 
ground truth. The ground truth might only be partially 
known to the tested individuals. If different individuals have 
knowledge of different parts of the ordering problems, 
aggregation across individuals can yield a group answer that 
comes closer to the ground truth than any of the individuals 
in the group. For example, if some individuals know that the 
Congo is longer than the Parana River, and other individuals 
know that the Parana River is longer than the Mekong 
River, aggregation might lead to the correct overall ordering 
(i.e., Congo > Parana > Mekong). Therefore, for the wisdom 
of crowd phenomenon to work, the errors in semantic 
memory need to have some degree of independence. If all 
individuals have access to the same knowledge, there will 
be no advantage to aggregating their answers.  

 We compare several heuristic computational 
approaches―based on voting theory and existing models of 
social choice―that analyze the individual judgments and 
provide a single answer as output, which can be compared 
to the ground truth. We refer to these synthesized answers as 
the “group” answers because they capture the collective 
wisdom of the group, even though no communication 
between group members occurred.  

We also develop a probabilistic model based on a 
Thurstonian approach that represents items as distributions 
on an interval dimension. We make inferences about the 
parameters of the model using Markov chain Monte Carlo 
(MCMC). The advantage of MCMC estimation procedure is 
that it gives a probability distribution over group orderings, 
and we can therefore assess the likelihood of any particular 
group ordering. We use this likelihood as a confidence 
measure to test whether the model is calibrated, in the sense 
that the group answers with high confidence are close to the 
ground truth. 

Experiment 

Method 
Participants were 78 undergraduate students at the 
University of California, Irvine. The experiment was 
composed of 20 questions (3 were excluded from analysis; 
one because participants misunderstood the question, one 
because of the lack of a proper ground truth, and the last for 

                                                           
2 The ordering of US Presidents has been studied before in the 

context of memory research by Healy, Havas, and Parker (2000).  

consistency as it only included 5 elements for ordering, 
whereas all the others included 10). The remaining 
questions involved general knowledge regarding: population 
statistics (4 questions), geography (3 questions), dates, such 
as release dates for movies and books (7 questions), U.S. 
Presidents, material hardness, the 10 Commandments, and 
the first 10 Amendments of the U.S. Constitution 

All questions had a ground truth obtained from Pocket 
world in figures and various online sources. An interactive 
interface was presented on a computer screen. Participants 
were instructed to order the presented items (e.g., “Order 
these books by their first release date, earliest to most 
recent”), and responded by dragging the individual items on 
the screen using the computer mouse, and “snapping” the 
item into the desired location in the ordering. Once 
participants were satisfied with their response they clicked 
on the submit button. They were prompted to confirm that 
they wished to proceed before being presented with the next 
question. Once their response was submitted it was not 
possible to return to that question. The questions were 
presented in a fixed order. Half the participants received the 
forward ordering of questions, the other half received the 
backwards ordering of questions. The initial ordering of the 
10 items within a question was randomized across all 
questions and all participants. 

Results 
We first evaluated participants' responses based on whether 
or not they reconstructed the correct ordering. Table 1 
shows the proportion of individuals who got the ordering 
exactly right (PC) for each of the ordering task questions. 
On average, about one percent of participants recreated the 
correct rank ordering perfectly. We also analyzed the 
performance of participants with a more fine-grained 
measure, using Kendall’s τ distance. This distance metric is 
used to count the number of pair-wise disagreements 
between the reconstructed and correct ordering. The larger 
the distance, the more dissimilar the two orderings are. 

Table 1: Participant performance statistics. 
 

Problem PC 25 50 75 90 100

books 0.000 15 10 8 5 3
city population europe 0.000 19 15 12 10 7

city population us 0.000 20 14 11 8 6
city population world 0.000 23 18 15 12 5

country landmass 0.000 12 9 7 5
country population 0.000 17 15 11 9 4

hardness 0.000 18 15 12 11 7
holidays 0.051 12 8 5 3

movies releasedate 0.013 9

2

0
6 4 2

oscar bestmovies 0.013 14 10 6 4
oscar movies 0.000 1

0
0

6 10 5 2
presidents 0.064 10 7 3 1 0

rivers 0.000 19 15 13 11 3
states westeast 0.026 10 6 3 1 0

superbowl 0.000 24 17 14 11 6
ten ammendments 0.013 19 13 10 4 0
ten commandments 0.000 23 17 11 7 1

AVERAGE 0.011 16.5 12.1 8.8 6.2 2.6

Percentiles of τ

1
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Values of τ range from: 0  ൑  τ  ൑  ܰሺܰ െ 1ሻ/2, where N is 
the number of items in the order (10 for all of our 
questions). A value of zero means the ordering is exactly 
right, and a value of one means that the ordering is correct 
except for two neighboring items being transposed, and so 
on up to the maximum possible value of 45. 

Table 1 shows the distribution of τ values over the ranked 
population of participants for each of the 17 sorting task 
questions, in terms of values at the 25th, 50th, 75th, 90th 
and 100th percentiles. For six of the questions, one or more 
participants get the ordering exactly right, as indicated by a 
τ of 0 for the 100th percentile. The best individuals on each 
question achieve good performance, and solve the problem 
exactly, or are within a few pair transposes, for most 
questions. As this is a prior knowledge task, it is interesting 
to note the best performance overall was achieved on the 
Presidents, States from west to east, Oscar movies, and 
Movie release dates tasks. These four questions relate to 
educational and cultural knowledge that seems most likely 
to be shared by our undergraduate subjects. 

Modeling 
We evaluated a number of heuristic aggregation models and 
compared the performance of these methods against a 
probabilistic model based on a Thurstonian approach. For 
each model, the set of orderings from individuals is 
analyzed in order to create a single group ordering, which is 
then compared to the ground truth.  

Heuristic Models 
We tested four heuristic aggregation models. The simplest 
heuristic, based on the mode, has been used since the 
earliest rank order experiments (Lorge et al. 1957). For this 
heuristic, the group answer is based on the most frequently 
occurring sequence of all observed sequences. In cases 
where several different sequences correspond to the mode, a 

randomly chosen modal sequence was picked.  
The second method, which we refer to as the “greedy 

count”, counts the number of participants responses for each 
item in each position. The item and the position with the 
largest agreement among participant is selected first. The 
selection of items then proceeds in a greedy algorithm 
fashion, making sure that each item and position is not 
already filled.  

The third method takes the group answer as the 
participant ranking that is “closest”, as determined by a 
distance measurement metric, to the rankings of all 
participants. This is a variation of a Kemeny scheme (see 
Dwork et. al. 2001) where we restrict ourselves to the user-
submitted responses. It is implemented here by finding the 
participant ordering that has the smallest distance, measured 
by the sum of Kendall's τ's between strings, to the orderings 
of all other participants. Note that we restrict ourselves to 
finding a ranking from the existing set of participants’ 
responses. This method can be extended to find any 
arbitrary rank order that is closest to the “middle” of 
observed rankings, but that approach suffers from well-
known computational complexity problems. 

The fourth method uses the Borda count method, a widely 
used technique from voting theory. In preferential voting 
systems, voters express their candidate choices in terms of 
an ordering of all ballot candidates. In the Borda count 
method, weighted counts are assigned such that the first 
choice “candidate” receives a count of N (where N is the 
number of candidates), the second choice candidate receives 
a count of N-1, and so on. These counts are summed across 
candidates and the candidate with the highest count is 
considered the “most preferred”. Here, we use the Borda 
count to create an ordering over all items by ordering the 
Borda counts.   

Table 2 reports the performance of all of the aggregation 
models. For each, we checked whether the inferred group 
order is correct (C) and measured Kendall's τ. We also 

Table 2: Performance of the four heuristic models and the Thurstonian model 
 

Kemeny Scheme  Thurstonian Model  Borda Counts  Greedy Count  Mode 

Problems     C  τ Rank     C  τ Rank     C  τ Rank     C  τ Rank     C  τ Rank 

books  0  4  96  0  6  88  0  7  82  0  7  82  0  12  40 
city population 

europe  0  11  81  0  11  81  0  11  81  0  13  69  0  17  42 

city population us  0  10  87  0  11  79  0  12  67  0  9  90  0  16  45 
city population world  0  18  59  0  16  73  0  15  77  0  16  73  0  19  44 

country landmass  0  7  76  0  5  95  0  5  95  0  5  95  0  7  76 

country population  0  11  82  0  11  82  0  11  82  0  13  67  0  15  53 

hardness  0  11  91  0  11  91  0  11  91  0  18  31  0  15  46 

holidays  0  5  77  0  4  78  0  4  78  0  4  78  1  0  100 

movies releasedate  0  2  95  0  2  95  0  2  95  0  2  95  0  2  95 
oscar bestmovies  0  3  97  0  4  90  0  3  97  0  5  90  0  3  97 

oscar movies  0  2  96  0  1  100  0  2  96  0  3  88  0  2  96 
presidents  0  1  94  0  2  87  0  3  79  0  1  94  1  0  100 

rivers  0  11  91  0  12  86  0  11  91  0  13  77  0  16  42 

states westeast  0  1  97  0  2  88  0  3  78  0  1  97  0  1  97 
superbowl  0  10  96  0  12  88  0  10  96  0  15  71  0  19  40 

ten amendments  0  2  97  0  4  95  0  5  90  0  4  95  0  4  95 

ten commandments     0  11  82     0  11  82     0  12  74     0  12  74     0  17  51 

AVERAGE  0.0  7.1  87.9  0.0  7.4 86.9 0.0 7.5 85.2 0.0 8.3 80.4  0.1  9.7  68.2

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

86



report in the Rank column the percentage of participants 
who perform worse or the same as the group answer, as 
measured by τ. With the Rank statistic, we can verify the 
wisdom of crowds effect. In an ideal model, the group 
heuristic should perform as well as or better than all of the 
individuals in the group. Table 2 shows the results 
separately for each problem, and averaged across all the 
problems.  

These results show that the mode heuristic leads to the 
worst performance overall in rank. On average, the mode is 
as good or better of an estimate than 68% of participants. 
This means that 32% of participants came up with better 
solutions individually. This is not surprising, since, with an 
ordering of 10 items, it is easily possible that only a few 
participants will agree on the ordering of items. The 
difficulty in inferring the mode makes it an unreliable 
method for constructing a group answer. This problem will 
be exacerbated for orderings involving more than 10 items, 
as the number of possible orderings grows combinatorially. 
The greedy count heuristic performs better than the mode 
overall, but it does not lead to the correct answer for any 
individual problem.  

The Borda count and Kemeny scheme perform relatively 
well in  Kendall's τ and overall rank performance 
measurements. On average, these methods perform with 
ranks of 85% and 88% respectively, indicating that the 
group answers from these methods score amongst the best 
individuals, although 10% of individuals still perform 
better.  

A Thurstonian Model 
Despite comparable statistical performances, the heuristic 
aggregation models create no explicit representation of each 
individual's working knowledge. Therefore, even though the 
methods can aggregate the individual pieces of knowledge 
across individuals, they cannot explain why individuals rank 
the items in a particular way, or how much confidence 
should be placed in the overall group ranking. To address 
this potential weakness, we develop a simple probabilistic 
model based on the seminal Thurstonian approach. 
Although the Thurstonian approach has often been used to 
analyze preference rankings (see Marden, 1997 for an 
overview), it has not been applied, as far as we are aware, to 
ordering problems where there is a ground truth.  

In the Thurstonian approach, the overall item knowledge 
for the group is represented explicitly as a set of coordinates 
on an interval dimension. The interval representation is 
justifiable given that all the problems in our study involve 
one-dimensional concepts (e.g., the relative timing of 
events, or the lengths of items). Specifically, each item is 
represented as a value ߤ୧ along this dimension, where 
݅ ߳ ሼ1,… , ܰሽ. Each individual is assumed to have access to 
the group-level information. We assume, however, that 
individuals do not have precise knowledge about the exact 
location of each item. We model each individual's location 
of the item by a single sample from a distribution, centered 
on the item’s group location. We represent the uncertainty 

associated with this value, ߤ୧, with a Normal distribution, 
Nሺߤ୧,  ୧ሻ. In a fully specified Thurstonian model, once anߪ
individual draws samples for each item, the ordering for that 
individual is based on the ordering of the samples. Figure 1 
shows an example of the group-level information for six 
items, A to G. A particular individual might sample values 
from these distributions such that some items are ranked 
correctly, but other items are transposed. In Figure 1, there 
is a larger degree of uncertainty for item C, making it likely 
that item C is placed incorrectly in the ordering.  

 

 
Figure 1. Example of group-level information for six items.  

 
We apply Bayesian estimation techniques to infer the 

group representation from the individual orderings. 
Bayesian methods have been applied to Thurstonian models 
before (Yao, & Böckenholt, 1999), but here we present a 
simplified version of the Thurstonian model that facilitates 
more efficient Bayesian inference. 

In the simplified model, we do not attempt to explain the 
particular orderings for each individual, but rather the 
pairwise orderings across all individuals. The data for this 
model consist of a N x N count matrix R, where Rሺ݅, ݆ሻ 
contains the number of participants who ordered item i later 
than item j. For example, Figure 2 shows the matrix for the 
Presidents question with the Presidents in the correct order. 
Note that nearly all of the 78 participants correctly place 
George Washington earlier than any of the other Presidents, 
but that Dwight D. Eisenhower, who should be ranked last, 
is often placed earlier than other Presidents. The pairwise 
data therefore indicate some uncertainty about the ranking 
of Eisenhower relative to other Presidents.  

In our model, when determining the relative order of two 
items i and j, a person samples a value from item i, 
,௜ߤ௜ ~ Nሺݔ ,௝ߤ௝ ~ N൫ݔ ,௜ሻ, and also a value from item jߪ  .௝൯ߪ
These values are then compared to each other and item i is 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
A

B

C 
D E F G

Relative Probability by Latent Order Strength  

 
 
Figure 2. Count matrix R for the 'Presidents' question. 

A B C D E F G H I
 George Washington  A 0 0 2 1 1 1 2 1 1 2

 John Adams  B 78 0 29 10 14 7 6 5 4 5
 Thomas Jefferson  C 76 49 0 10 10 1 6 2 3 2

 James Monroe  D 77 68 68 0 45 15 18 14 13 15
 Andrew Jackson  E 77 64 68 33 0 11 9 10 9 11

 Theodore Roosevelt  F 77 71 77 63 67 0 37 18 24 23
 Woodrow Wilson  G 76 72 72 60 69 41 0 22 29 27

 Franklin D. Roosevelt  H 77 73 76 64 68 60 56 0 40 34
 Harry S. Truman  I 77 74 75 65 69 54 49 38 0 38

 Dwight D. Eisenhower J 76 73 76 63 67 55 51 44 40 0

J
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ranked above j whenever ݔ௜ ൐  ௜௝ represent theߠ ௝. Letݔ
probability of the outcome ݔ ൐ ݔ . This probability can be 
determ ed

௜ ௝
in  exactly: 

ߠ ൌ ௜ݔ൫݌ ൐ ௝൯ݔ ൌ Φ൬൫ߤ௜ െ ௝൯ߤ ටߪ௜ଶ ൅ ௝ଶ௜௝ߪ ൗ ൰,      (1) 

where Φ is the cumulative normal distribution. This 
sampling process is repeated for each individual and all item 
pairs. Therefore, the number of times that item i is ranked 
before item j, across a l i  based on the binomial 
distribution: 

l ndividuals, is

R௜௝~ B൫ߠ௜௝,  ൯, (2)ܭ
 

where K is the number of individ ls. ua
In this probabilistic model ߤ୧ and ߪ୧ are the latent 

variables that can be estimated on the basis of the observed 
data R.3 We applied MCMC techniques to estimate the 
latent parameters using a sequence of Metropolis Hasting 
steps. In order to prevent a drift in the items during 
estimation (as there is no natural zero point), we fixed the 
minimum of ߤ୧ to 0 and the maximum of ߤ୧ to 1. We ran 20 
chains with a burn-in of 200 iterations. From each chain, we 
drew 20 samples with an interval of 10 iterations. In total, 
we collected 400 samples. To construct a single group 
answer, we analyzed the ordering of the items according to 
 ୧, separately for each sample, and then picked the mode ofߤ
this distribution. This corresponds to the most likely order in 
the distribution over orders inferred by the model. 

The result of this Thurstonian model is shown in Table 2. 
The model performs approximately as well as the Borda 
count method, but not quite as well as the Kemeny scheme. 
The model does not recover the exact answer for any of the 
17 problems, based on the knowledge provided by the 
current 78 participants. It is possible that a larger sample 
size is needed in order to achieve perfect reconstructions of 
the ground truth.  
 
Visualization of Group Knowledge One advantage of the 
Thurstonian approach is that it allows a visualization of 
group knowledge not only in terms of the order of items, but 
also in terms of the uncertainty associated with each item on 
the interval scale. Figure 3 shows the inferred distributions 
for four problems where the model performed relatively 
well. The crosses correspond to the mean of ߤ୧ across all 
samples, and the error bars represent the standard 
deviations ߪ୧ based on a geometric average across all 
samples.  

These visualizations are intuitive, and show how some 
items are confused with others in the group population.  For 
instance, nearly all participants were able to identify George 
Washington as the first President of the U.S., but many 
confused later Presidents whose terms occurred close to 
each other.  Likewise, there was a large agreement on the 
proper placement of the right to bear arms in the 

                                                           
3 Because of the simplified nature of the model, there is no need 

to explicitly estimate the particular draws x. These have been 
integrated out of the model by virtue of Equation (1) 

amendments question ― this amendment is often popularly 
referred to as “the second amendment”.   

Figure 3. Sample Thurstonian inferred distributions. 
The actual order is the ground truth ordering, while 
the numbers in parentheses show the group answer.  

 
Model Calibration Since the probabilistic model is 
estimated with MCMC techniques, we derive a posterior 
distribution over all group orderings, from which we select 
the mode as the best group answer. Because of this, we can 
also assess the posterior probability of this group answer. 
This probability has a natural interpretation as the model's 
measure of confidence. If the distribution over orders is very 
peaked, most posterior probability is concentrated on the 
modal answer, indicating a high confidence. If, on the other 
hand, the model is uncertain about any of the orderings, a 
low posterior probability, and therefore a low confidence,  is 
given to the modal answer. We can then use this confidence 
measure to assess to what extent the model is calibrated. 
That is, we can ask: do confident answers come close to the 
ground truth? 

Figure 4 shows an ordering of the problems according to 
their confidence values (i.e., the posterior probability of the 
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modal answer). The right panel shows the Kendall 
τ distance between the group answer and the true answer. 
The correlation between confidence and Kendall τ is -.63, 
showing the expected relationship: high confidence 
responses are associated with orderings that are closest to 
the correct ordering. Calibration is important because, in 
practical situations, the ground truth is not available and a 
decision maker need to know how confident to be in the 
aggregated group answer.  

Conclusion 
We have presented four heuristic aggregation approaches, as 
well as a Thurstonian approach, for the problem of 
aggregating rank orders to uncover a ground truth. The 
model comparison showed that the mode is not a reliable 
approach for extracting the ground truth, because few 
individuals agree on the same ordering. We expect that in 
larger ordering tasks, involving more than 10 items, there 
might be no individuals that agree with any other on the 
item ordering. The other heuristic methods, such as the 
greedy count and the Borda count, analyze the orderings 
locally by  counting the number of times items each occur at 
each position. This strategy seems to overcome some of the 
problems with using the mode. The Kemeny scheme 
extracted a group answer by finding an existing answer in 
the data that had the smallest combined  distance to all other 
answers, as measured by Kendall’s τ. This result suggests 
that the idea of finding “prototypical” orderings can lead to 
effective group answers. 

We also presented a Bayesian model based on the classic 
Thurstonian approach. While this model did not outperform 
the heuristic models, it did perform well, and has some 
advantages over the heuristic models. The Bayesian model 
not only extracts a group ordering, but also a representation 
of the uncertainty associated with the ordering. This can be 
visualized to gain insight into mental representations and 
processes. The MCMC estimation procedure used for the 

Bayesian model leads naturally to a distribution over 
orderings. This distribution can be used to measure the 
confidence in any particular group answer. We found that 
this confidence relates to how close the group answer is to 
the true answer. Additionally, although not explored here, 
the Bayesian approach potentially offers advantages over 
heuristic approaches because the probabilistic model can be 
easily expanded with additional sources of knowledge, such 
as confidence judgments from participants and background 
knowledge about the items.  

 
Figure 4. The relation between the confidence in the 
group answer and the Kendall τ distance of the group 
answer to the true answer. 
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Abstract

We evaluate the predictions of surprisal and cue-based
theory of sentence processing using an eye-tracking
corpus, the Potsdam Sentence Corpus. Surprisal is a
measure of processing complexity based on a prob-
abilistic grammar and is computed in terms of the
total probability of structural options that have been
disconfirmed at each input word. The cue-based theory
characterizes processing difficulty in terms of working
memory costs that derive from decay and interference
arising during content-based retrieval requests of pre-
viously processed material (e.g., to incrementally build
the sentence structure). We show that both surprisal
and cue-based parsing independently explain difficulty
in sentences processing and interestingly, they have
an over-additive effect on processing when combined
together.

Keywords: Sentence processing; eye-tracking; cue-
based theory; surprisal; memory retrievals

Introduction

Research in psycholinguistics provides much evidence
for probabilistic disambiguation in human language
processing at various levels including lexical, syntactic
and semantic processing (Jurafsky, 1996, 2003). More
frequent words and structures are easier to compre-
hend than less frequent ones. Surprisal (Hale, 2001) is
a proposal which characterizes processing difficulty in
terms of the amount of work done in probabilistically
disconfirming sentence continuations as a consequence
of the information supplied by the current word. Con-
sider, for example, the famous garden path sentence in
(1). It has been observed that English speakers hearing
this sentence have great difficulty at ”fell”. Hale (2001)
demonstrates using probabilistic context-free grammar
that the difficulty occurs because at ”fell” the parser has
to disconfirm alternatives that together comprise a great
amount of the probability mass.

(1) The horse raced past the barn fell.

Recent research in computational models of sentence
comprehension has shown that surprisal is a signifi-
cant predictor of eye movements while reading indi-
vidual sentences and text (Boston, Hale, Kliegl, Patil,
& Vasishth, 2008; Demberg & Keller, 2008). However,
surprisal is likely to furnish only part of the explana-
tion (Levy, 2008). As Lewis (1996) and Gibson (2000)
argue, sometimes people take longer to process words
that they need to connect to other words processed ear-
lier. Resolving these linguistic relations seems to im-
pose more processing effort even when the construc-
tions are frequent or unsurprising. Grodner and Gibson
(2005) provide evidence using self-paced reading study
which involved reading sentences like (2) below. They
observed monotonically increasing reading time at the
verb ”supervised” as a function of its distance from the
subject ”nurse”.

(2) a. The nurse supervised the ...
b. The nurse from the clinic supervised the ...
c. The nurse who was from the clinic supervised

the ...

This difference between surprisal and integration
cost was addressed by Demberg and Keller (2008), who
compared the predictions of surprisal with Gibson’s
(2000) Dependency Locality Theory (DLT), a theory of
integration difficulty. They found that DLT’s predic-
tions played a limited role in explaining processing dif-
ficulty. DLT was a significant predictor only for reading
times at nouns and verbs. Here we show that surprisal
and retrieval costs unequivocally play a role in deter-
mining processing difficulty. More interestingly, we ob-
served a significant interaction of surprisal and mem-
ory retrievals, suggesting that a simple additive model
of surprisal and retrieval processes will not suffice.

We compared surprisal’s predictions to the cue-based
retrieval model of (Lewis & Vasishth, 2005) (LV05
henceforth) using the Potsdam Sentence Corpus (PSC)
of German (Kliegl, Nuthmann, & Engbert, 2006). The
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cue-based retrieval theory characterizes processing dif-
ficulty in terms of working memory costs that derive
from decay and interference arising during content-
based retrieval requests of previously processed mate-
rial, e.g., to complete dependencies, or to incrementally
build structure.

We implemented cue-based retrieval models for sen-
tences from the PSC, closely following the approach
taken by LV05 and generated predictions for retrieval
cost at each word. We also computed surprisal’s predic-
tions using a probabilistic phrase-structure parser. The
main findings are that (1) retrieval cost furnishes bet-
ter models of eye-fixation measures than models based
on baseline predictors such as unigram and bigram
frequency, word length, Cloze predictability plus sur-
prisal, and (2) surprisal and retrieval cost show a signif-
icant interaction in predicting reading times.

Surprisal
Surprisal offers a theoretical reason why a particular
word in a sentence should be easier or more difficult
to comprehend on the basis of underlying probabilistic
grammatical knowledge of the language. The idea of
surprisal is to model processing difficulty as a logarith-
mic function of the probability mass eliminated by the
most recently added word. This number is a measure
of the information value of the word just seen, as rated
by the grammar’s probability model; it is nonnegative
and unbounded. More formally, the surprisal of the nth

word (wn) in a sentence is defined as the log-ratio of the
prefix probability before seeing the word, compared to
the prefix probability after seeing it. The prefix proba-
bility at word wn is defined as the total probability of
all grammatical analyses that derive the prefix string
w = w1 · · ·wn which is initial part of the bigger string
wv. For grammar G and a set of derivations D the prefix
probability αn at word wn can be expressed as:

pre f ix probability(w,G) = ∑
d∈D(G,wv)

probability(d) = αn

Then, the surprisal at wn is:

surprisal(wn) = log2(
αn−1

αn
)

Intuitively, surprisal and hence the difficulty of pro-
cessing increases when a parser is required to build
some low-probability structure.

Cue-based theory
The cue-based theory of sentence processing is derived
from the application of independently motivated prin-
ciples of memory and cognitive skills to the specialized
task of sentence parsing. As a result, sentence process-
ing emerges as a series of skilled associative memory
retrievals modulated by similarity-based interference

and fluctuating activation. The corresponding pars-
ing model is implemented in the cognitive architecture
ACT-R (Anderson et al., 2005) which formalizes the cog-
nitive principles mentioned above in terms of the fol-
lowing set of equations:

1. The base activation (Bi) of chunk i, where t j is the time
since the jth retrieval of the item, d is the decay pa-
rameter, and the summation is over all n retrievals,
is

Bi = ln(
n

∑
j=1

t−d
j )

2. Total activation (Ai) of a chunk i is defined as the sum-
mation of its base activation and strength of associa-
tion. Wj is the amount of activation from the elements
j in the goal buffer and S jis are the strengths of asso-
ciation from elements j to chunk i

Ai = Bi +∑
j

WjS ji

3. S ji is defined in terms of f an j which is the number of
items associated with j

S ji = S− ln( f an j)

4. Retrieval latency of chunk i is defined in terms of Ai
and F, a scaling constant

Ti = Fe−Ai

The cue-based retrieval theory quantifies the process-
ing difficulty at each word in terms of its attachment
time, which is the sum of (i) the time required to retrieve
the currently-built syntactic structure in order to attach
the word into that structure, and (ii) a baseline cost of
100 milliseconds, which is the time required for the ex-
ecution of the retrieval request and the subsequent at-
tachment of the current word into the existing structure.
See LV05 for details about data structures and the pars-
ing algorithm used.

To summarize, the delay in retrieval of a prior syn-
tactic element due to similarity based interference and
fluctuating activation is assumed to induce difficulty in
processing.

Experiment
The experiment involved a quantitative evaluation of
the predictions of surprisal and cue-based theory using
a corpus of eye movements during reading single sen-
tences.

Methods
Data For the analyses in this paper, we selected 32
sentences from the Potsdam Sentence Corpus (PSC),
which is an eye-tracking corpus consisting of fixation
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durations recorded from 222 persons, each reading
144 German sentences (Kliegl, Nuthmann, & Engbert,
2006). These 32 sentences were selected in a way that
enabled us to cover a wide range of syntactic structures.

For generating surprisal values for each word in
these selected sentences we used a probabilistic context-
free phrase-structure parser from Levy (2008), which is
an implementation of Stolcke’s Earley parser (Stolcke,
1995). We unlexicalized the parser to avoid overlap of
surprisal’s predictions with the word frequency effect.

We hand-crafted an ACT-R model for each selected
sentence, closely following the approach taken by LV05.
The model of each sentence was run for 30 simulations
and a prediction of attachment time for every word was
generated by averaging across all simulations. All ACT-
R parameter values were kept the same as those used
by LV05 except for activation noise. In LV05, five out
of six simulations were carried out without switching
on the activation noise. They also noted from prelimi-
nary experiments that adding activation noise did not
change their results significantly. Since, one of ACT-R‘s
standard assumptions is that there is always some noise
added to the activation value of a chunk at each re-
trieval which permits modeling various kinds of mem-
ory errors, we set its value to 0.45 (this was one of the
values used in Vasishth, Bruessow, Lewis, & Drenhaus,
2008).

Statistical Analyses The statistical analyses were car-
ried out using linear mixed-effects models (Bates &
Sarkar, 2007; Gelman & Hill, 2007) and the Deviance In-
formation Criterion or DIC (Gelman & Hill, 2007, 524–
527) was used to compare the relative goodness of fit
between simpler and complex models. Linear models
were fit for the following ”early” and ”late” eye move-
ments measures:

SFD - fixation duration on a word during first pass if it
is fixated only once

FFD - time spent on a word, provided that the word is
fixated during the first pass

FPRT - the sum of all fixations on a word during the
first pass

TRT - the sum of all fixations

FPSKIP - the probability of skipping the word during
the first pass

We considered following baseline predictors in addi-
tion to surprisal and attachment time:

unigram - logarithm of token frequency of a word
in Das Digitale Wörterbuch der deutschen Sprache
des 20. Jahrhunderts (DWDS) (Geyken, 2007; Kliegl,
Geyken, Hanneforth, & Würzner, 2006)

bigram - logarithm of the conditional likelihood of a
word given its left neighbor in DWDS (also called
transitional probability)

word length - number of characters in conventional
spelling

predictability - empirical predictability as measured
in a Cloze task with human subjects (Taylor, 1953;
Ehrlich & Rayner, 1981; Kliegl, Grabner, Rolfs, & En-
gbert, 2004)

Sentences and participants were treated as partially
crossed random factors; that is, we estimated the vari-
ances associated with differences between participants
and differences between sentences, in addition to resid-
ual variance of the dependent measures. For the anal-
ysis of FPSKIP (coded as a binary response for each
word: 1 signified that a skipping occurred at a word,
and 0 that it did not), we used a generalized lin-
ear mixed-effects model with a binomial link function
(Bates & Sarkar, 2007; Gelman & Hill, 2007).

For each reading time analysis reported below, read-
ing times more than three standard deviations away
from the mean were removed before the analyses, ex-
cluding at most 1.7% of the data. Attachment time and
all dependent measures except FPSKIP were log trans-
formed. Word length, surprisal and attachment time
were centered in order to render the intercept of the sta-
tistical models easier to interpret.

In the initial analyses, as expected, we found
collinearity among the baseline predictors. Since
collinearity can inflate the estimates of coefficients‘
standard errors leading to unreliable results, and can
also lead to uninterpretable coefficient values, removal
of collinearity between predictors was crucial before fit-
ting the linear models for different fixation measures.
For removing collinearity, we incrementally regressed
each of these predictors against one or more baseline
predictors and used residuals of the regressions as the
predictors in the subsequent linear models. This was
done in the following three steps:

1. Regression of unigram frequency against word
length-
uni.res = residuals (unigram ~ length)

2. Regression of bigram frequency against word length
and residual unigram values obtained from step 1-
bi.res = residuals (bigram ~ length + uni.res)

3. Regression of predictability against word length,
residual unigram and bigram obtained from step 1 &
2-
pred.res = residuals (predictability ~ length + uni.res
+ bi.res)
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As a result, we had four baseline predictors — length,
uni.res, bi.res, pred.res — which were completely non-
collinear.

Table 1: Linear model coefficients, standard errors and
t-values for surprisal, attachment time and interaction
of attachment time and surprisal. An absolute t-value
of 2 or greater indicates statistical signicance at α = 0.05.

Coef SE t-value
SFD
surprisal 0.021722 0.001195 18
att. time 0.084338 0.013722 6
att. time:surprisal 0.048706 0.009518 5

FFD
surprisal 0.018304 0.001032 18
att. time 0.062361 0.012361 5
att. time:surprisal 0.039307 0.008327 5

FPRT
surprisal 0.021520 0.001217 18
att. time 0.056154 0.014221 4
att. time:surprisal 0.050750 0.009743 5

TRT
surprisal 0.028558 0.001389 21
att. time 0.058249 0.016197 4
att. time:surprisal 0.055988 0.011128 5

Table 2: Linear model coefficients, standard errors and
t-values for baseline predictors for TRT.

Coef SE t-value

TRT
length 0.031052 0.000949 33
uni.res -0.023228 0.002322 -10
bi.res -0.011984 0.000879 -14
pred.res -0.006162 0.002752 -2

Table 3: Linear model coefficients, standard error, z-
scores and p-values with FPSKIP as the dependent mea-
sure.

Coef SE z-score p-value
att. time -0.51588 0.09401 -5.5 <0.001
surprisal -0.18235 0.01000 -18.2 <0.001
att. time:surp -0.12521 0.08067 -1.6 0.121

Table 4: Deviance Information Criterion values for sim-
pler model (baseline predictors + surprisal) vs. more
complex model (simpler model + attachment time).

Simpler model Complex model
SFD 8624.7 8576.5
FFD 9908.0 9873.1
FPRT 22606.0 22581.9
TRT 30695.5 30674.6
FPSKIP 36140.8 36111.5

Results & Discussion

The results of the mixed-effects models are summarized
in tables 1 to 3. We observed significant main effects
of both surprisal and attachment cost across ”early” as
well as ”late” measures and also on FPSKIP. The coeffi-
cient for FPSKIP is negative reflecting the fact that the
probability of fixating a word increases with increase
in surprisal and retrieval cost. These results illustrate
that surprisal as well as retrieval cost can account for
variance in eye-tracking measures independent of base-
line predictors (such as unigram and bigram frequency,
word length, Cloze predictability, etc.). For compari-
son, coefficients of baseline predictors for TRT are listed
in table 2; similar coefficient values were obtained for
other reading time measures.

The interaction of attachment time and surprisal is
significant for all measures except for FPSKIP (though
even in this case the coefficient has the expected sign),
which indicates that there is a disproportionate increase
in reading difficulty when both surprisal and retrieval
cost are high.

Table 4 compares the DIC values for simpler models
(baseline predictors + surprisal) and complex models
(baseline predictors + surprisal + attachment time). For
all dependent measures the predictive error (DIC value)
was lower in the more complex model that included at-
tachment time, which means that the complex models
should be preferred to the simpler ones.

Retrieval cost, surprisal and their interaction show
effects on ”early” as well as ”late” measures. This
suggests that structure-building and retrieval processes
start very soon after lexical access begins.

Implications for eye movement models Besides the
contribution to psycholinguistic theories, this work can
contribute towards extending models of eye move-
ment control such as E-Z Reader (Pollatsek, Reichle, &
Rayner, 2006) and SWIFT (Engbert, Nuthmann, Richter,
& Kliegl, 2005) which despite being the two most fully
developed models of eye movements, do not incor-
porate any theory of language processing. The latest
version of E-Z Reader (Reichle, Warren, & McConnell,
2009) makes an attempt in this direction by augmenting
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the model with a post-lexical integration stage, named
I. This stage is assumed to reflect all of the post-lexical
processing like linking the word into a syntactic struc-
ture, generating a context-appropriate semantic repre-
sentation, and incorporating its meaning into a dis-
course model. However, the amount of time to com-
plete I, t(I), is independent of the language processing
demands at that word; instead t(I) is sampled from a
gamma distribution having a mean of 25 msec and stan-
dard deviation of 0.22. Models of sentence processing
like the two evaluated here or, preferably, a systematic
combination of them would offer a more realistic way
of computing t(I). A similar approach of incorporating
post-lexical processes can be taken in other eye move-
ment models depending on the particular architecture
of each model.

Conclusions
This work evaluated the combined contribution of two
theories of sentence processing, viz., surprisal and cue-
based retrieval theory. The two approaches capture dif-
ferent aspects of sentence processing, namely instanta-
neous probabilistic disambiguation and processing con-
straints due to memory retrievals. It was shown that
when effects of these theories were combined together
to predict eye movements measures, they emerged as
significant predictors even when word length, n-gram
frequency and Cloze predictability were taken into ac-
count. Moreover, they showed an over-additive effect
on several eye movements measures. This needs to be
taken into account in future models of sentence process-
ing that integrate surprisal and retrieval costs. Also,
models of eye movement could benefit from this work.
Although the size of the evaluation corpus is small (to-
tal 32 sentences and 222 participants) and models of
cue-base parsing were hand-crafted, this work serves as
a first step towards developing a broad coverage model
of sentence processing that combines the two processes
– probabilistic disambiguation and memory retrieval –
in a principled way.
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Abstract 

Much can be learned about the world by examining the 
discrepancies between what is expected and what 
actually occurs. Although many formal learning theories 
make use of prediction error as an important— even 
necessary—component in explaining behavior, this 
source of evidence has been largely overlooked in the 
language-learning literature. In this paper, we show how 
incorporating prediction error into a model of plural 
word learning (Ramscar & Yarlett, 2007) can yield a 
surprising prediction: that at an appropriate point in 
learning, the tendency of children to over-regularize 
irregular plurals can be reduced, by exposing them to 
regular plurals alone.  We report on an experiment, 
which was designed to test the model's predictions 
empirically. The findings indicate that memory testing 
on regular plurals led to significant reductions in the 
rates of plural over-regularization in six-year-olds.  

Introduction 
Gregory: “Is there any other point to which you would 

wish to draw my attention?” 
Holmes: “To the curious incident of the dog in the night-

time.” 
Gregory: “The dog did nothing in the night-time.” 
Holmes: “That was the curious incident.” 
“Silver Blaze,” Sir Arthur Conan Doyle. 
 

A racehorse vanishes on the eve of an important race, 
its trainer murdered. Sherlock Holmes lights upon a 
crucial piece of evidence: a dog on the premises has 
remained silent throughout the time in question. The 
fact that the dog did not bark – and thus, that an 
expected event did not occur – proves an important clue 
to the identity of the murderer.  As the curious incident 
of the dog in the nighttime reminds us, much can be 
learned from discrepancies between what is expected 
and what actually occurs.  

In what follows, we show how in the ordinary course 
of their lives, people use the discrepancy between what 
they expect and what they actually experience as a vital 
source of information in learning; and that often, as in 
the case of Sherlock Holmes and The Silver Blaze, the 
non-occurrence of expected events provides important 
negative evidence.  That people use such evidence is 
only natural: expectation and prediction-error are 
important components of animal learning (Rescorla, 
1988). However, these factors have been largely 
overlooked in discussions of children’s learning, 

especially in relation to language. The extensive 
literature asserting the lack of negative evidence to 
children learning language (e.g., Chomsky, 1959; 
Pinker, 1984, 2004; Marcus, 1993) either ignores 
expectation and error-driven learning, or treats them 
superficially at best. Expectation is usually dismissed as 
a weak form of ‘indirect negative evidence’ that can 
offer little to no assistance in the complex process of 
language acquisition (Pinker, 2004). Here we show that 
prediction-error provides an abundant source of 
evidence in human learning, and in particular language 
learning, by testing and confirming an intriguing 
prediction that error-driven learning makes about 
children’s plural over-regularization errors: namely, 
that at an appropriate point in learning, the tendency of 
children to over-regularize irregular plurals can be 
reduced through exposure to regular plurals alone. 

Prediction error and learning theory  
Formal learning models are able to account for a wide 
range of the effects associated with learning by 
assuming that learning is driven by the discrepancy 
between what is expected and what is actually observed 
(error-driven learning). The learned predictive value of 
cues produces expectations, and any difference in the 
value of what is expected versus what is experienced 
produces further learning. In the Rescorla-Wagner 
(1972) model, for example, the change in associative 
strength between a stimulus i and a response (or event) j 
on trial n is defined as: 1 

 

ΔVij
n

 =α i β j  (λj – Vtotal)   (1) 
 

Learning is governed by the value of (λj - VTOTAL) where 
λj is the value of the predicted event and Vtotal is the 
predictive value of a set of cues.  In the ordinary course 
of learning, the discrepancy between λj and Vtotal 
reduces over repeated trials, producing a negatively 
accelerated learning curve, and asymptotic learning.  

What is often overlooked is what happens when a 
predicted event does not occur. If a cue predicts 
something that doesn’t follow, then λj will have a value 
                                                             
1 n indexes the current trial. 0 ≤ αi ≤ 1 denotes the saliency of 
cue i, 0 ≤ βj ≤ 1 denotes the learning rate of eventj, λj denotes 
the maximum amount of associative strength that cuej can 
support, and Vtotal is the sum of the associative strengths 
between all cuesj present on the current trial and eventj. 
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of zero for that trial. In this case the discrepancy (λj - 

VTOTAL) will have a negative value, resulting in a 
reduction in the associative strength between the cues 
present on that trial and the absent feature j. For 
example, in modeling learning in a dog being trained to 
expect food when a bell is sounded, setting λj to 1 for 
training trials where food is given, and 0 for later trials 
when no food appears, allows for the characteristic 
patterns of training and extinction to be modelled. This 
means that latent learning about the relationship 
between cues and events that are not actually present 
occurs in these circumstances, and it is this process that 
is a key aspect of learning. 

Thus, in error-driven learning, cues compete with one 
another for relevance, producing associative learning 
patterns that can differ greatly from those that would 
arise out of a record of the correlation between cues and 
outcomes (Rescorla, 1988). There is evidence for this 
mechanism at a neural level. Increases and decreases in 
the firing rates of monkeys’ striatal dopamine neurons 
appear to track the degree to which the outcomes of 
training trials are under- or over-predicted (Hollerman 
& Schulz, 1998). 

 

 
 
Figure 1.  Four logical situations a child might arrive at while 
trying to “learn” a language (for the purposes of the example, 
language learning is assumed to be a process in which the 
child guesses the grammar that underlies that adult target 
language). Each circle represents the set of sentences 
constituting a language. “H” stands for the child’s 
“hypothesized language”; “T” stands for the adult  “target 
language.” “+” indicates a grammatical sentence in the 
language the child is trying to learn, and “-” represents an 
ungrammatical sentence (Pinker, 1989). 

Expectation in language learning  
A good example of the considerations that have led to 

the widespread belief that much of the conceptual 
structure of language is innate (see e.g. Pinker, 1984) is 
the “logical problem of language acquisition” (LPLA). 
A classic statement of this is provided by Pinker (1984) 
and is depicted in Figure 1. According to the LPLA, in 
attempting, to learn language, children “hypothesize the 
grammar of the adult language” (strictly, the child’s 
task is to guess guessing the set of grammatical 
sentences that comprise a language; Gold, 1967).  

Possible languages are depicted as circles 
corresponding to sets of word sequences, and four 
logical possibilities for how a child’s hypothesis might 
differ from adult language are given. In the first 

possibility (a), the child’s hypothesis language, H, is 
disjoint from the language to be acquired (the “target 
language” - T). In terms of noun usage, on which we 
focus here, this corresponds to the state of a child 
learning English who cannot produce any well-formed 
noun plurals (the child might say things like “the 
mouses” but never “the mice.”). In (b), the sets H and T 
intersect, corresponding to a child who has learned 
some nouns correctly but others incorrectly (the child 
uses nouns like “mice” alongside incorrect words like 
“gooses”). In (c), H is a subset of T, which means that 
the child has mastered usage of some but not all English 
noun plurals and never uses forms that are not part of 
English. Finally, in (d), H is a superset of T, meaning 
that the child has mastered all English nouns but 
nevertheless produces some forms that are not part of 
the English language (i.e., the child says both “mouses” 
and “mice” interchangeably).  

Since the LPLA assumes that learners cannot recover 
from erroneous inferences without corrective feedback, 
and because children do not get the kind of feedback 
required (Brown & Hanlon, 1970), in addition to the 
fact that they through stage (d), it follows accordingly 
that, children cannot acquire language simply by 
attending to the input. (Indeed, the idea that language is 
learned purely from experience is often regarded as 
having been effectively disproved; see Baker, 1979; 
Gold, 1967; Pinker, 1989) 

However, the assumption that explicit negative 
feedback is needed for children to correct errors is 
entirely inconsistent with the principles of error-driven 
learning described above, and Ramscar and Yarlett 
(2007) provide an account of the way that general error-
driven learning principles can give rise to the patterns 
of children’s plural inflection acquisition. Ramscar and 
Yarlett’s (2007) model represents plural items as 
semantic cues to phonological outcomes. Each item is 
an exemplar comprising an associatively linked 
semantic and a phonological component. For example, 
the plural noun CARS is represented by a couplet 
encoding the association between the general semantics 
of cars, including their plurality, and the phonological 
form /carz/. The model assumes that learning is driven 
both by what the child has heard, and what the child 
expects to hear based on prior experience.   

Over-regularization – children saying foots instead of 
feet, for example – arises in the model out of an initial 
failure to discriminate the individual semantic cues to 
particular plural words. In early learning, this lack of 
discrimination results in interference when shared cues 
activate frequent (and thus strongly learned) regular 
forms during the production of infrequent (and thus 
weakly learned) irregular forms.  Interference thus 
results from prediction error generated by shared 
semantic cues. Accordingly, the associative values of 
these shared cues get weakened as learning progresses, 
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which results in irregular forms becoming better 
discriminated and a decline in interference. Because 
regular and irregular forms are learned at different rates 
(there are far more regular than irregular plurals) and 
require different degrees of discrimination (regular 
plurals are supported by other regulars, but interfere 
with irregulars) the model predicts that interference 
effects will worsen for a time in the earliest stages of 
learning (because of the speed with which regular forms 
are learned), before slowly resolving as irregular forms 
become better learned. The model thus predicted that 
older children could improve their production of correct 
irregulars by repeatedly generating plurals (indeed even 
if they produce over-regularizations), but that this might 
be less beneficial to younger children.  

These predictions were supported by the outcomes of 
several empirical tests (Ramscar & Yarlett, 2007). In 
one study, children repeatedly named plurals (correctly 
and incorrectly) for several blocks of regular and 
irregular items. The older children converged on the 
correct irregular plurals (e.g., production of “child” 
decreased, while “children” increased), without 
corrective feedback, however under the same 
conditions, younger children’s over-regularization 
worsened, consistent with ‘U-shaped’ learning.  A 
similar pattern of data was obtained when a semantic 
memory task for pictures was interspersed between pre- 
and post- tests of plural production: older children who 
performed an old/new task on pictures of regular and 
irregular plural items over-regularized less on the post-
test, while younger children over-regularized more. 
Can over-regularization be reduced by exposure to 
regular items alone? 

 A strong, very counterintuitive prediction that arises 
out of the principles of error-driven learning was not 
tested in Ramscar & Yarlett’s (2007) studies. This is 
that at an appropriate point in learning, children’s 
tendency to over-regularize irregular plurals will be 
reduced if they given training on only regular plurals. 
The way that this surprising prediction arises can be 
explained as follows: because regular nouns in English 
are frequent (both in terms of the number of regular 
plural noun types, and the overall number of plural 
noun tokens that are regular), the majority of plural 
forms cued by “plurality” will be plural forms which 
resemble their singular forms, but which end in + /S/. 
Since over-regularization is a failure to discriminate the 
appropriate cues to individual items present, (i.e., 
generalization) – if children encounter the cues of to 
regular plurals (e.g., a group of dogs), poor 
discrimination will result in the prediction of irregulars.  
The resultant prediction error will lead to children 
learning to negatively associate regular cues with 
irregular forms, which will increase the discrimination 
of regulars and irregulars. This increased discrimination 
of irregular plurals will in turn lead to a reduction in 

over-regularization. Further, although prediction errors 
for irregular items are caused by the activation of the 
cues for regular items, the erroneous prediction of 
irregulars is a function of how well the irregular items 
have been learned. Early in development, when 
irregulars are weakly learned, exposure to regular 
plurals will generate little irregular prediction error as 
compared to later in development, when irregulars will 
be better learned. 

Simulation Experiment 
To formally test these ideas, we implemented a 

simple model of how children might learn to 
discriminate plural forms over time (see also Ramscar 
& Yarlett, 2007). The model assumes that plural items 
are represented as semantic cues to phonological 
outcomes. In early learning, over-regularization arises 
because the semantic representations of irregular plural 
items are not sufficiently discriminated from those of 
regular plurals, i.e., children initially tend to pluralize in 
response to general plurality, rather than in response to 
specific plural items (Ramscar & Yarlett, 2007). In the 
simulation, this was represented in terms of two 
competing hypotheses, which were reinforced 
whenever an irregular plural item was presented. One 
hypothesis was item specific (e.g., plural mouse is the 
cue to mice), while the other was more general (i.e., 
e.g., plurality is the cue to mice). Simultaneously, we 
simulated the learning of regular plurals. Due to the fact 
that regular plurals occur more frequently, and because 
their singular and plural forms overlap, we assumed that 
they offer more support to the general plural semantic 
hypothesis than irregular plurals, which instead offer 
support to more item-specific hypotheses.  

Learning about the couplets was simulated using the 
Rescorla-Wagner (1972) rule described above. In the 
simulation, the learning rate, βj , for the semantic 
hypotheses (cues) was set at a constant, and λj was set at 
100% for the semantic-phonological couplets, which 
included both regular and irregular plurals forms. To 
simulate the high type and token frequency of regular 
plurals, Vij for the regular plurals was learned with αi 
set to a high value (i.e., in the Rescorla-Wagner model, 
αi effectively serves as a separate learning rate for each 
cuei) while Vij for the irregular plurals was learned with 
αi set to a low value.2 This allowed training to be 
simulated by alternately presenting the model with 
regular and irregular items in training, to simulate a 
child’s exposure to regular and irregular plurals at 
different frequency levels.  

To examine the effect of exposure to regular plurals 
alone at different stages in learning, the presentation of 
irregular plurals was withheld for 10 trials, the first of 

                                                             
2 In the simulation: β j =0.3 α I regular=0.4; α I irregular=0.15. 
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these coming early in the model’s training, and the 
second later in training, after the response to regular 
plurals had asymptoted. Figure 2 shows the learning of 
the two irregular hypotheses (general and specific) and 
the general regular hypothesis. 

 

 

Figure 2.  Learning of the semantic cues to an irregular item 
such as mice and the regular /S/. The periods in which no 
irregular trials occured appear as horizontal lines on the plot 
representing the multiple mouse items⇒ mice hypothesis.  

 
As in Ramscar & Yarlett (2007) the likelihood of 

over-regularization (i.e. failure to produce the learned 
response) was modeled as a result of response 
competition, caused by spreading activation to items in 
memory that are activated by the semantics of the 
situation but which correspond to different 
phonological forms. This activation is modeled as a 
function of the degree to which the competing 
semantic-phonological couplets have been learned, the 
strength of the semantic cue that co-activates them and 
a spreading activation parameter S (Ramscar & Yarlett, 
2007). Figure 3 shows the strength of this interference 
signal across the training period, and Figure 4 shows 
the effect this competition has on the likelihood that a 
learned irregular response will be reproduced. In Figure 
4, response propensity is calculated by subtracting the 
value of the interference signal from the value of the 
correct response (Ramscar & Yarlett, 2007). 

 As can be seen from Figures 3 and 4, prediction 
errors for irregular items are caused by the activation of 
cues related to regular items, which results in the 
unlearning of the multiple items⇒irregular cue. Early 
in development, when irregulars are weakly learned, 
exposure to regular plurals will generate less overall 
irregular prediction error, and the overall frequency of 
regulars will result in a steady increase in the level of 
interference that produces over-regularization. Later in 
development, exposure to regular plurals produces more 
irregular prediction error, and interference no longer 
increases. As a result, the model predicts that depending 

on the overall prior exposure a child has had to plurals, 
exposure to regular plurals alone can lead to opposite 
effects (e.g., ‘U-shaped’ learning; Ramscar & Yarlett’s 
2007 model and empirical data showed that 
interspersing regular and irregular items produced this 
pattern of learning). 

 

 

Figure 3. Interference and imitation in training. These 
parameter values were chosen to best illustrate our 
predictions; the important thing to note is the wunderlying 
relationship that arises out of the different learning rates. 
 

 

Figure 4.  Response propensity levels over training. Over-
regularization will be likely when this value is negative. 

Human Experiment 

We tested these predictions using a semantic old/new 
task to expose children to regular plurals, and a test-
train-test paradigm to establish a baseline rate of over-
regularization for each child. This allowed us to 
examine the effect of children’s exposure to regular 
plurals has on later irregular plural production (see 
Ramscar & Yarlett, 2007). Semantic priming (e.g., 
where priming the semantics of “doctor” yields shorter 
response latencies in a lexical decision task on “nurse”; 
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Meyer & Schvaneveldt, 1971) indicates that 
phonological and orthographic representations can be 
activated by cueing their semantic features. The 
Ramscar & Yarlett (2007) model assumes that until the 
representation of a phonological–semantic association 
reaches asymptote, the activation of an association can 
strengthen its representation (see Roediger & Karpicke, 
2006). Thus explicitly priming the semantics of the 
nouns, even in the absence of any overt naming 
responses by the child, was expected to be sufficient to 
produce errors in prediction and subsequent latent 
learning. Furthermore, by not having children explicitly 
name items, we aimed to reduced the effects of 
perseveration on spoken motor responses have in 
children’s performance during a post-test. This we 
expected would allow for a better measure of their 
representation of the items tested. 
Participants  

24 four and 23 six year old children living resident in 
the vicinity of Palo Alto, California, and recruited from 
a database of volunteers. The average ages were 4 years 
and 7 months for the four year olds, and 6 years and 7 
months for the six year olds.   
Methods and materials 

The children were randomly assigned to two groups, 
both of which were pre-tested on plural production.3  In 
the elicitation test the children were asked to help a 
cookie monster puppet name a series of six irregular 
nouns, and six regular pairings of plural nouns. The 
children sat with the experimenter and named the nouns 
first from singular and then from plural depictions that 
were presented on a laptop computer. 

In the experimental condition the children then 
performed an old/new task in which they were asked to 
tell a cookie monster whether or not they had seen 
depictions similar to those they had named in the pre-
test. All depictions of the “old” items in training were 
novel, which required children to make categorization 
judgments to generate the correct answers. The children 
were asked to help the cookie monster identify them 
“By telling him, yes or no” to indicate whether they had 
already seen these depictions or not.  When an object 
appeared, the experimenter asked the child to “Look at 
those – did cookie monster see those before?” Children 
who did not spontaneously respond were prompted, 
“Did cookie see these? Yes? No?”. If no response was 
forthcoming, the experimenter proceeded to the next 
item. Half of the presented items were new depictions 

                                                             
3 The irregular items were MOUSE-MICE, CHILD-
CHILDREN, SNOWMAN-SNOWMEN, GOOSE-GOOSE, 
TOOTH-TEETH and FOOT-FEET; the regular matches were 
RAT, DOLL, COW, DUCK, EAR, and HAND. Ramscar & 
Yarlett (2007) Experiment 1 revealed that although children 
of these ages over-regularize these irregular plurals, they have 
reliable knowledge of their correct forms. 

of the regular items in the pre-test and half were foils. 
The children were thus tested on 12 new and 12 old 
items per block. All of the items were presented as 
depictions on a computer screen.  

In the control condition, the children were shown 6 
color slides after the pre-test, and then asked to tell the 
cookie monster whether they had seen that particular 
color before in an old/new task that contained an equal 
number of foils. The colors were presented as blocks 
filling the computer screen to avoid cuing any notion of 
plurality. The total time to complete each was equal. 
Both sets of children were then post-tested on exactly 
the same set of depictions that were used in the pre-test.  

 

 

Figure 5.  Pre and post test performance by age and condition 
 
Results  

The results overwhelmingly supported our 
predictions. The performance of the older children in 
the experimental condition improved between pre-and 
post test (t(64)=2.256, p<0.05) while the performance 
of the younger children declined (t(66)=1.955, p<0.05). 
There was little change in the performance of either age 
group in the control condition (see Figure 5). A 2 (pre- 
to post- test) x 2 (age) x 2 (condition) repeated 
measures ANOVA of the children’s plural production 
revealed a significant interaction between age and pre- 
to post-test performance (F(1,43) = 8.32, p<0.01), and a 
significant interaction between age, training type and 
pre- to post-test performance (F(1,266) = 4.235, p=.05).  

General Discussion 

We found that testing memory for regular plurals 
significantly reduced the rates of plural over-
regularization in six-year-olds. Though the strength of 
these results is likely to have been influenced by 
recency (children named the irregulars immediately 
prior to regular training), what is clear that the children 
learned about irregular plurals, and improved their 
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production of them, even though none were present 
during the training trials. We feel that, to the extent that 
this result is surprising, this surprise is due to the lack 
of widespread understanding of error-driven learning 
processes (see also Rescorla, 1988).  

Overwhelmingly, research into language learning has 
pre-occupied itself with the observable: that is, with 
what a child hears or sees. Researchers have variously 
touted “the lack of negative evidence” in language 
learning as a constraint on theory (Marcus, 1993; 
Pinker, 2004), and much virtue is attributed to models 
that learn from “positive evidence” alone.  We feel this 
is regrettable. There is good reason to believe that error-
driven learning describes the principal mechanism by 
which people acquire information about their 
environment (Miller, Barnet & Grahame, 1995; Siegel 
& Allen, 1996; Ramscar & Yarlett, 2007; Ramscar, et 
al, in submission). The basic principles of error-driven 
learning are supported both by animal (e.g., Kamin, 
1969; Rescorla & Wagner, 1972) and neurobiological 
models (e.g., Hollerman & Schultz, 1998; Barlow, 
2001). In developing accounts of human learning, error-
driven learning ought to be primarily considered when 
it comes to establishing conceptual and theoretical 
constraints and default hypotheses. 

Extrapolating from the findings presented here (see 
also Ramscar & Yarlett, 2007; Ramscar et al, in 
submission), it seems likely that the processes involved 
in verbal learning – reducing prediction-error between 
semantic cues in the world and linguistic forms – are 
critical to the development of our use of language as an 
abstract representational device in communication.  

Understanding language in terms of learning may, in 
the future, involve a reassessment of what human 
communication involves, requiring and inspiring new 
theories of language and its role in culture 
(Wittgenstein, 1953; Quine, 1960; Tomasello, 1999). At 
the very least, we would argue that simply reversing the 
trend to of ignoring learning in human development, we 
can and will reap many important scientific benefits. 
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Abstract

We simulate the evolution of a domain language in small
speaker communities. Data from experiments (Garrod et al.,
2007; Fay et al., 2008) show that human communicators can
evolve graphical languages quickly in a constrained task (Pic-
tionary), and that communities converge towards a common
language even in the absence of feedback about the success
of each communication. We postulate that simulations of such
horizontal evolution have to take into account properties of hu-
man memory (cue-based retrieval, learning, decay). We imple-
ment a model that can draw abstract concepts through sets of
non-abstract, related concepts, and recognize such drawings.
The knowledge base is a network with association strengths
randomly sampled from a natural distribution found in a text
corpus; it is a mixture of knowledge shared between agents
and individual knowledge. In three experiments, we show that
the agent communities converge, but that initial convergence
is stronger when communities are structured so that the same
pairs of agents interact throughout. Convergence is weaker in
communities when agents do not swap roles (between recog-
nizing and drawing), predicting the necessity of bi-directional
communication in domain language evolution. Average and ul-
timate recognition performance depends on how much of the
knowledge agents share initially.

Keywords: Alignment; Language Evolution; Domain Lan-
guages; Microevolution; Cognitive Architectures, Multi-Agent
Simulation

Introduction
Languages evolve: like biological systems, they undergo mu-
tation and selection as they are passed on between speakers
and generations. Similar to its biological counterpart, human
communication evolves under environmental constraints. Fit-
ness of a communication device (software) is a function also
of the cognitive hardware: cognitive facilities constrain the
language system. In this paper, we use an independently mo-
tivated cognitive memory architecture to constrain an evolu-
tionary process that produces a communication system.

Recent models of dialogue describe how interlocutors de-
velop representation systems in order to communicate; such
systems can, for instance, be observed using referring expres-
sions that identify locations in a maze. Experiments have
shown that referring expressions converge on a common stan-
dard (Garrod & Doherty, 1994). Pickering & Garrod’s (2004)
Interactive Alignment Model suggests that explicit negotia-
tion and separate models of the interlocutor’s mental state
aren’t necessary, as long as each speaker tends to adapt to
themselves and their interlocutors, as they are known to do
on even simple, linguistic levels (lexical, syntactic).

Some evolutionary models (vertical models) see the trans-
mission of cultural information as a directed process, in
which information is passed only from the older to the
younger generation. Horizontal models explain the emer-

gence of language as a continuous process within genera-
tions. Individualistic models of language evolution assume
that innate learning and processing systems set a prior, to-
wards which language converges. Interaction and the cultural
environment do not leave marks in the resulting language.
Collaborative models, on the other hand, accept that language
mutates and converges within generations as well. They
claim that meaning-symbol connections spread between col-
laborating agents and ultimately converge on a predominant
one. It is the dichotomy between individual and community-
based learning that motivated the experiments by Garrod et
al. (2007) and Fay et al. (in prep.), which serve as the basis
for the model presented here.

In the horizontal society of cognitive agents in our study,
agents adapt their communication system collaboratively to
environmentally shaped and cognitively constrained needs of
each individual. With our model, we aim to use a cognitive
framework – specifically a memory model – to reflect pro-
cesses in the individual that give rise to emergent convergence
and learning within the community. By this, we acknowledge
the fact that cultural evolution is constrained by individual
learning; each agent learns according to their cognitive fac-
ulty (cf., Christiansen & Chater, 2008). The possibility of
cultural language evolution has been supported by computa-
tional simulations (e.g., Kirby & Hurford, 2002; Brighton et
al., 2005).

It is because adaptation according to experience is deter-
mined by human learning behavior that simulation in val-
idated learning frameworks is crucial. Griffiths & Kalish
(2007) for instance model language evolution among ratio-
nal learners in a Bayesian framework; the purpose of the
present project is to simulate the evolution of a communi-
cation system using an architecture with an accurate account
of memory access and a concrete experimental design. We
will introduce a cognitive model that simulates a participant
in the experiment; multiple models interact as a community
of participants. The purpose of this paper is to observe how
a compositional language system is created between collab-
orating agents in a computational, cognitive simulation. We
will show that the model demonstrates learning behavior sim-
ilar to the empirical data. We assume these agents share a
common reference system initially, display cooperative be-
havior and adopt mixed roles as communicators. Therefore,
we explore different scenarios that test the necessity of our
preconditions, in particular the initial common ground and
the fact that each agent can be both on the sending and the
receiving end of the communications.
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The Task
The Pictionary experiment (Garrod et al., 2007) involves two
participants, a director, who is to draw a given meaning
from a list of concepts known to both participants, and a
matcher, who is to guess the meaning. Director and matcher
do not communicate other than through the drawing shared
via screens of networked computers; the matcher is able to
draw as well, for instance to request clarification of a part
of the picture. Each trial ends when the matcher decides to
guess a concept. Garrod et al.’s set of concepts is divided
into five broad categories (e.g., actor, building); the concepts
within each are easily confusable (e.g., drama, soap opera).
Each game involves several trials, one for each concept on the
list, in randomized order. The director is not informed of the
guess made by the matcher, and neither participant receives
feedback about whether the guess was correct. Participants
switch roles after each trial. Participants to play many games
so that the emergence of consistent drawings can be observed.

We implement the experiment in a form applied by Fay
et al. (in prep., 2008), where 16 concepts (plus 4 additional
distractors) were used in a design with two conditions. In
the isolated pair condition, participants were split into fixed
pairs. They played seven rounds of six games each with
the same partner. In the community condition, participants
changed partners after each round. Each community con-
sisted of eight participants. The pattern of pairings was de-
signed so that after the first round, four sub-communities
existed, after the second round, two sub-communities. Af-
ter round four, the largest separation between partners was
2 (i.e., each agent has interacted via another one with every
other agent); it was 1 after round seven. Fay et al. evalu-
ated the iconicity of drawings, showing that isolated pairs de-
veloped more idiosyncratic signs, while the signs emerging
within communities were more metaphoric (i.e. deducible)
and easier to understand for new (fictitious) members of the
language community. As idiosyncracy increases with each
drawing-recognition cycle, but resets (to some degree) when
communication partners change, communities may end up
evolving similar idiosyncracy once every pair of participants
played the same number of games.

The simplest measure and the one crucial for the evalua-
tion of models like ours is identification accuracy. Fay et al.
found that their participants generally converged quickly to
a common meaning system. Convergence reached a ceiling
of around 95% in both community and isolated-pair condi-
tions. Changing interaction partners from round to round, as
in the community condition, reduced accuracy during the ini-
tial changes; however, the community reached good ID accu-
racy after just a few rounds. We will use the development of
ID accuracy as one way to evaluate the model.

The Model
ACT-R (Anderson, 2007) is an architecture for specifying
cognitive models, one of whose major components is mem-
ory. ACT-R’s memory associates symbolic chunks of infor-

mation (sets of feature-value pairs) with subsymbolic, acti-
vation values. Learning occurs through the creation of such
a chunk, which is then reinforced through repeated presenta-
tion, and forgotten through decay over time. The symbolic
information stored in chunks is available for explicit reason-
ing, while the subsymbolic information moderates retrieval,
both in speed and in retrieval probability. The assumption
of rationality in ACT-R implies that retrievability is governed
by the expectation to make use of a piece of information at
a later point. Important to our application, retrieval is fur-
ther aided by contextual cues. When other chunks are in use
(e.g., parliament), they support the retrieval of related chunks
(building).

A single ACT-R model implements the director and
matcher roles. As a director, the model establishes new com-
binations of drawings for given target concepts. As a matcher,
the model makes guesses. In each role, the model revises its
internal mappings between drawings and target concepts. Ta-
ble 1 gives an example of the process. The model is copied to
instantiate a community of 64 agents, reflecting the subjects
that took part in the Pictionary experiments.

Our model uses a scalable and efficient re-implementation
of ACT-R called ACT-UP, letting us underspecify model ele-
ments such as the production-rule system, which would nei-
ther introduce nondeterminism nor carry explanatory weight
in this particular model.

Maintaining a communication system
The simplest form of keeping a communication system in
ACT-R memory chunks is a set of signs. Each sign pairs a
concept with a set of drawings. Competing signs can be used
to assign multiple drawings for one concept, this would create
synonyms; multiple concepts can also combine with the same
drawings, creating homonyms and ambiguity.

To create new concepts, we need to introduce a subsym-
bolic notion of relatedness. We use ACT-R’s spreading acti-
vation mechanism and weights between concepts to reflect re-
latedness. Spreading activation facilitates retrieval of a chunk
if the current context offers cues related to the chunk. Relat-
edness is expressed as a value in log-odds space (S ji values).

When the model is faced with the task to draw a given con-
cept such as Russell Crowe (one of the concepts in the ex-
periment) that has no canonical form as a drawing, a related
but drawable concept (drawing) is retrieved from declarative
memory. Similarly, we request two more concepts, deferring
any desire of the communicator to come up with a distinctive
rather than just fitting depiction of the target concept. The
case of a model recognizing a novel combination of drawings
is similar; we retrieve the concept using the drawings as cues
that spread activation, making the target concept the one that
is the most related one to the drawings.

After drawing or recognizing, the target or guessed con-
cept, along with the component drawings, is stored symbol-
ically in memory as a chunk for later reuse (domain sign).
These signs differ from the pre-existing concepts in the net-
work, although they also allow for the retrieval of suitable
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Director Matcher

Fails to retrieve domain sign for A.
Retrieves related concept: ⇒ component drawings 123
Draws components 1, 2, and 3 Requests related concept with cues 123⇒ concept B

Guesses B
Learns domain sign A-123 Learns domain sign B-123

Retrieves domain sign for target concept B
⇒ component drawings 345
Verifies that B is retrieved when drawings 345 are activated
Draws components 3, 4 and 5 Requests related concept with cues 345

⇒ concept B
Guesses B
Verification: Requests domain sign for B
⇒ domain concept B-123
345 spread more activation to B than do 123,

Learns domain sign B-345 thus, learns domain sign B-345

Table 1: A protocol of two model instantiations, first failing to communicate concept A through three related drawings 1, 2 and
3, then successfully communicating concept B via drawings 3,4 and 5. The Matcher first adopts B-123 as a domain sign, then
revises it to B-345.

drawings given a concept, and for a concept given some draw-
ings. When drawing or recognizing at a later stage, the mem-
orized domain signs are preferred as a strategy over the re-
trieval of related concepts. The system of domain signs en-
codes what is agreed upon as a language system between two
communicators; they will be reused readily during drawing
when interacting with a new partner, but they will be of only
limited use when attempting to recognize a drawing combina-
tion that adheres to somebody else’s independently developed
communication system.

Knowledge

Agents start out with shared world knowledge. This is ex-
pressed as a network of concepts, connected by weighted
links (S ji). The distribution of link strengths is important in
this context, as it determines how easily we can find draw-
ing combinations that reliably express target concepts. Thus,
the S ji were sampled randomly from an empirical distribu-
tion: log-odds derived from the frequencies of collocations
found in text corpus data. In a corpus comprising several
years worth of articles that appeared in the Wall Street Jour-
nal, we extracted and counted pairs of nouns that co-occurred
in the same sentence (e.g., “market”, “plunge”). As expected,
the frequencies of such collocations are distributed according
to a power law. We found that the empirical log-odds result-
ing from these that form S ji = log(P(J|I)/P(J|notI)) (Ander-
son, 1993) (J and I being the events that J and I appear) can
be approximated by a Generalized Inverse Gaussian-Poisson
distribution (given in Baayen, 2001).

Such knowledge is, however, not fully shared between
agents. Each agent has their own knowledge network result-
ing from life experience. This difference is essential to the
difficulty of the task: if all agents came to the same conclu-
sions about the strongest representation of target concepts,
there would be little need to establish the domain language.

We control the noise applied to the link strengths between
concepts j and i for agent M (SM ji) by combining the com-
mon ground S ji (shared between all agents) with a random
sample NM ji in a mixture model: SM ji = (1− n)S ji + nNM ji.
Then, n [0;1] sets the proportion of noise. For Experiments 1
and 2, the noise coefficient is set to 0.2.

Adaptation pressure

Notably, participants in the experiment converged to a com-
mon sign system fairly quickly. This happened even though
there was no evident, strong pressure to do so. Agents re-
ceived no explicit feedback about the quality of their guesses
or drawings. The only weak clue to the success of a set of
drawings was whether the partner made a guess quickly. A
helpful strategy for the matcher is to assume consistency be-
tween matching and drawing.

Invariably, the model will mistake a set of drawings for a
reference to the wrong target. Lacking a feedback loop in
this experiment, the model has no choice but to acquire even
flawed domain signs and boost their activation upon repeti-
tion. Under these conditions, there is little pressure to con-
verge. It is difficult to see how interaction partners could ever
agree on a working communication system, given that there
is no benefit for a model in choosing the concept-drawing
associations of its interaction partner. However, the model
does leverage consistency as proposed in Grice’s maxims of
manner, “Avoid ambiguity” and “Avoid obscurity of expres-
sion” (Grice, 1975). To do so, it assumes that a given set
of drawings is associated with only one target concept, and,
conversely, that a given target concept is associated with only
three drawings. Suppose, for example (Table 1), that the
model associates concept B with drawings 1,2,3 (short: B-
123). Later on, it comes across drawings 3,4,5 as another
good way to express B. In fact 3,4,5 serve as convincingly
stronger cues to retrieve B than do 1,2,3. Thus, the model not
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ID accuracy (empirical)

42 Games over 7 rounds
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Figure 1: Identification accuracy for isolated pairs and com-
munities (human data) as provided by Fay (p.c.). One-tailed
95% confidence intervals are given (upper bounds for com-
munities, lower bounds for pairs), based on standard error
(normality assumption).

only correctly recognized B, but also learns the new preferred
combination B-345. In the following rounds, B-345 will
likely shadow the alternative in a winner-take-all paradigm,
since B-345 is newer than B-123 and, thus, has stronger acti-
vation due to activation decay (noise and reinforcement may
keep B-123 as a winner for longer). The decay mechanism
counteracts the creation of synonyms.

In evolving the domain language, the model will avoid cre-
ating homonyms as well. Suppose a concept C is to be drawn,
and 345 are retrieved as closely related and highly active
drawings. Here, the model attempts to verify that 345 can-
not be understood as any other concept than C. As the most
strongly active concept for 345 is B, these drawings are ruled
out to express C. With this mechanism, the model is able to
cheaply modify the system of signs without extensive reason-
ing about the optimal combination every time a concept is
added.

Algorithm
Directing The model is given a target concept A to convey.
It uses domain signs and general knowledge to decide about
a sign. At the end, the composed concept is committed to
declarative memory as a domain sign. Domain knowledge is
explicitly accessible and overrides subsymbolically derived
compositions. As a consequence, the model acts with con-
sistency: once a combination has first been used to convey a
concept, the model will be more likely to use it. The director
proceeds with the following algorithm.

1. Attempt to retrieve a domain sign for A of form A−αβγ.
If successful, verify by retrieving a domain sign B for the
same three drawings αβγ is retrieved (B−αβγ). Only if
A = B, accept the domain sign A−αβγ and continue with
step 3; otherwise choose another domain sign.

2. If no acceptable domain sign is found, use subsymbolic
knowledge to combine concepts to express related target
meanings. Using the target meaning as cue, retrieve three
drawings αβγ. The most active drawings are retrieved pref-
erentially.

Convergence
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Figure 2: Mean identification accuracy in model simulations:
As in the human data, both community pairs and isolated
pairs gain most of their ID accuracy in the first game, but
community pairs lose much accuracy when switching part-
ners. 95% C.I., bootstrapped. 100 runs.

3. Draw αβγ.
4. Learn A− αβγ (ACT-R buffer clearing action, repeated

multiple times during the drawing process).

Matching Recognizing a drawing takes place in a simi-
lar fashion: domain knowledge is preferred over associative
guesses. The model is given three drawings αβγ. It proceeds
with the following algorithm.

1. Attempt to retrieve a domain sign for αβγ, resulting in C−
αβγ. If successful, verify by retrieving a domain sign of
form C− δεζ. Only if α,β,γ = δ,ε,ζ, accept the domain
sign C−αβγ and continue with step 3.

2. If no acceptable domain sign is found, retrieve a concept C
using cues αβγ (spreading activation).

3. Guess C.
4. Learn C − αβγ (ACT-R buffer clearing action, repeated

multiple times during the drawing process, but less often
than during directing.)

ACT-R memory parameters were set to values consistent
with the literature (transient noise 0.2, base-level constant
1.0, base-level learning and spreading activation enabled, re-
trieval threshold 1.0).

Experiment 1: Learning and Convergence
In the first experiment, we evaluate whether the model
exhibits similar learning and convergence behavior, and
whether there are differences in learning between the
isolated-pair and community condition, as observed in Fay
et al.’s experiment. The model uses the same number of con-
cepts, trials and simulated participants as in the experiment.

Results
As shown in Figure 2, the learning behavior differs in the
two conditions. Isolated pairs and Community pairs show a
learning effect, i.e. they converge in their communication sys-
tems. However, unlike isolated pairs, community pairs dis-
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Convergence (no role swapping)
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Figure 3: As in Figure 2, but without swapping roles.

play lower ID accuracy after the 7th game (game 1 of round
2), i.e. after switching partners.

We fitted a linear model to test some of the predictions
more explicitly. The linear regression model treating round,
game and condition (isolated pairs vs. communities) as in-
dependent variables, predicting log-transformed ID accuracy
showed expected effects for round (β = 0.03, p < 0.0001)
and game (β = 0.02, p < 0.0005), indicating improving ac-
curacy with each game and round. An interaction of round
and game (β = −0.0046, p < 0.0005) showed that the con-
vergence leveled off in later rounds (as expected). There was
no main effect of condition (p = 0.45), but an interaction of
condition (isolated pairs) and round in the predicted direction
(β =−0.008, p < 0.05), suggesting that convergence contin-
ued on for longer in the communities condition, and leveled
off sooner in the isolated pairs condition. (All β in log space.)

Discussion
The results demonstrate, first, that agents converge both when
retaining partners and when interacting with changing part-
ners. Second, the results show that partner switching results
in a setback in performance, but that agents continue to opti-
mize their communication systems. This demonstrates that
different dyads indeed converge on different signs for the
same concepts. Notably, the setback appears to be smaller for
rounds 3 through 7, i.e., through repeated partner switching,
agents converge to a more common language.1

Overall, the model behaves similarly in many ways to
the empirical data; however the initial and final accuracy
achieved by the model is consistently lower than the approx-
imately 70% and 95% accuracy (respectively) achieved by
human subjects in the Pictionary experiments.

Experiment 2: Director and Matcher roles
Garrod et al. (2007) compared the performance of their par-
ticipants in a comparable Pictionary task when a single direc-
tor remained in that role throughout the experiment (single di-

1Note that Figure 2 suggests an effect of condition on the ceil-
ing that is achieved; the regression analysis does not support this.
We believe it is due to randomization of the concept order; further
work is needed here. Note that in these initial experiments, we sim-
ulated only the same number of subjects and communities as in the
experiments.

rector, SD condition), vs. when participants swapped roles af-
ter each round (double director, DD condition). Identification
accuracy was slightly higher for the role-swapping, double-
director condition than in the single-director condition (sig-
nificantly so only in the final rounds 5 and 6). This condition
is similar to the isolated pairs condition in our model. Our
model can not only simulate the role-swapping conditions,
but also predict contrasts between isolated pairs and commu-
nities. The general question here is whether unidirectional
communication would be sufficient to develop a community
language. So, in this experiment, agents did not switch roles
after every concept conveyed, i.e. they remained either direc-
tor or matcher throughout the game. (Note that, unlike Fay
et al.’s experiments and our simulation, Garrod et al.’s study
involved feedback about the guesses.)

100 instances of Fay et al’s experimental design were run.

Results
Identification accuracy for isolated pairs converged to a
higher level than in Experiment 1. Interestingly, communities
failed to achieve the same level of accuracy when director and
matcher roles were not swapped (Figure 3).

Discussion
This experiment showed that turn-taking is essential for the
development of a common community language. Isolated
pairs benefit from uni-directional communication (as in Gar-
rod et al’s data), presumably converging towards the direc-
tor’s chosen language system. Communities are predicted
by the model to require bi-directional communication to con-
verge towards a similarly reliable communication system.

Experiment 3: Noise in Common Ground
A crucial assumption of the compositional semantics in this
model is that the agents start out with common knowledge.
For instance, both director and matcher need to accept that
ambulances and buildings are strongly related to the concept
hospital. However, the strength of the links between those
concepts may differ without precluding the matcher from
making the right inference.

The model allows us to test the importance of this assump-
tion and predicts the results of a lower overlap between the
knowledge bases of each agent.

Results
Figure 4 shows that mean identification accuracy (7th round,
all games) decreases with increased levels of noise in the sub-
symbolic knowledge state common to the agents. The model
appears to deal reasonably well with noise levels of up to 0.3
(coefficient in the noise mixture) for both isolated pairs and
communities configurations. This generally holds when tak-
ing all rounds into account. (At high noise levels, the ini-
tial acquisition of domain signs still works, but agents fail to
converge further beyond the initial game or beyond a lower
ceiling.) Further work should reveal whether further learning
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Noise weight in mixture of common vs. agent−specific link strengths
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Figure 4: Mean identification accuracy at round 7 is reduced
with noise between the knowledge bases of each agent. Boot-
strapped 95% confidence intervals.

cycles can make up for the effect, i.e., medium noise levels
lead to slower convergence and the failure to converge here is
due to the limited number of games.

General Discussion

The model replicates several of the characteristics of the com-
munities compared to the isolated pairs condition; specifi-
cally the set-backs after switching partners for the first few
times and the ultimate convergence, despite very limited feed-
back. We also arrive at a clear prediction: bi-directionality is
essential for linguistic convergence in communities.

At this point, we do not attempt to estimate optimal pa-
rameters in order to achieve a better fit to the empirical data.
We believe that adaptation rates and the convergence ceiling
depend both on the difficulty of the task, the specific materi-
als (concepts) and the higher-level reasoning tools employed
to optimize the language system. The task in Fay et al.’s ex-
periment structured the list of concepts into a tree (e.g., there
were four actors), making the job of drawing and guessing
easier. Rather than just drawing what seems most closely re-
lated to the target concept, the experimental design invites
them to choose a component concept that best disambiguates
the drawing in the light of competing concepts (a head and a
movie screen may be descriptive of Robert De Niro, but they
do not distinguish him from Brad Pitt). Neither specific dif-
ferentiation nor the precise choice of materials are modeled.
Thus, we may overestimate the difficulty of the task. As a
further simplifying assumption, our model always produced
three component drawings before a guess is made. Garrod
et al.’s (2007) design had participants give one another feed-
back about whether a drawing was thought to be recognized.
However, our simplification is not expected to influence the
character of the outcome.

Conclusion
We have demonstrated the use of validated, cognitively plau-
sible constraints to explain an emergent, evolutionary group
process via multi-agent simulation. Subsymbolic and sym-
bolic learning within a validated human memory framework
can account for rapid adaptation of communication between
dyads and for the slower acquisition of a domain language
in small speaker communities despite very limited feedback
about the success of each interaction. Bi-directional commu-
nication is predicted to be necessary for a common language
system to emerge from communities. The effects are robust
against some divergence in prior common ground between
agents.

Our model of the horizontal emergence of a common lan-
guage in multi-agent communities is a first step to a compu-
tational, cognitive analysis of the learning processes involved
in creating combined signs and acquiring links between them
and arbitrary concepts, in order words, the evolution of lan-
guage. Firm predictions can be drawn from this simulation
only once robust convergence in much larger communities
can be demonstrated, which will go beyond the empirical data
that served as basis for this study.
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Abstract
Where the spacing effect promotes longer intervals between 
facts that need to be memorized, the testing effect  argues for 
intervals that are short  enough to recall the facts. As the ease 
by  which facts are memorized differs greatly  between stu-
dents, an individual assessment of how well  certain facts are 
represented in  memory is  required to successfully balance 
spacing and testing effects. We present a model that adapts 
itself to  the abilities of the student, and show in a real-world 
experiment that this model outperforms other approaches to 
spacing.

Keywords: spacing-effect;  testing-effect; subsymbolic model 
tracing; cognitive model.

Introduction
The last couple of years have seen a renewed interest in 
applying insights from fundamental memory research in 
real-world settings. One of the most visible lines of work are 
studies to the application of the spacing effect. The spacing 
effect,  first described by Ebbinghaus (1913/1885) at the end 
of the 19th century, is the positive effect on factual recall 
that is observed when study trials are temporally separated. 
Thus, the probability of recall of facts learned in a spaced 
sequential order (e.g.,  abcabcabc or abc-break-abc-break-
abc) is higher than the probability of recall of facts that are 
learned massed (e.g., aaabbbccc). The consequence of this 
finding is that the presentation sequence of a to-be-
memorized list of facts partly determines how well these 
facts will be recalled on a later test: items on a list that pre-
sents the items with wider spacing will be recalled better 
than items on a list that presents the items as many times as 
the first list, but massed instead of spaced.
 This observation was central to much applied research in 
the 1960s and early 1970s. Using the possibilities provided 
by digital computers, scientists tried to construct optimal 
learning schedules. Although some of this work has stood 
the test of time from an applied or commercial point of view 
(e.g., the Pimsleur and Leitner methods are still available 
commercially), the methods used by these early systems are 
relatively simple and the learning gains often did not out-
weigh the extra investment associated with using these sys-
tems. This led to a decline in applied research on the spac-
ing effect, although over the decades, more fundamental 
research on this effect has thrived (for reviews see Demp-
ster, 1988, Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). 
Only recently has attention again shifted to using algorithms 
to determine the optimal schedule for learning (Wozniak & 
Gorzalanczyk,  1994, Pavlik, 2007, Pavlik & Anderson, 
2008).

Another finding that has a potentially large effect on how 
an optimal sequence has to be constructed, is the testing 
effect.  This effect can be described as: “If students are tested 
on material and successfully recall or recognize it, they will 
remember it better in the future than if they had not been 
tested” [but merely studied the same material] (Roediger & 
Karpicke, 2006, p.249, see also Carrier & Pashler, 1992). As 
it is generally assumed that memory decays over time,  in-
creasing the interval between successive presentations 
makes it more likely that an item cannot be recalled. There-
fore, spacing beyond a certain interval will be associated 
with lower learning gains because of failing the testing ef-
fect (c.f., the inverse u-shape often observed when the per-
formance on a test is plotted as a function of the interval 
between two presentations, Cepeda, Vul, Rohrer, Wixted, & 
Pashler, 2008). 

When it comes to computing an optimal presentation se-
quence for fact learning, spacing and testing have different 
interests. For the spacing effect, increased spacing is theo-
retically preferred. But for the testing effect, small to no 
spacing would theoretically provide the best results. One of 
the aims of the study reported here is to reconcile these 
seemingly conflicting requirements. 

An interesting observation in almost all work on the spac-
ing effect is that the “optimal schedule” is defined as the 
schedule that reaches the best performance (often defined as 
the highest probability of recall) over a longer timeframe. 
Although this is of course what the goal of all learning 
should be, the goal of learning in a real-world situation is 
often more pragmatic: passing the next day’s test by study-
ing for a limited, often more or less fixed amount of time. 
So,  although the results of more than a century of spacing 
results can be used for the real-world situation of having to 
learn numerous vocabulary word pairs for a foreign lan-
guage test that is scheduled a couple of weeks or months in 
advance (c.f., Wozniak & Gorzalanczyk, 1994), these results 
do not necessarily tell us anything about the pragmatic goal 
of learning: What method should a student use to learn a set 
of 20 vocabulary word pairs for a potential test tomorrow, 
knowing that, because of soccer practice, favorite TV-shows 
and other homework, all he or she has is 15 minutes to 
spare?

Note that this real-life situation differs quite a bit from 
typical experimental setups: First, to prevent effects of prior 
knowledge, the learning materials in experimental contexts 
are often selected in such a way that none of the participants 
has any relevant prior knowledge (by either learning se-
quences of nonwords, e.g., Ebbinghaus, 1913/1885, very 
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obscure facts,  e.g., Cepeda et al, 2008, or word-pairs from 
languages previously unstudied,  e.g., Pavlik & Anderson, 
2008). In contrast, when learning for a vocabulary test, most 
students bring additional knowledge to the learning session 
from earlier experiences with that language. Second, in most 
studies the list of word pairs presented to the participants is 
much longer than the 10 to 30 words that typically have to 
be learned in a single real-life learning session. Third, the 
retention interval (defined as the time between the final test 
on the learned materials and the last study of the materials) 
in most studies is less than a day (221 out of 254 studies 
reviewed in Cepeda et al, 2006, used an interval less than a 
day). Fourth,  where many experimental studies aim for find-
ing a general law that describes the effects of different types 
of spacing on performance in general,  the goal of an indi-
vidual student is not striving for the best performance of a 
larger group, but for the optimal results on his or her test. As 
the speed and ease by which vocabulary is learned differs 
greatly between individuals (e.g., Baddeley, 2003), settings 
that are optimal for the group as a whole might not be the 
optimal settings for an individual. These differences are less 
substantial with respect to the spacing effect than with re-
spect to the testing effect. That is, irrespective of the indi-
vidual expertise in vocabulary learning, the spacing effect 
predicts that increased spacing provides better scores. How-
ever, with respect to the testing effect, individual differences 
greatly determine the probability of recall of a particular 
item. Since successful recall is associated with better learn-
ing gains, it is important to account for individual differ-
ences in such a way that facts are presented before they can-
not be recalled anymore. 

To test whether the general findings associated with spac-
ing and testing effects hold when these issues are taken into 
account, we ran an experiment that closely mimics everyday 
learning contexts. In this experiment, pre-university level 
students were asked to memorize Dutch translations of 
French words in a computer-supported learning session of 
15 minutes.  During learning, the schedule of presentations 
of the Dutch-French word pairs was computed according to 
one of four algorithms.

Algorithm 1 was based on a flashcard strategy: the study 
items were clustered in sets of 5 which were presented indi-
vidually until all items in the set had been responded to cor-
rectly once. After all sets had been presented, the sequence 
was started anew until time ran out.  Algorithm 2 is an im-
plementation of the spacing method proposed by Pavlik and 
Anderson (2005), which will be discussed below. Algo-
rithm 3 and 4 are adaptations of the original Pavlik and 
Anderson algorithm in that the model that is used to deter-
mine the optimal sequence is dynamically adapted on the 
basis of the observed performance of the student while tak-
ing the testing effect in account. Before turning to these 
algorithms, we will first discuss Pavlik and Anderson’s 
spacing model and how this model can be applied to provide 
an optimal learning sequence. 

Pavlik & Anderson’s Spacing Model
The spacing model proposed by Pavlik and Anderson (2005, 
referred to as the PA model) is based on the work of Ander-
son and Schooler (1991). Anderson and Schooler demon-
strated that the “availability of human memories for specific 
items shows reliable relationships to frequency, recency, and 
pattern of prior exposures to the item” (Anderson & 
Schooler, 1991, p.396). Eventually, the following formula 
was proposed to express the availability (or activation) A of 
a certain item i at a certain time (t) as a function of prior 
encounters:

According to this equation, which has become central to 
all memory related models created in the ACT-R cognitive 
architecture (Anderson, 2007), all previous encounters 
(t1..tn) of the item i contribute to its current activation. How-
ever, the older an encounter (tj represents the time of en-
counter j),  the smaller the contribution of that encounter to 
the total activation. The speed of this decline is expressed by 
-dj, the decay parameter. Although initially -dj was assumed 
to be variable for different encounters j (Anderson and 
Schooler, 1991, provided an equation to account for some 
spacing effects but downplayed its importance by noting 
that “its exact form is a bit arbitrary”,  p.407), it quickly be-
came a parameter that was treated as a constant (d=.5) as 
different values for different encounters did not add much 
explanatory power for most tasks to which this equation was 
applied. However, in contrast to the original work of Ander-
son and Schooler, in none of these later tasks was spacing a 
factor of importance. To account for a broader range of 
spacing phenomena, the PA model reintroduced individual 
decay values for individual items. 

Pavlik and Anderson proposed to relate the decay values 
for the individual encounters to the activation of that par-
ticular item at the time of the encounter (c.f., Rescorla-
Wagner’s, 1972, model of learning). As recently presented 
items have a high activation, the second encounter of an 
item presented twice in quick succession will be associated 
with a high decay value. Therefore, the long-term influence 
of this item will be small as its activation will decay quickly. 
On the other hand, an encounter of an item of which the last 
presentation was longer ago (and therefore has a lower acti-
vation) will receive a lower decay value, resulting in more 
long term impact on the activation of that item. The pro-
posed equation calculates the decay, d, for encounter j of 
item i by calculating the activation of that item (Ai) at the 
time of encounter j. 

In this equation,  alpha represents the decay intercept. This 
intercept is the minimum decay for an encounter that will 
also be used as decay value for the first encounter. The de-
cay scale parameter c determines the relative contribution of 
the activation dependent component. Pavlik and Anderson 
(2003, 2005, 2008, Pavlik, 2007) have shown in a series of 
studies that these equations account for a wide range of 
spacing-related learning phenomena. 

Ai(t) =
n∑

j=1

(t− tj)
−dj

dji = ceAi(tj) + α

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

109



In the PA model the activation of a fact determines both 
the probability of recall of that fact and the latency associ-
ated with recalling that fact. For the probability of recall,  the 
activation of the fact is compared to the retrieval threshold 
while taking into account the noise that is associated with 
declarative memory. If the activation of a fact is higher than 
the retrieval threshold, that fact can be recalled. However,  if 
the fact is below the retrieval threshold, it is unavailable for 
further processing. Apart from the probability of recall, the 
activation also determines the latency of a retrieval at each 
point in time (t) according to the following formula:

In this equation, F is a scaling factor and “fixed time” 
refers to the time cost of all non-fact-retrieval processes 
required in giving the answer.

Applying the Spacing Model
In Pavlik and Anderson (2008), the spacing model is used to 
actively determine the optimal sequence for learning a list of 
Japanese-English word-pairs. In this paper,  Pavlik and An-
derson do not explicitly discuss the testing effect (although 
it is partly accounted for), but instead focus on presenting a 
sequence of items that have the highest activation gain per 
second of practice. Thus, the positive effects of increased 
spacing intervals on the probability of recall are balanced 
against the negative effects that increased intervals have on 
accuracy of immediate recalls. This results in a series of 
complex formulae to determine the learning gains of test-
trials and study-trials. 
 An alternative and simpler approach is to determine the 
optimal sequence on the basis of the activation of the word-
pairs in relation to the retrieval threshold. That is, if we as-
sume on the basis of the combination of spacing and testing-
effects that the time between two encounters is optimal just 
before the activation of the fact drops below the retrieval 
threshold, an optimal sequence can be determined on the 
basis of the activation of all facts. 

Algorithm 2: Default PA
On the basis of the approach discussed above, the default 
PA model (i.e., pre-2008) can be used to determine the op-
timal spacing sequence: as soon as a fact is about to fall 
below the retrieval threshold, it has to be presented again. If 
no previously presented fact is close to the threshold,  a new 
fact can be introduced.  More precisely,  as it could be that a 
fact drops below the retrieval threshold while another fact is 
being tested, the algorithm computes the activation of all 
facts 15 seconds ahead to determine whether to introduce a 
new fact or present a previous one. If all facts have been 
introduced, the fact with the lowest activation is selected for 
presentation. The performance of this algorithm is highly 
dependent on the accuracy of the internal activation repre-
sentations, which are in turn dependent on the choice of 
parameter values. Although the PA model has been tested 
extensively, no fixed set of parameter settings have emerged 
yet. The values for the decay scale (c) range (Pavlik & An-
derson, 2005, 2008) from 0.143 to 0.495, and for the decay 
intercept (alpha) from 0.058 to 0.300. The threshold pa-
rameter is typically set at -0.704. As these parameters have 

Li(t) = Fe−Ai(t) + fixed time

been fit to experiments with longer study session than used 
in the current experiment, we explored the effects of differ-
ent settings on the resulting sequences.  As a threshold that is 
too low results in extended spacing (e.g., in our explora-
tions, sometimes all word-pairs were presented before the 
first word-pair was repeated), we decided to raise the re-
trieval threshold to -0.500. Following similar reasoning, the 
decay intercept and the decay scale were set at .25. With 
respect to the latency equation, we decided against separate 
estimations for F and the “fixed time”.  In Pavlik and Ander-
son (2008), F is set at a value larger than 1 (1.29) indicating 
an enhanced effect of Ai on the latency. At the same time, 
using a “fixed time” diminishes the effect of Ai on the la-
tency. Therefore, we set F to 1, and the “fixed time” to 0.

Using the default PA algorithm, we can create an optimal 
schedule. However, this schedule will be similar for all par-
ticipants: if the first word-pair is repeated after 5 trials be-
cause it will drop below the retrieval threshold within 15 
seconds, this holds for all participants.  Obviously, this does 
not match real performance profiles: some participants will 
have a higher overall performance level than other partici-
pants, but it might also be that some words are recalled bet-
ter by some participants, but a different set of words is re-
called better by other participants. However, each time an 
item is presented the learner provides us with additional 
behavioral data, which we can use to dynamically adapt the 
model to the individual learner. This approach can be de-
scribed as subsymbolic model tracing.

Subsymbolic Model Tracing
In the traditional model tracing account (Anderson, Boyle, 
Corbett, & Lewis, 1990), the behavior of a student is 
matched against all knowledge available in a tutoring sys-
tem. For example, if a student has shown accurate perform-
ance in a number of subtraction problems in which carrying 
is required, the knowledge in the tutoring system that repre-
sents carrying is marked as mastered. Thus, the tutoring 
system keeps a representation of all knowledge the student 
has mastered by updating the internal representation each 
time new behavioral information becomes available. The 
behavior that the learner displays can similarly be used to 
update the subsymbolic activation of facts (Jastrzembski, 
Gluck, & Gunzelmann, 2006).

Given that each time a student has to answer a test trial 
both accuracy and latency information becomes available, 
we can,  in principle, use this information to determine what 
the current activation of the retrieved chunk is. If we know 
the latency and therefore the activation at the time of en-
counter j, and we also know the latency/activation at the 
time of encounter j-1, we can calculate what the decay for 
encounter j-1 should have been. By this rationale, we can 
minimize the difference between the predicted activation 
and the observed latency and use the behavioral data of the 
student to update our model that represents the state of the 
student. 

However, given the general assumption that the retrieval 
process is inherently noisy, using this direct relation might 
be problematic when the response is fast. That is, when tj - 
tj-1 is relatively long and the latency for tj is short because of 
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a temporal boost in activation due to noise, the calculated 
decay for tj-1 will be very low (or even negative). As a very 
low decay results in facts that are predicted to be highly 
active over a very long period of time, this temporal noise-
boost will ruin the scheduling of the fact.  Therefore, we 
have chosen not to use the outcome of the algorithm de-
scribed here directly, but instead change the dj-1 with a fixed, 
small amount in the direction indicated by the mismatch 
between predicted activation and observed latency (c.f., hill-
climbing optimization algorithms). 

Algorithm 3: Threshold-based Adaptation
Given the issues related to the noisy observations, using the 
more fine-grained subsymbolic model tracing method de-
scribed above might result in overfitting. To minimize the 
chances of overfitting, a coarser algorithm might prove 
beneficial. Therefore, Algorithm 3 adapts the PA model by 
only modifying the decay parameter for a certain encounter 
when at test the word-pair cannot be correctly recalled (c.f., 
Pavlik & Anderson, 2008). As the system always presents 
word-pairs of which the estimated activation is above the 
retrieval threshold, a failure to recall indicates that the esti-
mated activation was too high. Thus, the decay for that par-
ticular item should be higher, which is reflected in increas-
ing the alpha parameter with 0.01. 

Algorithm 4: Latency-based Adaptation 
The threshold-based adaption algorithm focusses on maxi-
mizing the testing-effect. Each time a fact cannot be re-
called, its decay is increased, ensuring that it will be pre-
sented with shortened spacing in subsequent trials.  Although 
this will result in better testing effects because of shorter 
spacing for facts that could not be recalled, this algorithm 
does not adapt itself to the inverse situation when facts are 
better learned than expected. That is, where a failure to re-
trieve is a marker of lower than expected activation, a faster 
response than expected is a marker of a higher than ex-
pected activation. This idea is captured in the latency-based 
adaptation of Algorithm 4 which extends the threshold-
based adaptation algorithm by comparing the expected la-
tency with the observed latency. To prevent overfitting, the 
decay intercept is only changed if the difference between 
expected and observed latency is more than 0.5 seconds. 
Instead of a constant modifier, the decay intercept is 
changed according to:

where observed and expected are the latencies expressed in 
seconds. 

Experiment
Four classes of approximately 15-year old pre-university 
level pupils were asked to memorize Dutch translations of 
20 French words. Each word pair was presented first in a 
study trial in which both the French and the Dutch word 
were presented. During a test trial, only the French word 
was presented, and the participant had to type the Dutch 
translation. After the initial presentation,  the next trial was 

∆α = max(0.01,
observed− expected

1000
)

scheduled on the basis of one of the four algorithms dis-
cussed above.

Procedure Study trials were presented for 5 seconds. After 
each initial study trial, a test trial of the same word-pair was 
presented. During a test trial, only the French word was pre-
sented and students had 15 seconds to reply by typing in the 
correct Dutch translation. After pressing Enter, students 
were presented with a 2-second feedback screen stating 
“Correct”, “Incorrect” or “Almost correct” (which was 
given if the Levenshtein-distance to the correct answer was 
smaller than 3). If the participant did not respond in time, or 
an incorrect answer was given, the study trial was presented 
to refresh the participant’s memory. The four algorithms 
determined which word pair to present next. The learning 
session lasted 15 minutes, irrespective of the number of tri-
als or words presented. After the learning session on Day 1, 
all words were tested by means of a traditional paper-and-
pencil test on Day 2. The post-test was graded on a scale 
from 0 to 10. Each incorrect response deducted .5 point 
from the maximum score of 10. Participants were naive with 
respect to the experimental manipulation and did not know 
that they would be tested on Day 2.

On Day 1,  participants were tested in groups in a class-
room equipped for computer-supported education. Each 
participant operated his or her own computer. The paper-
and-pencil test on Day 2 was conducted during normal 
class-hours.

Materials A list of 20 words was compiled for each class 
separately. All words were selected from a textbook chapter 
that would not be discussed until one week after the experi-
ment.

Participants Ninety-one pre-university-education level stu-
dents (all students of four 3rd year HAVO/VWO classes) of 
approximately 15 years of age participated, of which 85 
took part in both tests. Participants were semi-randomly 
distributed over conditions to ensure that in each class an 
equal number of participants used each algorithm. All par-
ticipants were instructed that their results would be stored 
anonymously and that the results would not be communi-
cated to their school or teachers on an individual level.

Results
Of the 85 students who took part in both sessions, six stu-
dents were removed from further analyses because they did 
not respond in more than 5% of all trials and gave a number 
of answers that did not fit the instructions (e.g., “I’m bored”, 
or names of rock bands).  Four participants were removed 
because their performance in terms of correct responses 
during the learning session deviated more than 2 standard 
deviations from the average of their group. One participant 
was removed because of scores on the final test that devi-
ated more than 2 standard deviations from the average score 
for his or her group. This leaves 74 participants, 18 in the 
flashcard condition,  and 19 participants in each of the three 
spacing conditions.
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Covariates As we tested participants in a domain in which 
they have a significant amount of prior knowledge, it is im-
portant to control for potential differences in prior knowl-
edge between groups. Hereto, we analyzed the students’ 
school grades for French (graded on a theoretically linear 
scale from 0 to 10,  with a 6 representing the grade required 
to pass that class), see Figure 1 (F(3,73)= 1.27, p=0.29). 
Although this effect is far from significant, the value of the 
F-statistic is larger than we hoped for. Therefore, we de-
cided to include the grades for French as covariate in all 
subsequent analyses.

Given that we limited the amount of time to learn 20 
word-pairs and the algorithm determined when a new word 
pair was introduced, not all participants might have seen all 
20 word pairs in the non-flashcard conditions (algorithm 2 
to 4). This did indeed turn out to be the case in all three 
conditions. The average number of word pairs presented to 
the participants was 19.5, 19.6 and 19.8 for the default PA, 
the threshold-based and the latency based conditions respec-
tively. Although these differences (when compared to the 20 
words seen by the students in the flashcard condition) fail to 
reach significance (ANOVA F(3,69)=2.6, p=0.057, post-hoc 
pairwise t-tests with pooled standard deviations: flashcard 
vs default PA algorithm, p=0.08, all other comparisons p > 
.1), this does give the flashcard-based condition an advan-
tage when comparing scores on the post-test, as some par-
ticipants in the other conditions will 
not have seen all word pairs. There-
fore, we also included the number 
of words seen by the student as co-
variate in subsequent analyses. 

To account for possible effects 
associated with the session in which 
the study was run or peculiarities of 
a particular class, another factorial 
covariate was included representing 
group. 

Post-test Scores Figure 2 shows the 
raw scores on the post-test, and 
Figure 3 shows the scores on the 
post-test adjusted by the covariates 
French grade, group and number of 
words seen. 

Analyzing the data presented in Figure 3 shows that the 
algorithm has a significant effect on the post-test scores 
(F(3,70)=4.19, p=0.009). Testing the individual effects by 
conducting pairwise comparisons using t-tests with pooled 
standard deviation and Benjamini and Hochberg’s (1995) p-
value adjustment method showed that students in the 
latency-adaptation group, Algorithm 4, score significantly 
higher than students in the flashcard (p=0.032) or in the PA 
model (p=0.010) group. None of the other comparisons 
reached significance (p>0.100).

 
Adaptions The observed differences between the more 
static PA model (Algorithm 2) and the latency adaptation 
condition (Algorithm 4) suggests that the adaptations re-
sulted in different decay patterns for different participants. 
Figure 4 shows the average estimation of the alpha parame-
ter associated with the last encounter per word-pair.  As can 
be seen, different participants required different alphas, 
with, for example,  participant 1 and 4 requiring relative low 
decay values and participant 13 requiring a very high decay 
value. If these three participants would have been set at the 
average alpha (0.259), the estimated activation for partici-
pant 13 would be too high, resulting in many retrieval fail-
ures - and violating the testing-effect constraints.  At the 
same time, participants 1 and 4 would have had a too low 
estimated activation, resulting in a sequence with too low 

spacing, violating the spacing-effect 
constraints.

Discussion
The current study set out to answer two 
questions. The first was to test whether 
the results obtained in the scientific lit-
erature on the spacing effect would also 
hold in the more real-life case of learn-
ing a small set of vocabulary items in a 
small period of time. The second ques-
tion was to examine whether the learn-
ing gain would improve when the algo-
rithms that construct the learning se-
quence take individual differences into 
account. With respect to the first goal, 
the significant difference between the 

Figure 1: Average grades on French 
per algorithm condition

Algorithm

Fr
en

ch
 G

ra
de

6

7

8

9

1 2 3 4

● ●

●

●

Figure 2: Raw scores on post-test per 
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Figure 3: Post-test scores adjusted for 
covariates mentioned in text
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Figure 4: Effects of adaption per participant
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flashcard and the latency adaption conditions illustrates that 
a learning sequence that is based on an algorithm that takes 
spacing and testing-effects into account outperforms a more 
traditional flashcard sequence. However, only the condition 
that optimizes the sequence on the basis of individual la-
tency differences significantly outperforms the flashcard 
condition, answering the second question. 

It is striking to see that the default (pre-2008) PA spacing 
condition scores - in absolute terms - worse than the flash-
card condition. This result for the default PA spacing condi-
tion might be caused by the parameter settings chosen for 
this study: alternative parameter settings might improve the 
PA model. However, it is difficult to come up with the pa-
rameter settings required. The first candidate for change 
would be the retrieval threshold, as in most PA studies the 
threshold is set at -0.704 instead of -0.5. However, decreas-
ing the threshold would increase the spacing between two 
presentations of the same item. This will probably have a 
negative effect on the data as the sole difference between the 
default PA algorithm (2) and the threshold adaptation algo-
rithm (3) is decreased spacing and algorithm 3 fares consid-
erably better than the PA algorithm. With respect to changes 
in the parameters involved in calculating dji, it is most likely 
that these changes would benefit the other algorithms as 
well. Thus, although changes in the parameter settings 
might diminish the gap between the different spacing algo-
rithms,  it is hard to imagine how the default PA model 
would outperform the alternative algorithms proposed here.

With respect to Algorithm 3 and 4, although the differ-
ences in performance are not significant, the performance 
profiles favor the latency-based Algorithm 4 over the 
accuracy-based Algorithm 3. This suggests that Pavlik and 
Anderson’s 2008 implementation might be further refined 
by incorporating the information that can be deduced from 
the latencies (c.f., Pavlik, Presson, & Koedinger, 2007).

Finally, it is interesting to note that Pavlik and Anderson 
(2008, p.102) discuss a very similar approach they call “per-
formance tracking” and mention that this method will “add 
considerable power”. Nevertheless, they conclude that this 
approach will make scheduling much more complex. 

In this study we have shown that performance tracking is 
possible, but also that adapting the sequence to the charac-
teristics of individual learners improves learning gains con-
siderably, even if the learning session takes only 15 minutes.
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Abstract 

As cognitive architectures become ever more ambitious in the 
range of phenomena they are to assist in producing and 
modeling, there is increasing pressure for diversity in the 
mechanisms they embody. Yet uniformity remains critical for 
both elegance and extensibility.  Here, the search for 
uniformity is continued, but shifted downwards in the 
cognitive hierarchy to the implementation level.  Factor 
graphs are explored as a promising core, with initial steps 
towards a reimplementation of Soar.  The ultimate aim is a 
uniform implementation level for cognitive architectures 
affording both heightened elegance and expanded coverage. 

Keywords: Cognitive architecture; implementation level; 
factor graphs; graphical models; production match; Soar 

From Architecture to Implementation 
A cognitive architecture is a hypothesis about the fixed 
structures underlying thought in active intelligent beings, 
whether natural or artificial.  It consists of a set of 
interacting mechanisms that can combine with appropriate 
knowledge to model human intelligent behavior and/or 
generate artificial intelligent behavior.  In the large, a 
cognitive architecture is a theory about one or more systems 
levels comprising an intelligent being. Newell (1990) 
discussed a hierarchy of levels (organelles, neurons, neural 
circuits, deliberate acts, operations, etc.) across four bands 
of human action: biological, cognitive, rational, and social.  
At each level, a combination of structures and processes 
implements the basic elements at the next higher level. 

One controversial attribute of systems levels in cognitive 
architecture is their girth; i.e., their uniformity versus 
diversity.  Diversity always exists across levels, but 
individual levels may consist of anything from a small 
number of very general elements to a wide diversity of more 
specialized ones.  Uniformity appeals to simplicity and 
elegance.  In caricature, it is the physicist’s approach, where 
a broad diversity of phenomena emerges from interactions 
among a small set of general elements. Diversity appeals to 
specialization and optimization.  It is the biologist’s 
approach, in which many specialized structures, each locally 
optimized, jointly yield a robust and coherent whole. 

Across a hierarchy of levels, there is no a priori reason to 
assume they are all of comparable girth.  While physicists 
and biologists may expect uniformity within their fields, the 
networking community trumpets the Internet hourglass to 
explain their protocol stack (Deering, 1998).  At the 
narrowed waist is the Internet Protocol (IP).  Above is an 
increasingly diverse sequence of levels enabling “everything 

on IP”.  Below is an increasingly diverse sequence of levels 
enabling “IP on everything”.  The hourglass yields a 
diversity of applications and implementations that are united 
via a core of mesoscale uniformity.  Domingos’s (In press) 
recent call for an interface layer in AI is an appeal for a 
similar sort of mesoscale uniformity in AI.  

Intelligence clearly entails diversity in the cognitive 
hierarchy across levels, but what about within levels? At the 
top, the extraordinary range of possible behaviors and 
applications is one of the core phenomena cognitive 
architectures are developed to explain. At the bottom, the 
mind is grounded in the diverse biology of the brain and, at 
least according to strong AI, could also be grounded in a 
diversity of alternative technologies (with adjustments in 
Newell’s lower levels for grounding in such technologies).  
But is there an hourglass or a rectangle in between? 

The question of the existence of a cognitive hourglass has 
traditionally been cast in terms of whether the cognitive 
architecture is uniform.  Among architectures for cognitive 
modeling, Soar (Rosenbloom, Laird & Newell, 1993) has 
been a standard exemplar of uniformity and ACT-R 
(Anderson, 1993) of diversity.  Recently, based on both 
functional and modeling considerations, Soar 9 (Laird, 
2008) has shifted strongly towards diversity, and is helping 
to tip the community balance in this direction. 

As a scientist, one can respond to a demonstrated need for 
diversity by simply accepting it, or by hypothesizing an 
underlying uniformity and simplicity that explains it. 
Anderson, for example, developed a background theory of 
cognitive rationality to justify ACT-R’s mechanisms as 
optimal adaptations to the environment (Anderson, 1990).  
The theory’s uniformity is not in the architecture itself, but 
does yield a simple, well-motivated explanation for it.  Yet 
something significant is lost when the uniformity is not in 
the cognitive hierarchy, as diversity negatively impacts both 
the elegance of the resulting system and the ease with which 
new capabilities can be integrated into a unified whole.  
Historically, diverse architectures have been tough to unify.  
To the extent such a system remains disunified, it is more of 
a toolkit or language than a hypothesis about the fixed 
structures of thought (i.e., an architecture). 

Another alternative is not simply to accept diversity, or 
try to justify it, but to continue a search for uniformity – the 
narrow waist of the hourglass – elsewhere in the cognitive 
hierarchy.  This is an application of the uniformity-first 
research strategy (a variant of Ockham’s razor): begin by 
assuming uniformity and accept diversity only upon 
overwhelming evidence. To the extent uniformity is 
possible, it yields elegance and facilitates unification and 
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extension. Beginning instead with diversity removes the 
pressure to search for hidden commonality, and may lead 
down an irrevocable path of complexity. 

The history of Soar well illustrates the uniformity-first 
strategy (Laird & Rosenbloom, 1996).  For years it had a 
single procedural, rule-based, long-term memory and a 
single learning mechanism (Laird, Rosenbloom & Newell, 
1986), while investigations continued into their ability to 
support a diversity of memory (e.g., procedural, semantic, 
and episodic (Rosenbloom, Newell & Laird, 1991)) and 
learning (e.g., skill and knowledge acquisition, 
generalization and transfer, and learning from observation 
(Rosenbloom, 2006)) behaviors.  A wide range of such 
behaviors proved feasible, but they never could be fully 
unified with the rest of the system to yield pervasive utility 
across all activity.  This evidence against the existing 
uniformity, amassed over years of experimentation, inspired 
the development of Soar 9, a diverse architecture that adds 
new long-term memories (semantic and episodic) and 
learning mechanisms (semantic, episodic and 
reinforcement), while also incorporating other new 
capabilities (emotion and imagery) (Laird, 2008). 

Uniformity-first, however, entails that acknowledging a 
need for diversity at the architecture level should be 
accompanied by a continued search for uniformity at other 
levels.  In this article, the particular focus is on burrowing 
beneath the diversity at the architecture level to look for 
uniformity at the implementation level just below. The goal 
is still an hourglass, albeit one with a lower waistline. 

The implementation of cognitive architectures, while 
critical for efficiency and usability, is usually extra-theoretic 
and not part of the architectural hypothesis. Characteristic 
examples include the COGENT (Cooper & Fox, 1998) and 
Storm (Pearson, Gorski, Lewis & Laird, 2007) 
environments for cognitive modeling/architectures, both of 
which are coarse-grained, graphical tools intended to assist 
the developer rather than theoretical hypotheses about the 
implementation level.  The primary exception is systems 
like SAL (Jilk, Lebiere, O’Reilly & Anderson, 2008) or 
Neuro-Soar (Cho, Dolan & Rosenbloom, 1991), where a 
cognitive architecture is implemented via neural networks.  
Neural approaches remain interesting possibilities for the 
implementation level, but the focus here is on the related but 
more general class of graphical models (Jordan, 2004). 

Graphical models share the core graphical/network nature 
of neural networks and graphical modeling environments, 
but focus on representing independence across variables in 
complex functions such as joint probability distributions and 
communication codes.  They include Bayesian networks 
(Pearl, 1988) and Markov networks, with origins in 
probabilistic reasoning.  But they also include factor graphs 
(Kschischang, Frey & Loeliger, 2001), which take a broader 
multivariate-function view.  Interestingly, a variety of neural 
network algorithms – such as supervised Boltzmann 
machines, radial basis functions, and unsupervised learning 
algorithms – can be mapped onto graphical models (Jordan 
& Sejnowski, 2001).  A core premise of this article is that 

graphical models provide untapped potential for cognitive 
architectures.  They may also ultimately forge a principled 
bridge between neural and symbolic architectures.  

The work in this article is based on factor graphs. 
Although originating in coding theory, where they underlie 
the “astonishing performance” of turbo codes, factor graphs 
are particularly promising for cognitive architecture because 
of the diversity of important problems and algorithms they 
subsume in a uniform manner when combined with their 
canonical sum-product algorithm.  Factor graphs are 
relevant for signal processing, where they are useful in 
vision (Drost & Singer, 2003) and subsume Kalman filters, 
the Viterbi algorithm, and the forward-backward algorithm 
in hidden Markov models; probabilistic processing, where 
they subsume belief propagation in Bayesian and Markov 
networks; and symbol processing, where they yield arc 
consistency for constraint problems (Dechter & Mateescu, 
2003).  There is also significant work on mixed approaches 
combining symbolic and probabilistic processing, hybrid 
approaches combining discrete and continuous processing, 
and hybrid mixed approaches (Gogate & Dechter, 2005). 

Factor graphs raise the possibility of a uniform 
implementation level that elegantly explains the diversity 
seen in existing cognitive architectures while going beyond 
them to yield an effective and uniform basis for: unifying 
cognition with perception and motor control, breaking down 
the barriers between central and peripheral processing by 
bringing the latter within the cognitive inner loop and 
making each potentially penetrable by the other; fusing 
symbolic and probabilistic reasoning to provide general 
reasoning under uncertainty; and providing a conceptual 
bridge from symbolic to neural architectures, by mapping 
them onto a common intermediary.  They provide a 
tantalizing combination that is particularly appropriate at the 
implementation level of: (1) generality, in the range of 
capabilities they can uniformly support in a state-of-the-art 
manner; and (2) constraint, in the ways that these 
capabilities can reasonably be supported. 

The remainder of this article introduces factor graphs, 
begins exploring their utility for cognitive architectures via 
a first step towards a graphical reimplementation of Soar, 
and summarizes the path forward from here.  The focus is 
not on a specific cognitive model, but on the possibility of a 
radically new generation of integrated cognitive models. 

Factor Graphs 
Factor graphs provide a form of divide and conquer with 
nearly decomposable components for reducing the 
combinatorics that arise with functions of multiple 
variables.  The function could be a joint probability 
distribution over a set of random variables; e.g., 
P(V,W,X,Y,Z), which yields the probability of 
V=v∧W=w∧X=x∧Y=y∧Z=z for every value v, w, x, y and z in 
the variables’ domains. Or the function could represent a 
constraint satisfaction problem, C(A,B,C,D), over a set of 
variables, yielding 1 if a combination of values satisfies the 
constraints and 0 otherwise.  Or the function could represent 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

115



a discrete-time linear dynamical system, as might typically 
be solved via a Kalman filter.  The problem formulation 
here would involve a trellis structure, where the graph for 
one time step is repeated for each, with four variables per 
time step – State, Input, Output and Noise (Kschischang, 
Frey & Loeliger, 2001) – K(S0,I0,O0,N0,…, Sn,In,On,Nn). 

The prototypical factor graph operation is the 
computation of marginals on variables.  For a joint 
probability distribution, this is simply the marginal of a 
random variable, computed by summing out the other 
variables: P(Y) = Σv,w,x,zP(v,w,x,Y,z).  The key to tractability 
is avoiding the explicit examination of every element of the 
cross product of the variables’ domains.  For probabilities, 
the joint distribution is decomposed into a product of 
conditional (and prior) probabilities over subsets of 
variables: P(V,W,X,Y,Z) = P(V)P(W)P(X|V,W)P(Y|X)P(Z|X).  
Such decompositions derive from the chain rule plus 
conditional independence assumptions.  Using commutative 
and distributive laws then enables more efficient marginal 
computation: P(Y) = ΣxP(Y|x)ΣzP(z|x)ΣvP(v)ΣwP(x|v,w)P(w).  
This provides 
the basics of 
Bayesian 
networks 
(Figure 1). 

Factor 
graphs 
generalize this 
to arbitrary 
multivariate 
functions; e.g., F(V,W,X,Y,Z) = F1(V,W,X)F2(X,Y,Z)F3(Z).  
The function becomes a bipartite graph, with a variable 
node for 
each 
variable, a 
factor node 
for each 
function 
use, and 
undirected 
links 
between 
factors and 
their 
variables 
(Figure 2). 

The core 
inference 
algorithm 
for factor 
graphs is 
the sum-
product (aka summary-product or belief-propagation) 
algorithm, which passes messages along links.  A message 
from a source node to a target node along a link summarizes 
the source node’s information about the domain of the link’s 
variable node.  A message from a variable node to a factor 

node is the pointwise product of the messages into the 
variable from all of its neighbors except the target node.  A 
message from a factor node to a variable node starts with 
this same product but also includes the factor node’s own 
function in the product, with all variables other than the 
target variable then being summed out to form the outgoing 
message.  A key optimization here, as in Bayesian networks, 
is to use the commutative and distributive laws to 
redistribute multiplicative factors outside of summations. 

For tree-structured graphs in which only a single marginal 
is desired, the factor graph can be reduced to an expression 
tree in which the products and sums are computed 
unidirectionally upwards in the tree.  Beyond this simplest 
case, the algorithm works iteratively by sending output 
messages from nodes as they receive input messages.  For 
polytrees, which have at most one undirected path between 
any two nodes, this iterative algorithm always terminates 
and yields the correct answer.  For arbitrary graphs with 
loops, neither correct answers nor termination are 
guaranteed.  However, it does often work quite well in 
practice, as has been most strikingly evident for turbo codes. 

The sum-product algorithm uses two specific arithmetic 
operations: sum and product.  However, the same generic 
algorithm works for any pair of operations forming a 
commutative semi-ring, where: both operations are 
associative and commutative and have identity elements; 
and the distributive law exists.  Max-product, for example, 
is key to computing maximum a posteriori (MAP) 
probabilities.  OR-AND also works, as do other pairs. 

To improve the efficiency of the algorithm, various 
optimizations can be applied, and alternative algorithms can 
be used (such as survey propagation (Mézard, Parisi & 
Zecchina, 2002) and Monte Carlo sampling (Bonawitz, 
2008)).  A connection exists between factor graphs and 
statistical mechanics, revealing that the sum-product 
algorithm minimizes the Bethe free energy, and yielding 
algorithmic innovations (Yedidia, Freeman & Weiss, 2005). 

Factor Graphs for Cognitive Architecture 
The key question for us is whether factor graphs can yield a 
uniform level for implementing, understanding and 
exploring cognitive architecture, while ultimately yielding 
novel architectures that are more uniform, unified, and 
functional. Existing work on hybrid mixed methods is 
encouraging, as is work on general languages for mixed 
probabilistic and logical reasoning. FACTORIE 
(McCallum, Rohanemanesh, Wick, Schultz & Singh, 2008), 
for example, combines factor graphs with an imperative 
programming language to support relations and other 
capabilities, while BLOG (Milch, Marthi, Russell, Sontag, 
Ong & Kolobov, 2007) and Alchemy (Domingos, Kok, 
Poon, Richardson & Singla, 2006) combine probability and 
logic via Bayesian and Markov networks, respectively. 

The particular approach advanced here is to: (1) re-
implement existing architectures to help understand factor 
graphs, existing architectures, and the implications of 
implementing architectures via factor graphs; (2) go beyond 

Figure 2. Example factor graphs 

Figure 1. Example Bayesian network 
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existing architectures by hybridization and simplification, 
both within and across architectures; and (3) integrate in 
new capabilities that don’t mesh well with existing 
architectures, such as perception and motor control. 

The initial focus is on Soar because of familiarity with it, 
its history in cognitive modeling, and its dual status as both 
a uniform (early) and a diverse (latest) architecture.  We can 
make a quick start on reimplementing the uniform core, and 
build towards a more uniform integration of later diversity. 

The inmost core of “uniform Soar” is the reactive layer, 
where working memory (WM) is elaborated via associative 
retrieval of relevant information from a parallel production 
system.  During a single elaboration cycle, match computes 
all legal production instantiations, which then fire in parallel 
to modify WM.  Match is the core of the elaboration cycle, 
so it is the natural focus for initial reimplementation efforts. 

In Soar, match is based on Rete (Forgy, 1982), comprising 
a discrimination network for sorting working memory 
elements (wmes) to production conditions, a join network to 
determine which combinations of wmes yield production 
instantiations (while attending to across-condition variable 
equality), and support for both incremental match across 
cycles and shared match across productions.  Most 
individual productions match efficiently, although worst-
case match cost is exponential in the number of conditions. 

A factor graph implementation of Rete has been designed, 
where factor nodes handle discriminations and joins, 
variable nodes represent wmes that match production 
conditions and their combinations – analogous to Rete’s α 
and β memories – and unidirectional message passing over 
an expression tree enables 
incremental and shared match.  
But, rather than imposing Rete 
on factor graphs, the primary 
focus here has been on 
algorithms that arise more 
naturally from viewing 
production match as a 
multivariate function. 

Consider the rule in Figure 3.  This is not exactly Soar’s 
representation, although it does retain its object-attribute-
value scheme, with conditions testing wmes via constants 
and variables (in angle brackets).  The simplest mapping of 
this production to a factor graph views it as a Boolean 
function of the three production variables – P1(v0,v1,v2) – 
which, for each combination of variable values, yields 0 or 1 
depending on 
whether the 
combination defines 
a legal instantiation.   
The production’s 
conditions then 
specify how the 
function is to factor: 
P1(v0,v1,v2) = 
C0(v0,v1)C2(v1,v2) 
(Figure 4). 

This mapping has been implemented. In it, WM is a 3D 
Boolean array – objects  attributes  values – with 1s for 
every wme in WM and 0s elsewhere; and messages are 
Boolean vectors with 1s for valid bindings of the link’s 
variable and 0s elsewhere.  In essence, productions define 
graphs while WM defines distributions over graph variables. 

This initial approach showed the feasibility of 
implementing match via factor graphs, but it also raised 
three issues: (1) both WM and tests of constants were 
hidden within the condition factors; (2) production match 
ignored conditions without variables; and (3) it led to errors 
from binding confusion (Tambe & Rosenbloom, 1994).  
Solutions for these issues have been implemented, but as the 
first one didn’t affect correctness – only how much factor 
graphs were leveraged – and the second couldn’t actually 
occur in Soar because all of its conditions must be linked 
via variables, only the third issue is discussed here. 

Binding confusion arose because the graph independently 
tracked the legal bindings of each variable – called 
instantiationless match in (Tambe & Rosenbloom, 1994) – 
rather than maintaining Rete’s explicit combinations of 
condition instantiations.  Suppose (A ^type B), (C ^type D), 
(B ^color Red) and (D ^color Blue) are in working memory.  
The match bound v0 to A & C, v1 to B & D, and v2 to Red & 
Blue, but it couldn’t, for example, distinguish which color   
(v2) to associate with object A (v0), despite the fact that a 
correct match would mandate Red rather than Blue. 

This problem is a direct consequence of the interaction 
between two types of constraint imposed by factor graphs: 
(1) the locality of processing in the network; and (2) the 
limitation on message content to the values of one variable.  
Approaches to binding confusion must either work around 
these constraints to yield correct combinations or redefine 
match to live within them.  Correct combinations can be 
yielded, for example, by post-extraction (Dechter & Pearl, 
1987) or by implementing Rete.  If instead match is to be 
redefined to be what is produced, we must then determine 
how to write rules that yield the desired overall behavior 
given the new semantics.  This approach could also be 
further refined by replacing Boolean array values with 
apportioned fractional values for ambiguous bindings. 

The most promising approach at this point modestly 
redefines the semantics of match to produce the needed 
combinations of bindings for action variables, while still 
avoiding the need for Rete’s full instantiations.  In the 
process, it eliminates binding confusion, alters the worst-
case match cost for a production to exponential in its 
treewidth, and further reduces costs and potential confusion 
by eliminating redundant instantiations that would otherwise 
generate equivalent results (when some condition-variable 
bindings differ while action-variable bindings do not). 

This approach enables local processing of variable 
combinations by using variable nodes in the graph that 
represent combinations of production variables rather than 
individual ones. To start, an ordering is imposed on the 
production’s conditions and actions to yield a sequence of 
factor nodes.  A variable node is then added between each 

Figure 3. Example rule 

Figure 4. Example rule graph 
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successive pair of factor nodes. To finish, the first and last 
condition/action that uses each production variable is 
determined, and that variable is added to each variable node 
between these two factor nodes (Figure 5). The approach is 
based on stretching in factor graphs, which itself maps onto 
junction trees (Kschischang, Frey & Loeliger, 2001).  Its 
implementation eliminates binding confusion by tracking 
combinations of variable bindings just as they are needed. 

Since each 
variable node in 
the graph may 
now represent 
multiple 
production 
variables, multi-
dimensional 
arrays result that can be expensive to process without further 
optimization.  The most critical optimization here is factor 
rearrangement.  Without it, the full factor graph for the rule 
in Figure 3 – comprising 8 factor nodes and 8 variable 
nodes when all three problem solutions are included plus the 
goal memory to be described later – exhausts heap space 
before match completes (in LispWorks PE).  With factor 
rearrangement, match takes only 1.7 sec. 

A second critical optimization leverages the uniformity of 
WM and message arrays (which are almost all 0s or 1s) via 
an N-dimensional generalization of region quad/octrees (à 
la CPT-trees in Bayesian networks (Boutilier, Friedman, 
Goldszmidt & Koller, 1996)).  If an array is uniform, it 
becomes a single-valued unit.  Otherwise, each dimension is 
bisected – yielding 2N sub-arrays – and the process recurs. 
The sum and product algorithms are trickier here, but have 
been worked out.  With this optimization, match time is 
reduced by a further factor of ~7 (from 1.7 to .25 sec.).  It 
also enables comparing match cost without rearrangement, 
yielding a factor of ~500 (132 vs. .25 sec.). 

One interesting implication of representing WM via trees 
is a view of it as a piece-wise constant function.  If this 
proves extensible to piece-wise linear functions, it may be 
effective for variables with continuous domains and ranges 
(as used in mixed and hybrid systems).  It may also be 
possible to employ more intelligent partitioning algorithms 
for WM, including adaptive clustering methods. 

Conclusion and Next Steps 
Despite the increasing trend towards diversity in cognitive 

architectures, uniformity at the implementation level may 
yet provide leverage in exploring, understanding and 
improving existing architectures; and in developing novel 
architectures with increased elegance and broader coverage.  
Factor graphs, and graphical models more generally, are 
intriguing for this level because they yield a wide diversity 
of capabilities in a uniform and constrained manner. 

An initial step has been taken towards reimplementing 
Soar by factor graphs, with the demonstration of the latter’s 
ability to implement (symbolic) production match via an 
interesting new algorithm.  The key next step is extending 

beyond match to the rest of Soar’s cognitive inner loop – the 
deliberate layer (or decision cycle) – where elaboration 
cycles repeat until quiescence (the elaboration phase) 
followed by a decision.  One approach to the elaboration 
phase is to alter WM between cycles, as in standard 
production systems. This has been implemented, but a more 
promising alternative is to arrange the elaboration phase’s 
temporal structure in space rather than time, as a trellis. 
With a trellis, perceptual and motor processing may be 
integrated directly into the cognitive inner loop rather than 
being walled off into a separate I/O system.  A trellis would 
also enable bidirectional information propagation across the 
elaboration phase to ensure correct graphical probability 
calculations.  For the process of decision making itself, 
influence diagrams are a natural strategy to explore first. 

Beyond reimplementing Soar’s cognitive inner loop is the 
challenge of extending the loop to include a more uniform 
integration of Soar 9’s semantic and episodic memories, 
plus probability and signal processing.  The lead candidate 
for semantic memory blends Prolog’s view of facts as 
condition-less rules that are triggered backwards by a goal 
probe, with the statistical view of retrieving the most 
probable semantic memory element given the probe 
(Anderson, 1990).  A goal memory – in analogy to working 
memory – has been implemented to enable backwards 
access to production actions; but appropriate control of 
backwards vs. forward processing in the inner loop is still 
needed, as is restricting retrieval to the most probable 
element (based on MAP probabilities and the max-product 
algorithm).  For episodic memory, two approaches have 
potential: (1) adding long-term trellises to the graph; and (2) 
extending WM to a fourth, temporal dimension. 

Adding probabilities to the inner loop is being explored 
via experiments with extant mixed languages, such as 
Alchemy and BLOG (Rosenbloom, 2009).  Signal 
processing will be investigated via trellises and piecewise-
linear quad/octrees (for representing continuous functions). 

Still, this is all only the beginning.  It will also be critical 
to: (1) reimplement Soar’s reflective layer and learning 
mechanism(s); (2) implement and integrate in other 
cognitive capabilities, such as planning, emotion, social 
cognition and language; (3) reexamine the implementation 
of a broader range of architectures (such as ACT-R); and (4) 
forge a bridge to neural architectures.  Success should yield 
both a uniform implementation level for architecture 
development – i.e., a narrow waist for the cognitive 
hourglass – and better architectures for cognitive modeling. 
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Abstract

A common feature of many cognitive architectures is a central 
executive  control  with  a  50-millisecond  cycle  time.   This 
system determines which action to perform next, based on the 
current context.   We present the first  model of this system 
using  spiking  neurons.   Given  the  constraints  of  well-
established  neural  time  constants,  a  cycle  time  of  46.6 
milliseconds emerges from our model.  This assumes that the 
neurotransmitter  used  is  GABA (with  GABA-A receptors), 
the primary neurotransmitter for the basal ganglia, where this 
cognitive module is generally believed to be located.

Keywords: cognitive  cycle  time;  central  executive;  LIF 
neurons;  neural  production  system;  neural  engineering 
framework; cognitive architectures

Introduction
ACT-R,  Soar,  GOMS,  EPIC,  and  a  variety  of  other 
approaches  to  modelling  human  cognition  all  contain  a 
common assumption about the central control of cognitive 
operations.  This is usually regarded as a production system 
where  IF-THEN  rules  are  applied  sequentially.   This 
imposes a serial bottleneck where low-level decisions as to 
which cognitive action should be performed next are made, 
requiring  approximately  50  milliseconds  per  decision 
(Anderson et al., 1995).

While this 50 millisecond cognitive cycle time leads to 
models that match empirical data, the neurological basis for 
this  time  constraint  has  not  been  previously  established. 
This paper develops a model of low-level rule application 
using realistic spiking neurons.   The 50 millisecond cycle 
time  is  then  shown  to  be  the  result  of  well-established 
neuron  membrane  and  neurotransmitter  properties.   The 
result is not only a realistic, neurally plausible model of a 
core component for cognition, but also an explanation for 
why this characteristic time appears across architectures.

The model presented here is not meant to be complete.  In 
particular, we do not provide a model of the developmental 
process  which  leads  to  the decision making system.  We 
also  do  not  currently  include  any  learning  capabilities, 
although this is part of our ongoing research.  Instead, our 
model  uses  fixed  mathematically  derived  synaptic 
connection  weights,  in  contrast  to  most  neural  network 
models.   These derived weights are meant to be the final 
result  of  a  learning  process,  and  weights  derived  in  this 
manner have been shown to be realistic and highly robust to 
noise and neuron death (Eliasmith & Anderson, 2003).

Recent  results  have  suggested  that  the  brain  area  that 
corresponds  to  the  system we  are  modelling  is  the  basal 
ganglia (e.g. Anderson et al., 2004).  This provides us with 
constraints as to the neural properties and neurotransmitters 

involved.   However,  since  we  are  not  yet  modelling  all 
aspects of this system and its interactions with other brain 
areas, we do not present our work as a complete model of 
the basal ganglia.

We  start  by  describing  the  basic  components  of  our 
model:  the  standard  leaky  integrate-and-fire  (LIF)  neuron 
and  a  model  of  post-synaptic  current  caused  by  a  neural 
spike.  From these, we construct a simplistic minimal model 
of  neural  decision  making.   We  then  add  a  competition 
system so  that  only  one  option  at  a  time  is  represented. 
Finally, we build a working memory system so that context 
can be stored over time.

Neural Model
The standard basic model of spiking neurons is  the leaky 
integrate-and-fire  (LIF)  model.   While  computationally 
simple,  it  provides  a  good approximation to  real  neurons 
over  a wide range  of conditions (Koch,  1999).   It  uses  a 
point  neuron,  as  opposed  to  more  complex  compartment 
models where ion flows within the neuron are modelled at a 
sub-millisecond level.  Current is constantly leaking out of 
the neuron as per the membrane resistance R, but if enough 
input current is gathered to cause the voltage to be above a 
certain threshold, then the neuron will fire.  After firing, the 
voltage  is  set  to  0  for  a  fixed  refractory  period  (2 
milliseconds) before starting to gather current again.

Given a constant current input J and membrane resistence 
R, the voltage level of the LIF neuron changes over time as 
given in Equation 1 and shown in Figure 1.  The timing of 
this  behaviour  is  controlled  by  τRC,  the  membrane  time 
constant  of the neuron.   Larger  values  cause the neuron's 
voltage to change more slowly, making it slower to respond 
to  changes  in  input  current.   Interestingly,  many  real 
neurons  are  well-characterized  by  LIF  neurons  with 
membrane time constants in the range of 20 milliseconds, so 
this value is used for all simulations reported here.

V t =J R 1−e−t /RC (1)

Figure 1: LIF neuron with constant input current.
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When a neuron fires, it affects the input current to all of the 
neurons to which it is connected.  This current  h(t) can be 
characterized by Equation 2, where τs captures the effects of 
neurotransmitter  re-uptake  and  dispersal.   As  shown  in 
Figure  2,  a  small  τs provides  a  fast,  short-lasting  effect 
(~10ms), while others last for hundreds of milliseconds.

ht =t e−t / s (2)

Figure 2: Post-synaptic currents for common synapses.

The τs values used here are approximate, based on available 
neurophysiology data.   Gupta et  al. (2000) estimate  τs  for 
GABA-A to be 10.41ms.  AMPA is generally found to be 
between  1ms  and  10ms  and  NMDA  between  50ms  and 
150ms (e.g. Moreno-Bote & Parga, 2004).

While  the  neural  model  we  are  using  is  not  a  perfect 
replication  of  real  neurons,  we  find  it  sufficient  for  our 
purposes.  The LIF neurons allow us to explore the timing 
of neural processing, unlike the typical rate neurons used in 
most neural models.  These not only do not spike, but also 
do  not  have  any  temporal  dynamics  at  all,  responding 
instantly to any change in input.  Furthermore, given that the 
basic neural behaviour is well captured by the LIF model, 
switching to a more detailed model should not significantly 
impact the large-scale behaviour of the system (on the order 
of tens of milliseconds).  That said, our model does not rely 
on the use of LIF neurons, and other more complex models 
could be used.

Neural Representation
Any  model  of  a  central  executive  control  system  where 
particular  actions are chosen based on the current  context 
must  confront  the  issue  of  neural  representation.   The 
current context must be represented in such a manner as to 
appropriately  affect  the behaviour  of  other  neurons.   The 
approach described here to define and create such models is 
known  as  the  Neural  Engineering  Framework  (NEF; 
Eliasmith and Anderson, 2003).  

To  be  as  general  as  possible,  we  make  the  minimal 
assumption that representations can be distributed across a 
group of neurons, but leave open the question of the exact 
nature  of  this  distribution.   Within  a  neural  group,  each 
neuron has a preferred value  to which it responds most 

strongly,  and  this  response  is  reduced  as  the  difference 
between this preferred value and the actual value increases.  

If we assume that any value the neurons can represent can 
be thought of as a vector x, this behaviour can be captured 
in  terms  of  the  input  current  J as  shown  in  Equation  3. 
Adjusting the neuron gain  α, the background input current 
Jbias,  and  the  preferred  direction  vector  allows  us  to 
capture  a  wide  range  of  known  neural  representation 
schemes.

J= ⋅xJ bias (3)
In  the  simplest  case,  100  neurons  could  represent  a  100 
dimensional  vector  x by  having  each  be  a  different 
unit  vector  in  each  of  the  100  dimensions.   This  would 
provide a completely local representation of each value in 
the vector.  More realistically, 100 neurons could represent 
one  or  two  dimensions  by  having  values  chosen 
randomly  (i.e.  uniformly  distributed  around  the  unit 
hypersphere in that many dimensions).  This approach has 
been observed in numerous areas of visual and motor cortex 
(e.g. Georgopoulos et al., 1986).  By having more neurons 
per dimension, the representation error can be decreased to 
arbitrarily low levels (error is inversely proportional to the 
number of neurons). 

Since Equation 3 can be used as the input to a model of an 
LIF neuron, we can determine the sequence of spikes that 
would be generated for a group of neurons if a particular 
vector  x is  being  represented.   We  can  also  perform the 
opposite  operation:  given  a  sequence  of  spikes  we  can 
estimate  the  original  vector.   As  shown  elsewhere 
(Eliasmith & Anderson, 2003), this can be done by deriving 
the decoding vectors  as per Equation 4, where ai is the 
average firing rate for neuron  i with a given vector  x, and 
the integration is over all values of x.

=
−1
 ij=∫ ai a j dx  j=∫ ai x dx (4)

The resulting vectors  can be used to determine an 
estimate of the represented value using Equation 5.  This is 
an estimate that  varies  over  time based on the individual 
spikes.  Importantly, it is the optimal estimate when under 
the  constraint  that  the  estimate  must  be  built  by  linearly 
adding the effects  of the post-synaptic currents  caused by 
each  spike.   This  is  precisely  the  constraint  that  other 
neurons are under, so Equation 5 indicates the best that the 
original vector can be reconstructed by another neuron.

x t =∑
i ,n

t−t i ,n∗h iti=∑
i ,n

h t−ti , ni (5)

This  result  further  provides  a  method  for  determining 
optimal  synaptic  connection  weights  between  groups  of 
neurons if one group is to perform a linear transformation 
on  the  value  represented  by  the  other.   If  one  group  of 
neurons represents  x and the other group should represent 
Mx,  then  this  can  be  achieved  by  setting  the  connection 
weights w as per Equation 6.

w ij= j
 j Mi (6)

We can  also  use  a  variant  of  Equation  4  to  determine 
connection weights for arbitrary nonlinear transformations 
of x (see Eliasmith & Anderson, 2003 for details).
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The Task
As a baseline for the construction and demonstration of our 
model, we use a simple minimal sequential decision making 
task.  This is meant to show that the model is capable of 
responding  appropriately  to  different  contexts,  and  is 
capable of modifying the context itself.

The  current  context  is  represented  by a large  group of 
neurons (at least 2000 in all models shown here), as per the 
representation  system  described  in  the  previous  section. 
The preferred  direction vectors  are  chosen randomly 
from  the  unit  hypersphere,  and  the  neuron  gains  α and 
background  currents  Jbias are  chosen  to  give  a  uniform 
distribution  of  maximum firing rates  between  100Hz and 
200Hz  and  an  average  background  firing  rate  of  40Hz, 
consistent with many cortical neurons.  At the beginning of 
a  simulation,  this  context  is  fixed  to  represent  the  initial 
state of the model, but after this initialization period (50ms) 
there  is  no  external  input.   That  is,  the  model  must  be 
capable of maintaining and changing its own internal state.

We  arbitrarily  choose  five  vectors  to  represent  five 
different internal states referred to as A, B, C, D, and E.  The 
model's task is to implement the set of state change rules 
that will cause it to cycle through these five states.  If the 
system is in state A, it should change to state B;  if it is in B, 
it should change to C, and so on.

In terms of the cognitive architecture ACT-R, this would 
involve five production rules.  Each production rule would 
match on a particular goal buffer state (A through E), and if 
that  production  fires  it  would  modify  the  goal  buffer  to 
contain the next state in the sequence.  In ACT-R (and in 
most other cognitive architectures), this process is externally 
fixed to require 50 milliseconds.   As will be seen, in our 
models this timing will emerge from neural properties.

Figure 3 shows an idealized (non-neural)  model of this 
process.   The  five  different  colours  indicate  the  five 
different  representational  states  over  a  period  of  500 
milliseconds.  This is enough time for the system to repeat 
the cycle twice.  At each moment in time, we measure the 
represented vector x and compare it to the arbitrarily chosen 
patterns A through E.  This comparison is done by taking the 
dot product of the represented value (from Equation 5) and 
each of the five target patterns.

Figure 3: Behaviour of an ideal model cycling through five 
states, fixed to have a 50 millisecond cycle time.

Model 1: Basic Sequential Decisions
Our first model is created by adding a separate population of 
neurons  for  each  of  the rules  to  be implemented.   These 
neurons must be connected to the main context neurons so 
that they will only fire when the value being represented is 
the same as (or very close to) the desired state (A through 
E).  When a particular group of neurons starts to fire, their 
connections back to the context neurons are such that they 
will  drive  its  firing  towards  the  desired  next  state.   This 
structure  is  shown in Figure 4.   For  clarity,  this  diagram 
shows only three rules: A→B, B→C, and C→A.

Figure 4: Neural groups and connections for Model 1.

To form the synaptic connections from the context  to the 
rule neural groups, we can use Equation 6.  For example, for 
the connection to the first rule, we set M to be the pattern A. 
As per Equation 6, this means that the neural group will be 
driven to represent the value Ax, which is the dot product of 
the represented  context  value with  A.   This will  be large 
(near  1)  when  A is  being represented,  and small  (near  0) 
when another pattern is being represented.

The properties of the neurons in the rule groups must also 
be set.  Here, we can make use of the fact that we want these 
neurons to not fire at all when representing 0, but should be 
sensitive to values near 1.  This can be achieved by having a 
large  negative  Jbias (with  some  random  variation).   The 
corresponding neuron tuning curves are shown in Figure 5. 
These show the average spiking rate of ten different neurons 
for different contexts  x.  To see the actual spiking patterns 
over time, Figure 6 shows the spikes caused by varying the 
input to this neural group from 0 to 1 and back to 0 over one 
second. 

Figure 5: Average firing rates for neurons detecting the 
presence of pattern A.  Different context patterns are on the 
x-axis: far left is a context unlike A (dot product of 0), far 

right is a context of exactly A.  Each curve shows a different 
neuron with different values of α and Jbias.
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Figure 6: Individual neuron spikes for the neural group 
detecting A.  Each neuron's spikes are separated along the y-
axis.  Dot product of the context with A is varied from 0 to 1 

and back to 0 over one second (dotted line).  The value
x decoded using Equation 5 is shown (solid line).

We use a similar process to form synaptic connections from 
the  individual  rule  groups  back  to  the  context  neurons. 
Here, the weights encode the effect of each rule, indicating 
how the context should be changed if this rule is applied. 
These are again calculated using Equation 6.  The resulting 
model has a variety of parameters, given in Table 1.

Table 1: Parameters of the model
Parameter Default value

# of context neurons 2000
# of neurons per rule group 20

membrane time constant (τRC) 20ms
synaptic time constant for context (τSC) 10ms

synaptic time constant for rules (τSR) 10ms

The behaviour of the resulting model is shown in Figure 7. 
As  can  be  seen,  it  successfully  cycles  between  the  five 
states.  For this particular model, each change requires an 
average  of  27.5ms,  making  this  much  faster  than  the 
expected 50 millisecond cycle time.  Furthermore, this rate 
is not sensitive to the numbers of neurons in each group: 
increasing these values by a factor of 10 causes only a slight 
decrease  (<2ms)  in  the  cycle  time,  since  adding  more 
neurons decreases the representational error in the system.

Figure 7: Behaviour of Model 1.  Similarity is determined 
by the dot product of x (calculated from the spikes of the 
context neurons using Equation 5) with the vectors A to E.

The  main  effect  on  behaviour  is  seen  by  adjusting  the 
synaptic  time constants.   As shown in Figure 2,  different 
neurotransmitter/receptor  pairs  have  different  time 
constants.  We can adjust the synapses from context neurons 
to rules separately from the ones from rule neurons to the 
context.   These  parameters  are  varied  in  Figure  8.   The 
membrane  time  constant  is  known  to  be  approximately 
20ms for a wide range of neurons, so it is not adjusted here. 

Figure 8: Average cycle time in seconds for varying τSC and 
τSR in Model 1.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

Given the results in Figure 8, the model is successful when 
the synaptic time constant for the context neurons is below 
30ms,  which  is  consistent  with  both  GABA-A  and  fast 
AMPA synapses.  This limit decreases as the synaptic time 
constant of the rule neurons increases.

While  this  model  is  successful  at  cycling  across  five 
different states, it fails in many other cases.  For example, 
Figure 9 shows the behaviour when cycling between three 
states.  Here, cycling behaviour is initially evident, but over 
time the  system converges  to  a  static  representation.   In 
particular, it converges to representing all three states at the 
same  time.   The  final  context  value  is  the  superposition 
(vector sum) of A, B, and C.  This is clearly not the desired 
behaviour.

Figure 9: Behaviour of Model 1 when there are only three 
states.  Similarity is determined by the dot product of x

(calculated from the spikes of the context neurons using 
Equation 5) with the vectors A, B, and C.
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Model 2: Inhibition Between Rules
To improve  on Model  1  and  fix  the  behaviour  shown in 
Figure 9, we needed to add a mechanism to encourage the 
application  of  only  one  rule  at  a  time.   This  was 
accomplished  by adding inhibition between the groups of 
neurons responsible for each rule.  That is, if the neurons in 
the first group are firing, this should decrease the activity in 
the other four groups.  This is accomplished with Equation 
6,  where  M is  simply  the  value  -wi (the  strength  of  the 
inhibition).  We must also add a self-excitatory connection 
of strength we within the neurons of each rule group, so as to 
counteract this inhibitory current.  This new model is shown 
in Figure 10.

Figure 10: Neural groups and connections for Model 2.

For wi of 0.5 and a we of 1, the model is successfully cyclic 
for  cycles  of  2  through  20  (which  was  as  high  as  was 
tested).  That is, the resulting behaviour looks like Figure 7, 
rather than Figure 9.  The precise effects of these parameters 
will be explored in future work, as they are likely to impact 
any reinforcement learning system which might be used to 
bias  one  rule  over  another  (such  as  in  the  ACT-R utility 
learning  system).   With  these  parameter  values,  the 
behaviour of the model for varying τSC and τSR is shown in 
Figure 11.  We can see that Model 2 is slightly slower, but 
more stable over a wider range of synaptic time constants.

Figure 11: Average cycle time in seconds for varying τSC 

and τSR in Model 2.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

While  this  model  eliminates  the  problem of  convergence 
onto a superposition of states,  there is  a further difficulty 
present in both Model 1 and Model 2.  So far, we have been 
assuming that this rule-following system is completely self-
sufficient.   In  particular,  once  an  action  is  chosen,  the 
context is modified, and the system is then immediately able 
to start identifying the next rule to apply.

However, in real cognitive models, the central production 
system is only one of many components that can affect the 
current context.  For example, in ACT-R, it is common for 
the  production  system  to  request  that  the  declarative 
memory  system  recall  a  fact.   While  that  fact  is  being 
recalled, the production system may not be doing anything, 
as no rules may apply until that fact is found (which may 
take hundreds of milliseconds).  During that time, no rules 
are applied, but the context must be maintained.

Figure 12 shows the behaviour of Model 2 when no rules 
can be found that apply to the current context.  This is done 
by removing the rule that transitions from E to A.  As can be 
seen, when no rule can be applied, the system  forgets the 
current context, since no rule is firing to set it in the context 
population.  Model 1 behaves similarly.

Figure 12: Behaviour of Model 2 when the rule to go from 
E to A is removed.  The context information is lost.

Model 3: Maintaining Working Memory
To eliminate the forgetting effect  shown in Figure 12, we 
add recurrent  connections among the neurons representing 
context.  This approach has previously been used to model 
working  memory  (Singh  &  Eliasmith,  2006),  and  is  a 
generic method for storing information over time in spiking 
neurons.   This is  done by using Equation 6 to  determine 
synaptic  weights  from  the  context  population  back  into 
itself, with M set to be the identity matrix I.  The resulting 
model is shown in Figure 13.

The behaviour of this model when the rule to transition 
from E to A is removed is shown in Figure 14.  In contrast 
to  Model  2  (Figure  12),  the  system  is  now  capable  of 
maintaining context information over time.  

Adding this new recurrent connection allows information 
to  be  stored,  but  it  also  slows  down  the  process  of 
modifying this information.  The behaviour for varying τSC 

and τSR is shown in Figure 15.
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Figure 13: Neural groups and connections for Model 3.

Figure 14: Behaviour of Model 3 when the rule to go from 
E to A is removed.  The context information is maintained.

Figure 15: Average cycle time in seconds for varying  τSC 

and τSR in Model 3.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

Discussion
Our Model 3 successfully identifies the rule appropriate to 
the current context and modifies the context appropriately. 
It  is  able  to  keep  the  patterns  for  each  context  separate 
(unlike Model  1) and store information over  time (unlike 
Model 2).  Furthermore,  if the synaptic time constants for 
both the context neurons and the rule neurons are set to be 
10ms, the average cycle time is 46.6ms, very close to the 
standard of 50ms.  As noted above,  10ms is the synaptic 
time  constant  for  GABA-A  receptors.   These  are  the 
primary synaptic receptors in the basal ganglia, which is the 
postulated location responsible for sequential rule selection.

While our model closely matches the generally accepted 
cycle time of 50 milliseconds, more is needed before it can 
be accepted as a neural model of central executive control. 
Most  crucially,  cognitive  architectures  generally  postulate 
rules that are much more complex than “if A then B”.  We 
have  shown  elsewhere  (Stewart  &  Eliasmith,  2008)  how 
complex  symbolic  rules  can  be  translated  into  vectors 
appropriate for our model.  This would require the addition 
of a new neural population capable of combining the output 
of the rule neurons with the existing context.  Preliminary 
results indicate that such a system would increase the cycle 
time by 5-10ms if AMPA or GABA-A are used.

We are also in the process of directly mapping our model 
onto the architecture of the basal ganglia and its connection 
to the cortex via the thalamus.  In this case, the context may 
be stored using faster AMPA connections in various cortical 
areas and then gathered in the striatum for matching.  The 
thalamus would then apply the complex rules mentioned in 
the  previous  paragraph.   This  is  a  direct  match  to  the 
mapping  from  modules  to  brain  areas  found  in  ACT-R 
(Anderson et al., 2004).  Furthermore, a learning system is 
required  (likely  using  a  dopamine-based  expected  reward 
signal) to identify how these synaptic connections arise.

Although our model  is  incomplete,  it  provides  the  first 
neural  explanation for the 50 millisecond cognitive cycle. 
This time is  a direct  result  of the properties  of GABA-A 
receptors,  along with the requirements  that  the system be 
able to recognize appropriate rules in a given context, apply 
rules separately, and store context information over time.
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Abstract

Methods for cleaning up (or recognizing) states of a neural 
network  are  crucial  for  the  functioning  of  many  neural 
cognitive  models.   For  example,  Vector  Symbolic 
Architectures  provide  a  method  for  manipulating  symbols 
using a fixed-length vector representation.  To recognize the 
result of these manipulations,  a method for cleaning up the 
resulting  noisy  representation  is  needed,  as  this  noise 
increases  with  the  number  of  symbols  being  combined. 
While  these  manipulations  have  previously  been  modelled 
with biologically  plausible  neurons,  this  paper  presents  the 
first  spiking  neuron  model  of  the  cleanup  process.   We 
demonstrate that it approaches ideal performance and that the 
neural requirements scale linearly with the number of distinct 
symbols in the system.  While this result is relevant for any 
biological model requiring cleanup, it is crucial for VSAs, as 
it completes the set of neural mechanisms needed to provide a 
full neural implementation of symbolic reasoning.

Keywords: Autoassociative  memory;  Neural  engineering 
framework;  Vector  symbolic  architectures;  Holographic 
reduced representation; 

Autoassociative Memory
A fundamental component of many cognitive architectures 
is an autoassociative memory.  This is a system that can be 
provided  with  a  partial  or  noisy  version  of  a  previously 
stored  memory  and  will  in  turn  provide  a  complete  and 
more accurate version of that memory.  This can be seen in 
ACT-R's declarative memory system (Anderson & Lebiere, 
1998),  CLARION's  non-action-centered  subsystem  (Sun, 
2006),  RAAM's  compressor  and  reconstructor  (Pollack, 
1988),  and many other  cognitive models.   This capability 
can  be  implemented  using  a  wide  variety  of  approaches, 
including  multilayer  perceptrons,  Hopfield  networks,  and 
any prototype-based classifier.

The  particular  use  of  autoassociative  memory  of 
importance  to  this  paper  is  as  a  cleanup  memory for 
cognitive operations.   Recent research has shown that  the 
storage and manipulation of cognitive symbol systems can 
be implemented as mathematical operations on fixed-length, 
high-dimensional vectors.  These approaches are known as 
Vector  Symbolic Architectures  (VSAs; Gayler,  2003) and 
include Holographic Reduced Representation (HRR; Plate, 
2003),  MAP  Coding  (Gayler  &  Wales,  2000),  Binary 
Splatter Codes (Kanerva, 1997), and others.  Each of these 
provides  an  alternate  method for  converting  symbols  and 
symbol  trees  into  vectors,  combining  vectors  to  perform 
symbolic  manipulations,  and  extracting  out  the  original 
components of that symbol tree.

In previous research we have shown how VSAs can be 
implemented  in  biologically  realistic  spiking  neurons 
(Eliasmith,  2005;  Stewart  &  Eliasmith,  2008).   This 
approach is many orders of magnitude more efficient1 than 
alternate theories of how symbolic manipulations could be 
performed  by  the  brain  (Stewart  &  Eliasmith,  in  press). 
However, one common criticism is that this approach does 
not  yet  show  how  these  systems  can  clean  up  their 
representations.   Performing  symbol  manipulations  using 
VSAs is an inherently noisy process, and these operations 
must be performed by spiking neurons, adding a significant 
amount of random variation.  When symbols are extracted 
from  a  bound  representation,  the  brain  needs  a  reliable 
method for  identifying which symbol  it  is,  allowing it  to 
respond appropriately.

The purpose of this paper is to present an autoassociative 
memory  constructed  from  spiking  neurons  which  is 
appropriate  for  cleaning  up  the  representations  resulting 
from  cognitive  manipulations  using  VSAs.   We  first 
describe  the  characteristics  of  VSAs  that  define  the 
statistical  properties  of  the  noise  that  must  be  removed. 
Next,  a  general  method  is  described  for  encoding  (and 
decoding) high-dimensional vectors across a population of 
spiking neurons.  We then show that standard approaches to 
deriving connection weights have difficulty when scaled up 
to the number of symbols required for human.  Our cleanup 
memory model is then presented, followed by an analysis of 
its behaviour.

Vector Symbolic Architectures
There are three core ideas for all VSAs.  First, each symbol 
is represented by a randomly chosen vector.  Second, two 
vectors can be combined by superposition () to produce a 
new vector  that is  similar to both of the original  vectors. 
Third,  two  vectors  can  be  combined  by  binding  ()  to 
produce  a  new  vector  that  is  dissimilar to  both  of  the 
original  vectors,  and  this  operation  can  be  reversed  by 
binding  with  the  inverse  of  a  vector  (denoted  with  an 
underline),  such  that  ABBA.   These  operations  are 
similar to standard addition and multiplication in terms of 
being associative, commutative, and distributive.  With such 
a  system  we  can  represent  a  structure  such  as 
chase(dog,cat) by performing the following calculation:

1 For realistic vocabulary sizes, this approach uses three orders 
of  magnitude  fewer  neurons  than  the  Neural  Blackboard 
Architecture (van der Velde & de Kamps, 2006) and seven orders 
of magnitude fewer than LISA (Hummel & Holyoak, 2003).
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chaseverb     dogsubj     catobj

The  result  is  a  single  vector  of  the  same  length  as  the 
vectors  for  the  basic  symbols  (chase,  verb,  dog,  etc.). 
This one vector can be interpreted as a representation of the 
entire structure because it is possible to extract the original 
components.   For example,  to determine the object of the 
above structure, we take the whole vector and bind it with 
the inverse of obj.

  (chaseverb +dogsubj +catobj)obj
= chaseverbobj +dogsubjobj +catobjobj
cat +chaseverbobj +dogsubjobj

The result is a vector that is similar to cat, but is not exactly 
the same since it has two additional terms superposed on it. 
Due  to  the  properties  of  the  binding  operation,  however, 
these two terms  chaseverbobj and  dogsubjobj 
will be vectors unlike any of the original symbols.  They can 
thus be treated as randomly distributed noise.  It is this noise 
that must be removed by the cleanup memory system.

While  the  above  discussion applies  to  all  VSAs,  if  we 
choose  one  particular  type  of  VSA  we  identify  the 
properties of the symbol and noise vectors.  For this, we use 
Holographic Reduced Representations (HRRs; Plate, 2003). 
Here, each basic symbol vector is set by randomly selecting 
a point on the high-dimensional unit sphere (i.e. a random 
vector  normalized  to  a  length  of  one).   Superposition  is 
performed by vector addition and the binding operation is 
circular convolution.

The cleanup memory thus needs the following properties:

1) Recognize M unit vectors (one per symbol), distributed 
uniformly over a high-dimensional unit sphere.

2) Handle  additive  noise  produced  by  adding  k unit 
vectors uniformly distributed over the same sphere.

To  be  useful  for  cognitive  operations,  on  the  order  of 
100,000 symbols (M)  must  be able to be identified.   The 
complexity  of  the  structures  that  can  be  encoded  is 
determined by k, indicating the number of terms that can be 
superposed  and  still  lead  to  accurate  recognition.   This 
should be at least 7   2 to conform to the standard chunk 
sizes used in cognitive modelling.  

To determine whether recognition is accurate, we take the 
dot  product  of  the  correct  vector  and  the  output  of  the 
memory;  if  this value is  above a threshold the symbol  is 
successfully recognized.  For the purposes of this paper, we 
arbitrarily choose a threshold of 0.7, although Plate (2003, 
p.  100)  provides  a  method  for  determining  the  optimal 
threshold in special cases where k is fixed and known.

The final factor to consider when using Vector Symbolic 
Architectures is the number of dimensions.  In an ideal case 
(where vectors are represented exactly, rather then via noisy 
spiking  neurons),  Plate  (2003)  derived  the  following 
formula  for  determining  the  minimum  number  of 

dimensions  D required  to  represent  combinations  of  k 
vectors out of M symbols and have a probability of error q:

    D=4.5k0.7ln M /30q 4 (1)

From this, we note that 700 dimensions would be sufficient 
to represent chunks of up to 7 symbols out of a vocabulary 
of  100,000  with  an  accuracy  of  95%.   However,  this 
formula assumes an ideal cleanup memory. 

Distributed Representation
There are a variety of methods whereby a numerical vector 
can be represented by a population of spiking neurons. The 
most  simplistic  approach  is  to  have  one  neuron  per 
dimension, and the firing rate of that neuron indicates the 
value in that dimension.  However, this approach is highly 
fragile to neuron death and does not correspond to known 
methods  of  spatial  representation  by  neurons.   It  is  well 
established (e.g.  Georgopoulos et al., 1986) that movement 
directions  are  encoded  by  having  a  large  population  of 
neurons, each of which is sensitive to a different direction. 
The  firing  rate  of  each  neuron  is  related  to  the  angle 
between  that  neuron's  preferred  direction  vector  and  the 
value being encoded.2

We take this same approach to encode high-dimensional 
vectors.  Each neuron has a preferred direction vector 
and the current entering the neuron is proportional to the dot 
product between this and the vector x being represented.  If 
α is the neuron gain and Jbias is a fixed background current, 
then the total current flowing into cell i is:

     J i= i
 i⋅xJ i

bias (2)

This  current  can  be  used  as  the  input  for  any  model  of 
spiking neurons, such as the standard leaky integrate-and-
fire (LIF) model.  In general,  x can vary over time as  x(t) 
and  the  spikes  produced  will  be  based  on  this  varying 
current.  If the details of the neural model (i.e. the relation 
between input current and spiking behaviour) are written as 
G[∙] and the neural  noise of variance  σ2 is  η(σ),  then the 
encoding  of  any  given  x(t) as  the  temporal  spike  pattern 
across the neural group is given as:

     (3)

Since this spiking pattern is meant to represent the original 
vector x, it should be possible to determine an estimate (t) 
given  only  this  spiking  pattern.   This  can  be  done  by 
deriving linearly optimal (in terms of minimizing squared 
error) decoding vectors   for each neuron as per Equation 
4,  where  ai is  the  average  firing  rate  for  neuron  i (see 

2 It should be noted that the simplistic representation mentioned 
initially  is  a  special  case  of  this  approach,  where  the  preferred 
direction vectors are exactly aligned along the dimensions being 
represented, rather than being randomly distributed.
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Eliasmith & Anderson, 2003 for details).  This method has 
been  shown  to  uniquely  combine  accuracy  and 
neurobiological plausibility (e.g. Salinas and Abbot, 1994).

    (4)

To  derive  an  estimate  of  x(t),  we  weight  the  decoding 
vectors  by the post-synaptic  current  h(t) induced by each 
spike.   The  shape  and  time-constant  of  this  current  are 
determined from the physiological properties of the neural 
group.  The result is the best possible linear estimate of x(t) 
using only the spike timing information.

   (5)

The  representational  error  between  x(t) and  (t) is 
dependent on the particular neural parameters and encoding 
vectors,  but  in  general  is  inversely  proportional  to  the 
number of neurons in the group.  

While the decoding vectors   are useful for determining 
what a spike pattern represents, a more important feature is 
that  they  can  also  be  used  to  derive  optimal  connection 
weights between neural groups.  That is, consider a situation 
where  one neural  population represents  x and we want  a 
second neural population to represent  Wx (where  W is an 
arbitrary  linear  transformation).   The  optimal  connection 
weights  ωij between  each  neuron  to  achieve  this  are 
determined by Equation 6 (see Eliasmith & Anderson, 2003 
for further details).

      ij= j  jW  i (6)

These results provide a generic framework for representing 
vectors  of  any  dimension  using  spiking  neurons.   These 
neurons  can  be  made  as  realistic  as  possible  (given 
computational  processing constraints),  including effects of 
adaptation,  neurotransmitter  re-uptake  rates,  refractory 
periods, and so on.  Furthermore, we can derive the synaptic 
connection weights that will cause the neurons to perform 
the desired transformations on these represented values.

Standard Approaches
Given the above representation system, we have two groups 
of neurons:  one representing the input (noisy) vector,  and 
one representing the output (cleaned) vector.  The goal then 
is  to  determine  how  to  connect  these  neurons  so  as  to 
achieve the best cleanup.

For  this  work,  we  are  only  considering  feed-forward 
networks.   That  is,  we  do  not  consider  models  where 
activity flows backwards from the output to the input,  or 
where the output is the same group of neurons as the input, 
but  at  a  later  time.   These  models,  such as  the  Hopfield 
network,  must  wait  for  their  output  to  “settle”,  requiring 
significantly more time than purely feed-forward models.

Linear Autoassociation
The  simplest  autoassociation  memory  merely  performs  a 
linear  transformation  on  the  input  to  produce  the  output 
(Hinton & Anderson, 1989).  If the matrix  X consists of a 
set  of  noisy  vectors  and  the  matrix  Y holds  the 
corresponding cleaned vectors, then we want to find W such 
that  WXY.   Given the subsequent noisy vector  x,  it  can 
then be multiplied by W to produce the estimated cleaned up 
item  y=Wx.   Once  W is  found, we derive the connection 
weights for this linear transformation using Equation 6.

A variety of methods exist to find the  W that minimizes 
the error between WX and Y.  Figure 1 shows the result of 
using the Penrose-Moore pseudoinverse, which was chosen 
since X is generally not full rank.

Figure 1: Accuracy of the linear autoassociation network for 
varying D, M, and k.  Values above 0.7 (shown in lightest 

shading) indicate successful cleanup (i.e. output values 
sufficiently close to the original non-noisy vector).

These results show that the linear association approach does 
not scale up for large values of M.  In 500 dimensions this 
network is unable to accurately clean up a vector where 4 
symbols are combined if  there are more than 50 possible 
symbols.  This is much smaller than the desired 100,000.

Linear Neural Transformation
A second  possibility  is  to  directly  determine  the  optimal 
connection  weights,  rather  than  relying  on  Equation  6. 
Here, instead of X being the noisy vectors, it is the spiking 
rate  of  the  individual  neurons  when  representing  those 
vectors.   This approach  is  used extensively in the Neural 
Engineering Framework (Eliasmith and Anderson, 2003) to 
derive  synaptic  connection  weights  that  can  perform 
nonlinear  operations,  using  a  slight  modification  of 
Equation  4  where  x is  replaced  by  the  corresponding 
cleaned up vector.  This allows synaptic connection weights 
to be derived that approximate arbitrary nonlinear functions.

While the results in Figure 2 show that this approach is a 
significant improvement over Figure 1 in terms of handling 
larger values of  k at smaller  D, it is still not scaling up for 
larger values of M.  
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Figure 2: Accuracy of the linear autoassociation approach 
applied to individual neuron firing rates for varying D, M, 

and k.  Values above 0.7 indicate successful cleanup.

Multilayer Perceptron
One potential reason for the failure of the linear associator 
discussed in the previous section is that the function being 
computed is highly nonlinear.  To address this, we can make 
use of a multilayer perceptron, capable of computing much 
more complex functions.  This involves introducing a new 
hidden layer of neurons between the input and output.

The multilayer perceptron is the most famous and widely 
used  artificial  neural  network  (Rumelhart  et  al.,  1986). 
Using a two layer  MLP, a  mapping is  learned to convert 
noisy input vectors into their cleaned (or prototype) vectors.

Instead  of  directly  calculating  the  weights  for  these 
networks,  a  learning  rule  (such  as  the  classic 
backpropagation of error rule) must be used.  This allows 
the system to find a suitable intermediate representation in 
the hidden layer which makes the cleanup operation most 
accurate.  For this task we trained the MLP using gradient 
descent on the sum of the squared error.

In  theory,  given  enough  time,  hidden  nodes,  and  a 
sufficiently powerful optimization algorithm, this approach 
should  be  able  to  find  the  optimal  synaptic  connection 
weights  to  perform this  task.   However,  as  the results  in 
Figure 3 show, due to limited computational resources we 
were unable to successfully train this network for large M. 
This is in part due to the fact that the MLP requires many 
more hidden nodes than the vector  dimension in order  to 
generalize across the entire input domain.

More  importantly,  the  standard  strengths  of  a 
backpropagation network are not applicable to the cleanup 
task.  Crucially, there is no inner structure in the data being 
modelled;  each symbol is  a  randomly chosen unit  vector. 
This means that the network cannot use its hidden layer to 
form an internal representation that simplifies the task.

Overall, it is likely possible to improve on this approach 
to training a network to perform cleanup.  However, such a 
method  may  require  significantly  larger  amounts  of 
computing resources as M increases.

Figure 3: Accuracy of the multilayer perceptron for varying 
D, M and k.  Values above 0.7 indicate successful cleanup.

A Cleanup Memory Model
From the MLP model, it is clear that while transforming the 
initial representation through a middle layer of neurons can 
provide a significant improvement, it is impractical to learn 
the required synaptic connection weights.  Instead, for our 
cleanup  memory  model  we  choose  to  directly  derive  the 
optimal weights.  To do this, we first identify how we want 
the  middle  layer  of  neurons  to  respond.   This  involves 
defining their preferred direction vectors  , gain α, and 
Jbias as per Equation 2.  Given these, we can use Equation 6 
to derive the neural  connection weights that will result in 
this behaviour.  Since no transformation of the vector itself 
is to be performed by the weights, W in Equation 6 is set to 
be the identity matrix.

For  the  preferred  direction  vectors,  we  choose  exactly 
those vectors that must be cleaned up.  For redundancy, we 
have ~10 neurons for each of the  M vectors, meaning that 
there  are  particular  neurons  that  fire  maximally  for  each 
symbol.  Furthermore, we set Jbias to be slightly negative for 
each neuron.  The resulting connection weights ωij cause the 
middle layer neurons to only fire if the dot product of the 
input vector with the corresponding clean vector is greater 
than some small threshold (0.2).  

In  effect,  the inherent  non-linearity  of  the  neurons (the 
fact that they do not fire if their input current is too low) is 
being used to perform cleanup.  This middle layer is good at 
representing the cleaned vectors, but is poor at representing 
small  vectors  in any of those directions.   Since the noise 
added  to  the  input  consists  of  randomly  chosen  vectors, 
these will generally have small dot products with each of the 
preferred direction vectors, and so will not cause sufficient 
activation for the neuron to fire.  The presence of a slight 
background inhibition (the negative Jbias) allows the neurons 
to be insensitive to the noise.

The firing rates of ten sample middle layer neurons are 
shown in Figure 4.  Their activity varies as the dot product 
of  the  input  and  the  neurons'  preferred  direction  vector 
changes.
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Figure 4: Middle layer neuron tuning curves.  Average 
firing rates for ten neurons are shown as the input to the 

cleanup memory changes.  Similarity is the dot product of 
the input vector with the preferred direction vector.

Given this middle layer representation we can then calculate 
the  optimal  connection  weights  with  the  output  neural 
group.  This output group can have any arbitrarily chosen 
preferred direction vectors  and other neural properties. 
Equation 6 is used to calculate these weights, again setting 
W to be the identity matrix.

Performance
We evaluated this implementation of cleanup memory in the 
same  manner  as  the  previous  models  and  the  results  are 
shown in Figure 5.   It  should be noted that  these  graphs 
extend to much larger  M (10,000 symbols rather than 500) 
than the previous figures.  

Figure 5: Accuracy of our neural cleanup memory for 
varying D, M and k.  Values above 0.7 indicate successful 

cleanup.

Importantly, our neural cleanup memory system was able to 
successfully  cleanup  combinations  of  8  symbols  out  of  a 
vocabulary  of  10,000  using  500  dimensional  vectors. 
Furthermore,  its  capabilities  increase  rapidly  with  the 
number of dimensions.  We have evaluated this model up to 
M=100,000  and  D=1000,  producing  consistently  high 
quality cleanup results.

We have thus demonstrated an effective implementation 
of a neural autoassociator as a cleanup memory for Vector 
Symbolic Architectures.   The number of neurons required 
for  cleanup  scales  linearly  with  M,  while  the  number  of 
neurons required for storing the resulting cleaned vector is 
linear in D.

Comparison to the Ideal
To  determine  how  closely  our  model  approaches  ideal 
behaviour (even though it is implemented using realistically 
noisy  spiking  neurons),  we  can  examine  the  recognition 
behaviour of a perfect mathematical cleanup system.  This is 
used  by  Plate  (2003)  in  his  analysis  of  the  Holographic 
Reduced Representation form of VSA, and merely outputs 
the  clean  vector  that  is  closest  to  the  input  noisy  vector. 
This ideal system can be approximated by Equation 1, and 
its actual behaviour is shown in Figure 6.

Figure 6: Accuracy of an ideal cleanup memory for varying 
D, M and k.  Values above 0.7 indicate successful cleanup.

From this result, we see that our neural cleanup memory and 
the  ideal  cleanup  both  exhibit  a  similar  growth  in 
representational  capacity  as  the  dimensionality  of  the 
vectors increases.  While the neural version is less accurate, 
it still is able to scale up to large M.  This ability is not seen 
in the cleanup models examined previously.

Dynamics and Timing
Since  a  cleanup  memory  is  meant  to  be  a  component  to 
support symbolic manipulations by spiking neurons, it must 
not only be efficient  in terms of numbers of neurons,  but 
also  in  terms  of  the  amount  of  time  required  to  perform 
clean  up.   This  is  why we  did  not  consider  models  that 
require a long settling time (such as a Hopfield network). 

Since the dynamics  of  the neurons  in  our  model  (G in 
Equation 3) can be adjusted to match those of real neurons, 
we  can  generate  predictions  as  to  how the  output  of  the 
cleanup memory will vary over time.  Even with a constant 
input  vector  x,  the  actual  value  being represented  by the 
output of the cleanup memory will vary since it is decoded 
from the spike train as per Equation 5.
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The precise timing characteristics of the neural model will 
vary  based  on  the  neural  parameters.   We  used  typical 
values  for  cortical  neurons:  a  refractory  period of  2ms, a 
membrane  time constant  of  20ms,  and a maximum firing 
rate  of  200Hz.   We  applied  random  noise  in  the  input 
current  to each cell of  σ=10% (see Equation 3).  We also 
assumed NMDA neurotransmitter receptors,  giving a time 
constant  of  5ms  for  the  post-synaptic  current  (h(t) in 
Equation 5).

To observe the dynamics, we ran a cleanup memory with 
D=500, M=10,000, and k=8.  Over the course of 250ms of 
simulated  time,  we  input  five  different  noisy  vectors  for 
50ms each.  The output from the system was measured at 
each time step.  Figure 7 shows the result of comparing the 
output  of  the  model  (the  cleaned  up  vector)  with  the 
corresponding five original vectors.  As in the rest of this 
paper,  comparison  was  done  by  the  dot  product  of  the 
output vector and the desired clean vector.

Figure 7: Temporal accuracy of the cleanup memory.  Five 
noisy vectors are presented for 50msec each.  Graphed lines 
show the dot product of the output of the network and the 

five original clean vectors.

These results  indicate that  the network reliably cleans the 
input  vector  and does  so within 5-10 milliseconds.   This 
makes  our  cleanup  memory  suitable  for  fast  recognition, 
which is needed for symbolic manipulations at a cognitive 
time scale.

Conclusions
The model presented here is the first demonstration that a 
cleanup memory can be efficiently implemented by realistic 
spiking neurons.  The number of neurons required to build 
this  memory  increases  linearly  in  the  number  of  distinct 
symbols that can be recognized.  The accuracy approaches 
that  of  an  ideal  mathematical  cleanup,  and  can  perform 
cleanup in 5-10ms using realistically noisy spiking neurons.

Previous research (e.g. Eliasmith, 2005) has demonstrated 
realistic neurons performing the binding and superposition 
operations  required  for  Vector  Symbolic  Architectures. 
Given the cleanup memory presented here, arbitrary symbol 
structures can be encoded, transformed, and recognized, all 
within a spiking network.  As a result, we take this work to 
complete  the  currently  most  biologically  plausible 
implementation  of  a  symbolic  cognitive  architecture 
(Stewart & Eliasmith, 2009).
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Abstract

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the no-
tion of affordance in the context of grasping actions carried
out by monkeys. This explication is consistent with both di-
rect perception theories and neuroscientific models of mon-
key brains, insofar as the identification of grasping affordances
requires, according to this model, neither object recognition
processes nor access to semantic memory. Nevertheless, this
model posits a cascade of complicated computational pro-
cesses, in the way of visuo-motor transformations, which sug-
gest the advisability of qualifying and re-interpreting the claim
that (grasping) affordances are directly available to an acting
biological system. This re-interpretation undermines the al-
leged alternative between direct and indirect perception theo-
ries, to the extent that substantive visuo-motor transformations
have to be posited in order to identify grasping affordances.

Keywords: affordances; visuo-motor transformations; di-
rect perception; grasping

Background and Motivations
The notion of affordance was originally introduced by J. J.
Gibson (Gibson, 1979) to single out perceived properties that
enable one to interact with objects in the environment. Pro-
cedurally, the notion of affordance is framed in the context
of direct perception theories, insofar as higher-level cogni-
tive processes, such as access to semantic memory, logical
inference, and object recognition processes are allegedlyun-
necessary to identify an affordance. Direct perception the-
ories emerged in contrast with so-called indirect perception
theories (Michaels & Carello, 1981). According to the latter,
complex mental processing steps are needed to fill in the gap
between impoverished descriptions of the world furnished by
sensory inputs on the one hand, and the rich and accurate de-
scriptions of the world delivered by perception on the other
hand. Thus, in particular, perceiving a glass as a graspable
object one can drink from is the final outcome of mental pro-
cesses involving knowledge of what a glass is, what it can
contain, and how one uses it.

A more precise understanding of the processes involved in
identifying an affordance is crucial to isolate what is concep-
tually and empirically at stake in the controversy between
direct and indirect perception theories. And an understand-
ing of these processes is crucial for the modelling of specific
sensory-motor control mechanisms in biological systems too.
The existence of a particulary versatile sensory-motor control
mechanism is witnessed by the wide range of sensory-motor
associations that monkeys are able to perform. Notably, this
behavioural ability persists upon presentation of many un-
known/novel objects, thereby suggesting that a robust gen-
eralization process, based on perceived object properties, is

at work there (Borghi, 2005).

In the context of grasping actions, neurophysiological data
on the macaque’s brain cortex are consistent with direct per-
ception views of affordances. In particular, these data suggest
that the anterior intraparietal area (AIP) is involved in the cod-
ing of object affordances (Rizzolatti & Sinigaglia, 2008),in
the light of functional hypotheses concerning more extended
brain circuits. The functional models of brain areas which
have been found to deliver afferent signals to AIP include nei-
ther perceptual object recognition nor higher-level cognitive
processes, such as planning and decision-making (Creem &
Proffitt, 2000; Milner, 1998). Moreover, strong efferent path-
ways have been identified which connect AIP to pre-motor
area F5 (Rizzolatti & Sinigaglia, 2008). Since F5 is promi-
nently involved in the coding of object-oriented actions (such
as grasping, holding, and manipulating), the AIP to F5 con-
nections suggest the existence of some sort ofdirect func-
tional link between perceptual feature detection and object-
directed actions.

The computational model presented here, Grasping Affor-
dances (GA) model, provides a precise explication of the
notion of affordance in the context of grasping actions car-
ried out by monkeys. This explication is consistent with
both direct perception theories and neuroscientific models
of the macaque’s brain. It is consistent with direct percep-
tion theories, insofar as the identification of grasping affor-
dances requires, according to the proposed computational
model, neither object recognition processes nor access to se-
mantic memory. It is consistent with neuroscientific models
of the macaque’s brain, insofar as (i) visual processes fur-
nishing AIP inputs are modelled in accordance with the bio-
logical ”Standard Model” proposed in (Riesenhuber & Pog-
gio, 2000), and (ii) the overall system output does not con-
flict with neuroscientific data and modelling constraints inso-
far as inputs supplied by AIP to brain motor areas are con-
cerned. Nevertheless, this model posits a cascade of com-
plex computational processes, in the way of visuo-motor
transformations, which suggest the advisability of qualify-
ing and re-interpreting the claim that (grasping) affordances
are directly available to an acting biological system. Thisre-
interpretation undermines the alleged alternative between di-
rect and indirect perception theories, to the extent that sub-
stantive visuo-motor transformations have to be posited inor-
der to identify grasping affordances.

The paper is organized as follows. First, a selective
overview of neurophysiological findings about sensory-motor
circuits in the macaque’s brain cortex is provided, and ba-
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sic features of computational models accounting for some of
these data are briefly recalled. Then, an explication of the
notion of affordance in the context of grasping actions is ad-
vanced. This explication sets the basic functional require-
ments for a computational model of grasping affordances,
whose architecture and basic functionalities are described in
some detail, and whose performances are evaluated on the
basis of some preliminary tests. The import of this model on
direct perception theories and future developments are briefly
outlined in the concluding remarks.

Relevant Neurophysiological Findings and
Computational Models

Brain areas in the macaque parietal and motor cortex were
shown to be involved in a series of sensory-motor transfor-
mations, such as the mapping into appropriate actions of vi-
sual information about objects and their location in the vi-
sual scene (Rizzolatti & Sinigaglia, 2008). In particular,the
AIP-F5 parieto-frontal circuit appears to play a crucial role in
the visual guidance of hand grasping and manipulation move-
ments, where AIP (Rizzolatti & Sinigaglia, 2008) was iden-
tified as a prominent cortical area involved in the coding of
grasping affordances. One should be careful to note, more-
over, that along the cerebral pathway starting from primary
visual cortex (V1), and reaching F5 via AIP, visual informa-
tion is transformed into motor information apparently with-
out the intervention of cortical areas involved in higher-level
perceptual and cognitive functions, such as the recognition of
objects and their uses (Creem & Proffitt, 2000; Milner, 1998)

Two main computational models have been proposed in
order to account for these data, by modelling AIP function-
alities in the context of more comprehensive brain circuits.
These are the FARS model (Fagg & Arbib, 1998) and a
computational model of AIP neurons introduced in (Oztop,
Imamizu, Cheng, & Kawato, 2006).

FARS is a neural model of cortical processes involved in
generating and executing grasping plans. This model focuses
on the interaction between AIP and premotor area F5, with-
out providing a computational account of how inputs to area
AIP are produced. In fact, affordances are ”programmed“
into this model, by hard wiring connections from units repre-
senting neurons in areas PIP and IT and units which represent
neurons of area AIP. The connectivity between these units is
determined by behavioural compatibilities. For example, an
AIP unit which is selective for a specific grasp type and hand
aperture receives inputs from units which hold input param-
eters of objects at which this kind of grasp and aperture are
usually directed. Moreover, the model does not specify how
these input parameters are computed from visual input. Their
availability is taken for granted, and therefore the process-
ing that visual information undergoes along the path from V1
to AIP is presupposed too. This comprehensive presupposi-
tion is acceptable in the FARS model, which is chiefly con-
cerned with the generation and execution of grasping plans.
It is not equally acceptable in a computational model which

aims at accounting for the processes enabling one to extract
affordances from visual inputs. For this reason, we have out-
lined here a computational account of contextually significant
visuo-motor transformations occurring on the path from V1
to AIP.

The model proposed in (Oztop et al., 2006) concerns the
development of AIP neuron functionalities while an infant is
learning to perform grasp actions. This model focuses on an
account of how units with processing properties similar to
those of AIP neurons emerge by visuo-motor learning. In-
terestingly, the model demonstrates that units with different
kinds of object selectivity emerge. In particular, units were
found which encode object dimensions independently of ob-
ject shape. This model exhibits limited generalization capa-
bilities with respect to novel objects which do not belong to
the initial training set. In fact, this generalization capability is
restricted to transformations with respect to the size of known
objects.

The model of grasping affordance extraction presented be-
low (GA model) provides - unlike the FARS model - a de-
tailed account of significant steps in perceptual processing
along the path from V1 to AIP. In addition to this, the GA
model is endowed - unlike the model proposed in (Oztop et
al., 2006) - with more extended generalization abilities inthe
way of novel/unknown objects.

GA Model Description

Affordances for Grasping

Affordances are not intrinsic properties of an object, but
rather depend on the relationship between object and agent
(Chemero, 2003). For example, differences in primate and fe-
line effectors account to a large extent for the different affor-
dances that objects convey to humans and cats, respectively.
As one moves to consider more specifically grasping affor-
dances for monkeys and humans, one should still be careful to
note that graspable objects do not merely ’afford’ our grasp-
ing them. Indeed, multiple opportunities for grasping arise
in connection with many graspable objects. For example, a
mug can be grasped by handle, lateral side, and top. These
grasps can be distinguished from each other in terms of hand
shape and wrist rotation obtaining just before grasping the
object (Tucker & Ellis, 2000). Accordingly, the grasping af-
fordances associated to a graspable object will be identified
in the GA model with a collection of (codes for) appropriate
hand configurations assumed by a hand just prior to grasp-
ing the object (Oztop et al., 2006; Tsiotas, Borghi, & Parisi,
2005). Since a graspable object may be grasped in several
ways, this means that multiple hand configurations can be as-
sociated to any given object in the GA model.

General GA Model Description

From the above discussion, three main requirements have
emerged for a computational model of grasping affordances
to be empirically adequate and to move beyond previous com-
putational models which include affordance extraction func-
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Figure 1: The GA model is formed by four modules: the
SE Module, the MP Module, The APC Module, and the AR
Module. This computational model receives an image de-
picting an object as input, and produces a list of affordances
(appropriate grasps for the given object) as output.

tionalities: (a) the model must provide computational solu-
tions for significant processing steps along the path from V1
to AIP; (b) the model must enable one to extract multiple
hand-configurations from the same graspable object; (c) the
model must possess generalization capabilities with respect
to novel/unknown objects.

To accomplish (a), the visual pathway was modelled start-
ing from primary visual cortex V1 and reaching, through ar-
eas V2 and V4, into the posterior infero-temporal area (PIT),
which is identified as the cortical region supplying visual
monocular information to AIP (Borra et al., 2007). A bio-
logically plausible model of the ventral visual stream, named
Standard Model, was proposed in (Riesenhuber & Poggio,
2000). A component of the Standard Model, the view-based
Module, accounts for computations along the path from V1
to PIT which makes inputs available to AIP. Accordingly, the
Monocular Perception (MP) Module (see Figure 1) which is
an implementation of the view-based module was developed
and included in the GA model.

To accomplish (b), that is, to provide a computational so-
lution to the multiple affordance extraction problem, a proba-
bilistic approach was pursued. In particular, this problemcan
be formalized as the problem of identifying and computing a
multi-valued function which relates any visual input to a col-
lection of hand-configurations. More precisely, letX ⊆ R d

be thed-dimensional space of visual inputs, and letT ⊆ R c

be thec-dimensional space of hand configurations. Then, one
has to find a functional mappingf such that:

f : x∈ X −→℘(T)

where℘(T) is the power set ofT. A two-dimensional ex-
ample of a multi-valued function is illustrated in Figure 2.
This correspondence can be modelled by means of a prob-

Figure 2: Two-dimensional example of a multi-valued func-
tion. Points on thex axis represent visual inputs, and points
on thet axis represent hand-configurations. One may asso-
ciate ax point with multiplet points.

abilistic approach. More specifically, givenx, the output
computed by the mappingf can be approximated by the un-
conditional probability density functionp(t). Thus, in gen-
eral, the problem of modelling the functional mappingf can
be viewed in terms of estimating the conditional distribution
p(t|x). A general framework for modelling conditional prob-
ability distributions makes use of mixture models whose pa-
rameters functionally depend onx (Bishop, 1995):

p(t|x) =
M

∑
k=1

αk(x)φk(t|x) (1)

The φk(x) are kernel functions, which are usually Gaussian
functions of the form

φk(t|x) =
1

(2π)c/2σc
k(x)

exp

{

−

‖t −µk(x)‖2

2σ2
k(x)

}

(2)

The parametersαk(x) can be regarded as prior probabilities of
t generated from thek-th component of the mixture. TheAf-
fordance Probabilistic Coding(APC) Module was designed
so as to provide a computational solution to (b), that is, to the
multiple affordance extraction problem (see Figure 1).

To accomplish (c), that is, generalization capabilities en-
abling one to extract affordances from novel objects, a start-
ing point was provided by the observation that the agent usu-
ally focuses its attention on the part of the object at which
the grasping action is directed (Schiegg, Deubel, & Schnei-
der, 2003). This behaviour suggests the possibility of associ-
ating parts of a graspable object to affordances, and to store
this “mereological“ information for use when novel graspable
objects are presented. For example, one may learn to asso-
ciate appropriate affordances to handles and cylinders, re-
spectively, and to use this information when a cup (result-
ing from the “composition” of handle and cylinder) is pre-
sented. This process was actually implemented by sliding an
“attention window” on the image of an object, and by ex-
tracting a collection of grasping affordances at each displace-
ment step. This function is achieved by the Subimage Extrac-
tion (SE) Module (see Figure 1). Finally, a post-processing
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step was required as well, in order to select the more plau-
sible affordances. The post-processing step is accomplished
by Affordance Ranking (AF) Module (see Figure 1). APC
and AR modules account for the AIP affordance computa-
tion. The online learning of sensorimotor associations might
be grounded onto a basic grasping ability such as described in
(Oztop, Bradley, & Arbib, 2004). Learning of sensorimotor
associations may occur by collecting pairs of visually pre-
sented ”object part” and related ”hand-configuration” every
time a successful grasp is made. Since the focus of this work
is not on the acquisition of sensorimotor associations, how-
ever, we suppose here that a series of such pairs is already
available.

Figure 3: The APC Module is formed by a neural network
and a Gaussian mixture model. Given anx vector, the neural
network computes the required Gaussian parametersθ(x) to
approximatep(t|x) (see (Bishop, 1995) for more details).

GA Model specification and implementation
The GA model takes the image of an object as input and sup-
plies the object’s grasping affordances as output. It is com-
posed by four modules, as shown in Figure 1. The input im-
ageI , represented in gray scale, is processed by the SE Mod-
ule, which extractsn subimagesI j , j = 1, ...,n. The number
of subimages depends on the dimensions of the windowW
sliding on the imageI , the image size, and the window dis-
placement stepDS.

Each subimage is then sent as input to the MP Module. The
MP Module takes a sub-imageI j as input, and gives a 256
feature vector as outputx j . The latter is presented as input to
the APC Module, which computes the correspondingp(t|x j).

To estimatep(t|x j), one uses a mixture model of the form
expressed in eq. 1, whose parametersαk(x), µk(x) andσk(x)
(for Gaussian kernel as in eq. 2) depend on the visual input
x. The relationship between visual inputsx and correspond-
ing mixture parameters is modelled by means of a two-layer,
feed-forward neural network withH hidden nodes. There-
fore, the ACP Module has a combined density model and
neural network structure, as shown in Figure 3.

Since the APC Module receivesn feature vectorsx j in
input, its overall output is formed byn density functions
p(t|x j). Note, however, that the desired output is a set
T = {t1, t2, . . . ,tL} corresponding to theL distinct hand-
configurations that enable one to grasp the viewed object.
Therefore, a non-trivial output selection problem remainsto
be solved at this stage: one has to isolate hand-configurations
which differ from each other as much as possible, and whose

probability value is sufficiently high.
This requirement corresponds, for each single feature vec-

tor x and relatedp(t|x), to choose as member of the setT
the gaussians’ centersµk(x) of the mixture associated to the
higher values ofαk(x). In the case ofn probability distribu-
tions p(t|x1), . . . , p(t|xn), in order to obtain a behaviour simi-
lar to the single distribution case, one may proceed as follow:

1. generates sample points from each distribution, obtaining
n× s points, each of which defines a hand configuration.
Not every hand configuration thus obtained corresponds to
grasps for the input object; only those gathering around the
kernel’s means do, while the other points are distributed in
a sparse manner;

2. a clustering over then×spoints is performed;

3. the clusters are ranked according to the order of their vari-
ance values, and the firstL clusters with lower variances are
selected because a lower variance implies less uncertainty
about the hand configurations;

4. finally, the setT will be formed by the centers of the se-
lected clusters.

Test and Results
The GA model was designed so as to extract multiple hand-
configurations, and to generalize its affordance-extraction ca-
pability with respect to novel objects. Two experiments were
performed to test the extraction and generalization abilities,
respectively. The results of these tests corroborate the pos-
session of the extraction ability, in addition to the required
generalization ability as far as novel objects obtained from
the composition of known object parts are concerned. Let’s
see.

The first test, which is concerned with the extraction of
multiple hand-configurations, makes use of three different
prototypical object images: a sphere, a cylinder and a bottle.
It is assumed that the first two objects can be grasped using
a power grasp only, whereas the bottle can be grasped in two
different ways, by precision and power grasps. For each of
these prototypical object images, similar images were gener-
ated by means of small contour variations. For each proto-
type, the resulting training and test sets were composed by 20
and 10 images, respectively (Figure 4)

In order to generate target hand configurations, GraspIt!
(Miller & Allen, 2004), a robotic grasping simulator, was
used. In particular, the robotic hand called Robonaut, en-
dowed with 14 degrees of freedom, was chosen. Conse-
quently, in the GA model hand configurations are identified
by a vector of 14 components, where each component repre-
sents just one hand joint’s angle. Spherical and cylindrical ob-
jects are associated to a single hand configuration, generated
manually by changing the Robonaut’s degrees of freedom.
Bottle objects are associated with two distinct hand config-
urations: a precision grasp, applied on the object’s top part,
and a power one applied on the lateral part (see fig. 4). Train-
ing set targets are generated adding some Gaussian noise to
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(a) Some training objects (left) and test objects (right).

(b) Target hand-configurations.

Figure 4: Examples of spherical, cylindrical and bottle ob-
jects used to train and test the system, and target hand-
configurations.

these hand configurations. In this test, the attention window
encompasses the whole object. Thus, for each object there
is a single feature vectorx with an associatedp(t|x). Hand
configurations are obtained by selectingµk(x) associated with
the higher values ofαk(x). The model parameters are sum-
marized in table 2. For thei-th degree of freedom, percentage

error is defined as |t i−yi
|

maxi−mini
×100, whereyi is the model out-

put, andmaxi andmini are the max and the min value, respec-
tively, for thei-th degree of freedom.Average errorbetween
model output hand configuration and target hand configura-
tion is defined as the mean of percentage error over all de-
grees of freedom. For all test objects in each class, mean and
standard deviation of average error is computed and showed
in table 1.

Table 1: For each object class, the mean and standard de-
viation of the average error over all objects in the test set
is reported here. Moreover, for each class mean hand-
configuration over all objects in the class is exhibited.

Bottle Grasp 1 Bottle Grasp 2 Spherical Cylindrical
2%±0.4 1.9%±0.6 3.9%±1.4 1.3%±0.4

Table 2: Model parameters for each test. Image size,W and
DSare expressed in pixels.

H M Image size W DS Cluster
Test 1 5 2 160×160 160×160 0 None
Test 2 5 5 500×500 160×160 30 5

The second experiment is meant to test generalization ca-
pabilities with respect to novel objects. To test this ability,
the system was trained to associatepartsof an object to hand-
configurations. Subsequently, the system was given in input
a novel object resulting from the ”composition“ of previously
known parts. In this test, a cup is used, which is obtained from
the composition of a cylinder and a handle. Examples of both
training images and the cup used as test image are shown in
figure 5. There are four kinds of training images: (a) cup
handles; (b) upper and lower cup parts; (c) lateral cup parts;
(d) non-graspable cup parts. Two target hand-configurations
are associated with images (a); only one hand-configuration
is associated to images (b) to (d). The training set targets
are generated adding some Gaussian noise to hand configura-
tions. Targets for non-graspable cup parts images are drawn
from a Gaussian distribution with a large variance, so as to re-
flect the fact that in this case no plausible hand-configuration
candidate exists. The K-Mean clustering algorithm is imple-
mented by the AR Module, setting to 5 the number of clusters.
In table 3, cluster centroids are shown together with cluster
variance. The fifth cluster was discarded in view of its large
variance. Note that the first four cluster centroids are very
similar to target hand configurations (fig. 5) with respect to
which mean percentage error was computed.

(a) Some training objects (left) and test object (right).

(b) Target hand-configurations.

Figure 5: (a) Examples of training and test images (see text).
(b) Examples of target hand-configurations.

Concluding remarks
The architecture of the GA model is largely motivated by the
goal of computationally investigating the allegedly direct link
between perception and action established by the perception
of affordances. One should be careful to note that the over-
all output of the GA model does not correspond to actions,
but rather corresponds to hand configurations. Therefore,
one may legitimately question the claim that the GA model
computes a perception-action transformation. However, in

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

136



Table 3: The graph visualizes the obtained cluster centroids.
Compare these images with target hand configurations of fig.
5. The fifth cluster was discarded in view of its large variance.
The percentage error with respect to target was mediated over
all degrees of freedom.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σ = 0.12 σ = 0.12 σ = 0.09 σ = 0.09 σ = 0.34
Mean and standard deviation of percentage error

1.9%±2 2.5%±2 2%±1.2 1.8%±1.5 (discarded)

the context of grasping actions, the model embodies the as-
sumption that an appropriate hand configuration for grasping
an object is a configuration assumed by a hand just prior to
grasping that object. This configuration is closely relatedto
the goal of the grasping action. Thus, the grasping action
can be generated from the initial configuration, in terms of
motor commands, by a forward model on the basis of such
goal-related information. For this reason, one can meaning-
fully maintain that the computation of hand configurations
from visual inputs performed by the GA model is the gist of
a perception-action transformation.

As discussed in the first section, a more precise understand-
ing of the processes involved in identifying an affordance
is crucial to isolate conceptual and empirical differencesbe-
tween direct and indirect perception theories. The GA com-
putational model is in agreement with the notion that the
identification of affordances does not require higher cognitive
processes, such as logical inference and object classification.
However, the transformation performed in the GA model re-
quires a cascade of fairly complicated processing stages, and
the solution of non-trivial computational problems. Notably,
in order to achieve significant generalization capabilities, the
APC module was geared so as to produce in output a set
of probability distributions each one of them expressed as
a Gaussian mixture, coding hand configurations for just one
part of the image. Here, the pertinent modelling question is:
how one does choose the appropriate hand configurations for
the object? In the case of just one probability distribution, a
natural candidate are the centers of the Gaussians associated
to the higher mixture coefficients. In the case of a set of prob-
ability distributions, various possibilities arise, onlyone of
which was pursued in the GA model. This solution provides
a significant proof-of-concept, together with a vivid illustra-
tion of the important qualifications that are needed when one
makes use of the attribute direct in the expression direct per-
ception of affordances. An alternative solution, which we are
currently exploring, involves a unique probability distribu-
tion, which arises by taking as some sort of union over the set

of distributions based on a similarity measure between gaus-
sian mixture models (Hershey & Olsen, 2007).
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Abstract 
We propose a model of routine sequence actions based on the 
Memory for Goals model.  The model presents a novel 
process description for both perseveration and anticipation 
errors, as well as matching error data from a previously 
collected dataset.  Finally, we compare the current model to 
previous models of routine sequential action. 

Keywords: routine sequential actions; errors, cognitive 
modeling 

Introduction 
 Several researchers have described classes of errors that 

people make as they perform routine sequential actions 
(Norman, 1981; Reason, 1990; Baars, 1992).  Most of the 
categorization for these errors comes from either diary 
studies (Reason, 1990) or from neurologically damaged 
patient studies (Schwartz et al., 1998). 

Sequence errors occur during routine action and consist of 
perseverations, omissions/anticipations, and intrusions 
(Reason, 1984).  Perseveration errors are repeats of a 
previous action and come in two forms (Sandson & Albert, 
1984).  Continuous perseveration errors occur when an 
action is performed over and over.  Recurrent perseveration 
errors occur when a previously completed subtask is 
performed again, usually with one or more intervening 
subtasks.  For example, putting cream in a cup of coffee 
multiple times is a perseveration error.  Omissions are 
skipped steps, while anticipation errors are skipped steps 
that are quickly rectified.  For example, an omission error 
would be completely forgetting to put cream in a cup of 
coffee, while an anticipation error would be attempting to 
pour from an unopened container.  It can be quite difficult to 
differentiate omission and anticipation errors (Cooper & 
Shallice, 2000).  Intrusion errors (sometimes called capture 
errors) occur when an action comes from a different, usually 
related, task.  For example, a capture error would occur 
when attempting to make coffee a person gets distracted by 
a tea bag and instead makes tea. 

There are other types of errors that occur during routine 
action, but this report will focus on sequence errors. 

Previous models of sequential behavior 
There are two computational models of routine sequential 
behavior: the interactive activation network (IAN) model 
(Cooper & Shallice, 2000; Cooper & Shallice, 2006) and the 
simple recurrent network (SRN)  model (Botvinick & Plaut, 
2004; Botvinick & Plaut, 2006). 

In the IAN model, different schemas compete for 
activation. Activation comes from triggers (environmental 

or context) and source-schemas (related schemas), but a 
schema will not be activated if it is not over a specific 
threshold.  Thus, while working on a routine task, the 
selection of a schema is influenced by the current schema 
and the state of the world.   The IAN model suggests that 
errors are caused by a lack of attentional resources or 
distraction in normal populations (Norman & Shallice, 
1986; Cooper & Shallice, 2000).  Variability in attentional 
resources is instantiated in IAN by noise. In the case of 
sequence errors, noise has two major effects. First, noise in 
the system can cause variability in the ordering of schemas 
that do not have ordering constraints. Second, noise can 
cause variability in the selection of which schema is selected 
when multiple schemas are applicable.  Both these forms of 
variability can cause various sequence errors. 

The SRN model has a set of input units that are activated 
by features of the environment.  Activation is passed along 
the input units to a set of hidden units, which receive 
recirculated activation.  The hidden units then pass 
activation to a set of output units that then perform an action 
(fixating an object, pouring an object, etc.). The connection 
weights encode series of sequential attractors which the 
trained model tends to follow (Cooper & Shallice, 2006).  
Errors in the SRN model are made by increasing the noise, 
which in turn can cause the network to drift to a related task 
sequence (i.e., a sequential attractor) whose internal 
representation resembles the next step.  Thus, an error is 
made by the SRN model not because an attentional 
operation has been omitted, but because the model’s internal 
representations have resulted in a loss of information about 
a previous or current state (Botvinick & Plaut, 2004; 
Botvinick & Bylsma, 2005). 

The Memory for Goals model 
A different model of routine behavior is the memory for 
goals model (MFG) which is an activation-based model that 
has been used in the study of interruptions and goal-related 
tasks (Altmann & Trafton, 2002; Trafton, Altmann, Brock, 
& Mintz, 2003; Altmann & Trafton, 2007). 

The MFG is based on the hypothetical construct of 
activation of memory items—in particular, activation as 
construed in the ACT-R (Adaptive Control of Thought-
Rational) cognitive theory (Anderson & Lebiere, 1998). A 
basic processing assumption in this theory is that when 
central cognition queries memory, memory returns the item 
that is most active at that instant. Activation thus represents 
relevance to the current situation. To capture the relevance 
of any particular item, the memory system computes that 
item's activation from both the item's history of use and 
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from its associations to cues in the current mental or 
environmental context. In Bayesian terms, the logic is that 
history of use and current context together serve to predict 
the current relevance of that item (Anderson, 1990). In 
functional terms, the implication is that the cognitive system 
should be able to exploit the predictive computations of the 
memory system to overcome decay and keep certain 
information active for use in the future. 

Two main constraints determine goal activation: 
strengthening and priming. The strengthening constraint 
suggests that the history of a goal (i.e. frequency and 
recency of sampling) will impact goal activation such that a 
subgoal that is retrieved more often or the most recently 
retrieved subgoal will have a higher activation value than 
others with less history. The priming constraint suggests 
that associated cues in the mental or environmental context 
can provide activation to a pending goal. For example, 
particular information in a task interface may prime a 
subgoal, allowing the subgoal to be retrieved over 
competing subgoals. In addition, each procedural step is 
associatively linked to the next step within the task 
hierarchy; thus, previously completed tasks are a source of 
associative activation (Altmann & Trafton, 2007).  

The model incorporates the assumption that cognitive 
control is mediated at a fine-grained by episodic codes 
passed between different processes (Altmann & Gray, 
2008).  Applied to cognitive control here, in the context of 
routine sequential behavior, the assumption is that action 
preparation and action execution are separate processes, 
with the first retrieving a procedural step from semantic 
memory, then communicating with the second by creating 
an episodic code that represents the retrieved task.  The 
communication between these two processes can be 
disrupted if some other cognitive operation (e.g., an 
interruption) occurs after the first process has executed but 
before the second has started. 

All three models have different process explanations and 
capabilities for accounting for sequence errors.  

Perseveration Errors 
The IAN model does occasionally repeat steps, resulting 

in a continuous perseveration error.  This occurs when, due 
to too much self-activation or lack of inhibition, a schema is 
not deselected at the appropriate time, causing a schema to 
be repeatedly selected.  The IAN model can not, however, 
account for recurrent perseveration errors because once a 
goal is completed it is “ticked off” and not applicable for 
later selection (Cooper & Shallice, 2000; Botvinick & Plaut, 
2004). 

The SRN model does make both continuous and recurrent 
perseveration errors.  However, one interesting aspect of the 
original SRN model was that virtually all errors were due to 
capture errors but had different manifestations. For example, 
with a small amount of noise, the network would 
occasionally drift to a similar sequential attractor (a capture 
process) and repeat a step (a perseveration error) (Botvinick 
& Plaut, 2004; Cooper & Shallice, 2006).  While it is 

interesting that the SRN model can elicit so many error 
types, the capture process that causes those errors to occur 
has been questioned by some (Cooper & Shallice, 2006). 

The MFG model can make both types of perseveration 
errors, though the process explanation is the same for both 
continuous and recurrent perseveration.  The reason that 
MFG makes perseveration errors rests primarily on the 
interference level.  Perseveration errors may occur when the 
wrong subgoal is retrieved to direct behavior. Occasionally, 
the difference in activation levels between previous 
subgoals and the target subgoal may be quite small and 
noise in the cognitive system may result in the retrieval of 
an incorrect subgoal. The constraints of the memory for 
goals theory suggest that when an incorrect subgoal is 
retrieved, it should be in close temporal proximity to the 
target subgoal. Recency suggests that the subgoal just 
completed will have a relatively high activation level and 
associative activation from the most recently retrieved 
subgoal will provide activation to neighboring subgoals. 
Occasionally, then, the cognitive system may retrieve the 
wrong subgoal to direct behavior.  This will occur especially 
when there are relatively few environmental cues so that 
priming has less of an impact.  Interestingly, the MFG 
model predicts that errors should be proximate to the next 
correct action. Not only should the most common error 
action be to retrieve the subgoal just completed, other error 
actions should be to subgoals that are temporally close to 
the next correct action.  Recency suggests that the last few 
steps prior to the next correct action will have relatively 
high activation levels. The farther away the subgoal is from 
the correct action, the less likely this step should be 
retrieved. Thus, the general prediction is that when 
perseveration errors are made, most of the error actions 
should be localized to within a few steps of the correct 
action in a graded fashion. 

Anticipation and Omission Errors 
The IAN model also makes anticipation and omission 
errors.  Omission errors could occur because a schema may 
not have a high enough activation due to low self-activation 
or poor environmental influences.  Anticipation errors occur 
for a similar reason, but are not able to be executed because 
a precondition was not satisfied (e.g., a container still has its 
top attached). 

The SRN model occasionally makes anticipation and 
omission errors, primarily through the capture process 
described before.   

The MFG model also suggests that anticipation and 
omission errors will occur.  In fact, MFG suggests that there 
are two possible explanations for skipping a goal.  First, the 
primed retrieval component of the theory suggests that 
future steps receive activation in a decreasing graded 
fashion (Altmann & Trafton, 2007).  Second, the model 
suggests that action preparation and action execution are 
separate processes.  If communication between these two 
stages gets disrupted, an anticipatory error may occur. 
Because the primed retrieval model is not yet implemented 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

139



 

in ACT-R, the separate-stages explanation will be focused 
on in the remainder of this report. 

While all three models can account for the majority of 
error types, neither IAN nor SRN makes strong predictions 
about which types of errors should be more prevalent in this 
type of task.  MFG, however, makes a strong prediction that 
perseveration errors should occur more often than any other 
type of sequence error.  Additionally, MFG makes a 
nuanced prediction that errors should be proximate and 
graded from the correct step, especially with respect to 
perseveration errors. 

Experiment 
There are very few datasets that can be used to constrain or 
reject different models (Botvinick & Plaut, 2006).  One of 
the issues is that the when a task is routine, people generally 
make very few errors, making statistical analysis difficult.  
Thus, different researchers have examined errors in non-
routine tasks (Ruh, Cooper, & Mareschal, 2005), made the 
task difficult to remember (Giovannetti, Schwartz, & 
Buxbaum, 2007; Ruh, Cooper, & Mareschal, 2008) or 
interrupted participants during the routine task (Botvinick & 
Bylsma, 2005).  We used an interruption paradigm because 
interruptions have been shown to increase error rates even 
on well-learned tasks (Li, Blandford, Cairns, & Young, 
2008; Ratwani, McCurry, & Trafton, 2008).  In addition, we 
provided no global placekeeping (Gray, 2000) such that the 
next step of the task could not be determined from visible 
cues. 

Method  
Participants. Fifteen George Mason University students 

participated for course credit.  
Task and Materials. The primary task was a complex 

production task called the sea vessel task (based on Li et al., 
2008; Ratwani et al. 2008). The goal was to fill an order for 
two different types of sea vessels by entering in order details 
through various widgets on the interface (Figure 1). Order 
information was provided in the middle of the screen on the 
“Navy Manifest.”  A correct sequence of actions is required 
to complete the order: (1) Enter Vessel Information, (2) 
Material, (3) Paint, (4) Weapons, and (5) Location. Before 
entering information into each widget, the widget must be 
“activated” by clicking the corresponding selector button 
(lower right hand corner of Figure 1). The procedure was 
arbitrary, but participants had no trouble learning it because 
(1) the information that was needed to fill in the widgets 
was available on the Navy Manifest; and (2) the order of the 
widgets was straightforward to remember due to a simple 
spatial rule, which we provided to participants. 

After completing each widget, the participant must click 
“ok” and the information that was entered in the fields is no 
longer visible. This information was cleared from the fields 
because it may have served as an explicit cue indicating 
which steps in the task hierarchy have been completed. 
After entering information in each of the five widgets, the 
order must be processed by clicking the “Process” button. 

Once this button is clicked, a small pop-up window appears 
informing the participant of the total number of sea vessels 
that have been created. This pop-up window served as a 
false completion signal (Reason, 1990). Participants must 
click the “ok” button to acknowledge this window. Finally 
the “Complete Contract” button must be clicked to finish 
the order. The “Next Order” button is clicked to bring up a 
new order. Any deviation from this procedure was recorded 
as an error; any time an error was made, the computer 
emitted a brief auditory tone to alert the participant that an 
error was made. When a participant committed an error the 
participant had to continue with the task until the correct 
action was made.  

The interrupting task required participants to answer 
addition problems with four single digit addends.  

Design and Procedure. Each order on the sea vessel 
task constituted a single trial; participants performed twelve 
trials. Control and interruption trials were manipulated in a 
within-participants design; half of the trials were control 
with no interruption and half were interruption trials with 
two interruptions each. The order of trials was randomly 
generated. There were six predefined interruption points in 
the sea vessel task. There was a potential interruption point 
after clicking “ok” in each of the five widgets. The sixth 
interruption point was after the “Process” button was 
clicked. During the experiment there were a total of 12 
interruptions (6 interruption trials x 2 interruptions in each 
trial); each lasting 15 seconds. Participants were instructed 
to answer as many addition problems as possible in this time 
interval. The interruptions were equally distributed among 
the six interruption locations. When returning to the primary 
task after the interruption, there were no visual cues on the 
task interface indicating where to resume (i.e. no global 
place keeping).  

Before beginning the experiment, participants were given 
instructions about the two tasks they were going to have to 
perform and completed two trials as part of training; one 
had no interruptions and one had two interruptions. All 
participants were proficient at the task before beginning the 
actual experiment. The experiment was self-paced. A break 
was offered after six trials.  

 
Figure 1:  Screenshot of the ship production task 
 
Description of Errors. Perseveration errors were any 

actions that repeated an action that had already been 
accomplished for that trial.  Anticipation and omission 
errors were any actions that skipped one or more steps.  
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Because it was not possible to actually omit a step, all 
skipped steps were categorized as anticipation errors. Errors 
where participants failed to activate a particular module 
before working on the module (e.g. device initialization 
errors (Cox & Young, 2000)) were not analyzed.  

Measures. Error rates were calculated for control and 
interruption trials by calculating percentages (actual 
errors/total error opportunities). Multiple incorrect actions in 
a sequence were counted as a single error for the purposes 
of calculating error rates. Error actions that occurred less 
than 500 ms from the previous action were excluded from 
all analyses as they were taken to be inadvertent mouse 
clicks; this accounted for less than one percent of the data.   

Results and Discussion 
Comparing Error Rates. Of the fifteen participants, 

eleven participants made at least one perseveration or 
anticipation error. Error rates were compared between the 
control trials and actions immediately after the interruption 
using a repeated measures ANOVA. Participants made more 
errors following an interruption (M = 9.3%) compared to the 
control (M = .9%), F (1, 14) = 5.8, MSE = 91.9, p<.05. 
Participants rarely made errors in the control trials, 
suggesting the task was well learned.  The non-zero error 
rate on control trials also matches studies showing that 
people do make errors on well-learned tasks (Reason, 1990).  

 
Figure 2:  Distribution of errors during a sequential action 

task.  Bars are empirical data; circles are model fits. 
 
Pattern of Error Actions. Next, we focused on the 

pattern of error actions. In order to compare error actions at 
different points in the task hierarchy, the error actions were 
coded relative to the correct action at that point in the task 
hierarchy. Recall that the correct order of actions was 
Vessel, Material, Paint Scheme, Weapons, Location, 
Process and Complete Contract. If the next correct action is 
to work on the “Weapons” subtask and the participant made 
the error of working on the “Paint” subtask, this error action 
was coded as a “-1”. If instead the participant clicks the 
“Process” button this was coded as a “2”. Based on this 

coding scheme, a “-1” represents a repeat of the just 
completed action and a “1” represents skipping the next 
correct action. All errors were coded using this scheme.  

The distribution of error actions is illustrated in Figure 2. 
A visual inspection of this graph suggests that both 
perseveration and anticipation errors occur relatively 
frequently.  Additionally, the number of errors seems to be 
proximate to the next correct action in both directions, 
though this effect is not strong in this dataset. To determine 
whether the error action of retrieving the subgoal just 
completed and performing this action again was the most 
common error action, a repeated measures ANOVA was 
conducted to compare error actions at this position to all 
other error actions. There was a significant difference 
among the different error positions, F(7,70) = 12.8, MSE = 
434.2, p<.0001. Tukey HSD post-hoc comparisons revealed 
that participants were significantly more likely to repeat the 
subtask just completed (M = 63.5%) than to make any other 
action (all p’s<.05).  

Model Description 
An MFG model was written in the ACT-R cognitive 
architecture.   

High Level Description of the MFG model 
There are five model components that are critical for routine 
sequential skill and errors that occur during execution of a 
routine task:  the need for well-learned knowledge; the 
encoding of an episodic trace; the strengthening constraint, 
the priming constraint, and the interference level. 
Well-Learned knowledge There are several ways to 
represent well-learned knowledge in ACT-R.  We provided 
the model with declarative knowledge about the task such 
that it always knew the sequence of steps it should follow. 
Encoding of an episodic memory When the model knows 
which step it should perform, it encodes an episodic 
memory.  A separate ACT-R module (goal-style), called 
episodic was created for this purpose.  An episodic memory 
in this task is an extremely lean memory item that contains 
the current goal and a unique identifier.  This unique code 
helps differentiate an episodic memory from a semantic one.  
All episodic memory items are created with a slightly higher 
initial activation so that they can be retrieved later.  This 
mechanism is very similar to other models (Altmann & 
Trafton, 2002; Altmann & Gray, 2008); we propose that 
people encode and retrieve episodic memories during 
interactive routines.  This episodic trace is later retrieved to 
guide action; retrieval is biased by the strengthening 
constraint, the priming constraint, and the interference level. 
Strengthening constraint Which episodic memory element 
is retrieved depends in part on the strengthening constraint.  
The strengthening constraint suggests that the most recent 
episode will have the highest activation.   
Priming Constraint When the model attempts to retrieve 
an episodic memory element, activation spreads from the 
focus of attention to related elements, of which the relevant 
episodic memory element is one.  Thus, the mental context 
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provides context to facilitate the retrieval of the correct 
episodic trace.  The environmental context could also 
provide priming, but that aspect is not implemented in the 
current model. 
Interference Level When the model attempts to retrieve an 
episodic trace (or any other memory item, for that matter), 
there is interference from other similar memory items. 
Interference occurs because a memory request is made that 
does not contain a perfect cue for retrieval.  Since there may 
be several items that match the memory request, the system 
retrieves the most active memory element.  Transient noise 
(sampled from a zero-mean logistic density function) can 
cause older elements to be retrieved.  Thus, interference can 
lead to retrieval of an incorrect episodic memory item. 

For all models, we kept most of the ACT-R parameter 
defaults.  Specifically, we enabled several parameters with 
typical ACT-R values, including the maximum associative 
strength parameter which is priming (from nil to a typical 
value of 3), activation noise (from nil to .03), and the 
randomize-time parameter, which allows some perceptual 
and motor actions to have a small amount of variability in 
their timings (we kept the default value of 3).  The base 
level learning parameter was set at the default of .5. 

A sample experimental model run  
To provide a match to the experimental procedure, 15 
models (15 participants) were run.  An abstracted interface 
was used for model runs.  The model did not perform the 
post-completion step (Byrne & Bovair, 1997). 
Normal processing The first thing that the model does in an 
experimental trial is to prepare to make a step.  In order to 
do this, it retrieves from declarative memory the first step to 
perform (well-learned knowledge).  Next, the model 
encodes an episodic memory of that step (encoding of the 
episodic memory).  This retrieval and encoding is the 
preparation component of the model.  Next, the model must 
execute the action.  The execution component of the model 
begins with an immediate attempt to retrieve that episodic 
memory.  Because the current mental context primes the 
episodic memory (priming constraint) and it is the most 
recent (strengthening constraint), the correct episodic 
memory is highly likely to be retrieved. After retrieving an 
episodic memory, that action is executed, the next step in 
the procedure is retrieved (well-learned knowledge), and the 
whole process repeats.  Note that as the model completes 
one action, it starts to prepare for and encode the next step.  
This interleaving of motor and mental actions has been 
shown to occur in a variety of tasks and contexts (Salvucci 
& Taatgen, 2008). 
Interruption processing When the model notices there was 
a screen change, it starts working on the interruption.  The 
interruption effectively clears out all state information from 
the primary task. According to the model, the two most 
important aspects of the interruption are that (1) state 
information from the primary task is cleared and (2) decay 
occurs during the interruption. In the current model, only 
cursory model processing occurs during the interruption and 

all state information (e.g., focus-of-attention and problem 
representation) is cleared. 
Resumption processing After an interruption completes, 
the model notices the screen change and attempts to 
remember the last task-relevant episodic memory.  If it is 
unable to recall an episodic item, the model executes a 
random action.  This rarely happens in the current model, 
given the brief interruption duration.  If the model is able to 
retrieve an episodic memory, it assumes that the retrieved 
element was the last completed action so retrieves the next 
step and continues in the task. 
Error behavior Most of the time, due to the strengthening 
and priming constraints, the correct episodic memory is 
retrieved and the procedural task is executed flawlessly.  
During normal execution, however, the model will rarely  
(when transient noise of an older episodic trace is greater 
than strengthening and priming), retrieve an incorrect 
episodic trace (interference level).  When an error is made, 
the model suggests that the most likely memory element to 
be retrieved will be the one with the next highest activation.   

The model makes perseveration errors because the 
episode that was just completed is likely to have a relatively 
high activation.  Thus, the model makes perseveration errors 
in a graded fashion away from the correct action.  

The model makes anticipation errors because sometimes 
the model pre-encodes a particular episodic action before it 
gets completed (e.g., it encoded an episode but got 
interrupted before it could complete that action).  When this 
pre-encoding / interruption occurs, the episodic element 
with the highest activation is likely to be the next 
(uncompleted) action upon resumption and therefore 
selected, leading to an anticipation error.  Note that when 
the model makes an anticipation error, it is a simple skipped 
step and can not skip more than one step. 

As in the empirical data the model very rarely makes an 
error during non-interrupted trials.  These errors occur 
because the wrong episodic memory was retrieved:  noise in 
the interference level overcomes the strengthening and 
priming constraints of the correct episode. 
The role of noise Greater noise in the system increases the 
number of errors the system makes because there is a 
greater probability that a different episodic memory will 
have a higher activation than the correct one.  Additionally, 
a greater noise increases the “spread” of applicable 
episodes.  So, increasing noise increases both the number 
and spread of errors. 

Model fit 
As is evident in Figure 1, the model matches the data quite 
well; R2 = .99 and RMSD = 1.3.   

General Discussion 
The current paper presents an experiment and model of 
sequential actions.  The experiment used an interruption 
paradigm, increasing the rate of errors enough to see 
emergent patterns from the data.  The model used a memory 
for goals model that describes the process people go through 
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both during error-free behavior and when they make errors. 
In general, errors occurred because the wrong episodic 
memory was retrieved. Perseveration errors occurred 
because a recent episodic memory had a high enough 
activation that, with noise, it was retrieved instead of the 
correct memory.  Anticipation errors occurred because the 
communication between the preparation and execution of an 
action gets disrupted for some reason. 

The MFG model shares both similarities and differences 
to the other two models of sequential routine action, IAN 
and SRN.  MFG focuses on perceptual and memorial 
processes rather than schemas (IAN) or distributed 
representations (SRN).  However, it is interesting that all 
three models use noise as one of the primary explanatory 
constructs for why errors are made.   

The current MFG model does have several limitations.  
First, it only accounts for sequence errors; it does not 
account for intrusions, capture errors, etc.  Second, while 
both IAN and SRN attempt to model both normal and 
patient populations, the MFG model only addresses 
normally functioning individuals.  Third, the model-task is 
quite simple, and a more complete task description is 
needed to expand the coverage of this model.  Finally, the 
MFG model does not model the learning of the task itself. 

The experiment reported here and the MFG model itself 
do, however, have several strengths.  First, the experimental 
paradigm used here allows errors to be studied in the lab 
with normal populations.  This data and other like it should 
be able to constrain current models of sequential actions, as 
Botvinick and Plaut (2006) suggest.  Second, the MFG 
makes both qualitative and quantitative predictions about 
the error pattern for this task.  Both the IAN and SRN 
models have been critiqued for the way they make 
perseveration errors.  Finally, the model makes episodic 
memory an aspect of its normal processing, so errors arise 
out of normal processing of routine behavior.   
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Abstract 
We present an embodied model of gaze-following.  The 
model learns how to follow another’s gaze by using 
cognitively plausible mechanisms.  It matches a classic gaze-
following experiment (Corkum & Moore, 1998) and runs on 
an embodied robotic system. 

Keywords: infant gaze-following; embodied cognition; 
robotics; cognitive architectures 

Introduction 
Gaze-following is an important, early component of joint 
visual attention (Scaife & Bruner, 1975; Butterworth & 
Jarrett, 1991).  Joint visual attention is looking at the same 
object as another person.  Some researchers have suggested 
that joint visual attention is strongly related to the ability to 
infer others' mental states (Baron-Cohen, 1995).  More 
recently, researchers have suggested that gaze following 
does not require a representational component (Woodward, 
2003). 

In fact, several researchers have recently built 
computational models to explore the emergence and 
learning of gaze-following.  

Previous models of gaze-following 
One of the challenges confronting models of gaze-following 
is to create an embodied model.  Embodiment is important 
in this domain for a number of reasons.  First, there has 
recently been a movement for embodied models of 
cognition (e.g., Wilson, 2000).  Second, spatial and 
developmental models seem to be particularly amenable to 
embodied cognition.  Third, embodied cognition forces an 
integrative approach across models, theories, and empirical 
results.  Finally, the complexity of the physical world 
provides strong tests for the theory under question.  Each of 
the models of gaze following (including ours) claims they 
have embodied characteristics. There are three existing 
models of the acquisition of gaze-following. 

Nagai, Hosoda, Morita, & Asada (2003) used a neural 
network approach to learn that shifts in the caregiver's head 
pose pointed to a salient and interesting object.  Over time, 
the model (which also runs on a robot) learned to follow the 
gaze of the caregiver to an interesting object. 

Doniec, Sun, & Scassellati (2006) greatly sped up the 
algorithm by using pointing gestures to acquire joint 

attention.  Their algorithm (which also ran on a robot) had 
the robot actively point to the object it thought the caregiver 
was gazing at.  This pointing greatly increased learning rate 
through positive examples.  The fact that infants start to 
make deictic gestures around 10 months of age (Bates, 
Benigni, Bretherton, Camaioni, & Volterra, 1979), which is 
about the same age that gaze-following is acquired (Corkum 
& Moore, 1995; Corkum & Moore, 1998) provides 
empirical evidence that infant gesture may be a component 
of gaze-following.  Beyond this interesting suggestion, 
however, Doniec et al.'s primary contribution is that it is 
able to learn at a much faster rate than previous models. 

Triesch, Teuscher, Deak, & Carlson (2006) also 
developed a model of gaze-following.  Triesch et al.'s model 
monitors the caregiver's direction of gaze and gradually 
learns that the caregiver looks at objects in the environment 
that are interesting or novel to the infant, which is 
rewarding.  Triesch et al. modeled the learning process 
through Temporal-Difference (TD) learning, a biologically 
plausible reinforcement learning algorithm. Triesch et al.'s 
model used a model of habituation to determine when to 
shift attention and learned to follow gaze to determine 
where optimal (most interesting) objects were in the 
environment.  Their model used a simple grid world where 
objects could only exist in a limited number of locations. 

It is a mantra in the modeling community that no model is 
perfect; future models attempt to improve upon past models.  
All three of these models made strong progress toward the 
understanding of gaze-following.  Their biggest weakness, 
however, is that they had significant issues with cognitive 
plausibility.  In order to show cognitive plausibility, we (1) 
use and integrate a variety of cognitively plausible 
mechanisms (e.g., models of human memory, attention, 
etc.), (2) run models using a similar experimental paradigm, 
and (3) match experimental data using those mechanisms 
within the constraints of the experimental paradigm. 

Several criticisms have been leveled against the Nagai et 
al. model. First, that model required an extremely large 
amount of training data; probably too much to be 
cognitively plausible (Doniec et al., 2006). Second, their 
model does not seem to be able to scale up to the more 
representational stage of gaze-following (Butterworth & 
Jarrett, 1991).  Third, their model seems to work for only a 
single caregiver (Doniec et al., 2006). 
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Doniec et al.'s model was built in a manner that did not 
emphasize cognitive plausibility; their focus was on 
achieving fast and efficient learning for gaze-following in a 
realistic embodied context. One aspect of their model that 
limits its plausibility as a cognitive developmental account 
is the fact that they used six objects (toys) for joint gaze-
following.  If we assume that their model is approximately a 
10 m. old infant, it is well known that infants at that age can 
not reliably identify objects a caregiver is gazing at if there 
are other objects in the line of sight (Butterworth & Jarrett, 
1991). 

While we agree with many aspects of Triesch et al.’s 
model, several criticisms have also been leveled at it.  Some 
researchers have explicitly questioned the psychological 
plausibility (Moore, 2006).  Specifically, Moore suggested 
that accurately modeling the attentional processes of infants 
during gaze following is a critical component to 
psychological plausibility in gaze-following. Additionally, 
because Triesch et al. used a grid system to simplify the 
training, the need for spatial cognition was greatly reduced. 
Thus, according to critics, a more robust and/or 
psychological representation of space was needed (Doniec 
et al., 2006; Moore, 2006). 

The goal of this project is to show how an embodied 
model of gaze-following can not only perform gaze-
following but also have a higher degree of cognitive 
plausibility by having cognitive attentional mechanisms 
(Doniec et al., 2006; Moore, 2006), a spatial representation 
(Doniec et al., 2006; Moore, 2006), and a match to data.  
While a match to data is not a perfect measure of cognitive 
plausibility (Cassimatis, Bello, & Langley, 2008), it can be 
used to differentiate models.  At the least, if a model can 
show performance and competence as well as a reasonable 
data fit, it is more plausible (and, to us, preferred), than a 
model that does not. 

The data we attempt to match is an experiment by 
Corkum and Moore (1998).   

Method (Corkum & Moore, 1998) 
A complete description of the experiment can be found in 
Corkum & Moore (1998). 

Participants 
63 participants completed the study, 21 participants in each 
of three age groups (6—7, 8—9, and 10—11 month olds). 

Setup and Procedure 
The experiment took place in a cubicle where two toys had 
been placed.  Each toy rested on a turntable on either side of 
the room.  When activated, the toy lit up and the turntable 
rotated.  Both toys were visible to the infant at all times. 

At the beginning of the experiment, each child entered 
into the cubicle and sat on their parent’s lap directly across 
from the experimenter.  The experimenter sat .6 m away.  
The experimenter called the child’s name or tickled the 
child’s tummy to get the infant to look at the experimenter.  
After the child looked at the experimenter, the trial began. 

Each trial consisted of the experimenter looking 90° left 
or right at one of the two toys.  The experimenter gazed at 
the toy for 7 s.  During the trial, the experimenter did not 
vocalize or touch the infant, nor did the experimenter call 
the infant’s name. 

The experiment consisted of three consecutive phases.  In 
the baseline phase, there were four trials where the 
experimenter looked at a toy (two trials to each side).  
During the baseline phase the toy remained inactive (i.e., 
did not light up or turn) in order to assess spontaneous gaze-
following. 

During the shaping phase, there were four trials (two to 
each side), but this time, regardless of the infant’s gaze, the 
toy that was gazed at by the experimenter lit up and rotated. 

During the final testing phase, a maximum of 20 trials (10 
to each side) occurred where the toy was activated only if 
the infant and the experimenter looked at the same toy.  If 
the child successfully followed the experimenter’s gaze 5 
times in a row, the experiment terminated. 

Scoring 
Each head turn was coded as either a target (joint-gaze with 
the experimenter) or a non-target (the wrong toy was gazed 
at) response.  Infant head turns that did not look at a toy 
(e.g., naval-gazing) were not scored. 

Random gaze-following would correspond to 
approximately 50% accuracy.  Accurate gaze-following 
would correspond to an accuracy rate significantly greater 
than 50%, while anti-gaze-following would correspond to 
an accuracy rate significantly less than 50%. 

Results and Discussion 
To maintain clarity and connection with other researchers 
who report accuracy, percentage scores will be reported here 
for both the baseline and the last four test trials instead of 
the reported difference scores. 

As Figure 1 suggests, only 10—11 m infants could 
reliably follow gaze at baseline.  After training, however, 
both 8—9 m and 10—11 m infants could reliably follow 
gaze (there was a slight, non-significant increase in gaze-
following for the 6—7 m infants).  

These results are consistent with other researchers 
(Corkum & Moore, 1995) who have shown that gaze-
following reliably occurs during the end of the first year: 
only 10—11 m infants could reliably follow gaze at 
baseline.  Interestingly, however, 8—9 m infants learned to 
follow gaze in the experimental setting with a modest 
amount of training. 

Corkum and Moore (1998) interpret these data as showing 
that there are several precursors to gaze-following.  First, 
infants must be mature enough to respond to different 
spatial locations; they must have some rudimentary spatial 
ability.  Second, infants must be able to learn that an 
interesting event will occur where the person looks.  They 
further suggest that the adult’s head turn cues the infant’s 
attention in the direction of the turn.  

We next describe the architecture and the task model. 
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Figure 1: Experimental data from Corkum and Moore 

(1998).  Bars are experimentall data and circles are model 
data.  Error bars are 95% confidence intervals. 

Architecture Description 
ACT-R is a hybrid symbolic/sub-symbolic production-based 
system ( Anderson, 2007). ACT-R consists of a number of 
modules, buffers, and a central pattern matcher. Modules 
contain a relatively specific cognitive faculty associated 
with a specific region of the brain. For each module, there 
are one or more buffers that communicate directly with that 
module as an interface to the rest of ACT-R. At any point in 
time, there may be at most one item in any individual 
buffer; thus, the module’s job is to decide what and when to 
put a symbolic object into a buffer. The pattern matcher uses 
the contents of the buffer to match specific productions. 

ACT-R supports the concept of purely bottom-up 
processing.  Bottom-up or reactive processing occurs when 
there is no goal-directed processing that occurs.  In contrast, 
top-down or goal-directed processing occurs when the goal 
buffer (intentional module) is part of the processing. 

ACT-R interfaces with the outside world through the 
visual module, the aural module, the motor module, and the 
vocal module. Other current modules include the 
intentional, imaginal, temporal and declarative modules. 

We have modified ACT-R by allowing it to perceive the 
physical world by attaching robotic sensors and effectors to 
it; we call our system ACT-R/E (the “E” is for Embodied).  
For ACT-R/E, we have added a new module (spatial) and 
modified the visual, aural and motor modules to work with 
our robot and to use real-world sensor modalities.  We did 
not modify other parts of the architecture itself.  Below we 
discuss the modifications to visual and motor (aural is not 
used in this project) and a brief description of the spatial 
module.  Figure 2 shows a schematic of ACT-R/E. 

Visual 
The Visual Module is used to provide a model with 

information about what can be seen in the current 
environment. ACT-R normally sees information presented 

on a computer monitor.  We modified the original visual 
module to accept input from a video camera. The visual 
module allows access to both the location of an object (the 
“where'” system) and a more detailed representation (the 
“what” system).  Obtaining additional information about an 
object or person requires declarative retrieval(s).  We used a 
3D optical flow model to capture a person’s 3D head pose in 
space and a fiducial tracker for object identification and 
localization.  These systems are described more fully 
elsewhere (Kato, Billinghurst, Poupyrev, Imamoto, & 
Tachibana, 2000; Trafton, Bugajska, Fransen, & Ratwani, 
2008; Fransen, Hebst, Harrison, & Trafton, under review). 

 
Figure 2: Schematic of ACT-R/E 

Motor 
Traditional ACT-R has a virtual motor system that allows 
virtual hand movements (e.g., typing, mouse movements).  
ACT-R/E’s motor module allows commands to be issued 
for navigation and mobility, as well as providing self-
localization knowledge.  In this project, motor is used to 
control the robot’s head, including the eyes and head pose.   

Spatial 
To facilitate acting in space, ACT-R/E utilizes a spatial 

theory called Specialized Egocentrically Coordinated 
Spaces (SECS, pronounced seeks) (Harrison & Schunn, 
2003). SECS is neurologically inspired and based on 3D 
space (Previc, 1998).  SECS provides two egocentric spatial 
modules, which are responsible for the encoding and 
transformation of representations in service of navigation 
(configural) and manipulation (manipulative).  

The configural module provides high fidelity location 
information for attended representations that is 
automatically updated as the model moves through or looks 
around the environment. The configural module represents 
the world as spatial blobs that need to be navigated around, 
above, or below.  These spatial blobs do not have a high 
degree of precision. The manipulative module uses a metric, 
geon-based 3D representation for objects.  The manipulative 
module provides encodings of object geometry and 
orientation, a critical component to the gaze-following 
discussed below. 
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Simulator and Robot Description 
Currently, the open-source Stage robot simulator (Collett, 
MacDonald, & Gerkey, 2005) is used to enable data 
collection and to speed-up the model development cycle. 

Our current robot platform is the MDS (Mobile-
Dexterous-Social) Robot (Breazeal, 2009).  The MDS robot 
neck has 18 DoF for the neck and head including eye pitch 
and pan which allows the robot to look at various locations 
in 3D space.  Perceptual inputs include a color video camera 
and a SR3000 camera to provide depth information.  For the 
current project, the MDS head can move its eyes and head 
to look at various locations in 3D space. 

Model Description 
An ACT-R/E model was developed that simulates the 
development of gaze-following. 

High Level Description of the gaze-following model 
There are five model components that enable gaze-
following:  the reactive nature of the model; using ACT-R’s 
memory system as a model of habituation; a more detailed 
description of the spatial components; the gaze-following 
itself; and the utility learning mechanism. 
The reactive nature of the model The model itself is 
completely bottom-up; there is no goal-directed or top-down 
action in this model.  The model was written in this manner 
because early gaze-following seems to be emergent rather 
than goal-directed (Triesch et al., 2006). Later models in the 
developmental process will need to have a goal-directed 
component. 
Habituation in ACT-R When the model gazes at any 
object (person, toy, etc.), it looks at that object until it can 
recall the object before it attempts to look at a different 
object.  This is an approximation of habituation (Sirois & 
Mareschal, 2002); several other researchers (Triesch et al., 
2006) use an exponential function that is remarkably similar 
and formally equivalent to ACT-R’s model of memory 
retrieval (Anderson, Bothell, Lebiere, & Matessa, 1998). 

After the model gazes at and habituates to an object, it 
starts to look for a new object.   
Spatial Module As mentioned earlier, standard ACT-R has 
only a rudimentary spatial ability.  This ability is part of the 
visual module.  In the visual module, a visual description of 
the object (a “what” component) and where that object is 
located in screen coordinates (a “where” component) is 
available (Byrne & Anderson, 1998).  ACT-R’s what and 
where system are used any time visual objects in the world 
need to be attended to.  Many successful models of attention 
have been built using these mechanisms. 

Unfortunately, the what and where components of ACT-R 
are not sufficient to follow gaze, much less provide even 
rudimentary spatial competency.  As previously mentioned, 
two spatial modules were added to ACT-R, the configural 
module and the manipulative module.   

The configural module is focused on the configuration of 
objects in the world relative to self.  Specifically, it allows 

the model to determine how far away from self another 
object is and what angle that object is from self.  Configural 
information changes dynamically as objects in the world 
change or move (including the self-model).  This 
information is critical for navigation in general and spatial 
cognition in an embodied context. 

For gaze-following, the manipulative buffer provides the 
orientation that a particular object is facing.  Specifically, 
the manipulative buffer provides information about what 
direction a person is facing (body) or gazing (head). 

The visual, configural, and manipulative modules are 
linked symbolically so that different types of spatial 
information about an object can be easily kept track of. 
Gaze Following Gaze-following was implemented by 
adding constraints to the visual search mechanism. As 
implemented, gaze-following is a directed visual search 
along a retinotopic vector. Given a starting point and either 
an angle or an end point, the visual search will return the 
location on an object somewhere along that line within some 
tolerance.  Note that this mechanism works in 3D space. 

This simple mechanism allows the visual system to find 
candidate objects along a gaze, or any potential 
obstructions. These skills align nicely with Butterworth’s 
developmental stages of gaze (Butterworth & Jarrett, 1991). 
Utility Learning ACT-R is able to not only learn new facts 
and rules, but also to learn which rule should fire (called 
utility learning in ACT-R).  It accomplishes this by learning 
which rule or set of rules lead to the highest reward.  ACT-R 
uses an elaboration of the Rescorla-Wagner learning rule 
and the temporal-difference (TD) algorithm.  The TD 
algorithm has been shown to be related to animal and 
human learning theory.  The elaboration in ACT-R is more 
applicable for human learning and allows it to be more 
easily incorporated into a production-system framework (Fu 
& Anderson, 2006). 

Briefly, any time a reward is given (e.g., for infants, a 
smile from a caregiver), a reward is propagated back in time 
through the rules that had an impact on the model getting 
that reward.  Punishments may also be given with a similar 
time-course, but no punishments were given in this model.  

For all models, we kept most of the ACT-R parameter 
defaults.  The parameters that were changed include the 
base level learning (a decay value of .2 instead of the typical 
default of .5), which allowed for a reasonable habituation 
timecourse; utility noise (set at a reasonable .5) to allow 
low-use productions to occasionally fire; and the utility 
learning rate (set at .2) which allowed the productions to 
converge to a stable expected utility within a reasonable 
period of time (minutes instead of months). 

A sample experimental model run  
The first thing that the model does in an experimental trial is 
to find a person (called a caregiver in this example).  This 
corresponds to the experimental procedure where the 
experimenter got the infant’s attention (Corkum & Moore, 
1998).  The model looks at the caregiver until it has 
habituated to that person, as described above.  The caregiver 
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looks at an object in the environment for 7 s or until the 
model makes a decision about where to look. 

When the model is “young” it has a favored rule set, 
which is to locate, attend-to, and gaze at an object.  The 
object can be anything in the model’s field of view and it is 
chosen randomly. 

If the caregiver is looking at the same object that the 
model decides to look at, the model is given a small reward.  
If the caregiver is looking at a different object than the 
model, no reward is given but the trial is completed and the 
reward process begins anew. 

Even though there is a favored rule to find an object and 
gaze at it, the gaze-following rule competes with it.  The 
gaze-following rule has a much lower utility when the 
model is young so it does not get an opportunity to fire very 
often.  However, because of the relatively high noise value 
for utility (called expected-utility-noise in ACT-R), the 
gaze-following rule does occasionally get a chance to fire.  
If the gaze-following rule has a high enough utility to fire, it 
attempts to follow the gaze of the caregiver to an object. 

The gaze-following production uses configural 
knowledge to determine the caregiver’s distance and 
orientation from itself. As long as the model attends to the 
caregiver, the current information is available to the model. 

The gaze-following production also uses manipulative 
knowledge of the head of the caregiver to determine what 
direction the caregiver’s head is facing.  This information is 
clearly important because without it the gaze of the 
caregiver could not be determined.  Note also that the model 
assumes that the eyes are facing the same direction as the 
head.  For the experimental procedure discussed here, this 
assumption is appropriate, but as children develop (by 1 
year) they do differentiate between head pose and where the 
eyes themselves are gazing (Brooks & Meltzoff, 2002). 

With this information, the infant model looks from the 
caregiver in the direction the head is facing.  The model 
then finds the first available object in that direction, which 
is consistent with previous research (Butterworth & Jarrett, 
1991).  The model is again given a small reward.  After 
habituation to that object, the trial ends and the model looks 
for another object to attend to.   

Because the gaze-following production is correct more 
often than the random production (which is accurate on 
average 1/(number-of-objects), the gaze-following 
production slowly gains utility.  However, it takes a period 
of time before the combination of noise and utility allow the 
gaze-following production to overtake and eventually 
become dominant over the random-object production. 

Modeling developmental progress 

When the model is young, it has a handful of productions 
that look around the world. Experience is simulated by 
concentrating gaze-following learning such that a few 
minutes is equal to 2 months.  For the 6-7 m model, it was 
given 80 seconds of experience with looking around a 
simple world at objects and receiving feedback as described 

in the experimental run.   For the 8-9 m model, three 
minutes of experience were given, and for the 10-11 six 
model, six minutes of experience were given.  Because the 
rate of learning is dependent entirely on the utility learning 
rate parameter, learning occurred quite quickly in this 
model.  Utility learning rate could be scaled down 
substantially to match actual infant learning time.  In order 
to do this correctly, however, it would be important to know 
approximately how many times an infant attempts to follow 
a gaze or how often an infant receives feedback or the infant 
found something especially interesting to look at as well as 
knowledge about the environment (e.g., the number of 
objects).  Other researchers have come to a similar 
conclusion concerning the importance of learning in gaze-
following (Corkum & Moore, 1998; Triesch et al., 2006). 

At each age (6-7, 8-9, and 10-11 m), the model was put 
through the exact same experimental procedure as Corkum 
& Moore (1998).  Note that the lighting up and rotating of 
the toy provided a strong reward to the child, which is 
modeled by joint attention during the training phase of the 
procedure; no reward was given during the baseline phase, 
so this was a relatively pure measure of age-related ability.   

To provide some match to the experimental procedure, 21 
models (corresponding to the 21 participants) were run at 
each age group.  However, to achieve stable results, the 
model was run 10 times with no utility learning for the 
baseline and after training conditions.  This allowed the 
model to be tested after different age or experimental related 
amounts of practice yet maintain stable results. 

Model fit 
As is evident in Figure 1, the model matches the data quite 
well; R2 = .95 and RMSD = .3.  Critically, all model points 
are within 95% confidence intervals of the data.  The model 
suggests that there is not a qualitative change in any child, 
but that as children gain more experience they get better at 
it. Interestingly, with a modest amount of experimental 
training, the 8-9 m model also showed improvement 
(though not, of course, as much as the 10-11 m model).  
Again the model suggests that the reason for this is that 8-9 
m children were at the “right” developmental age to take 
advantage of the concentrated training.  This training 
allowed productions that occasionally fired during “real 
life” to be focused and rewarded, which brought their utility 
to surpass the random behavior they had before the 
experiment started.  Note again that the 6-7 m children did 
not statistically improve.  The model explanation for this is 
that they simply had not had enough experience yet. 

Embodied gaze following 
The infant model at each stage of development was 

trained using Player and then run on an embodied platform 
(our robot). Movies are available at 
http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobotsVideos.
php. 
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General Discussion 
We described an embodied model of gaze-following that is 
not only functional but matches data from a classic gaze-
following paradigm and experiment. The primary advantage 
of this model over previous models is that it has a very high 
degree of cognitive plausibility.  First, as Moore (2006) 
suggested, it has an accepted model of visual attention.  
Second, it has a psychologically plausible representation of 
space that is critical to the success of the model.  Third, this 
model is embodied and runs on a physical robot, allowing 
additional tests of the theory as well as added complexity. 

Of the model’s 5 components (reactivity, habituation, the 
spatial module, gaze-following, and utility learning), three 
of them are absolutely critical to the success of the model.  
The reactivity nature of the module is a theoretical 
commitment to modeling young children, though the model 
could be written using a top-down model.  Likewise, 
habituation is something that has been theoretically 
proposed and empirically observed, though it is not a critical 
component to the success of the model.  The other three 
components, however, are needed.  The spatial component 
integrates the spatial aspects of the task while the entire 
system could not function without the ability to perceive 
which direction a person is gazing.  Because the 
developmental progress is accounted for by utility learning, 
it also is a necessary part of the model. 

The model does make an interesting prediction:  that 6 m 
infants (and even younger) could learn to follow gaze with 
enough practice. A core component to this prediction is that 
the infant have enough patience to go through enough 
training and the ability of young children to extract 3D 
information from the world.  It is believed that 6 m olds do 
have this capability, but very young children do develop it. 

This model also has several similarities to other infant 
data.  The model does not understand obstructions and 
follows gaze to the first object along a path (Butterworth & 
Jarrett, 1991).  The architecture does have the capability, 
however, to perform relatively precise gaze-following, 
ignoring highly salient objects in the path (the ‘geometric’ 
stage; Butterworth & Jarrett, 1991).  The current model can 
not, however, follow gaze to a position outside its current 
field of view (the ‘representational’ stage).  The current 
model has no true perspective-taking ability at all. 

In order to provide the model with perspective taking 
abilities, it would presumably need more goal-directed 
cognition as well as more developed spatial capabilities. 
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Abstract

We consider a class of bandit problems in which
a decision-maker must choose between a set of
alternatives—each of which has a fixed but unknown
rate of reward—to maximize their total number of
rewards over a short sequence of trials. Solving these
problems requires balancing the need to search for
highly-rewarding alternatives with the need to capitalize
on those alternatives already known to be reasonably
good. Consistent with this motivation, we develop
a new model that relies on switching between latent
searchingand standingstates. We test the model over
a range of two-alternative bandit problems, varying
the number of trials, and the distribution of reward
rates. By making inferences about the latent states from
optimal decision-making behavior, we characterize how
people should switch between searching and standing.
By making inferences from human data, we attempt to
characterize how people actually do switch. We discuss
the implications of our findings for understanding and
measuring the competing demands of exploration and
exploitation in decision-making.

Keywords: Bandit problems, exploration versus
exploitation, reinforcement learning, Bayesian graphical
models, human decision-making, optimal decision-
making

Bandit Problems
Bandit problems, originally described by Robbins
(1952), present a simple challenge to a decision-maker.
They must choose between a known set of alternatives
on each of a series of trials. They are told each of the
alternatives has a fixed reward rate, but are not told what
the rates are. Their goal is just to maximize the total re-
ward they receive over the series of trials. In this paper,
we focus on short finite-horizon versions of the bandit
problem, involving just a small number of trials.

As an example of the challenge posed by these sorts
of bandit problems, consider the situation shown in Fig-
ure 1. Here there are two alternatives, and 16 total trials
available to attain rewards. After 10 trials, one alterna-
tive has been chosen 8 times, and returned 3 successes
and 5 failures, while the other alternative has been tried
just 2 times, for 1 success and 1 failure. Which alter-
native should be chosen on the 11th trial? Choosing the
first alternative exploits the knowledge that it quite likely
returns rewards at a moderate rate. Choosing the sec-
ond alternative explores the possibility that this alterna-
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Figure 1: An example bandit problem, with two alterna-
tives and 16 total trials. After 10 trials, the first alterna-
tive on the left has 2 successes (lighter, green bar) and
5 failures (darker, red bar), while the alternative on the
right has 1 success and 1 failure.

tive may be the more rewarding one, even though much
less is known about it.

As this example makes clear, finite-horizon bandit
problems are psychologically interesting because they
capture the tension between exploration and exploitation
evident in many real-world decision-making situations.
Decision-makers must try to learn about the alternatives,
which requires exploration, while simultaneously satis-
fying their goal of attaining rewards, which requires ex-
ploitation. In this way, studying human performance
on bandit problems addresses basic questions, including
how people search for information, how they adapt to
the information they find, and how they optimize their
behavior to achieve their goals.

Human performance on bandit problems has been
studied from a variety of psychological perspectives.
Early studies used models and experimental manipula-
tions motivated by theories of operant conditioning (e.g.,
Brand, Wood, & Sakoda, 1956); later studies were in-
formed by economic theories with a focus on deviations

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

150



from rationality in human decision-making (e.g., Banks,
Olson, & Porter, 1997; Meyer & Shi, 1995); most re-
cently human performance on the bandit problem has
been a topic of interest in cognitive neuroscience (e.g.,
Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006) and probabilistic models of
human cognition (e.g., Steyvers, Lee, & Wagenmakers,
in press).

One common finding is that people often switch flexi-
bly between exploration and exploitation, often choosing
alternatives in proportion to their reward rate, unless they
are given strong incentives to maximize their reward by
repeatedly choosing the most-rewarding alternative (e.g.,
Shanks, Tunney, & McCarthy, 2002). Typically, these
experiments involve a large number of trials, and so one
plausible explanation for sub-optimal probability match-
ing is that people are allowing for the possibility that
rewards rates might change over time. This seems less
likely to be a confounding consideration in short-horizon
bandit problems, and so we are especially interested to
know if people switch between exploration and exploita-
tion for these problems.

Accordingly, in this paper we develop and evaluate a
probabilistic model that assumes different latent states
guide decision-making for short-horizon bandit prob-
lems. These latent states give emphasis either to search-
ing the environment, or to choosing the same alterna-
tive repeatedly, and so dictate how a decision-maker
solves the dilemma in our introductory example, where
a well-understood but only moderately-rewarding alter-
native must be compared to a less well-understood but
possibly better-rewarding alternative. Using the optimal
decision process, and human data, for a range of bandit
problems we apply our model to understand the best way
to switch between searching and standing, and how peo-
ple actually do switch, for short horizon two-alternative
bandit problems.

The outline of the paper is as follows. In the next sec-
tion, we present our model, including its implementation
as a probabilistic graphical model. We then report an ex-
periment collecting human and optimal decisions for a
range of bandit problems. Next, we use the behavioral
data and our model to make inferences about the optimal
way to switch between searching and standing, and how
people actually do switch. Finally, we draw some con-
clusions relating to simpler latent state models suggested
by our analysis.

A Latent State Model
Bandit problems have been widely studied in the fields
of game theory and reinforcement learning (e.g., Berry,
1972; Berry & Fristedt, 1985; Gittins, 1979; Kaebling,
Littman, & Moore, 1996; Macready & Wolpert, 1998;
Sutton & Barto, 1988). One interesting idea coming from
established reinforcement learning models is that of a la-
tent state to control exploration versus exploitation be-
havior.

In particular, the ‘ε-first’ heuristic (Sutton & Barto,
1988) assumes two distinct stages in bandit problem

decision-making. In trials in the first ‘exploration’ stage,
alternatives are chosen at random. In the second ‘ex-
ploitation’ stage, the alternative with the best observed
ratio of successes to failures from the first stage is cho-
sen. The demarcation between these stages is determined
by a free parameter, which corresponds to the trial at
which exploration stops and exploitation starts.

Our Model
Our model preserves the basic idea of a latent explo-
ration or exploitation state guiding decision-making, but
makes two substantial changes. First, we allow each
trial to have a latent state, introducing the possibility of
switching flexibly between exploration and exploitation
to solve bandit problems. In our model, for example, it
is possible to begin by exploring, then exploit, and then
return for an additional period of exploration before fin-
ishing by exploiting. Indeed, any pattern of exploration
and exploitation, changing trial-by-trial if appropriate, is
possible.

Second, we implement exploration and exploitation
behavior using a more subtle mechanism than just ran-
dom search followed by deterministic responding. In
particular, for the two-alternative bandit problems we
consider, our model distinguishes between three differ-
ent situations,

• The Samesituation, where both alternatives have the
same number of observed successes and failures.

• TheBetter-Worsesituation, where one alternative has
more successes and fewer failures than the other alter-
native (or more successes and equal failures, or equal
successes and fewer failures). In this situation, one
alternative is clearly better than the other.

• TheSearch-Standsituation, where one alternative has
been chosen much more often, and has more successes
but also more failures than the other alternative. In this
situation, neither alternative is clearly better, and the
decision-maker faces a dilemma. Choosing the better-
understood alternative corresponds to standing; choos-
ing the less well-understood alternative corresponds to
searching.1

Within our model, which alternative is chosen depends
on the situation, as well as the latent search or stand state.
For thesamesituation, both alternatives have an equal
probability of being chosen. For thebetter-worsesitua-
tion, the better alternative has a high probability, given
by a parameterγ, of being chosen. The probability the
worse alternative is chosen is 1−γ.

1Intuitively, our notionof searching is a form of exploration,
and our notion of standing is a form of exploitation. We use the
new terms, however, to emphasize that our search and stand de-
cisions have formal characterizations that are different defini-
tions of exploration and exploitation in reinforcement learning
algorithms. For example,ε-first uses simple random choices
as a model of exploration, whereas our approach is based on
choosing specifically the alternative that is less well known in
a search-stand situation.
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Figure 2: Graphical representation of the latent state
model.

For thesearch-standsituation, the exploration alter-
native will be chosen with the high probabilityγ if the
decision-maker is in a latent search state, but the ex-
ploitation alternative will be chosen with probabilityγ
if the decision-maker is in the latent stand state. In this
way, the latent state for a trial controls how decisions are
made each time the decision-maker encounters a search-
stand situation.

Graphical Model Implementation
We implemented our model as a probabilistic graphical
model in WinBUGS (Lunn, Thomas, Best, & Spiegel-
halter, 2000), which makes it easy to do fully Bayesian
inference using computational methods based on poste-
rior sampling. The graphical model is shown in Figure 2,
using the same notation as Lee (2008).

The encompassing plates show the repetitions for the
trials within each problem, and the multiple problems
completed by a decision-maker. The square shaded
nodesSA

i j , SB
i j , FA

i j andFB
i j are the observed counts of

successes and failures for alternatives A and B on the
ith trial of the j th problem. The unshaded nodeγ is the
‘accuracy of execution’ parameter, controlling the (high)
probability that the deterministic heuristic described by
our model is followed. The unshadedzi nodes are the
discrete latent indicator variables, withzi = 0 meaning
the ith trial is in the explore state, andzi = 1 meaning it
is in the exploit state. We assumed uninformative priors
γ∼ Uniform(0,1) andzi ∼ Bernoulli(1/2).

The double-borderedθi j node is a deterministic func-
tion of theSA

i j , SB
i j , FA

i j , FB
i j , γ andzi variables. It gives

the probability that alternative A will be chosen on the
ith trial of the j th problem. According to our model, this

is

θi j =





1/2 if A is same
γ if A is better
1−γ if A is worse
γ if A is search andzi = 0
1−γ if A is search andzi = 1
γ if A is stand andzi = 1
1−γ if A is stand andzi = 0.

The shadeddi j node is the observed decision made,
di j = 1 if alternative A is chosen anddi j = 0 if alternative
B is chosen, so thatdi j ∼ Bernoulli(θi j ).

In this way, the graphical model in Figure 2 provides
a probabilistic generative account of observed decision
behavior. It is, therefore, easy to use the model to make
inferences about latent search and stand states from deci-
sion data. In particular, the posterior distribution of thezi
variable represents the probability that a decision-maker
has a latent search versus stand state on theith trial. In
the next section, we describe an experiment that provides
both human and optimal data suitable for this type of
analysis.

Experiment
Participants
We collected data from 10 naive participants (6 males, 4
females).

Stimuli
We considered six different types of bandit problems,
all involving just two alternatives. The six bandit prob-
lem types varied in terms of two trial sizes (8 trials and
16 trials) and three different environmental distributions
(‘plentiful’, ‘neutral’ and ‘scarce’) from which reward
rates for the two alternatives were drawn.

Following Steyvers et al. (in press), we defined these
environments in terms of Beta(α,β) distributions, where
α corresponds to a count of ‘prior successes’ andβ to
a count of ‘prior failures’. The three environmental dis-
tributions are shown in Figure 3, and use valuesα = 4,
β = 2, α = β = 1, andα = 2, β = 4, respectively.

Procedure
We collected within-participant data on 50 problems for
all six bandit problem conditions, using a slight variant
of the experimental interface shown in Figure 1. The
order of the conditions, and of the problems within the
conditions, was randomized for each participant. All
6×50= 300 problems (plus 5 practice problems per con-
dition) were completed in a single experimental session,
with breaks taken between conditions.

Optimal Performance
Given theα andβ parameters of the environmental dis-
tribution, and the trial size, it is possible to find the opti-
mal decision-making process for a bandit problem. This
is achieved via dynamic programming, using a recursive
approach well understood in the reinforcement learning
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Figure 3: The plentiful, neutral and scarce environmental
distributions of reward rates.

literature (e.g., Kaebling et al., 1996). Using this ap-
proach, we calculated optimal decision-making behavior
for all of the problems completed by our participants.

Modeling Analysis
We applied the graphical model in Figure 2 to the opti-
mal and human decision data, for all six bandit problem
conditions. For each data set, we recorded 1,000 poste-
rior samples from the joint distributionof the unobserved
variables. We used a burn-in also of 1,000 samples, and
multiple independent chains, to assess convergence.

Basic Results

Descriptive Adequacy A basic requirement of any
cognitive model is that it can fit the observed data rea-
sonably well. To test the descriptive adequacy of the la-
tent state model, we used a standard Bayesian approach
and evaluated its posterior predictive fit to the to all of
the human and optimal decision-making data (i.e., the
agreement between the model and data averaged over the
posterior distribution of the parameters). The levels of
agreement are shown in Table 1. It is clear that the latent
state model is generally able to fit both human and opti-
mal behavior very well. There are some small suggestive
differences—scarce environments seem, for example, to
be a little less well described, as does one participant
(AH)—that are worthy of future investigation, but do not
affect our broad analyses in this paper.

Latent States Having checked the descriptive ade-
quacy of the latent state model, our main interest is in the
change between latent search and stand states, as shown
by the inferred model parameters.2 The basic results
needed to address this question are summarized by the
posterior mean of thezi indicator variables, which ap-

2We observed that the inferredγ parameter values were all
close to 1, as expected, and do not report them in detail.

Table 1: Posterior predictive agreement between the la-
tent state model, and the optimal and human decision-
makers (DMs), for the three environments and two prob-
lem sizes.

Plentiful Neutral Scarce

DM 8 16 8 16 8 16
Optimal .95 .93 .95 .94 .92 .90

PH .96 .94 .92 .92 .84 .90
ST .99 .87 .94 .84 .93 .80
AH .89 .89 .76 .75 .71 .73
MM .92 .88 .92 .93 .90 .94
SZ .92 .94 .95 .92 .88 .91
MY .94 .95 .92 .93 .89 .88
EG .94 .91 .90 .90 .85 .89
MZ .97 .91 .92 .88 .93 .86
RW .89 .90 .86 .80 .84 .80
BM .93 .88 .92 .87 .89 .90

proximates the posterior probability that theith trial uses
the stand state.

Figure 4 shows the posterior means of thezi variables
for the optimal decision process, and all 10 participants,
in all six experimental conditions. The experimental con-
ditions are organized into the panels, with rows corre-
sponding the plentiful, neutral and scarce environments,
and the columns corresponding to the 8- and 16-trial
problems. Each bar graph shows the probability of an
stand state for each trial, beginning at the third trial (since
it is not possible to encounter the search-stand situation
until at least two choices have been made). The larger
bar graph, with black bars, in each panel is for the op-
timal decision-making data. The 10 smaller bar graphs,
with gray bars, corresponds to the 10 participants within
that condition.

Analysis
The most striking feature of the pattern of results in Fig-
ure 4 is that, to a good approximation, once the optimal
or human decision-maker first switches from searching
to standing, they do not switch back. This is remark-
able, given the completely unconstrained nature of the
model in terms of search and stand states. All possible
sequences of these states over trials are given equal prior
probability, and all could be inferred if the decision data
warranted.

The fact that both optimal and human data lead to
a highly constrained pattern of searching and standing
states across trials reveals an important regularity in ban-
dit problem decision-making. We consider this finding
first in terms of optimal decision-making, and then in
terms of human decision-making.

Optimal Decision-Making The optimal decision pro-
cess results in Figure 4 show that it is optimal to be-
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Figure 4: Each bar graph shows the inferred probabilities of the stand state over the trials in a bandit problem. Each
of the six panels corresponds to an experimental condition, varying in terms of the plentiful, neutral or scarce envi-
ronment, or the use of 8 or 16 trials. Within each panel, the large black bar graph shows the stand probability for the
optimal decision-process, while the 10 smaller gray bar graphs correspond to the 10 participants.

gin with searching, then transition (generally) abruptly
to standing at some trial that depends on the nature of
the environment, and remain in the stand state for all of
the remaining trials. The plentiful and scarce environ-
ments for 16-trial problems show a few trials where there
is uncertainty as to whether searching or standing is opti-
mal but, otherwise, it seems clear that optimal decision-
making can be characterized by a single transition from
searching to standing.

It is also clear from Figure 4 that the optimal decision-
making must be sensitive to the environment in switch-
ing from searching to standing. In particular, as environ-
ments have lower expected reward rates, the switch away
from searching begins earlier in the trial sequence. For

example, the optimal decision process for 8-trial prob-
lems essentially switches from searching to standing at
the 5th trial in the plentiful environment, but at the 4th
trial in the neutral environment, and the 3rd trial in the
scarce environment.

Human Decision-Making While the regularity in
switching might not be surprising for optimal decision-
making, it is more remarkable that human participants
show the same pattern. There are some exceptions—
both participants RW and BM, for example, sometimes
switch from standing back to searching briefly, before
returning to standing—but, overall, there is remarkable
consistency. Most participants, in most conditions, begin
by searching, and transition at a single trial to standing,
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which they maintain for all of the subsequent trials.
However, while there is consistency over the partici-

pants in switching just once from searching to standing,
there are clear differences between individuals in when
that switch happens. For example, the participant SZ, in
all of the conditions, switches at a much later trial than
most of the other participants.

There also seem to be individual differences in terms
of sensitivity to the environment. Some participants
switch at different trials for different environments, while
others—such as participant ST—switch at essentially the
same trial in all experimental conditions.

Discussion
Our basic findings involve both a regularity and a flexi-
bility in the way people (and optimal) decision-makers
switch between exploration and exploitation in bandit
problems. The regularity is that a beginning period of
searching gives way to a sustained period of standing.
The flexibility is that when this switch occurs depends
on the individual decision-maker, the statistical proper-
ties of the reward environment, and perhaps the interac-
tion between these two factors.

The obvious cognitive model suggested by our find-
ings combines the regularity with the flexibility. We pro-
pose that decision-making on finite-horizon bandit prob-
lem can be modeled in terms of a single parameter, con-
trolling when searching switches to standing. That is,
rather than needing a latent state parameter for each trial,
only a single switch-point parameter is needed, with all
earlier trials following the searching state, and all later
trials following the standing state. Such a model would
be similar in spirit—but formally different in an im-
portant way—to the standardε-first heuristic from rein-
forcement learning. It would combine the single switch-
point with an analysis of bandit game situations (‘same’,
‘better-worse’, ‘search-stand’) that produces more fo-
cused and principled operational definitions of what it
means for decision-maker to explore and exploit.

A priority for future research is to apply this new
single-switch model to human and optimal behavior on
bandit problems. Being able to make inferences about
when people and optimal decision-makers switch from
exploration to exploitation promises a direct way to as-
sess individualdifferences in how people search their en-
vironment for information, and react to different distribu-
tions of reward in those environments.
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Abstract 
We extend a previously developed model of routine action 
selection by incorporating functional components to support 
behaviour in a simple non-routine task – sorting cards 
according to a rule that must be discovered by the subject. A 
minimal extension to the previous model, consisting of an 
activation-based working memory/inference system in which 
evidence is incorporated by simply exciting or inhibiting 
relevant rule nodes, is demonstrated to be capable of 
capturing basic performance on the task. The task is 
commonly used in assessing frontal brain injury, and the 
extended model is further shown to be capable of capturing 
the gross behavioural characteristics of frontal patients. 
However, it is argued that a purely activation-based working 
memory cannot capture the requirements of more complex 
tasks. The paper thereby demonstrates 1) how the basic 
routine action model might be extended to more complex 
behaviours, but 2) that such behaviours require more than 
simple activation-based memory processes to structure non-
routine behaviour over time.  

Keywords: Cognitive architecture; contention scheduling; 
supervisory system; Wisconsin card sorting task; Frontal 
dysfunction. 

Introduction 
Norman and Shallice (1986) argued, on the basis of 
evidence from slips and lapses in naturalistic everyday 
action and the more severe errors of patients with frontal 
lesions, that action is controlled by two systems: a low-level 
routine system (contention scheduling) which is responsible 
for behaviour in routine or mundane situations when our 
attention is not focused on action, and a higher-level non-
routine system (the supervisory system) which works by 
biasing contention scheduling when acting in novel 
situations or when it is necessary to avoid temptation. (See 
Shallice (2006) for an updated overview of the account.) In 
previous work we have developed a model of the contention 
scheduling component of the theory, and shown how 
everyday slips and lapses (Cooper & Shallice, 2000), as well 
as the more flagrant errors of action that occur following 
frontal (Cooper et al., 2005) and left parietal (Cooper, 2007) 
brain injury, may be accounted for in terms of damage to 
different parts of the contention scheduling system. Previous 
computational work has not, however, considered in any 
detail how the supervisory system might act to bias 
contention scheduling in non-routine situations. This paper 
begins to redress this omission by considering how the 
contention scheduling model might be extended to capture 
behaviour on a simple neuropsychological task that requires 

both inhibition of a prepotent response and generation of 
novel (or at least novel with respect to the task) behaviours. 

The task we consider is the Wisconsin Card Sorting Test 
(WCST; Grant & Berg, 1948). Subjects in the task are 
required to sort a series of cards, presented one at a time, 
into four piles. Drawn on each card is a set of shapes (e.g., 
two red circles or four blue squares). The piles to which the 
cards must be sorted are indicated by “target” cards. Each 
target card differs with respect to the number, colour and 
shape of items it depicts (see Figure 1). Thus subjects may 
sort cards to match the targets on any of the three 
dimensions. During the task, subjects are given feedback 
after sorting each card, and are required on the basis of this 
feedback to infer the correct sorting rule and use it for 
sorting subsequent cards. The trick is that once the subject 
correctly sorts 10 cards in sequence, the experimenter 
changes the sorting rule without warning. The subject must 
then use feedback to adjust his/her sorting rule.  This is 
more difficult than it might at first seem, as some cards 
match the targets on multiple dimensions, so feedback can 
be ambiguous. Even so, neurologically healthy subjects 
have little difficulty on the task. For example, in a sample of 
48 subjects tested at Birkbeck, mean sorting accuracy was 
over 40 correct out of 64 cards. Patients with frontal lesions, 
however, are known to perform poorly (see, e.g., Stuss et 
al., 2000), frequently successfully determining the first 
sorting rule but failing to change rules following negative 
feedback, i.e., they make perseverative errors.  

Figure 1: The Wisconsin Card Sorting Test, after two 
cards have been sorted according to the colour of their 

symbols and as preparing to sort the third card. 
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Extending the CS Model: 
A Naïve Model of WCST 

We consider first a naïve and somewhat minimal extension 
of the contention scheduling model that is capable of 
completing the WCST at levels comparable to 
neurologically healthy adults. 

Model Assumptions and Description 
As discussed above, we assume that behaviour is the 
product of a simple scheduling system capable of effecting 
routine sequential behaviour (contention scheduling) 
regulated or biased by a more complex system capable of 
planning, reasoning and structuring behaviour in the pursuit 
of intentions (the supervisory system). The contention 
scheduling system has been described in detail elsewhere 
(e.g., Cooper & Shallice, 2000; Cooper et al., 2005; Cooper, 
2007). At its heart is a hierarchically structured interactive 
activation network in which schemas that encode familiar 
goal-directed action sequences compete for the control of 
behaviour, with competition implemented through lateral 
inhibition between sets of schemas that correspond to 
alternate ways of achieving a desired goal or sets of 
schemas that share cognitive or effective resource 
requirements. The schema network is complemented by 
further interactive activation networks in which nodes 
represent objects (with separate object representation 
networks for different abstract object functional roles). The 
networks interact, such that schema nodes may excite object 
representation nodes and vice versa. These interactions 
encode actions that may be facilitated or afforded by the 
state of the environment (e.g., that a card on the table might 
be picked up, or that a card in hand might be placed on the 
table). 

The naïve model of WCST assumes that the contention 
scheduling system includes schemas for sorting cards 
according to the different criteria (i.e., sort by colour, sort 
by number and sort by form), and supplements it with a 
minimal supervisory (or control) system capable of biasing 
a specific sorting schema on the basis of positive or negative 
feedback obtained during the task. The key component of 
the minimal supervisory system is an activation-based 
working memory system that contains nodes corresponding 
to the different schemas that might be used for sorting the 
cards. It is assumed that when a card is presented for 
sorting, the most active working memory element biases the 
corresponding schema within the contention scheduling 
system, resulting in the card being sorted according to the 
corresponding criterion (assuming that the scheduling 
system is functioning correctly). Positive feedback from the 
experimenter (indicating that the card was sorted correctly) 
results in excitation of all working memory nodes consistent 
with the attempt, while negative feedback (if the card was 
sorted incorrectly) results in inhibition of all working 
memory nodes consistent with the attempt. Thus, if the card 
to be sorted depicts one green triangle, and the card is 
placed under the left-most target card (which in the standard 
test shows one red triangle), positive feedback will result in 

excitation of both the sort-to-number and the sort-to-form 
working memory nodes, while negative feedback will result 
in inhibition of both of these nodes. 

In order to give behaviour coherence over time, we 
assume that the activation of nodes within working memory 
persists over time, but that this persistence is imperfect (i.e., 
activation decays). We also assume that the activation of 
nodes is subject to noise. For simplicity we adopt for the 
working memory component the same activation-update 
equations used in the interactive activation networks, 
namely: 
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where At is the activation of a node on card sorting step t, It 
is the net input (excitation or inhibition plus noise) to the 
node on card sorting step t, P is a persistence parameter (see 
below) and σ is a sigmoidal squashing function bounded 
between 0 and 1 whose output, with zero net input, is 0.1. 

With this activation-update equation, activation of 
working memory nodes tends to 0.1 in the absence of any 
net excitation or inhibition. Net excitation pushes the 
activation of a node towards 1, while net inhibition 
suppresses the activation of node towards 0. Given this 
formulation, the behaviour of the supervisory aspects of the 
model is determined by four parameters:1 
• P: The persistence of working memory representations 

across card sorting steps. 
• N: Standard deviation of noise added to the input of 

working memory representations on each card sorting 
step. 

• Fe: Excitatory activation of matching working memory 
representations following positive feedback – a non-
negative real number. 

• Fi: Inhibitory activation of matching working memory 
representations following negative feedback – a non-
negative real number. 

Behaviour of the Model 
As anticipated, with appropriate parameter settings the 
model is capable of performing the WCST with relatively 
few errors. Thus, in a typical run with P = 0.85, N = 0.05, Fe 
= 0.25 and Fi = 0.75, the model succeeds in correctly sorting 
approximately 55 cards out of 64, with all errors occurring 
following a change in sorting category. This corresponds to 
the upper limit of normal performance. 

A full explanation of the model’s behaviour requires 
explanations at the level of both working memory and 
contention scheduling. We begin with working memory. 
Figure 2 shows the activation profiles of working memory 
elements over the complete duration of one administration 
of the WCST (64 cards) with the above parameter settings. 

                                                             
1 Additional parameters govern the behaviour of the contention 

scheduling component of the model. For all simulations reported in 
this paper we fix those parameters to the values used in other 
recent work (e.g., Cooper et al., 2005; Cooper, 2007).  
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Each step in the graphs (corresponding to approximately 40 
processing cycles, see below) corresponds to the sorting of 
one card. On the first step working memory elements 
corresponding to all three sorting schemas have activations 
close to resting levels, with only noise differentiating them. 
In this example, the most active element is that which 
corresponds to matching to form. This is therefore selected 
as the initial rule. The corresponding schema within 
contention scheduling then receives top-down excitation 
from the supervisory system, resulting (as discussed below) 
in the first card being placed under the target card that 
shares the form feature. The first card depicts one green 
triangle, so matching to form involves matching this card 
with the left-most target card, which depicts one red 
triangle. This is incorrect – colour is initially the correct 
sorting criterion – so negative feedback is provided. This 
results in inhibition of the working memory representations 
of all schemas that are consistent with the current sorting 
attempt. Note though that this attempt matched against two 
criteria, sorting by form and sorting by number. Hence, the 
working memory representations of both receive inhibition. 
The working memory representation corresponding to 
sorting by colour is the only one not to receive inhibition, 
and hence is the representation that is most active when the 
second card is presented. The second card is therefore sorted 
by colour. Positive feedback results in excitation of this 
working memory representation, ensuring that it remains the 
most active, while the activations of the other nodes begin to 
return to their resting levels. 

The model continues sorting by colour, with feedback 
occasionally providing support for multiple working 
memory representations (when a card matches against more 
than one criterion). Only when the criterion changes (after 
ten successful sorts to the colour criterion) does sorting to 
colour result in negative feedback. The representation of 
sorting to colour in working memory is rapidly inhibited, 
while the representation of sorting to form is excited 
(through positive feedback when a card matches against the 
form criterion). Once the activation of the representation of 

sorting to form exceeds that of sorting to colour (and sorting 
to number) the model switches to sorting to form (i.e., on 
presentation of a card, top-down excitation is passed to the 
schema that corresponds to sort-by-form within the 
contention scheduling system). 

We turn now to the contention scheduling component. 
Figure 3 shows the activation profile of schema nodes 
within this component of the model over the first two 
sorting events. On presentation of the first card, top-down 
excitation is passed to the sort-by-form schema as described 
above. This results in that schema’s activation rising to its 
maximum level during the first few processing cycles. The 
sort-by-form schema activates in turn the subschemas 
corresponding to pick-up card and put-down card. It also 
activates representations of cards in the object 
representation networks (which are not shown in the figure). 
Thus, the presented card (rather than, e.g., the target card) is 
activated as the card to be picked-up and, once the presented 
card is held, the target key card which matches this on the 
form feature is activated as the destination for the put-down 
card schema. The first card is therefore placed under the 
left-most key card.  

Processing is similar during sorting of the second card 

 
Figure 2: Activation profiles of working memory elements over the duration of the WCST. Activation is plotted on the 

vertical axis with processing cycles plotted on the horizontal axis. 

 
Figure 3: Activation profiles of schema nodes within 
contention scheduling during two consecutive sorting 
events. The vertical axis shows activation while the 
horizontal axis shows processing cycles. The first peak 
within each sorting event (cycles 12 and 56) corresponds to 
picking up a card while the second corresponds to placing it 
in the appropriate target pile (cycles 24 and 69). 
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(cycles 42 to 85), except that it is the sort-by-colour schema 
that is most active, and hence the card that is being sorted is 
placed under the target key card that matches it on the 
colour feature. 

Parameter Study 1: “Normal” Behaviour 
The behaviour of this naïve model depends upon the values 
of the model’s four parameters. Thus, good performance 
requires that inhibition following negative feedback (Fi) is 
substantially greater than excitation following positive 
feedback (Fe). If not, the model will perseverate following 
negative feedback, as positive feedback during a run of 
correct responses will result in the working memory 
representation of the correct sorting criterion becoming 
highly active, and it will take several consecutive errors 
following a change in criterion for this activation to subside 
and be exceeded by that of a competing sorting criterion. At 
the same time, persistence must be relatively high. If it is 
too low, behaviour on each card sort will be based primarily 
on feedback from the previous trial – feedback that can be 
ambiguous if a card matches against multiple criteria. 

Given the potential complexity of interactions between 
parameter values, two systematic surveys of the parameter 
space were conducted. In parameter study 1, the model’s 
susceptibility to standard perseverative errors was investi-
gated by varying Fe, Fi and P from 0.0 to 1.0 in steps of 0.1 
with N at 0.1, 0.2 and 0.3. The model was run 10 times at 
each point in the parameter space, and three dependent 
variables – the number of correct sorts, categories achieved 
and classical perseverative errors – were recorded for each 
run of the model. In each case the model was required to 
sort 128 cards, with the simulated experimenter changing 
the sorting criterion whenever 10 consecutive cards were 
sorted correctly. Thus, following Stuss et al. (2000) but 
unlike most behavioural studies, the test was not terminated 
after 6 categories had been achieved. Scoring was 
automated by a separate program that implemented the 
scoring algorithm described by Heaton (1981). 

These simulations demonstrated that, for each value of N, 
there are values for the other parameters that result in 
accurate sorting with few errors (e.g., N = 0.1, P = 0.9, Fi = 

0.1, Fe = 0.8) that is similar to the behaviour of normal 
participants. They also demonstrated, however, that the 
model generates high numbers of perseverative errors (i.e., 
more than 1/3rd of responses) and achieves relatively few 
categories when P is high and Fi is low relative to Fe. Thus, 
Figure 4 shows contour maps for the number of cards 
correctly sorted, number of categories achieved, and number 
of perseverative errors when N is 0.1, P is 0.8, and Fi and Fe 
vary from 0.0 to 1.0. From the figure, it can be seen that N is 
0.1, P is 0.8, Fi is 0.1 and Fe is 0.7, the model correctly sorts 
60 to 80 cards (out of 128), obtains 5.0 to 7.5 categories, but 
produces 40 to 50 perseverative responses. 

Parameter Study 2: “Frontal” Behaviour 
It is clear from parameter study 1 that the naïve model is 

susceptible to perseverative behaviour, at least when 
persistence is high and feedback inhibition is low relative to 
feedback excitation. While this echoes the behaviour of 
certain frontal patients, the number or proportion of 
perseverative errors alone is a coarse measure of behaviour. 
Parameter study 2 therefore sought to evaluate the model’s 
performance against a published dataset with a more fine-
grained scoring system, namely the dataset and scoring 
system of Stuss et al. (2000).  

Stuss et al. (2000) tested six groups of patients (four 
groups with frontal lesions centred in different areas and 
two non-frontal patient groups) and control participants on 
three versions of the WCST, with increasing instructional 
support on successive versions. In scoring participant 
behaviour, errors were subdivided into four categories: 
perseveration of preceding category (PPC: a response that 
matches the previous sorting criterion but not the current 
one), perseveration of preceding response (PPR: a response 
that matches exactly the features matched on the 
immediately preceding incorrect trial), set loss (an error 
following attainment of the current sorting category, as 
demonstrated by three consecutive correct responses, at 
least one of which was non-ambiguous) and other errors. 
Subtle differences between the various frontal groups were 
observed. For example, when participants were told the 
possible sorting criteria prior to the test (Stuss et al.’s 64A 

 
Figure 4: Contour maps showing the number of cards correctly sorted (out of 128), number of categories achieved and 

classical perseverations when N is 0.1, P is 0.8, and Fi and Fe vary from 0.0 to 1.0. Data are averaged over 10 attempts at each 
parameter combination. 
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condition), inferior medial patients achieved significantly 
fewer sorting categories and produced significantly more set 
loss errors than control and non-frontal patients, but they did 
not make significantly more PPC or PPR errors. Other 
frontal groups achieved even fewer categories and made 
fewer set loss errors than the inferior medial patients, but 
made significantly more PPC and PPR errors than the 
inferior medial, non-frontal and control groups. 

Parameter study 2 therefore explored the behaviour of the 
model following variation of Fe, Fi and P using the scoring 
system of Stuss et al. (2000). The aim was to replicate the 
behaviour of each of Stuss et al.’s participant groups and 
thereby further understand the possible nature of the deficit 
in each case. Note, however, that Stuss et al. found no 
significant differences in the pattern of behaviour between 
their right dorsolateral, left dorsolateral and superior medial 
groups – all three groups produced qualitatively similar 
behaviour across the four dependent variables. These frontal 
groups did differ, however, from the inferior medial group. 
Our analysis therefore merges these groups. Similarly, Stuss 
et al. found no significant differences between their left non-
frontal, right non-frontal and control groups. Our analysis 
also merges these groups. This results in three groups: 
inferior medial (IM), frontal non-inferior medial (FNIM) 
and non-frontal (NF). Descriptive statistics for each group 
based on the 64A version of the task are shown in Table 1. 

To explore the parameter space Fe and Fi were varied 
from 0.00 to 1.00 at intervals of 0.05 and P was varied from 
0.10 to 0.90 at intervals of 0.10. N was fixed at 0.10. The 

model was run 50 times with 64 cards to sort at each 
combination of parameter values (totalling 21 × 21 × 9 × 50 
= 198450 runs). Four dependent measures were collected 
for each run (categories achieved, PPC errors, PPR errors 
and set loss errors, all following definitions given in Stuss et 
al., 2000). For each of the three groups and for each point in 
parameter space, a goodness of fit measure was then 
calculated as the maximum of the fits to the four dependent 
measures, where the fit to each of the dependent measures 
was calculated as the difference between the simulated 
mean value of that dependent measure at the point in 
parameter space and the observed mean value of that 
dependent measure for the specific group divided by the 
observed standard deviation of that dependent measure for 
the group. Thus, a fit of less than one to any group would 
correspond to a case where each of the four dependent 
measures was within one standard deviation of the observed 
group means. Figure 5 shows plots of this goodness of fit 
measure for the best fits for each group in Fe × Fi space. 

From Figure 5 it can be seen that the best fit to the IM 
group is obtained when P is 0.40, Fi is between 0.05 and 
0.10 and Fe is between 0.15 and 0.20. This fit is 
approximately 1.5. A slightly better fit is obtained for the 
FNIM group, of 1.0, when P is 0.80, Fi is 0.00 and Fe is 
0.05. Only for the NF group is a fit of less than one 
obtained, and when P is 0.80 this level of goodness of fit is 
obtained for a wide region of Fe × Fi space (and this result 
holds for other values of P ≥ 0.70). 

Discussion 
The naïve model has been shown to be capable of both 
normal and frontal-like behaviour on the WCST (parameter 
study 1), but the scan of the parameter space in parameter 
study 2 found only modest fits for the two subgroups of 
frontal patients, with the best fits in each case failing to be 
simultaneously within one standard deviation for all 
dependent measures. There may be good reason for this – 
none of the subject groups is completely homogenous, and 
even if all patients in a group can be argued to have a 
qualitatively similar deficit, that deficit is likely to vary in 

 Categor-
ies 

PPC 
Errors 

PPR 
Errors 

Set Loss 
Errors 

NF 4.01 
(0.44) 

7.15 
(1.09) 

0.94 
(0.68) 

0.93 
(0.48) 

FNIM 1.08 
(0.46) 

24.27 
(6.04) 

11.68 
(3.18) 

1.14 
(0.63) 

IM 2.60 
(0.60) 

10.60 
(1.70) 

2.90 
(0.9) 

2.60 
(0.70) 

Table 1: Means (standard deviations) for WCST behaviour 
of three patient groups (derived from Stuss et al., 2000) 

 

 
Figure 5: Goodness of fit plots for best fitting planes in Fe × Fi space for each of the three groups. The best fit to the inferior 
medial group (IM: left panel) occurs with P = 0.40. The best fits for the frontal non-inferior medial (FNIM: centre panel) and 

the non-frontal (NF: right panel) groups occur with P = 0.80. 
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degree. Nevertheless the naïve model does provide some 
insight into the deficits. Inferior medial frontal patients are 
particularly prone to PPR errors and set loss errors. These 
errors occur when excitation, inhibition and persistence are 
all low. The latter provides a clear intuitive account of set 
loss errors: if persistence is low it is likely that the model 
will frequently fail to maintain a sorting rule, even after 
successfully discovering the rule. If both excitation and 
inhibition are low the model effectively makes little use of 
either positive or negative feedback. This explains to some 
extent the existence of perseverative errors. However, the 
type of perseverative error depends upon maintaining some 
record of a sorting rule. For PPR errors, this cannot be the 
most recent successful sorting rule – that would result in 
PPC errors. Rather, it is the rule apparently used 
unsuccessfully on the previous trial. PPR errors are therefore 
a more accurate reflection of failure to respond to negative 
feedback than are PPC or classical perseverative errors. 

General Discussion 
In comparison with previous work, the model shares a 
family resemblance with models inspired by the operation 
of prefrontal cortex (e.g., Dehaene & Changeux, 1991; 
Amos, 2000; Rougier et al., 2005). Like these models, 
behaviour in the extended contention scheduling model is a 
function of bias operating on a routine system that, in the 
case of card sorting, embodies simple stimulus-response 
links. The work presented here differs from the above, 
however, in considering the behaviour of different frontal 
subgroups as revealed by Stuss et al (2000). 

The extended contention scheduling model does 
moderately well at accounting for both normal and impaired 
performance, but there are severe limitations to the working 
memory module. Both basic assumptions – that working 
memory comprises nodes corresponding to atomic symbols 
and that evidence accrues only through processes of 
excitation and inhibition – are problematic. Thus, the 
approach does not generalize well to other non-routine 
behaviours such as solving Tower of Hanoi problems, 
which appear to require both the storage and manipulation 
of structured information within working memory and the 
manipulation of that information according to operations 
more complex than simple excitation or inhibition.  

Indeed, in an alternative extension of the contention 
scheduling model to be reported elsewhere working memory 
has been modelled as a collection of feature-value pairs 
(similar to production system approaches). Space limitations 
prevent a full description of the model. However, as with 
the naïve model presented here the alternative model was 
able to capture normal and impaired performance on the 
WCST. More critically, the working memory structures of 
the alternative model allow it to be applied to other non-
routine tasks, including solving Tower of London problems 
and generating random sequences of numbers – both non-
routine tasks that have frequently been discussed in the 
literature on cognitive control. In these tasks, autonomous 
functioning of the lower-level system supports the solution 

of one-move tower problems and the generation of 
sequences of associated numbers (e.g., digits increasing by 
two). Again, the role of the supervisory system is to 
modulate behaviour. The system allows, in the first case, the 
solution of tower problems where intermediate states are 
required, and in the second, detection and inhibition of 
stereotyped responses before they are produced. This is 
achieved through operations on the content of working 
memory which depend on relations between working 
memory elements. It is unclear how the working memory 
mechanisms of the naïve model (or of other models such as 
those mentioned above, and also the recent influential 
working memory model of O’Reilly and Frank (2006)) 
might meet such a challenge. 
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Abstract

Brown and Heathcote (2008) proposed the LBA as the sim-
plest model of choice and response time data. This claim was,
in part, based on the LBA requiring fewer parameters to fit
most data sets than the leading alternative, the Ratcliff diffu-
sion model (Ratcliff & Tuerlinckx, 2002). However, parameter
counts fail to take into account functional form complexity, or
how the parameters interact in the model when being estimated
from data. We usedpD, or the “effective number of parame-
ters”, calculated from Markov Chain Monte Carlo samples, to
take these factors into account. We found that in a relatively
simple, simulated, data set and on average in a complex, real,
data set that the diffusion had fewer effective parameters than
the LBA.

Keywords: decision models; response time; Bayesian statis-
tics; model complexity.

A wide range of experimental tasks involve a decision be-
tween at least two alternatives. Some believe that the pro-
cess behind making simple decisions is the same regardless
of what the decision is about. The most successful class of
theories about simple decision processes are evidence accu-
mulator models. There are many types of evidence accumu-
lator model that differ slightly from one another. However,
the central assumption common to all is that, when making
a decision about a stimulus, evidence is gradually accumu-
lated for each alternative response. Once there is enough
evidence for one particular response that response is made,
and the time taken to accumulate that evidence is the deci-
sion time. The most frequently applied evidence accumulator
model for decisions between two alternatives is the Ratcliff
diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 1998;
Ratcliff & Tuerlinckx, 2002). For example, Ratcliff and col-
leagues have used the diffusion model to account for the de-
cision process in lexical decision tasks (Ratcliff, Gomez,&
McKoon, 2004), recognition memory tasks (Ratcliff, 1978),
to investigate the effects of aging on cognitive performance
(e.g. Ratcliff, Thapar, & McKoon, 2004). Ratcliff, Segraves,
and Cherian (2003) also present neural evidence consistent
with the diffusion model.

Brown and Heathcote (2008) recently proposed an alterna-
tive evidence accumulator model of the decision process: the
Linear Ballistic Accumulator (LBA) model. The LBA was
proposed as a simpler model of decision than the diffusion
model. The claim of simplicity was based in part on the fact
that the LBA assumes one less source of noise in the decision
process. That is, in constrast to the diffusion model, evidence

accumulation in the LBA is ballistic (i.e. without moment-to-
moment variability). This simplification, enables the deriva-
tion of full analytic expressions for the model’s full probabil-
ity density function. Despite this simiplificaiton, Brown and
Heathcote (2008) show that the LBA is able to account for
benchmark data from two-choice tasks (Ratcliff & Rouder,
1998; Ratcliff, Gomez, & McKoon, 2004)1. LBA parameters
have also been shown to have neural correlates (Forstmann et
al., 2008; Ho, Brown, & Serences, submitted).

Brown and Heathcote (2008) also claimed the LBA is sim-
pler because, when fiting standard two-choice data, it re-
quired one less parameter than the most recent version of
the diffusion model (Ratcliff & Tuerlinckx, 2002). Myung
and Pitt (1997), however, explain that the number of free pa-
rameters,k, does not necessarily provide a full indication of
model complexity. Specifically,k fails to take into account
functional form complexity (i.e., differences in flexability be-
tween different mathematical functions), or how the parame-
ters interact when parameters from the model are estimated
from data. Spiegelhalter, Best, Carlin, and van der Linde
(2002) proposed a method to address these aspects of model
complexity using the deviance information criterion (DIC)
and an associated estimate,pD, of the effective number of
model parameters. These quantities are estimated using pos-
terior samples obtained by Bayesian Markov Chain Monte
Carlo (MCMC) methods. We use these methods to investi-
gate the claim that the LBA is a “simpler” model of the de-
cision process. To begin we provide a brief overview of the
diffusion and LBA models.

Overview of Models
Consider the following example – participants are shown a
patch of 64x64 pixels, each of which are either white or black,
and the asked whether the stimulus is mostly bright or mostly
dark. The Ratcliff diffusion model begins by assuming that
participants sample information continuously from the stim-
ulus. Each sample of information counts as evidence for one
of the two responses and is used to update an evidence total,
sayx, shown by the irregular line in the left panel of Figure 1.

1Brown and Heathcote (2008) also show that the LBA is able to
account for decisions between more than two alternatives becasue
it allows one accumulator for each choie. As the Ratcliff diffusion
model has not been extended to the multiple choice case we will
focus on the two choice case.
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Figure 1: Overview of the diffusion and LBA models (left and right panel, respectively)

Total evidence begins at some starting point,x = z, and evi-
dence that favours a “bright” response decreases the value of
x and evidence for a “dark” response increases the value ofx.
Evidence accumumlation continues untilx reaches one of the
response boundaries, the horizontal lines at 0 ora in Figure 1.
The choice made depends upon which boundary was reached,
a for “dark” and 0 for “bright” response. The time taken to
make the choice is the accumulation time plus a non-decision
time component,Ter, composed of things such as encoding
time and the time taken to make a motor response.

Consider a stimulus composed of almost 100% white pix-
els. When a participant samples from this stimulus almost all
of the evidence will favour a “bright” response, and so the
accumulation total will quickly increase towardsa. The av-
erage rate of this accumulation is called thedrift rate, v, and
variability in moment-to-moment accumulation is assumed to
take the values. Ratcliff (1978) added the additional assump-
tion that drift rate also varies from trial-to-trial according to
a normal distribution with meanv and standard deviationη.
Ratcliff and Rouder (1998) incorporated between-trial vari-
ability in the start point of acccumulation, assuming thatz fol-
lows a uniform distribution on [z− sz

2 ,z+ sz
2 ]. Finally, Ratcliff

and Tuerlinckx (2002) included between-trial variabilityin
non-decision timeTer in the form of a uniform distribution on
[Ter −

st
2 ,Ter + st

2 ].
In the LBA there are separate accumulators gathering ev-

idence for each of the “bright” and “dark” responses. These
accumulators are assumed to be linear, ballistic and indepen-
dent. That means evidence accumulation has a linear increase
with no within-trial variability (i.e,. is ballistic rather than
stochastic as in the diffusion model), and accumulation in one

accumulator has no effect on the other accumulator(s). The
amount of evidence an accumulator begins with on each trial
is sampled (separately for each accumulator) from the interval
[0,B]. The evidence in each accumulator increases at a linear
rate determined by the drift rate parameters,vb and vd , for
bright and dark responses, respectively. Accumulation con-
tinues until evidence in one accumulator reaches a response
boundary,a2 which is usually assumed to be the same for
all accumulators. The accumulator which reaches the bound-
ary first selects its associated response and accumulation time
plus non-decision time,Ter, gives the reaction time. As in
the Ratcliff diffusion model, the drift rate is assumed to vary
between-trials according to a normal distribution with mean
v and standard deviationη.

To sum up, the diffusion model has the parameters
(a,z,sz,Ter,st ,v,s,η) and the LBA has the parameters
(a,B,Ter,v1,v2,η), wherevi refers to the mean drift rate in
the accumulator for theith response. The parameterisation for
each model, however, differs depending on the design of the
data from which the data were obtained. There is, therefore,
no fixed difference in the number of parameters between the
models. There are, however, parameterisations of these mod-
els which are commonly applied. For example, when there is
no bias for one response over the other then thez parameter of
the diffusion model can be fixed ata

2, reducing the number of
free parameters in the diffusion model by one. Also, in order
to solve a scaling property common to all evidence accumu-
lator models, thes parameter is generally fixed at 0.1. Sim-

2In previous applications of the LBAa andB have been labelled
b and A, respectively. We adopt this alternative labelling here to
facilitate equality in parameter names across models.
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ilarly, when fitting the LBA, drift rates for correct and error
responses tend to be assumed equal for both choices unless
the choice corresponds to an experimental manipulation (e.g.,
word vs. non-word in a lexical decision task or studied vs.
unstudied in a recogniton memory task). Drift rates for error
responses are also typically assumed to be fixed at one minus
the drift rate for correct response, solving the scaling property
for the LBA. This means when the LBA has been applied then
usually only one drift rate parameter is estimated– the drift
rate for correct responses. Based on these standard parame-
terisations, Brown and Heathcote (2008) concluded that the
LBA uses one less parameter than the diffusion model to ac-
count for data typical of two-choice tasks. This finding, com-
bined with some apparently simpler structural assumptions,
led Brown and Heathcote (2008) to conclude that LBA was
simpler than the diffusion model. We now explore whether
the pD measure of model complexity agrees with the author’s
conclusions.

Model Complexity

An overly complex model can provide an excellent fit to a
given set of data, yet still not be considered to give a satisfy-
ing account of the underlying process. In particular, a more
complex model can “overfit” the data by fitting the random
error specific to a particular sample as well as the structure
due to the underlying processes. Becasue only the structre
re-occurs in new data, overfitting limits the model’s ability in
terms of prediction. Myung (2000) suggests that at least two
factors contribute to model complexity – the number of pa-
rameters in the model and the functional form of the model,
which determines how the parameters interact. Functional
form complexity can differ between models with the same
number of parameters when one model is able to produce a
wider range of predictions than the other. In any particular
experimental design, the degree to which the effects of func-
tional form complexity are observed depends on the interac-
tion between model and data.

A number of model selection methods take into ac-
count functional form complexity. We will focus on one
such measure: the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). DIC has been applied across
a wide range of fields including psychology (e.g., Myung,
Karabatsos, & Iverson, 2005). Vandekerckhove, Tuerlinckx,
and Lee (2008) used DIC to compare various instantiations
of the diffusion model. The DIC can be considered the
Bayesian version of the Akaike Information Criterion (AIC;
Akaike, 1973), but with a complexity penalty term which
takes into account functional form complexity, rather than
simply counting the number of free parameters, as in AIC.

DIC can be computed from MCMC samples of a model’s
posterior parameter distributions. Letθ represent such a sam-
ple. Deviance can be written asD(θ) = −2logL(y|θ), where
L(y|θ) represents the likelihood of data vectory given param-
etersθ. ThenD(θ) is the deviance of the estimated poste-
rior mean parameters andD(θ) is the mean of the distribution

of posterior samples. DIC can be expressed in two parts as
DIC = D(θ)+2pD, wherepD = D(θ)−D(θ), whereD(θ) is
a measure of misfit between data and model predictions, and
2pD is a penalty for the “effective” number of parameters in
the model (Spiegelhalter et al., 2002). ThepD measure ad-
justs the number of parameters in the model to take account
of functional form complexity. Larger values ofpD indicate a
more complex model able to potentially predict a greater the
range of patterns of data. A better model, which achieves a
balance between fit and complexity, has a smaller DIC.

Posterior sampling for both the Ratcliff diffusion and LBA
models have been implemented using the Bayesian MCMC
program WinBUGS (diffusion: Vandekerckhove et al., 2008;
LBA: Donkin, Averell, Brown, & Heathcote, 2009). We use
these implementations to calculate DIC andpD, allowing us
to compare the functional form complexity between the mod-
els. Because DIC andpD are dependent on the data to which
the models are applied we will present the results of fits to
two different sets of data: simulated data generated by the
diffusion model, and a benchmark data set from Ratcliff and
Rouder (1998).

Estimating pD and DIC for the LBA and
Diffusion Models

Simulated Data

The first set of data were generated from a diffusion process
with parameters given in Table 1. Our simulated data set was
intended to mimick data from a two-choice task with a single
experimental factor where stimuli were varied so as to only
affect the difficulty of the task. This meant that only the drift
rate parameter,v, was allowed to vary across the three con-
ditions. All other parameters(a,sz,Ter,st ,s,η) were assumed
to be constant across all conditions. We also fixedz to be a

2,
representing unbiased responding. This parameterisationis
standard for fitting data from experiments which have a sin-
gle within-subjects condition which varies from trial-to-trial
(e.g. Ratcliff, Gomez, & McKoon, 2004). The simulated data
can be thought of as coming from a single participant who
completed 1000 trials in each of the three difficulty condi-
tions.

When fitting both the diffusion model and the LBA model,
parameters were fixed to match the assumptions made when
generating the data; so only drift rate was allowed to
vary between the three difficulty conditions. This means
that for the diffusion model we have eight free parameters
(a,sz,Ter,st,η,v1,v2,v3), and for the LBA seven free param-
eters(a,B,Ter,η,v1,v2,v3). Unbiased responding in the LBA
corresponds to having the same values ofa andB for each
response. Posterior samples were obtained for both mod-
els using their WinBUGS implementations. For each model
three chains each containing 10,000 MCMC samples were
collected, with the first 3,000 samples for each chain were
discarded as burn-in. Visual inspection of the chains sug-
gested that after burn-in samples collected from each chain
were from the same stationary distribution, which we now
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assume to be the true posterior distribution.

Table 1: Mean of posterior samples for parameters from the
diffusion and LBA models for fits to data generated from dif-
fusion model. DIC andpD are also reported for each model.

Parameter Data Diffusion LBA
a .125 .128 .252

sz / B .044 .034 .432
η .133 .123 .237

Ter .435 .432 .237
st .196 .196 -
v1 .1 .103 .609
v2 .23 .226 .74
v3 .363 .369 .882

DIC - -183.76 -47.55
pD - 5.97 6.81

Table 1 contains mean posterior samples for each parame-
ter for both the diffusion and LBA models. The average pos-
terior diffusion model parameter samples are close to the pa-
rameters used to generate the data, as expected. The average
posterior LBA parameters are close to parameters estimated
using non-Bayesian methods of fitting (e.g. maximum likeli-
hood estimation) to the same data set.

DIC andpD values are also given in Table 1. As one might
expect, the DIC for the diffusion model is smaller than the
DIC value for the LBA model (-183.76 and -47.55, for dif-
fusion and LBA respectively), suggesting that the diffusion
model provides a better account than the LBA of data simu-
lated from a diffusion process. Quite unexpectedly, however,
the pD value for the diffusion model is also smaller than that
for the LBA model,pD equal to 5.97 and 6.81 respectively.
This suggests that – despite the diffusion model having more
free parameters than the LBA model – when functional form
complexity is taken into account, the number of “effective”
parameters is actually smaller than that of the LBA model.

At least for these simulated data, from a very simple exper-
imental design, the results seem clear – the diffusion model
is less complex than the LBA. As previously stated, how-
ever, functional form complexity depends upon the data being
modelled. We turn now to actual data, to a data set which has
become a benchmark data set for models of choice and re-
sponse time (Brown & Heathcote, 2008; Vandekerckhove et
al., 2008).

Ratcliff and Rouder’s (1998) Data
Ratcliff and Rouder (1998) performed a simple brightness
discrimination task with two within-subject factors: bright-
ness and instructions. There were 33 levels of brighness used,
determined by the proportion of white vs. black pixels in a
64x64 display (brightness was varied randomly from trial-to-
trial). Between blocks of trials, participants were given in-
structions on whether to respond with an emphasis on speed
or an emphasis on accuracy.

We fit diffusion and LBA models seperately to data from
three individual participants, each of whom completed al-
most 8000 trials. Both models have previously been fit to
the Ratcliff and Rouder (1998) data sets using non-Bayesian
estimation techniques (diffusion: Ratcliff & Rouder, 1998;
LBA: Brown & Heathcote, 2008). We used very similar pa-
rameterisations to that used in the original fits with three ex-
ceptions. First, for the diffusion model we included between-
trial variability in non-decision time. This variability was in-
cluded in the diffusion model as it has been standard practice
since Ratcliff and Tuerlinckx (2002). Second, for the LBA
both the upper bound of the uniform distribution of starting
point of accumulation,B, and response threshold,a, were al-
lowed to vary between speed and accuracy conditions. Brown
and Heathcote (2008) assumedB = a in the speed-emphasis
condition, but we found that fit was greatly improved by re-
moving this constraint. For the diffusion model we followed
Ratcliff and Rouder (1998) and assumed that only boundary
separation,a was allowed to vary between speed and accuracy
conditions. Third, we found that the diffusion gave much bet-
ter fits to data by estimating between-trial variability in start
point of accumulation for speed and accuracy conditions sep-
arately. This contrasts with Ratcliff and Rouder (1998) ap-
proch, wheresz was fixed ata/20 for both speed and accuracy
conditions.

For both models, only drift rate was allowed to vary
between brightness conditions. Although there were 33
brightness conditions in the original data, the conditions
were collapsed to seven since visual inspection suggested
that the majority of brightness levels which were ei-
ther very difficult or very easy were homogenous in RT
and accuracy. This meant that for the diffusion model
(aacc,aspd ,szacc ,szspd ,Ter,st ,η) were free parameters, and for
the LBA (aacc,aspd ,Bacc,Bspd ,Ter,η) were free parameters.
When combined with the seven drift rate parameters com-
mon to both models, there were 14 free parameters for the
diffusion model, and 13 free parameters for the LBA model.

A single chain of 10,000 samples was collected for each of
the LBA and diffusion models, with the first 3,000 samples
discarded from analysis as burn-in. Again, visual inspection
of the chain confirmed that stationarity after burn-in. Table 2
contains mean posterior parameter values for each model and
each participant. Though, for brevity we do not present them
here, plots of model predictions and data confirm that the av-
erage parameter values provide a good fit to the data. The
quality of fit between model and data was greater for the dif-
fusion model than the LBA. This is reflected in DIC andpD

values reported in Table 2: for all participants the diffusion
model had a smaller DIC value than the LBA model3. As

3Donkin, Brown, and Heathcote (2009) have shown that an LBA
model where the sum of correct and error drift rates are not over-
constrained to be one can provide a large improvement in quality of
fit. This comes, however, at the expense of an increase in the num-
ber of free parameters. Since we wish the present discussion to be a
retrospective look at the claims of Brown and Heathcote (2008) we
discuss this no further here.
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Table 2: Mean of posterior samples for parameters from the diffusion and LBA models for fits to individual participants from
Ratcliff and Rouder (1998). DIC andpD are also reported for each model.

Participant Model aacc aspd Bacc / szacc Bspd / szspd η Ter st DIC pD

JF
Diffusion .256 .061 .066 .006 .155 .245 .181-3478 11.93

LBA .603 .215 .373 .116 .263 .107 - -229311.59

KR
Diffusion .249 .065 .023 .015 .153 .227 .152-3793 10.05

LBA .615 .223 .383 .143 .341 .123 - -1327 12.79

NH
Diffusion .246 .086 .078 .003 .213 .259 .172-5938 11.85

LBA .479 .251 .27 .121 .307 .129 - -487011.15

was the case in the simulated example the decrease between
the nominal and effective number of model parameters due
to functional form complexity was greater for the diffusion
(-2.7 on average) than the LBA (-1.2 on average). Overall,
when applied to real data coming from a more complicated
design, the diffusion model tended to require fewer “effective
parameters” (11.3 on average) than the LBA model (11.8 on
average). At the level of individual participants, however, we
see thatpD was smaller for the LBA than the diffusion model
for two out of three participants.

Discussion
DIC is a model selection criterion which attempts to select the
model which is best able to predict new data. DIC, andpD, a
measure of model complexity, can be calculated from MCMC
samples from the deviance of posterior parameter distribu-
tions. ThepD measure takes into account functional form
complexity, and can be thought of as the effective number of
parameters used to fit the data. When using data simulated
from the diffusion model with a simple experimental design,
the diffusion model, perhaps surprisingly, had a smallerpD

value than the LBA model. In other words, for our simu-
lated data set the diffusion model was simpler than the LBA
in terms of functional form complexity. When the models
were fit to benchmark data from Ratcliff and Rouder (1998)
which model was simpler differed between participants. For
two out of three participants the LBA required fewer effective
parameters. Averaging over participants, however, suggested
the diffusion model was simpler.

There are a number of technical details associated with
DIC andpD should be addressed. Spiegelhalter et al. (2002)
state that DIC andpD are appropriate when: the distribution
of posterior samples are approximately normal, and the model
provides a reasonable account of the data. We have already
addressed the second point, i.e. the posterior parameters were
providing good predictions of data. In the models presented
here the posterior distributions for each parameter closely ap-
proximate normal distributions, making it more likely thatthe
joint distribution of these parameters are also approximately
normally distributed. DIC andpD are also dependent on the
prior distribution used and the “focus” of our analysis. We
have made an attempt to make these factors equivalent across
models.

First, we used numerical integration of the Winbugs re-
sults for the diffusion model in order to equate the focus of
inference for each model. The WinBUGS code given by
Vandekerckhove et al. (2008) for the diffusion model imple-
ments start point variability and non-decision time variabilty
hierachically –that is, by drawing a sample for each of these
parameters for each trial performed by a participant on each
MCMC iteration. This approch was necessitated because the
Ratliff diffuison does not have an analytic likelihood when
these sources of between-trial variability are included. In
contrast, the WinBUGS code takes advantage of the LBA’s
mathematical simplicity by using an analytic expression for
the likelihood of the LBA model which integrates out all
forms of between-trial variability. This difference makesthe
deviances for each model produced by WinBUGS incommen-
surate; for the diffusion model this deviance focuses on the
particular set of trials observed, whereas for the LBA the de-
viance is appropriate for the population of possible trials, and
hence prediciton of performance by each subject performing
new trials. As the latter focus is clearly more appropriate for
our purposes we numerically integrated the deviance for each
diffusion model posterior sample and used these integrated
deviances to calcualte DIC andpD.

Second, the prior distributions for diffusion model param-
eters are based on the range of parameter values estimated
from all of the published diffusion fits found by Matze and
Wagenmakers (submitted). Priors for LBA parameters were
obtained from simulations which took the range of diffusion
model parameters from Matze and Wagenmakers (submitted)
and mapped them onto changes in LBA parameters. This
gave a range of LBA parameters to be used as priors which
may account for approximately the same range of patterns
of data. In both cases the prior distribution of parameters was
assumed uniform within these ranges. These prirors are infor-
mative not only in excluding parameters outside the allowed
range, but also because the width of the range of allowed pa-
rameters determines the contribution made by the prior to the
posterior deviance. A narrower range reduces posterior de-
viance and hence improves DIC. The large sample sizes that
we examined means that the contribution of the prior is dom-
inated by the likelihood of the data when determining pa-
rameter estimates within a model. However, this does not
necessarily mean that differences in the prior for each model
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are not influential on thedifference in posteior deviance be-
tween models, and hence DIC. In ongoing work we are imple-
menting “vague” priors (i.e., priors with approximately equal
probability across a very broad range of parameters for both
models) in order to test the sensitivity of our results to the
prior specification.

In summary, we have provided a relatively preliminary in-
vestigation into the complexity of models of choice and re-
sponse time using a Bayesian model selection criterion. The
criterion, DIC, and an associated measure of model complex-
ity that takes into account differences in funcitonal form,pD,
are relatively easy to apply becasue it can be directly cal-
culated based on MCMC samples from posterior model pa-
rameter distributions. If we consider simplicity as the range
of potential data patterns which a model can predict, our re-
sults suggest that it may have been premature to claim that the
LBA is the simplest model of choice and response time. Our
results suggest that for these models a simple count of param-
eters will not suffice, and that more investigation is required.
Functional form complexity based on prediction, however, is
not the only aspect which might define a model’s simplicity.
For example, the mathematical tractability of the LBA, which
enables analytic likelihoods to be derived, make it possible to
more estimate parameters from data using even quite basic
software, such as Microsoft Excel (Donkin, Averell, et al.,
2009).

Although DIC has been found to be reliable (e.g. Myung
et al., 2005), there are alternative approches to defining func-
tional form complexity. For example, both DIC and Bayes
factors adjust for complexity, but DIC emphasizes posterior
prediciton whereas Bayes factors emphasize the selection of
a true model. Different approches have different strengths
and weaknesses. For example, DIC, like AIC, is inconsis-
tent, so that as sample size increases it tends to select overly
complex models. Bayes factors are less attractive in terms
of prediciton becasue they asses the degree to which the
prior rather than posterior predicts new data (Liu & Aitkin,
2008). As part of a larger project we are investigating the de-
gree to which conclusions about complexity are robust over a
range of such model selection measures (Myung & Pitt, 1997;
Myung, 2000).
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Abstract 

Everyday life demands explanations and predictions from 
everybody all the time. Using experience based knowledge, the 
human mind is well suited to draw the required causal inferences. 
However, due to failures in the past, such inferences are usually 
drawn under uncertainty and come along with different degrees of 
confidence. We present an ACT-R model describing the cognitive 
processes of induction and deduction for a prediction task in a 
simple, simulated technical environment. While ACT-R provides 
excellent mechanisms to capture causal learning and causal 
inferences, no process has been defined yet to account for the trust 
humans put in their predictions.  Based on the availability heuristic 
by Tversky and Kahneman (1973), we propose an approach for 
modeling different levels of trust by using a temporal module from 
Taatgen, van Rijn and Anderson (2007), thus relating availability 
to retrieval time and confidence judgments. The forecasts of our 
model are compared with the results of an empirical study and 
nicely fit the experimental data. 

Keywords: causal models; uncertainty; inductive learning; 
availability heuristic, temporal module; time estimation. 

Introduction 
The explanation of a current state of the world by events in 
the past and the prediction of future events from a present 
situation are fundamental qualities of human cognition. We 
follow the assumption proposed by many others that such 
reasoning processes are based on causal models (e.g., 
Waldmann, 1996) and proceeded under uncertainty (e.g. 
Einhorn & Hogarth, 1982). Two factors determine how 
much trust we put in an explanation or a prediction. 
The first factor is the perceived amount of missing 
information in a given situation. This case applies when a 
causal model demands more data than currently available. 
Experiments by Thüring and Jungermann (1992) as well as 
Jungermann and Thüring (1993) demonstrated that such 
situations appear as ambiguous and lead to a reduction of 
confidence people have in their causal inferences.  
The second factor is not an attribute of the situation, but of 
the causal model itself. Causal models – as any other kind of 
mental model – may be incomplete or even incorrect 
(Norman, 1983), hence leading to faulty conclusions.  
Obviously, deficient models are not trustworthy. Confidence 
requires success, i.e., “…it’s the model’s ability to make 
accurate predictions that is the ultimate measure of the 
model’s value” (Chown 2006, p. 69). This value can be 
characterized as the reliability of the model. To summarize, 
the ambiguity of the situation at hand and the reliability of 
the causal model currently employed determine the strength 

of confidence we have in the conclusions we draw. If we 
want to predict this confidence, we require a formal basis 
for modeling the influence of both factors. In the former 
studies by Thüring and Jungermann, rule-based systems 
served as such a basis and were used to describe the 
structure of a causal model. This approach was well suited 
to characterize ambiguous situations by the degree of 
matching between data and the conditional parts of the rules 
and to predict the content and confidence of causal 
inferences drawn from them. The reliability of a model, on 
the other hand, proved as more complicated to handle. 
Especially when we tried to describe how rules are formed 
in the course of inductive learning and which psychological 
mechanisms influence the confidence of causal judgments 
based on such rules “under construction”, it became 
apparent that a comprehensive cognitive framework is 
needed to cope with the complexity of the matter.  
The cognitive architecture ACT-R (Anderson, Bothell, 
Byrne, Douglass, Lebiere & Qin, 2004) provides such 
framework. We will use it to demonstrate how simple rule-
based causal models can be built from induction and how 
predictions can be derived from such models. Special 
emphasis will be placed on the issue of how the success 
(respectively failure) of predictions in the course of learning 
influence the reliability of the rules and the confidence 
people place in their inferences. 

Modeling Objectives 
To model induction, predictions and confidence, three basic 
objectives must be achieved. 
(i) To ensure inductive learning, not only the current 
situation must be represented in the ACT-R model, but 
preceding situations must be accounted for as well. In 
addition, the success or failure in coping with these 
situations must be captured. (ii) The ACT-R model must be 
able to make predictions. A prediction can be characterized 
as a statement about a future state of the world in terms of 
specific propositions. Since predictions are made under 
uncertainty, the ACT-R model must be able to combine a 
propositional content with a degree of confidence. To 
achieve this, reliability as well as ambiguity must be 
considered by the ACT-R model (although the latter is not 
emphasized here). (iii) In case of incorrect predictions, the 
ACT-R model must provide mechanisms to modify the 
causal knowledge structure if new evidence is available. To 
put the objectives into practice and to implement an ACT-R 
model with the ability to generate predictions with different 
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degrees of confidence, we have to refer to experimental 
data.  

The Experiment 
The empirical basis of our approach are data obtained in an 
experiment by Thüring, Drewitz and Urbas (2006) that 
tested the following assumption: When a causal model is 
induced from observations, inferences deduced from that 
model are usually probabilistic and their uncertainty is 
influenced by the observer’s former experience with the 
model. The results of this experiment were extensively 
discussed in Thüring et al. (2006) to clarify the interplay of 
induction, deduction and confidence judgments.  
In the experimental task, the participants had to acquire the 
causal model of a technical system, i.e., the cooling system 
of a power plant. The system could run properly (state OK) 
or not (state MALFUNCTION) and consisted of four 
pumping devices (subsystems A, B, C and D). Information 
about the subsystems was displayed on four dials (Fig. 1) 
which could be turned on (A, D) or off (B, C). Each dial 
represented the state of a subsystem that was either ’up’ (A), 
’down’ (D), or ’unknown’ because its dial was switched off 
(B, C). While each of the factors A, B and C was causally 
relevant at some point of the experiment, factor D was a 
random variable serving as a distractor, which was 
introduced to obtain a sufficient level of task complexity. In 
each trial, participants were shown a combination of dials as 
in the left part of figure 1. Based on this information, they 
first predicted the state of the overall system by pressing one 
of two buttons ’OK’ or ’MALFUNCTION’, and then rated 
their confidence by adjusting a slider. After submitting their 
confidence rating, a status message informed them about the 
correct system state as shown in the right part of figure 1. 
 

 
 

Figure 1: Screen layout of the experiment. 
 

Using the feedback they received in each trial, participants 
could gradually develop a causal model representing the 
relation between the state of the subsystems (A, B, C, D) 
and the state of the entire system (OK or 
MALFUNCTION). In the first phase of our study, a simple 
model was induced in which just the proper functioning of 
one subsystem (e.g., A) was required for the faultless 
running of the cooling. Our participants learned this model 

fairly quickly from the data. In figure 8, the curve labeled 
“human” shows their mean confidence ratings (transformed 
into percentage values). Data points in the upper half of the 
figure represent ratings for the prediction “OK”, those in the 
lower part for the prediction “MALFUNCTION”. Note that 
the ratings start well above zero, because three trials in 
which A was coupled to OK were used in advance to 
acquaint the participants with the experimental setting. 
Starting from there participants soon reached a high and 
stable level of confidence (i.e., mean values between 70% 
and 80% with some exceptions due to the random condition 
D). At the end of this learning phase, information was 
provided which reduced the reliability of the model, i.e., in 
the trials 26-31 the feedback was contrary to the initial 
system behavior. Consequently, our participants’ confidence 
in their predictions dramatically decreased and some of 
them even predicted a state contradictory to the rule they 
had learned before. 
In the second phase of the experiment, information was 
provided that allowed for expanding the simple ’mono 
causal’ model into a more extensive one. This was either an 
‘or-model’ capturing multiple alternative causes each of 
them being sufficient for the effect, or an ‘and-model’ 
representing a conjunction of several causal conditions each 
of them being necessary for the effect. When the new model 
was reinforced over several trials, confidence ratings raised 
to a level similar to the one of the mono causal model at the 
beginning (see fig. 8 and 9). When the reliability of these 
models was reduced (trials 31-35 and 45-49), the same 
effects occurred as in phase one, i.e., confidence ratings 
dropped again. 
According to our first objective, the ACT-R model must be 
able to capture the cognitive processes of knowledge 
acquisition in this experiment, which are distinguished by 
the fact that people revise and expand their causal model 
when new facts become available. 

Knowledge Acquisition 
We propose three mechanisms of knowledge acquisition 
complementing each other, with each of them being 
necessary to form and diversify a causal model. 

Inductive Learning 
The first mechanism can be characterized as inductive 
learning. Within their natural environments, people make 
observations and store them in memory. Observing the same 
constellation of events repeatedly strengthens their 
associative relation in the memory trace. Thus, rudimentary 
causal models are constituted that guide further 
observations. In our experiment, these models could be 
described in terms of simple rules such as “if A is up then 
the system is OK” or “if A is down then a MALFUNCTION 
occurs”.  

Deductive Reasoning 
Inductive learning is closely related to deductive reasoning. 
When a rule has been formed via induction, its reliability is 
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tested via deduction, thus creating a circle in which these 
two mechanisms take turns in forming a causal model. In 
each deduction, available data are matched with the rules 
and a conclusion is drawn. Those rules, which have been 
reliable in the past, are chosen over less reliable ones. In the 
first phase of our experiment, the rule “if A is up then the 
system is OK” produced a correct prediction whenever A 
was up, while the rule “if D is up then the system is OK” 
did not, because the relation between D and the system state 
was random.  
Though reliable rules should be chosen most frequently, less 
reliable ones can get a chance when their conditions are 
matched by the current data. When this happens, the 
confidence that is placed in the prediction should be less 
compared to the confidence in a prediction derived from a 
reliable rule. For example, the confidence in predicting a 
well functioning system when “D is up” should be lower 
compared to a situation when “A is up”. 
To summarize, reliability serves two purposes. It determines 
which rules are chosen over others and it tunes the confi-
dence people place in their predictions. Both these functions 
must be implemented in ACT-R to explain the data of our 
experiment and to achieve the second objective stated 
above, i.e., the derivation of the propositional content of a 
prediction in combination with a specific degree of confi-
dence based on the experienced reliability of the model. 

Rule Revision 
While the reduction of confidence placed in a prediction is 
one consequence of the failure of a rule, the revision of the 
rule itself is another one. Changing the content or the 
structure of a rule is the third mechanism required to des-
cribe the forming of a causal model. Revisions only make 
sense in the light of new evidence, i.e., when the failure of a 
rule coincides with the observation of new conditions that 
must be satisfied in addition to (or instead of) the conditions 
that have been accounted for so far. In this case, the rule in 
question is altered. In our experiment, this happened in the 
second phase where simple mono causal models where 
expanded to an “or-model” or an “and-model”. To attain our 
third objective, such changes must be accounted for when 
causal models are developed in ACT-R. 

Overview of the ACT-R Model 
The three mechanisms were implemented in the framework 
provided by ACT-R 6.0. Figure 2 displays the cyclic 
concept we used to establish the cognitive flow of control 
for performing the successive trials in our experiment. The 
nodes represent different control states, whereas the directed 
links indicate possible transitions between them.  
At the START of each experimental trial, the current 
situation is stored in an ACT-R buffer.  This situation 
consists of the states (“up” or “down”) of the four 
components (A to D) of the cooling system. The task is to 
predict if these states will entail a proper functioning or a 
malfunction of the system. The next step is to SEARCH for 
instances in declarative memory matching the situation at 

 
 

Figure 2: Cognitive flow of control of the ACT-R model. 
 
hand. In our model, each search in memory relies on the 
spreading activation mechanism and is affected by noise 
resulting from the according parameter in ACT-R. Those 
instances, that have been frequently used in former cycles, 
have a higher activation and hence a higher probability to be 
found. Two outcomes are possible at this stage. (i) If a 
match is made, the according instance is retrieved. Now, a 
first propositional content for the required prediction has 
been found, since the instance contains the effect (OK or 
MALFUNCTION) that this specific constellation of A to D 
has produced in the past. To account for previous 
experiences with the prediction, its content is linked to an 
appraisal value. The appraisal is “good” when former 
predictions were correct, but “bad” when mistakes were 
made in the past. (ii) If no match is made, the model 
switches to “GUESS”. This is the case either when the 
current situation is new, or if the activation of no instance in 
declarative memory is high enough for a successful 
retrieval. Guessing means that one of the two outcomes 
“OK” or “MALFUNCTION” is chosen at random from 
declarative memory. Therefore, in case (i) as well as in case 
(ii), the result at this stage is a first propositional content for 
the required prediction enhanced by an appraisal value. 
In the next step, the content is CHECKED against different 
experiences made in the past. Three alternatives are 
possible: (i) If an instance with “good appraisal” was found 
during SEARCH, the check looks for an instance with the 
same effect but a “bad appraisal”. (ii) If an instance with 
“bad appraisal” was found during SEARCH, the check 
looks for an instance with the same effect but a “good 
appraisal”. (iii) If the result of GUESSING was “OK”, then 
the alternative effect “MALFUNCTION” is produced 
during memory search, and vice versa for the result of 
“MALFUNCTION”. The idea underlying this stage is 
twofold. First, it mimics reasoning under uncertainty where 
inferences are compared to other possibilities. Second, the 
cognitive processes involved here produce different retrieval 
times that are used to model different degrees of confidence. 
How this is achieved will be described later.  
When the CHECK has been accomplished, the model 
switches to CHECK DONE. Now, if the appraisal of the 
instance retrieved during SEARCH is “bad”, the preliminary 
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propositional content is not reliable. In this case, the process 
FIND OPPOSITE generates the opposite effect as 
alternative prediction and uses it as ANSWER. Otherwise, 
no alternative prediction is required and the result of the 
former SEARCH is delivered as ANSWER. In our 
experiment, this is the point where subjects make their 
prediction and then receive a feedback. 
In the ACT-R model, the FEEDBACK is CHECKED by 
comparing it with the prediction. If the prediction is correct, 
APPRAISE generates the appraisal value “good” and links 
it to the according instance. In case of a wrong prediction, 
however, the appraisal turns to “bad” and hence the instance 
represents an incorrect prediction.  
If a successful prediction is made based on GUESSING or 
on TAKING THE OPPOSITE, this new information is RE-
HEARSED to strengthen the activation of this valuable new 
insight. For the same reason, REHEARSAL occurs when a 
formerly reliable instance produces a wrong prediction.  
When the state FINISH is reached, all buffers are cleared 
and the results are transferred to declarative knowledge. A 
result consists of a new instance, whenever an unpreceden-
ted constellation was encountered in that cycle and used for 
a prediction. In this way, declarative knowledge is extended 
and revised.  
So far, we have described a circular process of knowledge 
acquisition consisting of inductive learning, deduction and 
rule revision. Figure 3 shows the predictions made by the 
ACT-R model (over 21 runs) compared to the predictions 
made by the participants in the experiment by Thüring et al. 
(2006). As indicated in the chart, there is a very good fit 
between both types of predictions. 
To fulfill our second objective, these results must be related  
to the generation of confidence judgments. Reliable causal 
rules are represented by instances with a positive appraisal. 
Among these instances, those with a high activation 
constitute a person’s actual causal model. The amount of 
activation not only determines which rules are used for 
prediction, but should also influence the confidence people 
have in their predictions.  
 

 
 

Figure 3: Mean propositional judgments (n=21). 
 

However, since activation is a subsymbolic parameter, it 
cannot be directly used to produce confidence judgments. 
To solve this problem, we adopt a heuristic proposed by 
Tversky and Kahneman (1973) to our ACT-R model. 

The Availability Heuristic: Degree of 
Confidence and Retrieval Time 

When people have to evaluate the frequency or likelihood of 
an event, they often use heuristics to do so. In case of 
applying the availability heuristic, the subjective probability 
of an event depends on how fast the representation of a 
former occurrence of the event can be retrieved from 
memory, i.e., the faster the retrieval of the event, the higher 
its estimated probability. Tversky and Kahnman (1973) 
assumed that the ease of retrieval is equivalent to the 
perceived time of retrieval. This offers an interesting 
solution for the problem of modeling the confidence of 
predictions. The retrieval of an instance raises its overall 
activation, which in turn lowers its retrieval time and hence 
should increase the confidence in its propositional content. 
Within ACT-R, the perception of time can be captured by a 
temporal module that was developed by Taatgen, van Rijn 
and Anderson (2007), especially for estimating short times.  

Estimating Time with the Temporal Module 
The temporal module consists of a pacemaker and its 
relations to a temporal buffer (see fig. 4). Three different 
parameters can be set to influence time estimation within 
this framework (Taatgen et al., 2007). One of them is the 
time-master-start-increment. This parameter has to be set at 
a low level to make the module sensitive enough for 
estimating short durations, such as retrieval times. 
When time measuring begins, a start signal is created which 
causes the pacemaker to generate time pulses, so-called 
ticks. These ticks are collected in the accumulator of the 
temporal buffer. When a time estimation is needed, the 
number of ticks that have been accumulated between the 
temporal request and the retrieval represents the elapsed 
time.  
 

 
 

Figure 4: The temporal module (taken and adapted from 
                Taatgen et. al., 2007). 

 
In our approach, time estimation is always related to the 
retrieval of a specific memory element, such as an instance. 
Therefore, any temporal request is combined with the 
request for a memory element, and the analog holds for the 
retrieval. The ACT-R syntax implementing the combined 
request and retrieval is shown in figure 5. 
The result of a temporal retrieval is a symbolic value 
characterizing the perceived time for finding the memory 
element. This value can be processed further to generate 
different degrees of confidence. 
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Figure 5: Combined declarative and temporal request. 

From Time to Confidence 
We propose two different methods to transform perceived 
retrieval times into confidence judgments. Both are 
mathematical functions, which (at least for the time being) 
are not implemented within ACT-R itself.  
 
Transforming retrieval time. The first method can be 
characterized as a direct implementation of the availability 
heuristic. It is expressed by the formula in figure 6. Two 
properties of this function are immediately salient: (i) Short 
retrieval times lead to high confidence values while long 
retrieval times cause low confidence judgments. (ii) Since 
the function is logarithmic, the decrease of confidence 
decelerates with the number of ticks increasing. This 
accounts for the observation that differences between longer 
retrieval times result in rather small differences for related 
confidence ratings and vice versa.  
 

 
Figure 6: Transformation function (f(x)=log(x+2)2) for the 

transformation of retrieval time (schematically).  
 

Figure 8 displays the confidence judgments for predicting 
the system states “OK” and “MALFUNCTION” that are 
generated by our model when this function is used. 
Although the match between the model and human data is 
good, a more sophisticated approach can be taken to model 
the confidence of predictions. 
 
Transforming retrieval time differences. The idea 
underlying our second method is to check the retrieval time 
for an original prediction against the retrieval time for an 
alternative prediction. The alternative is an instance of the 
same content, but with an appraisal indicating that (at least 
once) the instance has failed to be successful. Due to its 
success in the past, the original predication is highly 

activated and can be retrieved fast. If the same holds for the 
alternative, the difference between the retrieval times of 
both predictions is small and the confidence in the original 
should be low. On the other hand, if the alternative 
prediction has been less successful than the original, its 
lower activation entails a longer retrieval time. In this case, 
the difference between the retrieval times of both 
predictions is large and the confidence in the original 
prediction should remain high. These relations between 
retrieval time and degree of confidence are captured by our 
second function. It accounts for the fact that we may find 
conflicting information of different value when we search 
our memory to make a prediction.  
The difference of both retrieval times is calculated (as an 
absolute integer) and taken as input for the transformation 
process. Figure 7 shows the formula and form of the 
function used for this transformation. 
Figure 9 presents the generated data by the model using the 
method of transforming time differences into confidence 
ratings. 
 

 
Figure 7: Transformation function (f(x)=b*log10a*x) for the 

transformation of time differences (schematically). 

Discussion 
The ACT-R model and the two functions described above 
were developed to account for the data of the first 
experimental block where a ‘mono causal model’ had to be 
learned. A comparison of the charts in figure 8 and 9 
indicates that both functions are well suited to model 
confidence ratings based on time measures.  
 

 
 
Figure 8: Combined ratings for the ‘mono causal’ block 
calculated with method I: transformation of retrieval time 
(n=21, RMSSD=4.3). 
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Figure 9: Combined ratings for the ‘mono causal’ block 
calculated with method II: transformation of time 
differences (n=21, RMSSD=3.1). 
 
Nevertheless, there is an advantage for the second function. 
The trend measure (r2) and the goodness-of-fit measure 
(RMSSD) show a better fit with the empirical data for that 
method. Therefore, the second function was chosen to pre-
dict the confidence ratings in the second experimental block, 
where the ‘and-model’ as well as the ‘or-model’ were in-
duced. Again, the model proved to be well applicable, mat-
ching the empirical data with a high fit (see fig. 10 and 11). 
 

 
 
Figure 10: Combined ratings of propositional content and 
related confidence for the ‘and’ block (n=21, RMSSD=4.3). 

 

 
 
Figure 11: Combined ratings of propositional content and 
related confidence for the ‘or’ block (n=21, RMSSD=3.8). 
 
To summarize, we have proposed an ACT-R model, which 
combines inductive learning, deductive reasoning and 
mechanisms for revising knowledge structures to describe 

the acquisition of causal models. Predictions derived from a 
causal model are made under uncertainty, i.e., the proposi-
tional content of an inference is combined with a particular 
confidence. In order to describe different degrees of confi-
dence, the availability heuristic proposed by Tversky and 
Kahneman (1973) was adopted to our ACT-R model. This 
was accomplished by using estimated retrieval times of 
memory elements to operationalize availability. The opera-
tionalization was achieved by two mathematical functions, 
which transform retrieval times into confidence judgments. 
The data generated by our ACT-R model in combination 
with these functions where compared to data generated by 
humans in an experiment reported by Thüring et al. (2006). 
As a result, the second function proved as slightly superior 
to the first one. 
Future research will adress the problem of how this function 
can be implemented directly within the ACT-R framework. 
Moreover, our approach must be tested in further 
experiments adressing different situations of inductive 
learning as well as different domains of reasoning. 
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Abstract 
A human subject experiment was conducted to investigate 
caffeine’s effect on appraisal and performance of a mental 
serial subtraction task. Serial subtraction performance data was 
collected from three treatment groups: placebo, 200 mg 
caffeine, and 400 mg caffeine. Data were analyzed by average 
across treatment group and by challenge and threat task 
appraisal conditions. A cognitive model of the serial subtraction 
task was developed and fit to the human performance data. 
How the model’s parameters change to fit the data suggest how 
cognition changes across treatments and due to appraisal.  
Overall, the cognitive modeling and optimization results 
suggest that the speed of vocalization is changed the most along 
with some changes to declarative memory.  This approach 
promises to offer fine-grained knowledge about the effects of 
moderators on task performance. 

Keywords: Caffeine, stress, task appraisal, cognitive arithmetic 

Introduction 
Caffeine is widely consumed throughout the world in 
beverages, foods, and as a drug for a variety of reasons, 
including its stimulant-like effects on mood and cognitive 
performance (for review see Fredholm et al., 1999). Its 
positive effects on performance, notably sustained vigilance 
and related cognitive functions, are well documented when 
administered to rested volunteers in doses equivalent to single 
servings of beverages (Amendola et al., 1998; Smith et al., 
1999). Additionally, its consumption in moderate doses is 
associated with few, if any, adverse effects (Nawrot et al., 
2003). Therefore, caffeine has been a strategy examined for 
its usefulness to military personnel (Lieberman & Tharion, 
2002; McLellan et al., 2007). 

The majority of caffeine research is conducted through 
human experimentation with analysis of the collected 
performance data. Few studies have attempted to model the 
effects of caffeine. One such study by Benitez et al. (2009) 
presented a biomathematical model for describing 
performance during extended wakefulness with the effect of 
caffeine as a stimulant.  

Likewise, this study takes a modeling approach employing 
cognitive modeling and optimization techniques to investigate 
the effects of caffeine on cognitive performance. In particular, 
we examined the effects of caffeine and task appraisal during 
the arithmetic portion of the Trier Social Stress Test (TSST), 
a mental serial subtraction task. Based on human subject 

observations, self-reported appraisal, and performance data, 
we then developed a cognitive model in the ACT-R cognitive 
architecture of the serial subtraction task. Parametric solution 
sets resulting from optimizing the serial subtraction cognitive 
model to data from three treatment groups (placebo, 200 mg, 
400 mg) and two task appraisal conditions (challenge and 
threat) provided the first cognitive modeling-derived insights 
on the cognitive effects of caffeine. 

Method 
This section begins with an overview of the human subject 
experiment where performance and task appraisal data were 
collected and later utilized in the development and 
optimization of a cognitive model. A detailed description of 
the cognitive task follows, as well as, the formulation of the 
self-reported appraisal conditions. Lastly, results and 
interpretations of the human performance data are suggested. 

As part of a larger project, human subject data was 
collected to study the effects of stress and caffeine on 
cardiovascular health. The authors collaborated with Dr. 
Laura Klein and her lab in the Biobehavioral Health 
Department at Penn State University. A mixed experimental 
design was conducted with 45 healthy men 18-30 years of age 
(Klein, Whetzel, Bennett, Ritter, & Granger, 2006). (Men are 
typically used in these types of studies because we also took 
additional physiological measures and their systems are 
simpler.) 

All subjects were asked to perform a series of three 
cognitive tasks. Subjects individually performed a simple 
reaction time (RT) and a working memory (WM) task taking 
15 minutes to complete. Then subjects were administered one 
of three doses of caffeine: none (placebo), 200 mg caffeine 
(equivalent to 1-2, 8 oz cups of coffee), or 400 mg caffeine 
(equivalent to 3-4, 8 oz cups of coffee). After allowing 
absorption time, a 20-minute stress session of the mental 
arithmetic portion of the TSST was performed. Following 
completion of this stressor, subjects again were asked to 
complete the RT and WM tasks. Cognitive performance was 
determined by calculating accuracy and response time scores. 

This paper focuses on one portion of the experiment—the 
TSST. The TSST protocol has been used for investigating 
psychobiological stress responses in a laboratory setting since 
the 1960s (Kirschbaum, Pirke, & Hellhammer, 1993). TSST 
traditionally consists of an anticipation period and a test 
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period in which subjects have to deliver a free speech and 
perform mental arithmetic in front of an audience. The mental 
arithmetic portion of the TSST is a mental serial subtraction 
task. 

Serial Subtraction Task 
The serial subtraction task utilized in the experiment 
consisted of four 4-minute blocks of mentally subtracting by 
7s and 13s from 4-digit starting numbers. Figure 1 illustrates 
the serial subtraction task. These were the four starting 
numbers used to begin the four blocks of subtraction during 
the experiment. 
 
 

 
 

Figure 1: An illustration of the four blocks of the serial 
subtraction task as in the experiment.  

 
Before the task begins the experimenter explains that the 

subject’s performance is going to be voice recorded and 
reviewed by a panel of psychologists for comparison with the 
other subjects participating in the experiment. The task is 
performed mentally with no visual or paper clues. After the 
task is explained to the subject, a task appraisal questionnaire 
is completed, and the subject begins performing the task. It is 
thought that this anticipation period, for some subjects, 
increases anxiety and worry about poor performance on the 
upcoming task.  

Subjects sit in a chair directly in front and near the 
experimenter who is holding a time keeping device and 
clipboard of the correct subtraction answers that she checks 
off as the subject performs the task. Before the task begins the 
experimenter emphasizes that the task should be preformed as 
quickly and as accurately as possible. An experimenter tells 
the subject the starting number; from then on, the subject 
speaks the answer to each subtraction problem. When an 
incorrect answer was given, the subject was told to “Start 
over at <the last correct number>”. At two minutes into each 
4-minute session, subjects were told that “two minutes 
remain, you need to go faster”. This prompt enhances the 
time-pressure component of the task.  

Task Appraisal 
Before and after the serial subtraction stress session, subjects 
completed pre- and post-task appraisals based on Lazarus and 
Folkman’s (1984) theory of stress and coping. Each subject 
was asked five questions orally: two focused on the subject’s 

resources or reserves to deal with the serial subtraction task 
and three focused on the subject’s perception as to how 
stressful the task would be.  

For all questions the scale was from 1 to 5 with a value of 3 
indicating that the subject is neither challenged nor threatened 
by the task. After correcting for the imbalance in questions, a 
ratio of perceived stress to perceived coping resources was 
created. For example, if a subject’s total appraisal score was 
1.5 or less, their perceived stress was less than or equal to 
their perceived ability to cope, which equated to a challenge 
condition. If a subject’s appraisal score was greater than 1.5, 
their perceived stress was greater than their perceived ability 
to cope, which equated to a threat condition.  

Each treatment group was composed of 15 subjects. The 
placebo group had approximately the same number of 
subjects in each appraisal condition (7 challenge, 8 threat). 
The 200 mg caffeine group had twice as many challenged 
subjects as threatened subjects (10 challenge, 5 threat). The 
400 mg caffeine group contained only 2 challenged subjects 
with the remainder (13) subjects reporting a threatening 
appraisal. 

Results and Discussion 
For this investigation, the serial subtraction performance data 
from the placebo group (PLAC), the 200 mg caffeine group 
(LoCAF), and the 400 mg caffeine group (HiCAF), were 
analyzed by average across treatment group and by appraisal 
condition. The performance statistics of primary interest were 
number of attempted subtraction problems and a percentage 
correct score. The data are shown in Table 1 where each pair 
of values represents number of attempts and percent correct. 
The results discussed in this paper apply to data from the first 
block of subtracting by 7s. 
  

Table 1: Human performance (average number of attempts 
and percent correct) by treatment group (each N=15) and 

appraisal condition (challenge, threat). 
 

Treatment Average Challenge Threat 

PLAC 47.3,   81.5 50.7,   83.3 40.4,  77.9 

LoCAF 59.1,  86.5 62.4,   88.3 37.5,   74.8 

HiCAF 45.7,   79.2 51.6,   82.8 38.9,   75.1 

 
For all treatment groups the challenge condition showed the 

best performance in both number of attempts and percent 
correct over the average across treatment and the threat 
condition. The threat condition showed the worst 
performance. Performance differences between the challenge 
and threat conditions were most pronounced in the LoCAF 
group with an impressive increase of nearly 25 more 
attempted subtraction problems and a 13.5% increase in 
subtraction accuracy by challenged subjects over threatened 
subjects. For the HiCAF group the challenge and threat 
condition differences were less than LoCAF but still 
substantial: 13 more attempted problems and a 7.7% increase 
in subtraction accuracy. Differences between the challenge 
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and threat condition were least visible in the PLAC group, 10 
more attempted problems and only a 5.4% increase in 
accuracy.  

Figure 2 better illustrates these performance differences 
with the treatment groups labeled along the x-axis and the 
plot subdivided into three sections: averages across treatment 
groups (not by appraisal condition) in the leftmost section, 
and averages across treatment groups subdivided by appraisal 
condition in the center (challenge) and rightmost sections 
(threat).  

The plot visualizes several interesting trends; some 
supported by existing caffeine and cognition research and 
others not. In the average across treatments plot (leftmost 
section), the performance of the HiCAF group drops below 
that of PLAC for both performance statistics. This supports 
findings that large doses of caffeine are occasionally 
associated with anxiety and disrupt performance (Haishman, 
& Henningfield, 1992; Wesensten, Belenky, & Kautz, 2002). 
Whether a 400 mg dose is considered ‘large’ may be in 
question as some studies administered up to 800 mg doses 
(McLellian et al., 2007). Generally, 100 to 300 mg doses are 
categorized as ‘low’ dosages because 50-300 mg of caffeine 
is available in a number of forms including tablets, chewing 
gum, a wide variety of beverages and some food products.  

In the challenge condition (middle section), HiCAF 
performance does not drop below PLAC, but is 
approximately equivalent or slightly higher. In both the 
average across treatments and the challenge condition, 
LoCAF performance is well above that of PLAC. This is also 
supported in previous research that low doses of caffeine tend 
to increase performance (Amendola et al., 1998; Smith et al., 
1999). In both these cases, the across treatments and 
challenge plots, the effects of caffeine take on characteristics 
related to level of arousal studies (i.e., Anderson & Revelle, 
1982) and appear to follow the Yerkes-Dodson (1908) law 
that postulates that the relationship between arousal and 
performance follows an inverted U-shape curve. 

There is no supporting research for the performance trends 
visible under the threat condition (right section). Threatened 
subjects self-reported stress and lack of coping skills to 
adequately perform the serial subtraction task. The threat plot 
shows performance decreases from PLAC to LoCAF (instead 
of increases as observed in the other sections of the plot) with 
HiCAF only very slightly higher than LoCAF (+1.4 attempts, 
and +0.3% correct). In this case, the U-shape is not inverted, 
but actually very slightly U-shaped. 

 

 

 
 

Figure 2: Comparing human performance differences in number of attempts and percent correct by treatment group (x-axis) 
and appraisal condition: treatment groups not accounting for appraisal (leftmost section), and averages across treatment groups 

divided by appraisal condition, challenge (middle section) and threat (rightmost section). 
 

More can be discussed about the human performance data 
by way of analysis and interpretation of caffeine’s effect on 
appraisal and serial subtraction. However, a more important 
question remains: Can these effects be modeled using a 
cognitive architecture and what might be learned from the 
parameters and values generating best fits during 
optimization of the model? 

Modeling Serial Subtraction 
Theory about how mental arithmetic is performed combined 
with observations gathered during the human subjects’ 
performance of serial subtraction laid the foundation for the 
development of a cognitive model of the serial subtraction 

task. The ACT-R cognitive architecture (Anderson, 2007) 
was chosen to model the serial subtraction task for several 
reasons: it provides a parameter-driven subsymbolic level of 
processing; it permits the parallel execution of the verbal 
system with the control and memory systems, and it has 
been used for other models of addition and subtraction 
developed by other researchers.  

The serial subtraction model performs a block of 
subtracting by 7s or 13s in a similar manner to that of the 
human subjects. The model’s declarative knowledge 
consists of arithmetic facts and goal-related information. 
The model’s procedural knowledge is production rules that 
allow for retrieval of subtraction and comparison facts 
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necessary to produce an appropriate answer. The model 
performs subtractions by column-by-column. 

The model runs under ACT-R 6.0 and utilizes the 
imaginal module and buffer. The imaginal buffer 
implements a problem representation capability. In the serial 
subtraction model the imaginal buffer holds the current 4-
digit number being operated on (the minuend) and the 
number being subtracted (the subtrahend). The goal module 
and buffer implement control of task execution by 
manipulation of a state slot. ACT-R’s vocal module and 
buffer verbalize the answer to each subtraction problem as 
the subjects do. 

The model starts with the main goal to perform a 
subtraction and a borrow goal to perform the borrow 
operation when needed. Both types of goal chunks contain a 
state slot, the current column indicator, and the current 
subtrahend. The current problem is maintained in the 
imaginal buffer. This buffer is updated as the subtraction 
problem is being solved. The model begins with an integer 
minuend of 4-digits. All numbers in the model are chunks of 
type integer with a slot that holds the number. The model 
also contains subtraction and addition fact chunks whose 
slots are the integer chunks described above. This 
representation of the integers and arithmetic facts has been 
used in other ACT-R arithmetic models. 

The model determines if a borrow operation is required 
by trying to retrieve a comparison fact that has two slots, a 
greater slot containing the minuend and a lesser slot 
containing the subtrahend. If the fact is successfully 
retrieved then no borrow is necessary, otherwise a borrow 
subgoal is created and executed. Borrowing is performed by 
retrieving the addition fact that represents adding ten to the 
minuend. The subtraction fact with the larger minuend is 
retrieved. The model then moves right one column by 
retrieving a next-column fact using the current column value 
as a cue. If this retrieval fails, there are no more columns so 
the borrow and the subgoal return back to the main task 
goal. If there is a next column and its value is not 0 than 1 is 
subtracted from it by retrieval of a subtraction fact. If the 
value is 0 then the problem is rewritten in the imaginal 
buffer with a 9 and the model moves to the next column and 
repeats the steps discussed above, returning to the main task 
when there are no more columns.  

The model outputs the answer by speaking the 4-digit 
result. The model has two output strategies. For this paper 
the data reported are for the calc-and-speak  strategy where 
the model speaks the answer in parallel with the calculation 
described above. If the answer is incorrect, the problem is 
reset to the last correct answer. If the answer is correct, the 
main problem task is rewritten in the imaginal buffer. 

After the model has performed a block of subtractions the 
number of attempted subtraction problems and percent 
correct, are recorded. The model’s performance can be 
adjusted by varying the values of architectural parameters 
associated with specific modules and buffers, and 
subsymbolic processes within the architecture. 

Optimizing to Human Data 
How does cognition change under stress and caffeine?  We 
can explore this question by adjusting theoretically 
motivated parameters in architecture.  The parameters that 
lead to better correspondences suggest how cognition 
changes.  This section begins by discussing the architectural 
parameters selected for adjusting the model’s performance 
to simulate the human data. This process of fitting the 
cognitive model to human data is a form of optimization. 
The optimization approach to fit the model is briefly 
described in the second part of the section. The optimization 
results, accompanied by interpretations of best fitting 
parameter values, is discussed at the end of the section. 

Architectural Parameters 
Three ACT-R architectural parameters appeared important 
in performing serial subtraction and were selected for 
adjusting the model’s performance: seconds-per-syllable, 
base level constant, and activation noise. The rate the model 
speaks is controlled by the seconds-per-syllable parameter 
(SYL). The ACT-R default timing for speech is 0.15 
seconds per assumed syllable based on the length of the text 
string to speak. There is a default of three characters per 
syllable controlled by the characters-per-syllable parameter. 
The seconds-per-syllable and characters-per-syllable 
parameters control subsymbolic processes in ACT-R’s vocal 
module. The vocal module gives ACT-R a rudimentary 
ability to speak. It is not designed to provide a sophisticated 
simulation of human speech production, but to allow 
ACT-R to speak words and short phrases for simulating 
verbal responses in experiments such as the answers to the 
subtraction problems. 

The other two parameters affect declarative knowledge 
access: the base level constant (BLC), and the activation 
noise parameter (ANS). The BLC parameter and a decay 
parameter affect declarative memory retrieval and retrieval 
time. The ANS value affects variance in retrieving 
declarative information and error rate for retrievals in the 
model. This instantaneous noise value can also represent 
variance from trial to trial. Other parameters, such as base 
level learning, decay, and the characters-per-syllable 
parameters were built into the model as modifiable but were 
left fixed at their default values for this study. The search 
space for the model optimization was defined by the 
parameter value boundaries: ANS and SYL 0.1 to 0.9, and 
BLC 0.1 to 3.0. 

Optimization Approach 
Because the search space was large and assumed to be 
rather complex a departure from the cognitive modeling 
community’s traditional manual optimization technique was 
initiated (Kase, 2008). A new front-end function for the 
cognitive model was developed for execution in a parallel 
processing environment and the ACT-R parameter values 
(ANS, BLC, and SYL) were passed to multiple instances of 
running models from a parallel genetic algorithm (PGA). 
The SYL parameter was chosen for optimization because 
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vocalization of the answer is the most time consuming 
aspect of this task. The BLC and ANS parameters were 
chosen because the task is memory intensive. Other memory 
parameters could have been chosen and ongoing work is 
exploring the fitting of other parameters. Normally, the 
parameter values are set within the model code before 
runtime. Using the PGA to search the parameter space for 
promising parameter value sets generating best fits between 
the model and human data saved a substantial amount of 
modeler time and computational resources. Model-to-data 
fit was determined by an objective function, or fitness 
function, defined as the discrepancy between model 
performance (number of attempts and percent correct) and 
the corresponding human performance (e.g., 47.3 – 48.1). 
The fitness is in terms of error (or cost) with a fitness value 
of 0 representing perfect correspondence between the model 
predictions and the human data.  

Employing this type of ‘automated’ optimization 
approach allowed for 20,000 different sets of parameter 
value to be tested in a directed manner each time the PGA 
was executed. Using the approach, the model was optimized 
to nine sets of human performance data (see Table 2). 

Results and Discussion 
Table 2 shows the resulting model performance compared to 
the human performance data using parameter value solution 
sets identified by the PGA that produced the best fits 
(fitness values less than 1.0) to the human performance, and 
suggest how cognition changed. Several trends can be 
observed within the parameter values producing best fits. 
The parameter values shown in the table are averaged; 
denoted by the numeric value in parentheses after the 
parameter set values (i.e., ‘(3)’ in the first row means that 
the PGA found 3 parameter sets producing fitness less than 
1.0, and that these values were averaged). Each parameter 
set included in the average was run 200 times (i.e., 200 
model runs per parameter set). 

Beginning with the seconds per syllable parameter, SYL 
is shown in the last column and last value in the triple of 
Table 2. The model predictions indicate that challenged 
subjects speak a syllable more quickly than threatened 
subjects. This is true for all treatment groups. LoCAF shows 
the greatest difference in speech rate with challenge SYL at 
0.31 (also lowest SYL overall) and threat SYL at nearly two 
times slower (0.61). HiCAF differences in SYL are less: 
challenge 0.40 compared to threat 0.57, a difference of 0.17. 
PLAC shows a slightly less SYL difference of 0.14. 
Challenge subjects self-report less stress and are generally 
confident that they can perform the serial subtraction task 
well. With less stress and a low dose of caffeine more fluid 
speech appears to result, or possibly the speech rate acts as a 
window into the cognitive processes required to complete 
the subtractions (i.e., fact retrieval, working memory and 
place-keeping operations, and concatenation of 
subsolutions). 

Overall across treatments, the activation noise parameter 
values (ANS, first value in triple) are high as compared to 

what would be manually assigned to the model in the 
ACT-R modeling community. This could be because the 
nature of the task is stressful (i.e., purposively used to 
elicited a stress response). The ANS value range in Table 2 
is narrow from the lowest ANS of 0.67 to the highest ANS 
of 0.78, a difference of only 0.11. This hints at the fact that 
caffeine may not effect this parameter’s role in the model’s 
performance of serial subtraction. ANS values are basically 
equivalent for the PLAC and LoCAF groups for challenge 
(0.68) and threat (0.71). In this case, the slightly higher 
ANS in predicting threatened subjects corresponds to the 
lower performance (less attempts and lower accuracy), and 
the self-reports where subjects do not believe they will 
perform well. Worrying or embarrassment about their poor 
performance is a distraction and may interfere with working 
memory processes and verbalizing solutions. The greatest 
variability in ANS values is found in HiCAF. Surprisingly, 
the trend reverses with HiCAF challenge predictions 
yielding a higher ANS value (0.75) than threat predictions 
(0.67). 

The base level constant parameter values (BLC, middle 
value in triple) show a trend of nearly equivalent higher 
values for LoCAF and HiCAF challenge conditions (2.65 
and 2.69) then threat conditions (2.48 and 2.35), and also for 
all BLC values under PLAC (2.49, 2.48 and 2.53). In this 
case, caffeine may be causing a ‘boost’ in the base level 
activation value of facts in declarative memory promoting 
higher probability of selection in response to a retrieval 
request and quicker fact retrieval time. 

 
Table 2: Optimization results for three treatment groups 

(PLAC, LoCAF, HiCAF) and appraisal conditions 
(CH=challenge, TH=threat) comparing human performance 

and model predictions in number attempts and percent 
correct (both rounded), and fitness value associated with 

average (over N) of best fitting (less than 1.0) ACT-R 
parameter values (ANS, BLC, SYL).  

 

 
Human 

Performance 
Model 

Prediction 
Fitness 
Value 

ACT-R parameters 
ANS, BLC, SYL (N) 

PLAC (no caffeine) 

ALL 47.3,  81.5 48.1,  81.4 0.83 0.70, 2.49, 0.44  (3) 

CH 50.7,  83.3  50.4,  83.0 0.47 0.68, 2.48, 0.41  (6) 

TH 40.4,  77.9 40.3,  77.4 0.36 0.71, 2.53, 0.55  (5) 

LoCAF (200 mg caffeine) 

ALL 59.1,  86.5 59.1,  86.7 0.12 0.72, 2.64, 0.33  (4) 

CH 62.4,  88.3 62.7,  88.4 0.42 0.69, 2.65, 0.31  (3) 

TH 37.5,  74.8 37.2,  74.9 0.58 0.71, 2.48, 0.61  (6) 

HiCAF (400 mg caffeine) 

ALL 45.7,  79.2 44.7, 80.4 0.50 0.78, 2.65, 0.47  (4) 

CH 51.6,  82.8 46.1, 87.7 0.53 0.75, 2.69, 0.40  (3) 

TH 38.9,  75.1 50.4, 92.3 0.53 0.67, 2.35, 0.57  (4) 
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Conclusion 
A cognitive model of the serial subtraction task was 
developed and fit to the human performance data from three 
caffeine treatments and by challenge and threat appraisal.  
This fit suggests that there are systematic changes in 
cognition due to caffeine and appraisal.  Most notable is the 
speaking rate, but declarative memory retrievals are also 
affected.  

These results show that using a cognitive model and 
parametric optimization approach can further our 
understanding of caffeine beyond a human experimentation 
approach. Overall, the cognitive modeling and optimization 
approach was successful. The preliminary modeling results 
and interpretations offer insight into the effects of caffeine 
on task appraisal and subsequent performance of the task, 
and promise an improved methodology for the study of 
other behavioral moderators and other cognitive tasks. At 
this point in our investigation more analysis is needed and 
additional parameter sets should be examined, along with 
continued refinement of the serial subtraction model for 
predicting the effects of caffeine on cognition. 
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Abstract

We study bandit problems in which a decision-maker
gets reward-or-failure feedback when choosing repeat-
edly between two alternatives, with fixed but unknown
reward rates, over a short sequence of trials. We col-
lect data across a number of types of bandit problems
to analyze five heuristics—four seminal heuristics from
machine learning, and one new model we develop—as
models of human and optimal decision-making. We find
that the new heuristic, known asτ-switch, which assumes
a latentsearchstate is followed by a latentstand state
to control decision-making on key trials, is best able to
mimic optimal decision-making, and best account for the
decision-making of the majority of our experimental par-
ticipants. We show how these results allow human and
optimal decision-making to be characterized and com-
pared in simple, psychologically interpretable ways, and
discuss some theoretical and practical implications.

Keywords: Bandit problems, heuristic models, reinforce-
ment learning, human decision-making, optimal decision-
making

Introduction
In Bandit problems, a decision-maker chooses repeatedly
between a set of alternatives. They get feedback after ev-
ery decision, either recording a reward or a failure. They
also know that each alternative has some fixed, but un-
known, probability of providing a reward each time it
is chosen. The goal of the decision-maker is to obtain
the maximum number of rewards over all the trials they
complete. In some bandit problems, known as infinite
horizon problems, the number of trials is not known in
advance, but there is some probability any trial will be
the last. In other bandit problems, known as finite hori-
zon problems, the number of trials is fixed, known, and
usually small.

Because bandit problems provide a simple task that
addresses fundamental issues of learning and optimality
in decision-making, they have been widely studied in the
machine learning (e.g., Berry & Fristedt, 1985; Gittins,
1979; Kaebling, Littman, & Moore, 1996; Macready &
Wolpert, 1998; Sutton & Barto, 1988) and cognitive sci-
ence (e.g., Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Steyvers, Lee, & Wagenmakers, in press) litera-
tures. In particular, bandit problems provide an interest-
ing formal setting for studying the balance between ex-
ploration and exploitation in decision-making. In early

trials, it makes sense to explore different alternatives,
searching for those with the highest reward rates. In later
trials, it makes sense to exploit those alternatives known
to be good, by choosing them repeatedly. How exactly
this balance between exploration and exploitation should
be managed, and should be influenced by factors such as
the distribution of reward rates, the total number of tri-
als, and so on, raises basic questions about adaptation,
planning, and learning in intelligent systems.

In this paper, we focus on finite-horizon bandit prob-
lems. We also restrict ourselves to the most basic, and
most often considered, case where of there being only
two alternatives to choose between. For this class of ban-
dit problems, there is a well known optimal decision pro-
cess that can be implemented using dynamic program-
ming (see, for example Kaebling et al., 1996, p. 244).
The basic approach is that, on the last trial, the alterna-
tive with the greatest expected reward should be chosen.
On the second-last trial, the alternative that leads to the
greatest expected total reward should be chosen, given
that the last trial will be chosen optimally. By contin-
uing backwards through the trial sequence in this way,
it is possible to establish a recursive process that makes
optimal decisions for the entire problem.

A motivating challenge for our work involves in-
terpreting, evaluating and potentially improving human
decision-making. Using the optimal benchmark, it is
possible to evaluate how well a person solves bandit
problems. The conclusion might be something like “you
got 67% rewards, but optimal behavior would have given
you 75% rewards, so you are falling short”. This seems
like only a partial evaluation, because it does not explain
why their decisions were sub-optimal, and it is not clear
how to relate the recursive algorithm to their data to pro-
vide this information.

Instead, to help us understand human and optimal
decision-making on bandit problems, we evaluate a set
of heuristic models. These include several heuristics
from the existing machine learning literature, as well
as a new one we develop. The attraction of the heuris-
tic models is that they provide simple process accounts
of how a decision-maker should behave, depending on
a small set of parameters. We choose heuristic models
whose parameters have clear and useful psychological
interpretations. This means that, when we fit the mod-
els to data, and estimate the parameters, we obtain in-

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

180



terpretable measure of key aspects of decision-making.
Instead of just telling people they are falling short of op-
timal, we now aim also to tell them “the problem seems
to be you are exploring for too long: the optimal thing to
do is to stop exploring at about the 5th trial”, or “you are
not shifting away quickly enough from a choice that is
failing to reward you: the optimal thing to do is to leave
a failed choice about 80% of the time.”

The structure of this paper is as follows. First, we in-
troduce the five heuristics used in this study. We then
evaluate their ability to mimic optimal decision-making,
and their ability to fit human data we collected for this
study. Having found some heuristics that are able to
describe human and optimal behavior, we finish by dis-
cussing the psychological characteristics of optimal be-
havior in bandit problems, and the properties of human
decision-making we observed.

Five Heuristics
Win-Stay Lose-Shift
Perhaps the simplest reasonable heuristic for making
bandit problem decisions is the Win-Stay Lose-Shift
(WSLS) heuristic. In its deterministic form, it assumes
that the decision-maker continues to choose an alterna-
tive following a reward, but shifts to the other alterna-
tive following a failure to reward. In the stochastic form
we use, the probability of staying after winning, and the
probability of shifting after losing, are both parameter-
ized by the same probabilityγ.

Psychologically, the win-stay lose-shift heuristic does
not require a memory, because its decisions only depend
on the presence or absence of a reward on the previous
trial. Nor is the heuristic sensitive to the horizon (i.e., the
finite number of trials) in the bandit problem version we
consider, because its decision process is the same for all
trials.

ε-Greedy
The ε-greedy heuristic is a standard approach coming
from reinforcement learning. It assumes that decision-
making is driven by a parameterε that controls the bal-
ance between exploration and exploitation. On each trial,
with probability 1−ε the decision-maker chooses the al-
ternative with the greatest estimated reward rate (i.e., the
greatest proportion of rewards obtained for previous tri-
als where the alternative was chosen). This can be con-
ceived as an ‘exploitation’ decision. With probabilityε,
the decision-maker chooses randomly. This can be con-
ceived as an ‘exploration’ decision.

Psychologically, theε-greedy heuristic does require
a limited form of memory, because it has to remember
counts of previous successes and failures for each alter-
native. It is not, however, sensitive to the horizon, and
uses the same decision process on all trials.

ε-Decreasing
The ε-decreasing heuristic is a variant of theε-greedy
heuristic, in which the probabilityof an exploration move

decreases as trials progress. In its most common form,
which we use, theε-decreasing heuristic starts with an
exploration probabilityε0 on the first trial, and then uses
an exploration probability ofε0/i on theith trial. In all
other respects, theε-decreasing heuristic is identical to
theε-greedy heuristic.

This means theε-decreasing heuristic does more ex-
ploration on early trials, and focuses on its estimate of
expected reward more on later trials. Psychologically,
the innovation of theε-decreasing heuristic means it is
sensitive to the horizon, making different decisions over
different trials.

π-First
The π-first heuristic is usually called theε-first heuris-
tic in the literature. It is, however, quite different from
theε-decreasing andε-greedy heuristics, and we empha-
size this with the different name. Theπ-first heuristic
assumes two distinct stages in decision-making. In the
first stage, choices are made randomly. In the second
stage, the alternative with the greatest currently observed
reward rate is chosen. The first stage can be conceived as
‘exploration’ and the second stage as ‘exploitation’. In
our implementation, a discrete parameterπ determines
the number of exploration trials, so that theπ-th trial
marks the last trial of exploration.

Psychologically, theπ-first requires both the memory
of previous successes and failures needed in the explo-
ration stage, and has a clear sensitivity to the horizon.
The notion of two decision-making stages is a psycho-
logically plausible and interesting approach to capturing
how a decision-making might balance the tradeoff be-
tween exploration and exploitation.

τ-Switch
The τ-switch is a new heuristic, motivated by the idea
of latent decision-making stages used by theπ-first
heuristic. Theτ-switch heuristic also assumes an initial
‘search’ stage, followed by a later ‘stand’ stage. The trial
number at which the change in stages takes place is deter-
mined by the parameterτ, similarly to the role of the pa-
rameterπ. The different decision-making strategies em-
ployed in each stage in theτ-switch heuristic, however,
rely on an analysis of different possible states in bandit
problems.

Figure 1 provides a graphical representation of three
possible cases. In Case I, both alternatives have the same
reward history. Theτ-switch heuristic assumes both al-
ternatives are chosen with equal probability when con-
fronted with this state. In Case II, one alternative has
more successes and the same or fewer failures than the
other alternative (or, symmetrically, it has fewer failures
and the same or more successes). This means one alter-
native is clearly ‘better’, because it dominates the other
in terms of successes and failures. Theτ-switch heuristic
assumes the ‘better’ alternative with (high) probabilityγ.

The crucial situation is Case III, in which one alter-
native has more successes but also more failures, when
compared to the other alternative. This means neither
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Figure 1: The three different possible cases for a ban-
dit problem considered by theτ-switch heuristic. Green
(lighter) squares correspond to previous rewards, while
red (darker) squares correspond to previous failures.

alternative can clearly to be preferred. Instead, the al-
ternative chosen more often previously can be conceived
as a ‘stand’ choice, because it is relatively well known.
The alternative chosen less often can be conceived as an
‘search’ choice, because it is relatively unknown. The
τ-switch assumes that, faced with an observed State III,
the decision-maker chooses the ‘search’ alternative when
they are in the initial latent ‘search’ stage, with the same
(high) probabilityγ. But, the decision-maker is assumed
to choose the ‘stand’ alternative once they have switched
to the latent ‘stand’ stage.

Psychologically, theτ-switch heuristic has the same
memory requirements as theε-greedy,ε-first andπ-first
heuristics. Theτ-switch heuristic also takes into account
the horizon, using the same latent stage approach as the
π-first heuristic. It is the detail of the decisions it makes,
depending on how its internal state relates to the state of
reward history observed, that makes theτ-switch heuris-
tic new and interesting.

Human and Optimal Decision Data

Subjects Data were collected from 10 naive partici-
pants (6 males, 4 females).

Stimuli There were six different types of bandit prob-
lems, all involving just two alternatives. These six
conditions varied two trial sizes (8 trials and 16 trials)
and three different environmental distributions (‘plenti-
ful’, ‘neutral’ and ‘scarce’). Following Steyvers et al.
(in press), the environments were defined in terms of
Beta(α,β) distributions, whereα corresponds to a count
of ‘prior successes’ andβ to a count of ‘prior failures’.
The plentiful, neutral and scarce environments used, re-
spectively, the valuesα = 4,β= 2,α = β= 1, andα = 2,

β = 4. Within each condition, the reward rates for each
alternative in each problem were sampled independently
from the appropriate environmental distribution.

Procedure Within-participant data were collect for 50
problems for all six bandit problem conditions, using
a slight variant of the experimental interface shown in
Steyvers et al. (in press). The order of the conditions, and
of the problems within the conditions, was randomized
for each participant. All 6×50= 300 problems (as well
as 5 practice problems per condition) were completed in
a single experimental session, with breaks taken between
conditions.

Optimal Decision Data We generated decision data
for the optimal decision-process on each problem com-
pleted by each participant. In generating these optimal
decisions, we used the trueα andβ values for the en-
vironment distribution. Obviously, this gives the optimal
decision process an advantage, because participants must
learn the properties of the reward environment. However,
our primary focus is not on measuring people’s short-
comings as decision-makers, but in characterizing what
people do when making bandit problem decisions, and
comparing this to the best possible decision. From this
perspective, it makes sense to use an optimal decision
process with environmental knowledge. It would also be
interesting, in future work, to develop and use an opti-
mal decision process that optimallylearnsthe properties
of its environment.

Analysis With Heuristic Models
We implemented all five heuristic models as probabilistic
graphical models using WinBUGS (Lunn, Thomas, Best,
& Spiegelhalter, 2000). All of our analyses are based on
1,000 posterior samples, collected after a burn-in of 100
samples, and using multiple chains to assess convergence
using the standard̂R statistic (Brooks & Gelman, 1997).

Characterization of Optimal Decision-Making

We applied the heuristics to behavior generated by the
optimal decision process. Table 1 shows the expected
value of the inferred posterior distribution for the key pa-
rameter in each heuristic model (we observed all of the
‘accuracy of execution’ parameters were close to 1, as
expected). These key parameter values constitute sin-
gle numbers that characterize optimal decision-making
within the constraints of each heuristic. They are shown
for each of the plentiful, neutral and scarce environments
for both 8 and 16 trial problems.

For WSLS, the parameter values shown in Table 1 cor-
respond to the optimal rate at which a decision-maker
should stay if they are rewarded, and shift if they are not.
The patterns across environments and trial sizes are intu-
itively sensible, being higher in more plentiful environ-
ments and for shorter trial sizes.

For ε-greedy probability of choosing the most reward-
ing alternative is high, and very similar for all environ-
ments and trial sizes. Forε-decreasing, the starting prob-

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

182



Table 1: Expected posterior values for the key parameter
in each heuristic model, based on inferences from op-
timal decision-making, for plentiful, neutral and scarce
environments, and 8 and 16 trial problems.

Plentiful Neutral Scarce

Heuristic 8 16 8 16 8 16
WSLS (γ) .87 .85 .85 .78 .72 .65

Greedy (ε) .09 .07 .05 .05 .06 .07
Decrease (ε0) .62 .76 .57 .75 .56 .63

First (π) 1.0 1.0 1.0 1.0 1.0 1.0
Switch (τ) 5.1 7.0 4.1 5.0 2.0 2.0

ability of random explorationε0, which decreases as tri-
als progress, is higher for more rewarding environments,
and also for problems with more trials.

The π-first parameter is the trial at which the switch
from random exploration to choosing the most reward-
ing alternative. This is always the first trial in Table 1,
which is essentially a degenerate result. We interpret this
as suggesting not that the notion of an exploration fol-
lowed by an exploitation stage is ineffective, but rather
that initial random decisions in a problem with few trials
is so sub-optimal that it needs to be minimized.

Finally, the results for theτ-switch heuristic detail
the optimal trial to switch moving from ‘standing’ to
‘searching’ in the Case III scenario described in Fig-
ure 1. This optimal switching trial becomes earlier in
a problem as the environment becomes less rewarding,
which makes sense. More plentiful environments should
be searched more thoroughly for high yielding alterna-
tives. The number of searching trials generally extends
moving from 8 to 16 trial problems, but not by much.
This also makes sense, since in the fixed environments
we consider, longer sequences of exploitation will give
many rewards, as long as sufficient exploratory search
has been conducted.

All of these optimal parameter settings make sense,
and demonstrate how a heuristic can give a straightfor-
ward psychology characterization of optimal decision-
making for bandit problems. For example, in a neutral
environment with 8-trial problems, an optimal decision-
maker constrained in their cognitive processing capabili-
ties to applying WSLS should win-and-stay or lose-and-
shift 85% of the time. Alternatively, a more cognitive
elaborate decision-maker, able to apply the two-stageτ-
shift heuristic, should switch from searching to standing
after the fourth trial.

How Optimal Are the Heuristics?
Of course, knowing what constitutes optimal behavior
within the bounds of a heuristic does not take into ac-
count how well decisions will match unboundedly opti-
mal decision-making.

To analyze this aspect of the heuristics’ performance,
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Figure 2: Posterior predictive average agreement of the
heuristic models with the optimal decision process for
40 training problems (red, darker) and 10 test problems
(green, lighter).

Figure 2 shows the posterior predictive average agree-
ment of the heuristic models with the optimal decision
process. The red bars correspond to a training set of the
first 40 problems seen by all participants in which the
parameters of the heuristic models were inferred by ob-
serving the optimal decisions. The green bars correspond
to a test set of the final 10 problems seen by all partic-
ipants, where the inferred parameters for the heuristic
models were directly applied with observing the optimal
decisions. The relative results between the heuristics are
consistent over environments and trial sizes, and so are
averaged to give a simple and general conclusion, but in-
clude error bars showing one standard error caused by
the averaging.

It is clear that training and test performance are very
similar for all of the heuristics. This is because the
agreement is measured by a complete posterior pre-
dictive, which averages across the posterior distribu-
tion of the parameters. This means the measure of
agreement—unlike measures of fit based on optimized
point-estimates for parameters—automatically controls
for model complexity. Thus, it is not surprising test per-
formance is essentially the same as training performance.

Most importantly, Figure 2 shows that the WSLS
heuristic is not able to mimic optimal decision-making
very well, that theε-greedy, ε-decreasing andπ-first
heuristics are able to do much better, and that the new
τ-switch heuristic is clearly is the best performed.

Heuristics Modeling of Human Performance
We now apply the heuristics to the human data, and ex-
plore their ability to account for the way people solve
bandit problems. Figure 2 shows the posterior predictive
average agreement of the heuristic models with the hu-
man decisions. As before, the red bars correspond to a
training set of the first 40 problems completed by each
participant, and were used to infer posterior parameter
distributions for each heuristic. The green bars corre-
spond to agreement on the test set of the final 10 prob-
lems, integrating over the already inferred posterior dis-
tributions, and without knowing the participants’ behav-
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Figure 3: Posterior predictive average agreement of the
heuristic models with human decision-making for 40
training problems (red, darker) and 10 test problems
(green, lighter).

ior on the test problems.
Figure 2 shows the ability of the heuristics to model

human decision-making follows the same ordering as
their ability to mimic optimal decision-making. WSLS is
the worst, followed by the three reinforcement learning
heuristics, which are approximately the same, and then
slightly (although not significantly) improved by the new
τ-first heuristic.

Figure 4 examines the ability of the heuristics to ac-
count for human decision-making at the level of the in-
dividual participants. Each participant is shown as a bar
against each of the heuristics. For the first 8 of the 10
participants shown (in blue), the overall pattern seen in
Figure 3, holds at the individual level. That is, theτ-
switch heuristic provides the greatest level of agreement.
For the last 2 of the 10 participants shown (in yellow),
this result is not observed, but it is clear that none of the
heuristics is able to model these participants well at all.
We speculate that these participants may have changed
decision-making strategies significantly often to prevent
any single simple heuristic from providing a good ac-
count of their performance.

In any case, our results show that, for the large ma-
jority of participants well described by any heuristic, the
τ-switch heuristic is the best. And the complexity control
offered by the posterior predictive measure, and verified
by the training and test sets, shows that this conclusion
takes into account the different model complexity of the
heuristics.

Characterization of Human Decision-Making
The analysis in Figure 2 shows theτ-switch heuristic
can closely emulate optimal decision-making for ban-
dit problems, and the analysis in Figure 4 shows it can
also describe most participants’ behavior well. Taken to-
gether, these results let us use theτ-switch heuristic to
realize our original motivating goal of comparing peo-
ple’s decisions to optimal decisions in psychologically
meaningful ways. The key psychological parameters of
a well-performed heuristic likeτ-switch provide a mea-
sure that relates people to optimality.
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Figure 4: Posterior predictive average agreement of the
heuristic models with each individual participant. Two
‘outlier’ participants, not modeled well by any of the
heuristics, are highlighted in yellow (lighter).

Figure 5 gives a concrete example of this approach.
Each panel corresponds to one of the 8 participants from
Figure 4 who were well modeled by theτ-switch heuris-
tic. Within each panel, the large green curves show the
switch trial (i.e., the expected posterior value of the pa-
rameterτ) inferred from optimal decision-making. These
optimal parameter values are shown for each of the plen-
tiful, neutral and scarce environments, for both8- and 16-
trial problems. Overlayed in each panel, using smaller
black curves, are the patterns of change in this parameter
for the individual participants.

The commensurability of the switch point parameter
between people and optimality, and its ease of inter-
pretation, allows for insightful analyses of each partic-
ipant’s performance. Participants like B and F are choos-
ing near optimally, especially in the 8-trial problems,
and seem sensitive to the reward rates of the environ-
ments in the right ways. Their deviations from optimal-
ity seem more a matter of ‘fine tuning’ exactly how early
or late they switch away from exploratory search behav-
ior. Participants like A and D, in contrast, are reacting to
the changes in environment in qualitatively inappropriate
ways. Participants like C, E, and H seem to perform bet-
ter on the 8- than the 16-trial problems, and do not seem
to be adjusting to the different environments in the 16-
trial case. But C is switching at roughly the optimal trial
on average, while E is switching too early, and H is too
early for the shorter problems and too late for the longer
ones. Finally, participant G seems to be employing a ‘de-
generate’ version of theτ-switch heuristic that involves
no initial search, but simply stands on the highest success
rate alternative throughout the problem.

This analysis is not intended to be complete or exact.
Potentially, the other heuristics could provide alternative
characterizations with some level of justification. What
the sketched analysis does provide a concrete illustration
of the way human and optimal performance can be char-
acterized by parametric variation using our best-fitting
heuristic model.
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Figure 5: Relationship between the optimal switching
point under theτ-first heuristic in (larger, green markers)
and inferred switch points for 8 subjects A–H in (smaller,
black markers). Comparisons are shown for P=plentiful,
N=neutral and S=scarce environments, and 8-trial (cir-
cle) and 16-trial (square) environments.

Discussion
One finding from our results is that theτ-switch heuristic
is a useful addition to current models of finite-horizon
two-arm bandit problem decision-making. Across the
three environments and two trial sizes we studied, it con-
sistently proved better able to mimic optimal decision-
making than classic rivals from the statistics and machine
learning literatures. It also provided a good account of
human decision-making, for the majority of the partici-
pants in our study.

A potential theoretical implication of the success of
theτ-switch heuristic is that people may use latent states
to control their search behavior, and manage the explo-
ration versus exploitation trade-off. We think these sorts
of models deserve as much attention as those, likeε-
greedy, based more directly on reinforcement learning.

One potential practical application of theτ-switch
heuristic is to any real-world problem where a short se-
ries of decisions have to made be made with limited feed-
back, and with limited computational resources. Theτ-
switch heuristic is extremely simple to implement and
fast to compute, and may be a useful surrogate for the
optimal recursive decision process in some niche appli-
cations. A second, quite different, potential practical ap-
plication, relates to training. The ability to interpret op-
timal and human decision-making using one or two psy-
chologically meaningful parameters could help instruc-
tion in training people to make better decisions. It would
be an interesting topic of future research to take the sorts
of analysis accompanying Figure 5, for example, and see
whether feedback along these lines could improve their
decision-making on future bandit problems.

More generally, we think our results illustrate a use-
ful general approach to studying decision-making with
heuristic models. Three basic challenges in studying any
real-world decision-making problem are to characterize
how people solve the problem, characterize the optimal
approach to solving the problem, and then character-
ize the relationship between the human and optimal ap-
proach. Our results show how simple heuristic models,
using psychologically interpretable decision processes,
and based on psychologically interpretable parameters,
can aid in all three of these challenges. While our spe-
cific results are for short-horizon two-alternative bandit
problems, and involve a small set of heuristics, we think
the basic approach has more general applicability. We
think heuristic models, and their inferred parameter val-
ues, are useful for understanding and comparing human
and optimal decision-making.

Acknowledgments
This work was funded by award FA9550-07-1-0082from
the Air Force Office of Scientific Research.

References
Berry, D. A., & Fristedt, B. (1985). Bandit prob-

lems: Sequential allocation of experiments. Lon-
don: Chapman & Hall.

Brooks, S. P., & Gelman, A. (1997). General meth-
ods for monitoring convergence of iterative simu-
lations. Journal of Computational and Graphical
Statistics, 7, 434–455.

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B.,
& Dolan, R. J. (2006). Cortical substrates for ex-
ploratory decisions in humans.Nature, 441, 876–
879.

Gittins, J. C. (1979). Bandit processes and dynamic al-
location indices. Journal of the Royal Statistical
Society, Series B, 41, 148–177.

Kaebling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey.Journal of Ar-
tificial Intelligence Research, 4, 237–285.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter,
D. (2000). WinBUGS: A Bayesian modelling
framework: Concepts, structure, and extensibility.
Statistics and Computing, 10, 325–337.

Macready, W. G., & Wolpert, D. H. (1998). Bandit
problems and the exploration/exploitation trade-
off. IEEE Transactions on evolutionary compu-
tation, 2(1), 2-22.

Steyvers, M., Lee, M. D., & Wagenmakers, E.-J. (in
press). A Bayesian analysis of human decision-
making on bandit problems.Journal of Mathemat-
ical Psychology.

Sutton, R. S., & Barto, A. G. (1988).Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

185



Two routes to cognitive flexibility: Learning and response conflict resolution 
in the dimensional change card sort task 

 
Michael Ramscar, Melody Dye, Jessica Witten & Joseph Klein 

Department of Psychology, Stanford University,  
Jordan Hall, Stanford, CA 94305. 

 
 

Abstract 

There are at least two ways in which response conflict 
can be handled in the mind: dynamically, so that 
conflicting response demands are resolved on-line, and 
discrimination learning, which reduces the amount of on-
line response conflict that needs to be resolved in 
context. While under fours are perfectly capable of 
discrimination learning, they appear to lack the ability to 
dynamically resolve response conflict. They can match 
their behavior to context in remarkably subtle and 
sensitive ways when they have learned to do so, but if 
they have not learned to match a response or a behavior 
to a context, their inability to handle on-line response 
conflict is their undoing (for example, in the dimensional 
change card sort task; DCCS). We present an analysis of 
how learning in context might aid children’s 
performance in the dimensional change card sorting 
(DCCS) over time, and a training study in which three 
groups of age matched under fours attempt to complete 
the DCCS. We find that appropriate training enables 
children to flexibly switch between their responses in the 
DCCS. Without training supporting discrimination 
learning, children’s performance is far worse, and when 
the task contexts are novel, children fail as expected.  

Introduction 
Thanks to the insight and inventiveness of 

developmental psychologists, we know that very young 
children are different. A three-year-old might girl seem 
simply a slightly smaller version of her four-year-old 
brother, however, while he will sail effortlessly, 
through the battery of tasks that psychologists have 
devised to expose the shortcomings of the very young, 
his sister will likely fail every one of them. Her 4-year-
old brother will switch responses and probability match 
in binary choice tasks, understand false belief and the 
conflicting dimensions of appearance and reality, and 
switch easily between competing rules in dimensional 
change card sorting (DCCS; Zelazo, 2006) task, 
whereas our three-year-old will maximize in binary 
choice tasks (fixating on the most likely response), fail 
false belief tasks, be unable to switch from describing 
the appearance of an object to answering questions 
about what it really is, and fail to switch from one 
sorting rule to another, even though the rule is clearly 
stated (see Ramscar & Gitcho, 2007, for a review).  

This raises two questions: first, why do children 
under four fail to switch to the conflicting but more 

contextually appropriate response in these tasks; and 
second, given the inflexibility of thought that these tests 
reveal, why in the normal course of events do children 
appear to be perfectly capable of changing their 
responses and behavior according to context?  

Many proposals have been made in trying to answer 
the first of these questions (see e.g., Zelazo, Müller, 
Frye & Marcovitch, 2003). In what follows, we seek to 
answer both of them by examining the different ways in 
which the conflict between potential responses might be 
resolved, so that an appropriate response can be given 
in context. We suggest that that there are at least two 
ways in which response conflict can be handled in the 
mind: dynamic response conflict resolution, which 
enables conflicting response demands to be processed 
and resolved on-line, and discrimination learning, 
which enables the strengths by which responses are 
evoked by contexts to be modulated, reducing the 
amount of on-line response conflict that needs to be 
processed and resolved. We suggest that while under 
fours are perfectly capable of discrimination learning, 
they lack the ability to resolve response conflict on-line. 
Under fours are able to match their behavior to context 
in remarkably subtle and sensitive ways when they have 
learned to do so. If they have not learned to match a 
response or a behavior to a context, under fours’ 
inability to handle on-line response conflict is their 
undoing (for example, in the novel contexts 
psychologists devise for their tests).    

In what follows, we describe the neurological and 
computational bases for these ideas, and present a 
computational simulation of how discrimination 
learning and context might affect children’s 
performance in the dimensional change card sorting 
(DCCS) over time. The model explains the observed 
failure of under fours at the DCCS as resulting from a 
lack of discrimination learning in the context of the 
“games” children play in the task. Further, it predicts 
that these children are exposed to the game contexts in 
ways that promote discrimination learning, they should 
later succeed at the task with relative ease. We then 
present a training study in which three groups of age 
matched under fours attempt to complete the DCCS 
after exposure to the games that promotes 
discrimination learning, exposure to the games that 
does not promote discrimination learning, and where 
the DCCS games are novel contexts.  Consistent with 
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the predictions of the model, we find that after 
appropriate discrimination learning, children are able to 
flexibly switch between the various responses required 
by the DCCS in a contextually appropriate manner. 
Without appropriate discrimination learning, children’s 
performance is far worse, and when the task contexts 
are novel, children fail as expected. 
The Dimensional Change Card Sort Task 

In the Dimensional Change Card Sort (DCCS) Task, 
three and four year-old children are asked to sort cards 
with two prominent linked dimensions—a color and 
shape—into bins in which these dimensions have been 
reversed.  For example, if the child is holding cards 
with red stars and blue trucks, the bins will be marked 
with blue stars and red trucks.  If the child is asked to 
sort by color, the red stars will go with the red trucks 
and the blue stars will go with the blue trucks; if the 
child is asked to sort by shape, the red stars will go with 
the blue stars, and the red trucks will go with the blue 
trucks.  When a child is asked to sort by one 
dimension—say, shape, switching the sort dimension to 
color will switch the correct sort bins for the card; e.g., 
red stars match to the truck bin when sorted by color, 
but the star bin when sorted by shape.  For older 
children and adults, this is a straightforward task. 

 
Figure 1: The basic DCCS task. Cards can be sorted by shape 
(in which case, the red star is sorted into the left bin) or color 
(in which case, the red star is sorted to the right bin). 
 

When young children are asked to begin sorting by 
shape, they can easily answer questions regarding the 
rules for correctly sorting either by shape or by color.  
In addition, after switching from sorting by shape to 
sorting by color, children can correctly answer 
questions about how to correctly sort according to the 
new rule.  However, once children are actually handed a 
card and asked to sort according to the second rule they 
have learned, their success in the task varies markedly 
with age.  Generally, 3-year-old children are 
unsuccessful at this part of the task; they continue to 
sort the cards according to the first rule (i.e., whatever 
was learned first, whether it be sorting by shape or 
color).  After age 4, however, children tend to pass the 

DCCS task and successfully match the cards to the bins 
both before and after the sorting rules are switched 
(Zelazo, Frye & Rapus, 1996). 

Why do three year olds fail this task? One suggestion 
is that their poor performance is a related to the late 
development of prefrontal cortex. Like many other 
primates, humans are born with an immature brain. In 
monkeys the post-natal development of the brain occurs 
at the same rate in all cortical areas (Rakic, Bourgeois, 
Eckenhoff, Zecevic, & Goldman-Rakic, 1986). In the 
human cortex, however, while synaptogenesis peaks in 
visual and auditory cortex within a few months of birth, 
these developments occur later in prefrontal cortex 
(Huttenlocher & Dabholkar, 1997; for reviews see 
Thomson-Schill, Ramscar & Chrysikou, in submission). 

One interesting behavioral consequence of this slow 
prefrontal development is that children appear unable to 
engage in behaviors that conflict with prepotent 
responses (see Ramscar & Gitcho, 2007 for a review). 
The adult ability to select a less well learned, but goal 
appropriate response is seen in the Stroop Task, in 
which the subject is asked to identify the ink color of a 
conflicting color word (e.g., if the word “green” were 
printed in red ink, red would need to be identified).  
Performance in this task involves resolving the conflict 
between the over-learned response (reading) and the 
appropriate response (ink naming).  Adults typically 
complete the Stroop Task with ease, but young children 
repeatedly fail similar tasks.  In adults, this is made 
possible by pre-frontal control mechanisms that bias 
one response over another according to goals or context 
(Yeung, Botvinick, & Cohen, 2004).  The prefrontal 
cortex functions as a dynamic filter, selectively 
maintaining task-relevant information and discarding 
task-irrelevant information (Shimamura, 2000).  

If three year olds lack (or are deficient in) the ability 
to dynamically filter responses in accordance with the 
demands of a context or goal, this may explain both 
why they fail at the Stroop Task and why they fail to 
switch rules in the DCCS. If a card depicts a red star, 
“red” elicits one response (sorting into the color bin) 
whereas “star” elicits a different conflicting response 
(sorting into the shape bin). Thus in the standard DCCS 
task, successfully switching rules involves changing 
from one response associated with a given cue—the 
card—to an alternative, conflicting response. Since this 
kind of response conflict processing appears to be the 
preserve of the frontal areas of the brain (Yeung, 
Botvinick, & Cohen, 2004; Thomson-Schill et al, in 
press), it seems that the failure of three year olds in the 
DCCS task—that is, their failure to mediate response 
conflict—may be related to slow pre-frontal 
development. 
Discrimination Learning   

If young children lack the ability to resolve conflict 
on-line, discrimination learning provides another means 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

187



by which they might still learn to succeed on the DCCS. 
This is because the games associated with each sorting 
rule provide cues to the appropriate responses, in 
addition to the shape and color in the cards themselves. 
The “shape game” is a cue to the response “sort into the 
shape bin” and the “color game” is a cue to the response 
“sort into the color bin.”  Since children fail the task 
despite the presence of these cues, it is clear that under 
ordinary circumstances, the game cues do not provide 
sufficient extra scaffolding to enable three year olds to 
pass the DCCS. However, an obvious difference 
between the cards and the games is that children have a 
lot of experience with colors and shapes and the various 
responses they elicit, whereas they have comparatively 
little experience with sorting games. 

To explain why this might matter, we need to 
consider the way that responses that lead to response 
conflict in the DCCS are learned and discriminated. 
Discrimination learning is a process by which 
information is acquired about the probabilistic 
relationships between important regularities in the 
environment (such as objects or events) and the cues 
that allow those regularities to be predicted (see e.g., 
Rescorla & Wagner, 1972; Gallistel & Gibbon, 2000).  

Crucially, the learning process is driven by 
discrepancies between what is expected and what is 
actually observed in experience (termed “error-driven” 
learning). The learned predictive value of cues produces 
expectations, and any difference between the value of 
what is expected and what is observed produces further 
learning. The predictive value associated with cues is 
strengthened when relevant events (such as events, 
objects or labels) are under-predicted, and weakened 
when they are over-predicted (Kamin, 1969; Rescorla 
& Wagner, 1972). As a result, cues compete for 
relevance, and the outcome of this competition is 
shaped both by positive evidence about co-occurrences 
between cues and predicted events, and negative 
evidence about non-occurrences of predicted events. 
This produces patterns of learning that are very 
different from those that would be expected if learning 
were shaped by positive evidence alone (a common 
portrayal of Pavlovian conditioning). Learners discover 
the predictive structure of the environment, and not just 
simple patterns of correlations in it.  

To briefly illustrate how discrimination learning 
works, imagine a child learning to play the games 
associated with the DCCS. We shall first consider a 
case where the experimenter shows the child the card, 
and is asked to sort them by color. 

We can assume that previously the child has heard 
objects referred to before in terms of both their shape 
and their color because, though they usually fail to sort 
using these dimensions, they can reliably name the 
shapes and colors on the cards (Kirkham, Cruess & 
Diamond, 2003). The problem, therefore, seems to be 

that children experience more response-conflict with 
regards the correct dimension to attend to in order to 
sort by the rule than they do when it comes to selecting 
an appropriate dimension for naming (this is perhaps 
unsurprising, since children will have more experience 
with names than sorting). That is, when children are 
asked to sort the cards, both shape and color appear to 
be active as relevant dimensions to sort by.  

 
Figure 2. If a child has learned that a card with a red star on it 
might be sorted by red or star, when the card is presented she 
will expect to sort by red and star. In sorting by red (A), the 
child’s expectations will weaken the association between the 
card and star in this context. The converse is true in the (B). 

 

If the cards cause a child to expect both dimensions 
to be relevant, but only one is used in sorting, there will 
be a violation of expectation (Figure 2).  Given that a 
response to the relevant dimension event didn’t occur, 
she will begin to adjust her expectations accordingly. 
This may then cause problems when the child is asked 
to sort by the other dimension, because the child will 
have learned to ignore the now relevant dimension on 
the earlier sort trials. 

This is because in the color game the red star card is 
sorted by “red.” Because the red star card has been 
previously associated with both “red” and “star”, it also 
incorrectly cues “star.” As a result, the value of the 
association between red star card and “star” will 
decrease (“star” will be learned about even though it is 
not heard). Further, because the context color game has 
been introduced, in subsequent color game trials, a 
conjunctive cue red star card + color game (e.g., Gluck 
& Bower, 1988) can compete with red star card (and 
color game) for associativity to “red”.  

The converse will occur if the child switches to the 
shape game. Because all of the dimensions of the red 
star card will be present in both the color and the shape 
games, red star card alone will prove to be a less useful 
cue than the conjunctive cues color game + red star 
card and shape game + red star card. 

To formally test these ideas, we simulated the 
competition between conjunctive cues representing 
color game + red and shape game + star and the 
individual cues red and star across repeated DCCS 
trials using the Rescorla & Wagner (1972) model. 1 The 

                                                             
1 In the Rescorla-Wagner (1972) model the change in 
associative strength between a stimulus i and a response j on 
trial n is defined to be:  

 

          ΔVij
n
 =α i β j  (λj – Vtotal)    
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simulation assumes that the output is the appropriate 
sorting response, and that red and star have been 
previously learned as sorts for the red star card “red” 
50% of the time each, and that color game + red will 
predict “red” 100% of the time. The individual cue was 
initially trained on with color and shape as alternate 
labeling events, and then the color game was 
introduced, and that color game was present on all color 
trials (there are two colors, equally represented).  

 

 
Figure 3: Rescorla-Wagner simulation of cue competition in 
two DCCS trials. The erroneous expectations shape produces 
in color game trials cause it to be unlearned, resulting in red is 
being a far more active cue on the switch trial (trial 61). 

 

In the first DCCS game shown in Figure 3, red and 
the conjunctive cues the color game + red gain in 
associative value as a result of the diminishing value of 
the star cue.  Importantly, even though all of the cues 
co-occur with exactly the same frequency with “red,” 
learning effectively dissociates red star card and color 
game from “red” in this situation.  

As can be seen in Figure 4, assuming correct 
sorting, the erroneous expectations produced by red 
and star cause them to lose out in competition with the 
conjunctive cues that embody the games as contexts, 
such that the dimensional cues alone are effectively 
unlearned in this context, even though they co-occur 
with the appropriate responses with exactly the same 
frequency as the conjunctive cues. This is because in 
error-driven learning predictive power, not frequency or 
simple probability, determines cue value.  Thus, as long 
                                                             
The model thus specifies how the associative strength (V) 
between a conditioned stimulus (CSi) and an unconditioned 
stimulus (USj) changes as a result of discrete training trials, 
where n indexes the current trial. 0 ≤ αi ≤ 1 denotes the 
saliency of CSi, 0 ≤ βj ≤ 1 denotes the learning rate of USj, λj 
denotes the maximum amount of associative strength that USj 
can support, and Vtotal is the sum of the associative strengths 
between all CSs present on the current trial and USj. Learning 
is governed by the value of (λj - VTOTAL) where λj is the value of 
the predicted event and Vtotal is the predictive value of a set of 
cues. In the simulation, all λ = 100%, αi=0.2 and βj=0.3. 

as the cards are correctly labeled in each context, a 
child will learn to ignore the ambiguous cues, thereby 
improving response discrimination.   

 
Figure 4: Rescorla-Wagner simulation of cue competition in 
six DCCS trials. Each peak represents a rule switch. 
 

Cue competition devalues the cues that result in 
prediction error and increases the value of those that do 
not, emphasizing the value of reliable cues. To illustrate 
the importance of cue competition to discrimination 
learning, it is useful to consider the effect of learning in 
the absence of cue competition.   

 
 
Figure 5: When labels precede the cards as discrete events, 
there may be no opportunity for cue competition.  Each cue 
will simply come to predict the card to asymptote.  

 

We call learning in the situation just described, where 
card Features predicted Labels, FL-learning. We can 
then define the situation in which Labels predict 
Features as LF-learning (Ramscar, Yarlett, Dye, Denny 
& Thorpe, in submission). In this situation, something 
very different will happen in learning.  To explain why, 
we need to consider how the structure of cues and 
predicted events conspire to produce cue competition. 
In the FL-learning scenario described above, the labels 
for the relevant dimensions are discrete, and only one 
occurs at any one time.  This results in prediction error 
if cues present on trials when “red” is subsequently 
labeled are present on trials when “star” is subsequently 
labeled. Cues not present on one or the other type of 
trial come to be favored as a result of cue competition. 
However, if the labels (or the labels in context) are 
presented prior to the cards (Figure 5), because the 
labels are discrete as events and as stimuli (whereas the 
dimensions of the cards in context are not), they cannot 
compete as cues, so no discrimination learning will take 
place. 
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Because there are no other labels (cues) to compete 
for associative value, there can be no loss of potential 
associative value to other cues over the course of 
learning.  Because of this, the effect of prediction-error 
on cue value will be very different.  In the absence of 
cue competition, the cue value of a label will simply 
come to represent the proportion of successful 
predictions it has made relative to the proportion of 
unsuccessful predictions; the cue value of a label will 
simply approximate the conditional probability of a 
feature given the label (in the DCCS, where cards vary 
in color or shape, this variance will be represented 
probabilistically after LF-learning). LF-learning thus 
provides little help when it comes to learning about 
situations in which response conflict is inherent 
(Ramscar et al, in submission). 
Error-Driven Learning and the DCCS 

The analysis above suggests that if children correctly 
respond to the appropriate dimensions in the early 
stages of the DCCS, contextual learning will reduce 
response conflict in later trials. Children trained to 
associate sorting by shape with a “shape game” and 
sorting by color with a “color game” can eliminate the 
response-conflict normally associated with the DCCS 
by learning context-dependent rules; for example, “red 
star card + shape game  sort by red. ” 

Given stimulus generalization (Shepher, 1987), one 
might expect that these will generalize to a degree to, 
“color shape card + color game sort by color” 
Similarly, we might expect that if children learn to 
attend to one dimension in learning about a response in 
context, they might transfer that learning to another 
response. Since children can name the appropriate 
dimensions of the cards in the DCCS before they can 
sort them, we expected that if children were taught to 
associate naming the appropriate contexts with the 
game rules in an FL-training configuration, they would 
learn the high predictive value of these specific cue 
configurations and that this contextual learning might 
then enable them to successfully sort in the same 
contexts in the DCCS task. 

Since we would expect that similar training in LF  
configuration would result only in the learning of the 
transitional probabilities between the dimension labels 
and the cards (as described above), the lack of cue 
competition in this condition ought to result in far less 
reduction in the amount of response conflict in the task 
than FL-Learning. To test these ideas, we examined the 
effect this kind of off-line discrimination training on 
children’s on-line performance in the DCCS. 

Training Experiment 
Participants 

47 children between 3- and 4-years-old (M = 3 years, 
6.8 months) participated in this study.  

Methods and Materials 
Two groups of children received either Label-Second 

(FL) or Label-First (LF) training on the cards, before 
completing standard DCCS tasks (Zelazo, 2006). A 
control group was tested on the DCCS without training. 

In the XL (label-second) condition, children were 
introduced to the shape and color games prior to the 
DCCS.  They were told, “In the shape game, we name 
the different shapes on these cards.” The experimenter 
then presented the first card to the child and asked the 
child to label it. After children correctly labeled the first 
6 of the 12 cards, the experimenter said, “we’re going 
to play the color game. In the color game, we are going 
to say what colors are on these cards.”  Children then 
labeled the remaining 6 cards in the new game.  

While children in the FL-condition saw the card and 
labeled it, children in the LF-condition were asked to 
say the label first and then saw the card. They were 
told, “In the shape game, we name the different shapes 
on these cards. The first card is going to be a flower– 
can you say ‘flower’?”  The experimenter showed the 
card to the child only after the child had repeated the 
label. The structure of the LF-training was the same as 
the FL-training:  naming 6 cards by one dimension and 
then switching to the other dimension.  

The two training groups (FL and LF) then completed 
two standard DCCS tasks, with the first testing 
dimension (either shape or color) counterbalanced 
across children. There were 12 test trials completed by 
each child (six consecutive trails for the first dimension 
and six for the second dimension).  Children were 
required to correctly sort six cards in the pre-switch, 
and before each trial, children were either reminded of 
the current game’s rules or asked to answer “knowledge 
questions,” such as, “Where do the flowers go?  Where 
do the boats go?”  Children were given no feedback 
about their sorting of the cards.   

Once a child had sorted six cards along the pre-switch 
dimension, the sorting dimension was switched. Exactly 
six cards were sorted in the post-switch test. After the 
first DCCS task, the children completed a second 
standard DCCS task with new cards. 
Results 

All the children in the two training conditions 
correctly labeled the cards. Children were considered to 
have “passed” the DCCS task if they sorted at least 5 
out of 6 of the post-switch cards correctly. 69% of the 
FL-trained children successfully switched rules in the 
first DCCS task, and 75% in the second DCCS task.  By 
contrast, in the 33% LF  trained children completed the 
first rule switch, and 40% the second. 19% of the 
control children switched rules in each test (Figure 4). 

Chi-square (χ2) tests revealed that children in the FL 
(Label-Second) condition had significantly higher 
passing rates (11/16 children passed) in the first DCCS 
as compared to children in the LF (Label-First) 
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condition (5/15); χ2 [1, N = 31] = 9.7, p = 0.005; 
second test, label first, 12/16 children passed as 
compared to 6/15 in the label second condition, χ2 [1, N 
= 31] = 17.0, p = 0.001).  Against the control group 
(3/16), the comparisons with the FL (Label-Second) 
group were, first switch, χ2 [1, N = 33] = 14.9, p = 
0.001; second switch, χ2 [1, N = 33] = 23.7, p = 0.001.  

 
Figure 4: Percentage of children successfully switching rules 
in the first and second DCCS tasks by condition.  

Discussion 
We suggested that the observed failure of under fours 

in the DCCS might result from a lack of discrimination 
learning about the contexts provided by the “games” 
children play in the task. We predicted that if children 
were exposed to the game contexts in ways that 
promote discrimination learning, they would later 
succeed at the task with relative ease. Consistent with 
these predictions, we found that after appropriate 
discrimination learning, children were to flexibly switch 
between the various responses required by the DCCS in 
a contextually appropriate manner. With less 
appropriate discrimination learning, children’s 
performance was far worse, and when the task contexts 
were novel, children failed as expected.  

This finding is consistent with our suggestion that 
that there are at least two ways in which response 
conflict can be handled in the mind: dynamic response 
conflict resolution, which enables conflicting response 
demands to be processed and resolved on-line, and 
discrimination learning, which enables the strengths by 
which responses are evoked by contexts to be 
modulated, reducing the amount of response conflict 
that needs to be processed and resolved. It appears that 
while under fours are perfectly capable of 
discrimination learning, they lack the ability to resolve 
response conflict on-line (see also Ramscar & Gitcho, 
2007; Thomson-Shill et al, in submission). As the 
children who received FL-Training show, 
discrimination learning allows under fours to match 
their behavior to context in remarkably subtle and 
sensitive ways once they have learned to do so. 

However, as the performance of children in the LF-
training and control groups shows, if children have not 
learned context appropriate behavior, their inability to 
resolve response conflict dynamically causes problems 
when dealing with the demands of responding flexibly 
in ambiguous situations. 
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Abstract 

Prior work has shown that the interleaving of perceptual, 
motor, and cognitive components results in a considerable 
speedup in the performance of a simple decision making task 
(Veksler, Gray, & Schoelles, 2007). The current modeling 
effort conducted using the ACT-R cognitive architecture 
(Anderson & Lebiere, 1998) is intended to demonstrate how 
this interleaving might be learned, and how decision-making 
in this task might take place. The model learns the 
interleaving and exhibits a speedup in performance similar to 
that of human participants (RMSE=4.3sec). Furthermore, the 
model matches human accuracy by using a simple heuristic to 
make decisions.  

Introduction 
Previous work has shown that milliseconds matter in 
understanding human performance (Gray & Boehm-Davis, 
2000; Veksler et al., 2007). This millisecond improvement 
has been shown to occur in a table-based, decision-making 
task (Lohse & Johnson, 1996) without resorting to changes 
in higher-order decision-making strategies. Furthermore, 
exploratory modeling revealed the necessity to focus on the 
millisecond level considerations in skilled task performance. 
It was found that an important aspect of the model in 
mirroring the speedup in performance observed in human 
participants was the interleaving of cognitive, perceptual, 
and motor operations. An additional speedup was observed 
in human data as participants minimized the distance they 
moved the mouse while interacting with the interface.  

Our current modeling effort seeks to extend this by  (1) 
including a learning component to the model whereby the 
model learns the interleaving and distance minimization on 
its own, and (2) implementing a higher order strategy to 
match human accuracy performance.  

The Task 
The experimental environment used in this research was 
designed to study and model how information access 
influences the way in which a decision is made – 
specifically what information is considered and how it is 
integrated given the environmental constraints and 
accessibility of information. In particular, we were 
interested in whether or not people would take advantage of 
particular regularities in the environment in order to 
maximize their score. We hypothesized that this exploitation 
would occur more when the cost of information acquisition 
was higher (longer lockout durations).  

We used a simple table task (see Figure 1) similar to the 
one used in a previous study (Veksler et al., 2007) with a 
few important alterations. The current task environment 
contained five alternatives (arranged in rows) with a value 
on each of five attributes (arrayed in columns). In addition, 

each attribute had an assigned probability value which 
indicated that attribute’s relative importance to the 
alternative’s total score. However, the values in the grid 
were not visible to the participant and they could only 
uncover one value at a time. The task environment also 
allowed us to manipulate the duration of the lockout 
between a participant selecting a cell in the grid and the 
value of that cell appearing on the screen, so as to allow us 
to determine the cognitive and perceptual-motor tradeoffs 
involved. 

In the previous study we conducted in the lab, we 
manipulated how information was accessed – whether 
participants could see an entire row, an entire column, or 
only one cell at a time. In the current study, we instead 
wanted to explore what particular pieces of information 
people would gravitate towards given a different cost of 
exploring the grid – how long they had to wait for 
information to appear. We hypothesized that the cost of 
information acquisition would influence not only the 
exploration of the task environment but also the accuracy of 
the decisions. 

Another important change from the original study, is that 
we went back to the original decision-making table task and 
implemented different ‘gambles,’ composed of various sets 
of probability values for the attributes, in order to see how 
they would affect performance (Payne, Bettman, & Johnson, 
1988) since that work indicated that the probability 
landscape of the task influenced the strategies people used 
to complete the task. 

Method 
We used a traditional decision-making table task for the 
study.  

Participants 
A total of 75 undergraduates (22 females and 53 males) 
from Rensselaer Polytechnic Institute participated in the 
study. The average age was 19.21 years (SD = 2.05). 
Students received extra credit for their participation. 

Design 
There was one between-subjects independent variable of 
lockout duration with 3 levels. The levels varied the 
duration of the lockout prior to a value appearing on the 
screen when a participant clicked on a cell. The three 
lockouts were 0s (0-lock), 2s (2-lock), and 4s (4-lock). 
However, for purposes of the models we only focused on 
the 0-lock condition. There was a within-subject 
independent variable of gamble type with 4 levels. The 
gamble types are listed in Table 1. Each gamble type 
consisted of 5 column (outcome) probabilities that were 
randomized on each trial within a block of 10 trials. The 
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dispersion of each gamble type refers to the degree to which 
one of the column probabilities ‘dominates’ the others. For 
example, Gamble Type 0 has one column probability of .6, 
which is significantly greater than any of the other column 
probabilities. Gamble Type 0 therefore has a higher 
dispersion value than any of the other gambles since cell 
values in the column containing a probability of .6 would 
contribute more to the final value of an alternative (row) as 
compared to any other columns. The order of the gambles 
was randomized within each epoch of 40 trials (10 
consecutive trials in each block contain the same gamble 
type). There were two epochs in the study resulting in 80 
trials. 

Table 1 : Gamble types used in the study. Column 
probabilities are randomized from trial to trial within a 
block of 10 of a particular gamble type. The dispersion 
value is the standard deviation of the 5 probabilities 
comprising the gamble. 

Gamble Type Column 
Probabilities 

Dispersion 

0 .6,.1,.1,.1,.1 .22 
1 .4,.3,.1,.1,.1 .14 
2 .3,.2,.2,.2,.1 .07 
3 .2,.2,.2,.2,.2 0 

 

Materials 
The experiment was presented using a computer running 
Mac OS X on a 17” flat-panel LCD monitor set to 
1024x768 resolution. The software used for the experiment 
was written in LispWorks 5.0. Each trial consisted of a 
blank grid being presented to participants (Figure 1). 

Along the top of the grid were listed the corresponding 
column probabilities for that column. The alternatives to 
choose among were the rows in the grid and participants had 
to click on the radio button to the left of the alternative to 
make their choice. Each cell in the grid could be uncovered 
by clicking on it. Once a cell was clicked, any cell clicked 
prior to the current one would be covered up. Therefore, 
only one cell value was visible at any given time. Since we 
found that in our original study, the task was easier for the 
participants than we originally anticipated, in order to make 
the current version a bit more difficult, the cell values were 
randomly selected from the range 11 to 50 rather than being 
one of 0, 2 or 4. 

Procedure 
Each participant was run separately. Participants were asked 
to turn off their cell phones for the duration of the study. 
After signing informed consent forms and going through the 
instructions on how to do the task, each participant 
completed 80 decision-making trials. These were broken 
down into blocks of 10 and each block of 10 had one of the 
4 gamble types. Participants were instructed to choose the 
alternative (row) that had the highest weighted summed 
value. Specifically, the expected value of any given 
alternative can be calculated by: 

€ 

EV(altj ) = pi
i=1

5

∑ vj i  

p: outcome (column) probability in column i 
v: cell value of cell in row j and column i 
 

 

Figure 1: Task Environment 

 
The reward given for each trial was the ratio of the 

alternative chosen by the participant compared to the best 
alternative’s expected value. Therefore, if the participant 
chose the best alternative they received a reward of 100 
points, if the next best alternative (and its ratio to the best 
was 98) then they would receive 98 points. 

Participants were given feedback on their score after each 
trial, along with how long they spent on the trial and how 
many cells they uncovered. At the end of a block of trials 
they were given feedback on their average score for that 
block. At the end of each epoch they were given feedback 
on the average score over the 40 trials. 

Results 
Several participants had to be excluded from the analysis 
due to software malfunction. Consequently, only data from 
58 participants (16 females and 42 males) was used for the 
analysis, 20 participants in the 0-lock condition, 19 in the 2-
lock and 19 in the 4-lock. However, it should be noted that 
the current modeling work only addresses the 0-lock 
condition of this study. Future work will also incorporate 
the other conditions. 

Accuracy 
A 4x3 repeated measures ANOVA on the effects of lockout 
and gamble type on average accuracy over 80 trials was 
conducted. The repeated variable was gamble type. There 
was not a significant gamble*lockout interaction, F(6, 165) 
= 1.11, p = 0.358. There was a significant main effect of 
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gamble type, F(3, 165) = 62.2, p < 0.001. There was also a 
significant main effect of lockout, F(2, 55) = 6.87, p < .01. 
Figure 2 illustrates the trends in accuracy across the four 
gamble types with respect to the lockout condition. 

There was a significant linear trend, F(1, 55) = 179.6, p < 
.01, ω = .46, indicating that as the dispersion of the gambles 
decreased, average score increased. Post-hoc tests revealed 
significant differences between 0-lock and 4-lock 
conditions, with a mean difference of 3.28, p < .01. 

These results indicate that participants in longer lockouts 
had on average less accurate choices and that accuracy was 
worse for gambles that had more ‘dominating’ probability 
columns. 

 
Figure 2: Average Accuracy across Gambles and 
Lockout Conditions. Error bars are standard error. 

Duration of Trial 
A 8x3 repeated measures ANOVA was conducted on the 
effects of lockout and block on how long cell values 
appeared on the screen. The repeated variable was block 
number. There was not a significant block*lockout 
interaction, F(5.7, 156.66) = 2.07, p = 0.06. There was a 
main effect of block, F(2.85, 156.66) = 25.41, p < 0.01. 
There was also a significant main effect of lockout, F(2, 55) 
= 11.94, p < .01. Figure 3 illustrates the trends in average 
trial duration. Of note here is that there is a significant 
speedup over the course of the study, in all of the 
conditions. 

Location of Cell Clicks 
In order to better understand the strategies people were 
using to do the task, we looked at which cells participants 
tended to uncover. In the previous study (Veksler et al., 
2007), we found that when given the opportunity to view 
values by rows vs. by columns, participants chose to check 
cell values within a row before transitioning to the next row, 
rather than clicking consecutive cells within a column. We 
subjected the data of the 0-lock group from the current study 
to the same analysis. We examined the percent of cell clicks 
that were either on two consecutive cells in a row or in a 
column (henceforth referred to as cell transitions). We found 
that about twice as many cell transitions occurred within a 
row rather than within a column (Figure 4).  

A paired sample t-test revealed a significant difference 
between the percent of cell transitions within a row (M = 
.59, SE = .04) versus within a column (M = .29, SE = .04), 
t(19) = 3.96, p < .001. This suggests that people tended to 
use a by-row strategy of evaluating alternatives rather than 
focusing on the columns and our current modeling effort 
reflects this strategy as well. 

We were also interested in whether participants tended to 
consider the probability values assigned to the columns in 
their decision making process. In particular, we 
hypothesized (and previous work by Payne et. al. has 
shown) that gambles that had higher dispersion values 
should have more cells uncovered containing the higher 
probability columns. For the sake of brevity, our findings 
were that there was not a significant difference between the 
percent of cells participants clicked in the different 
probability columns as compared to what would be expected 
by chance.  

We also hypothesized that cells in the higher probability 
columns would be uncovered earlier in the trial rather than 
later. However, we found that although there was a 
considerable bias toward checking grid values starting at the 

 
Figure 3: Average duration of trial by block of 10 trials. 
Error bars are standard error. 

 
Figure 4: Percent of cell click transitions occurring 
within a row versus within a column. Error bars are 
standard error. 
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top row and moving down (average first click on top row = 
1.07, average first click on bottom row = 12.08) and a bias 
toward checking cells in the left hand columns first (left 
column = 5.02, right column = 8.7), there was not a 
significant bias toward checking higher probability columns 
first.  

The Model 
To model human performance on this task, we used the 
ACT-R cognitive architecture (Anderson et al., 2004). ACT-
R is a modularized production system with a subsymbolic 
memory module. It has visual and motor modules to embed 
it in the task environment. It also has declarative memory 
and a procedural module. In addition, it has imaginal and 
goal buffers to store its working memory and goal chunks, 
respectively. Thus, it serves as a good framework to model 
human performance on this simple table task. 

The current modeling work combined the static models of 
previous modeling work (Veksler et al., 2007), to 
demonstrate the learning component in order to fit human 
data on the task. Furthermore, whereas the previous 
modeling effort was more concerned with the speed of the 
interactive routines, the current model also attempts to 
reproduce accuracy. 

The structure of the current model is similar to that of the 
previous models and is briefly described here. There are 
roughly four components to the model: switching between 
alternatives, moving through the cell values within an 
alternative, comparing the current alternative’s value to the 
best so far, and answering. Figure 5 illustrates the flow of 
the model and the various productions involved. There are 
two important changes from the previous models (Veksler et 
al., 2007) to the current model. The first is the introduction 
of two sets of competing productions intended to produce a 
learning effect in the model. The second is the change in 
strategy implemented by the model to complete the task. We 
will address each of these important changes in turn.  

Competing Productions – Learning Speedup 
In matching trial duration of the human data, we 
implemented two sets of competing productions intended to 
demonstrate the speedup in performance. 

The first two productions that compete occur in the 
“Switching Between Alternatives” part of the model. As per 
the previous modeling effort, we found that human 
participants initially clicked on cells in a left to right fashion 
whereas later they alternated the direction depending on 
their ending position in a given row. We thus incorporated 
this alternating behavior into the model thereby decreasing 
the distance the mouse had to move when a new alternative 
was encountered. Since move-mouse execution time in 
ACT-R is closely related to the distance that the mouse must 
move, as per Fitts’ Law (Fitts, 1954; MacKenzie, 1992), this 
feature allowed the model to transition faster between 
alternatives (about 900ms faster over the course of the trial). 
The two competing productions ‘change-row l->r’ vs. 

 
Figure 5: Schematic of the Model. Dashed lines indicate 
competing productions. Productions in green propagate 
a reward. Productions in red are competing 
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Figure 6: Average trial duration comparison between 
model and human data. Error bars are standard error. 

‘move down’ are the two types of transitions that we noticed 
in our human data. Initially the utility of the ‘change-row l-
>r’ production is considerably greater than the ‘move-down’ 
production, however, the model quickly learns the greater 
utility of choosing to move down to the next row rather than 
always resorting to reading the cell values left->right. 

The second set of productions that compete occurs in the 
“Moving Through Cells Within an Alternative” part of the 
model. Again, as per our previous modeling effort, we 
noticed that a considerable speedup in performance could be 
attained by having the model interleave cognitive, 
perceptual, and motor components (Veksler et al., 2007). 
The two competing productions are ‘choose-state’ and 
‘choose-prep.’ The productions following the ‘choose state’ 
production all have no interleaving of the perceptual-motor-
cognitive components whereas the productions following 
the ‘choose-prep’ production do include all the interleaving 
as described in previous work, and as can be seen in Figure 
5, comprise half as many productions.  
 

ACT-R uses a reinforcement learning mechanism for 
updating production utilities and is based on the amount of 
reward and time since the production fired that the reward 
has been triggered as well as a noise parameter. The utility 
of a production i at time n is defined by the equation 
(Bothell, 2004): 
 

€ 

Ui(n) =Ui(n −1) +α[Ri(n) −Ui(n −1)]  
 
α is learning rate (set to .2)  
Ui(0) is set to 1000 for ‘choose state’ and 1 for ‘choose 
prep’ 
Ri(n) is the effective reward given to production i at time n 
calculated by subtracting the reward at time n minus the 
time since production i was selected 
 

In order to even the playing field, in all cases the same 
amount of reward is triggered by the rewarding production 
(in this case we used a reward of 1). However, based on the 
current model’s competing productions, it turns out that the 
major factor influencing how much reward each of the 
competing productions receives (and thereby alters its 

utility) is the time since the competing production fired 
compared to the reward production. The average difference 
between how long this interval was for ‘change-row l->r’ 
vs. ‘move down’ is 85ms. The average difference between 
how long this interval was for ‘choose-state’ vs. ‘choose-
prep’ is 471ms. Over the course of the 80 trials, the model 
quickly learns the higher utility of using the ‘move down’ 
and ‘choose prep’ productions.  

Figure 6 illustrates the average trial duration for both 
human and model data, which is a direct result of which of 
the competing productions are selected during a particular 
trial. Qualitatively, there is a learning curve for both humans 
and the model over the course of the first few trials, RMSE 
= 4.35s and the correlation coefficient is .21. The low level 
analysis of the time it takes both the model and the human 
participants to transition between consecutive cells in the 
grid indicates similar trends, RMSE = 131.74ms and the 
correlation coefficient is 0.28. Past work has addressed this 
low level analysis and for brevity only the fit is mentioned 
here (Veksler et al., 2007). Future work will need to address 
how to account for the remainder of the speedup seen in 
human data, perhaps as strategy shifts come into play later 
during the course of the experiment. 

Model’s Strategy – Accuracy Matching 
The model just described was also outfitted with a simple 
heuristic in order to match human accuracy on the task. The 
strategy change that we implemented had to do with our 
analysis of cell clicks in the human data and the current task 
environment’s setup. In particular, since we no longer had 
easy values in the cells of the grid, computing the normative 
value of an alternative is much more difficult than in our 
original task. Instead, given our human data analysis and 
how quickly participants were transitioning between cells in 
the grid, we suspected that rather than multiplying out the 
values and probabilities and summing these across the 
alternative, our participants were using a simpler heuristic to 
determine the best alternative.  

This heuristic strategy was implemented in the model 
whereby as the model uncovered cell values, it simply kept 
a count in its imaginal buffer as to the number of cells in a 
particular row whose values exceeded some predetermined 
threshold value. Thus, rather than doing any sort of 
computation per se, the model was merely keeping count. At 
the end of a trial, the choice the model made was based on 
the alternative that it found to have the most cells above a 
threshold. If there were ties among alternatives, the more 
recent alternative looked at was chosen. 

The implementation of this strategy also led to an 
important consideration – where to place the threshold. We 
explored the threshold parameter space in closed form to 
determine which threshold resulted in the best fit to human 
accuracy data. The procedure used is described below. 
Threshold Consideration 
A closed form model of the threshold parameter was 
developed to explore the model’s accuracy given one of 35 
threshold values (15 to 49). At first, 24 random 80-trial 
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stimuli were used and run through each of the 35 threshold 
values and it was determined that a threshold value of 40 
provided the best fit to average human performance, RMSE 
= 0.61. We then took all of the stimuli from the human 
participants (actual trials participants saw) and ran those 
through the model using the threshold of 40. Figure 7 
depicts the fit of the model with a threshold of 40 to human 
data. 

A 2x4 repeated measures ANOVA was conducted to 
compare human and model accuracy (type) with the 
repeated measure being gamble. There was not a significant 
gamble*type interaction, F(3, 151) = 1.16, p = 0.33. There 
was a significant main effect of gamble, F(3, 151) = 143.65, 
p < 0.001. There was not a significant main effect of type, 
F(1, 151) = 0.08, p = 0.78.  

This analysis indicates that there was not a significant 
difference between human and model accuracy across the 4 
gamble types. However, there was a significant difference 
between the gambles for both humans and the model. 
 

 
Figure 7: Accuracy comparison of model with threshold 
40 across all 80 trials of human participant's stimuli. 
Error bars are standard error. 

Conclusions 
The current modeling work had a twofold purpose. The first 
was to demonstrate that the model could learn the cognitive, 
perceptual, motor interleaving resulting in the speedup in 
performance shown in previous work. The second was to 
implement a decision-making strategy that human 
participants most likely utilized in order to do the task.  

Given the human data collected from a study of a 
decision-making table task, we found accuracy differences 
dependent on the constraints of the task environment (both 
lockout durations and types of gambles used). We also 
found that over the course of the 80 trials, participants 
completed trials considerably faster. The current model also 
completes the trials faster over the course of the task.  

Furthermore, a more rigorous analysis of the human data 
indicated some biases in the way participants interacted with 
the task environment and we have implemented these biases 
in the strategy the model uses to complete the task. Namely, 
the model goes through the grid of cells in a top-down 
manner, and begins with the left-most column in the first 
row that it uncovers. In addition, the lack of a bias to click 

on the higher probability columns and the fact that gambles 
with higher dispersion values also had lower average scores, 
indicates that human participants tended to disregard the 
probability data, at least as far as the 0 second lockout group 
was concerned, and our model did as well. Future work will 
need to address how to reconcile this result with previous 
results of Payne et. al. (1988) in which it was found that 
probabilities played a role in decision strategies. 

Future work will also incorporate the data we have from 
the other two conditions of the study as it relates both to 
strategy selection and timing. We also plan to further 
explore the factors influencing how quickly the model can 
perform the task as it seems human participants are 
nevertheless faster. 
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Abstract 

A simple three-layer feed-forward network was trained to 
classify verbs as reversible with un- (e.g., unpack) reversible 
with dis- (e.g., disassemble) or non-reversible (e.g., squeeze), 
on the basis of their semantic features. The aim was to model 
a well-known phenomenon whereby children produce, then 
subsequently retreat from, overgeneralization errors (e.g., 
*unsqueeze). The model learned to correctly classify both the 
verbs in the training set and verbs held back during training 
(demonstrating generalization). The model demonstrated 
overgeneralization (e.g., predicting unsqueeze for squeeze) 
and subsequent retreat, and was able to predict adult 
acceptability judgments of the different un- forms.  

Keywords: Un-prefixation, overgeneralization; language 
acquisition; no negative evidence problem 

Overgeneralization in Language Acquisition 

A central question in the cognitive sciences is that of how 

children acquire their native language. Since speakers do not 

simply repeat whole utterances verbatim, the key question is 

how children are able to form the generalizations that allow 
for the production of novel utterances whilst avoiding over-

generalizations (i.e., utterances that adults would consider 

ungrammatical).  

One generalization that English-speaking children must 

acquire (presumably on the basis of hearing such forms as 

unpack, unhook and unfold) is that it is possible to add the 

prefix un- to a verb to specify the reversal of an action (i.e., 

they must acquire an un-VERB construction). This allows a 

child who hears (for example) the verb fasten to produce 

unfasten, even if she has never previously heard this form. 

Evidence that speakers do acquire a productive un-VERB 
construction (as opposed to simply learning all un- forms by 

rote) comes from overgeneralization errors attested in 

children‟s speech (e.g., I’m gonna *unhang it; How do you 

*unsqueeze it?; Bowerman, 1988). 

Given that children do produce such errors, the challenge 

for acquisition researchers is to explain how children “un-

learn” these overgeneralizations, whilst retaining the 

capacity for productive forms. Because children do not seem 

to receive feedback from caregivers when they produce 

overgeneralization errors, this has become known as the 

„no-negative-evidence‟ problem (Bowerman, 1988).  
One proposed solution is the „entrenchment‟ hypothesis. 

This was originally developed for verb argument structure 

overgeneralization errors where a verb (e.g., the intransitive 

verb disappear) is overgeneralized into a construction (e.g., 

the transitive causative SUBJECT VERB OBJECT 

construction as in *The magician disappeared the rabbit). 

The entrenchment hypothesis states that repeated 
presentation of a verb (e.g., disappear) in one (or more) 

attested construction (such as the intransitive construction; 

e.g., The rabbit disappeared) causes the learner to gradually 

form a probabilistic inference that adult speakers do not use 

that particular verb in non-attested constructions. A number 

of studies (e.g., Ambridge et al, 2008; in press; submitted) 

have shown that, as predicted by this hypothesis, speakers 

rate argument structure overgeneralization errors as less 

acceptable for high- than low frequency verbs (e.g., 

disappear vs vanish). 

Whilst this proposal appears to work well for argument-
structure overgeneralization errors, it is less clear that the 

account can be applied to morphological overgeneralization 

errors such as un-prefixation (Bowerman, 1988). A learning 

mechanism that deems un- forms ungrammatical when the 

observed frequency of the bare form (or the ratio of the bare 

to the un-prefixed1 form) reaches a certain threshold would 

seem likely to make errors. For example, based on 

frequencies in the British National Corpus, a learner would 

have to hear around 500 occurrences of twist before 

encountering the (perfectly acceptable) form untwist. On the 

other hand, the non-reversible forms embarrass and detach 

each occur only around 500 times in the entire corpus. 
Worse still, some verbs are far more frequent in un- than 

bare form (e.g., unleash = 365; leash = 9).  

An alternative proposal is that children use verb semantics 

to determine the syntactic and morphological constructions 

in which particular verbs can and cannot appear (e.g., 

Pinker, 1989; Ambridge et al, 2008; in press; submitted). 

For example, with reference to the intransitive/transitive 

causative alternation, Pinker (1989) proposed that children 

form narrow-range semantic classes of verbs that are 

restricted to the intransitive construction (e.g., verbs of 

„„coming into or going out of existence‟‟ such as disappear 
and vanish). In support of this proposal, Ambridge et al 

(2008) found that when taught novel verbs of “coming into 

                                                        
1 Here and throughout, „un-prefixed‟ means „prefixed with un-‟ 
  not „with no prefix‟ 
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or going out of existence”, both children and adults rejected 

(i.e., judged as ungrammatical) transitive causative uses.  

Li and MacWhinney (1996) sought to extend this verb-

semantics account to the domain of un-prefixation errors. 

Again, verbs that may appear in this construction appear to 

share certain meaning components such as covering, 
enclosing, surface-attachment, circular motion and hand-

movements. Whorf (1956) argued that it is not possible to 

specify which verbs may and may not appear in the un- 

construction with reference to a list of necessary and 

sufficient semantic features (as Pinker, 1989, argued for 

verb argument structure constructions). Rather, these 

meaning components seem to combine interactively in a 

manner that is not straightforwardly predictable. 

Li and MacWhinney (1996) developed a computational 

model designed to test Whorf‟s (1956) speculation that the 

un- construction constitutes a semantic “cryptotype”. These 

authors trained a standard three-layer backpropagation 
network (with six hidden units) to produce an output of un- 

dis- or zero- (the three output units) for each of 160 English 

verbs (49 of which take un-, 19 –dis and 92 no prefix 

[termed “zero” verbs]). The model had 20 input units, each 

representing a particular semantic feature (e.g., circular 

movement; change of state). For each verb, the input to the 

model was a 20-bit vector representing the extent to which 

the verb was deemed to instantiate each of the semantic 

features (as rated by 15 adult participants). Verbs were 

presented to their model in proportion to their type and 

token frequency in a corpus of adult speech. The model‟s 
task was to learn to categorize each verb as (a) reversible 

with un-, (b) reversible with dis- or (c) non-reversible. The 

model performed reasonably well under a variety of 

different training regimes, correctly classifying between 

50% and 75% of un- taking verbs (depending on the 

simulation). 

It is important to note at the outset that Li and 

MacWhinney‟s (1996) model (like the model presented in 

the current paper) does not solve the no-negative-evidence 

problem. The pre-classification of verbs as un-, dis- or zero 

means that the model is given exactly the information that 

the child would need but does not receive (i.e., which verbs 
can and cannot be reversed). However, the model is 

valuable in that it demonstrates that, in principle, (a 

reasonable approximation of) the input available to children 

contains sufficient information to allow for the formation of 

a semantic “cryptotype” for the construction. For example, 

one strength of the model is that it uses this cryptotype to 

produce “overgeneralization errors” similar to those 

produced by children (e.g., *unhold, *unpress, *unfill, 

*uncapture, *unsqueeze, *unfreeze, *untighten). 

Nevertheless, Li and MacWhinney‟s (1996) model does 

exhibit a number of shortcomings. First, this model actually 
has great difficulty learning some forms. In the first 

simulation, the model learned to correctly classify (defined 

as an RMSE < .25) only 15% of the dis- verbs. In a second 

simulation, where dis- verbs were entered into the training 

set early in training, performance on dis- verbs improved. 

However, this was at the expense of the model‟s 

performance on the zero verbs (25% correct, vs 74% in 

Simulation 1) and un- verbs (51% correct, vs 76% in 

Simulation 1).  

Second, this finding suggests that the particulars of the 

training regime may have been instrumental in shaping the 
particular pattern of results obtained. An incremental 

training regime was used such that the model was pre-

trained on a set of 20 high frequency zero-verbs with verbs 

gradually added to the training set based on their type (un-, 

dis- or zero) and token frequency. The rate at which items 

were added furthermore changed during training. This 

incremental training regime was aimed at reflecting the 

realities of acquisition. While it has been shown that such 

manipulations may be crucial for successfully simulating 

developmental data (e.g. Elman, 1993), the very fact that 

they can influence results suggests that caution may be 

required when developing incremental training regimes.  
A third shortcoming of Li and MacWhinney‟s (1996) 

model is that it actually lacks an important source of 

information that is available to children; namely, the 

distribution of surface forms. Reversible and non-reversible 

verbs differ not only in their semantics (information which 

is available to the model) but also their distribution: The 

former sometimes occur with un-/dis-, whilst the latter do 

not. Because the input to the model is simply a set of 

semantic vectors, this information is not available.  

The final shortcoming of Li and MacWhinney‟s (1996) 

model is that it has great difficulty in retreating from 
overgeneralization errors. This would seem to be a 

consequence of the fact that the model produces 

overgeneralization errors in a way that is quite different to 

children. The model‟s overgeneralization errors result from 

mis-classification of items (e.g., squeeze is incorrectly 

classified as an un- verb, presumably because it shares a 

number of semantic features with genuine un- verbs). The 

model has great difficulty in re-classifying such verbs 

correctly (presumably because much of the semantic overlap 

that caused the erroneous classification remains even after 

learning has reached asymptote). Intuitively, it would seem 

that at least some of children‟s overgeneralizations are 
caused not by misclassification, but by functional pressure: 

Presumably, children produce forms such as *unsqueeze 

because they want to denote the reversal of (in this case) a 

squeezing action, have learned that the un- prefix serves this 

function and do not have an alternative form that expresses 

the required meaning. Later in development, children are 

able to avoid producing un- forms for verbs such as squeeze, 

even when they are under functional pressure to do so (note, 

however, that even adults occasionally produce forms that 

they would probably regard as “overgeneralizations” in such 

circumstances; as in the form *unlearn, which appears in 
the title of this paper). Li and MacWhinney‟s (1996) model 

does not simulate this situation as it is never „asked‟ to 

produce a reversed (or non-reversed) form of a particular 

verb, as required for the discourse context; verbs are simply 

probabilistically assigned to one of three categories.  
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Our goal in the present study was to address these 

shortcomings with a new version of the un-prefixation 

model. This model differs from that of Li and MacWhinney 

in a number of important ways. First, the model was trained 

using a regime that more accurately reflects the frequency of 

individual forms in the input. This allows us to achieve 
more accurate classifications, whilst avoiding the need for 

discontinuities in the training regime.  

Second, we aimed to determine whether a model trained 

on the semantic features of a subset of the verbs is able to 

successfully generalize its acquired structure to novel items 

when presented with their semantic features. Although the 

ability to generalize will be a crucial feature of any model of 

this phenomenon, no such test was conducted by Li and 

MacWhiney (1996). This test is crucial in determining 

whether a semantics-based model can account not only for 

the retreat from overgeneralization errors, but also for the 

formation of the generalizations that allow for such errors 
(and correctly produced novel forms) in the first place. 

Third, the new model was designed to simulate not only 

overgeneralization - which was observed in Li and 

MacWhinney‟s study - but also, crucially, the retreat from 

overgeneralization, which was not. This was achieved by 

including in the input signal a „reversative feature‟, which 

was switched on for reversed forms and off for base (non-

reversed) forms. The model was trained on reversible items 

in both their base (e.g., pack, appear) and reversed forms 

(e.g., unpack, disappear). For example, the set of semantic 

vectors representing the verb pack was trained with the 
reversative feature off (corresponding to presentation of 

pack) for some trials and on (corresponding to presentation 

of unpack) for others. This feature makes it possible to 

explicitly „ask‟ the model to produce a reversed form for 

verbs that were never presented in this form during training. 

This maps closely onto the scenario where children produce 

overgeneralization errors (e.g., to denote the reversal of a 

squeezing action) and hence allows us to model both 

overgeneralization and the retreat from overgeneralization 

in a realistic way. The inclusion of this feature has two 

further advantages that would seem likely to facilitate 

learning and generalization. First, it makes it possible to 
present reversible verbs to the model with the relative 

frequencies of the reversed and non-reversed forms in 

speech to children. Second, the information that a verb has 

occurred in reversed form constitutes a powerful cue that the 

verb (or collection of semantic features) is indeed reversible.  

The final advantage of the new model is that it allows us 

to simulate adult acceptability judgment data. The inclusion 

of the reversative feature means that the output (i.e., the 

activation of the un-/dis- units) of the model when asked to 

produce a reversative form for a verb never presented in this 

form during training (e.g., squeeze) can be taken as 
analogous to an “acceptability judgment” for the reversed 

form (e.g., unsqueeze). This makes it possible to evaluate 

the model‟s performance in a very fine-grained way, by 

investigating whether its “acceptability ratings” of the 

various verbs in un- form correlate with adults‟ judgments.  

Method 

Our learning task was designed to more closely mirror 

that faced by real learners. In particular, our models were 

trained on both the base form and the reversed form of 

reversible verbs. The simulation used the same set of 160 

verbs used by Li and Macwhinney (1996), pre-classified as 

un-taking (N=40), dis-taking (N=19) or zero (N=92). The 
input to the model consisted of the 20-bit semantic vector 

employed by Li and Macwhinney (whom we thank for 

making these data available to us) as well as a one bit 

„reversative‟ feature. The reversative feature was set to 0 

when a verb was presented in its base form, and to 1 when a 

verb was presented in its reversed form (either un- or dis-). 

The model had three output units, one for each of the three 

prefixes „zero‟ „un‟ and „dis‟, and six hidden units. The task 

of the model (during training) was to predict whether each 

verb was a zero verb, an un- verb or dis- verb. Training 

items were presented in their base- (i.e., with the reversative 

feature off) and reversed forms (i.e., with the reversative 
feature on) relative to their (log) frequency in the British 

National Corpus (BNC). For example, the model was 

presented with fasten (BNC frequency 667) both in its base 

form (i.e., with the reversative feature off) and in its 

reversed form (i.e., with the reversative feature on; BNC 

frequency of unfasten = 97). In both cases, the “correct” 

activation pattern of the un-, dis- and zero output units (for 

the purposes of backpropogation) was 1 0 0 (i.e., activation 

of the un- unit only). Likewise, zero verbs (which take 

neither un- nor dis-) were never presented with the 

reversative feature during training. The formal classification 
of items as zero, un- or dis was the same as that used by Li 

and MacWhinney (which was determined by adult raters). 

Whilst this classification can on occasion clash with BNC 

usage, this often represents cases where a prefixed form 

does not in fact represent the reversal of an action (e.g., 

disapprove has a meaning that is opposite to that of 

approve, but does not denote the reversal of this action). 

Thus we decided to respect the classifications of the adult 

raters, rather than determining classifications on the basis of 

corpus usage.  

During testing, the model was presented with the training 
set with the reversative feature switched on for all items. 

The activations of each of the three output units were then 

read off. For un- and dis- verbs, the reversative feature had 

occasionally been switched on during training (and was 

always associated with a target of un- or dis-). For zero 

verbs, which had never been paired with the reversative 

feature this was a novel situation. This corresponds to a 

scenario in which a human learner is attempting to produce 

a reversative form of a verb never encountered in this form 

(e.g., squeeze) or judge the acceptability of a reversed form 

offered by an experimenter (e.g., *unsqueeze). Early in 

development, children are quite willing to produce 
overgeneral forms like *unsqueeze, before learning to reject 

them later on. In these simulations, the relative activation of 

the un- and dis- output units was taken to reflect the model‟s 

acceptability rating of these forms. 
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The model was implemented using LENS, with all 

parameters set to their default values. The model was 

trained for a total of 100,000 trials (with one verb presented 

each trial) and tested after every 5,000 trials. Individual 

forms were included in the training relative to their log 

frequency in the British National Corpus. The order of 
presentation of items was randomized. 

Results 

Classifying verbs in the training set 

The first simulation was designed to investigate the 

model‟s ability to correctly classify the training items. In 

this simulation, an item was considered correctly classified 

if the activation of the target output node exceeded 0.7. The 

results for this simulation (averaged over 5 runs of the 
model) are depicted in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 
                               

Fig.1: Proportion of correctly classified forms 

 

As can be seen in Fig.1, the model is capable of correctly 

classifying an increasing number of items with increased 

training. Learning is particularly fast for the un- verbs, 

followed by the dis- verbs, and is slowest for zero verbs. 

However, even for the zero verbs, the model learns to ignore 

the fact that the reversative feature has been switched on 

(recall that the reversative feature is always switched on 

during testing).  Thus despite the fact that the reversative 
feature was always associated with activation of either the 

un- or dis- output unit (and never the zero unit) during 

training, the model learns to correctly map 80% of zero 

verbs to the zero output unit when the reversative feature is 

switched on at test. This can be thought of as analogous to a 

child refusing to produce a form such as *unsqueeze despite 

being under functional pressure to do so (or rating such a 

form as ungrammatical).  

 

Generalization 
Generalization – the ability to apply previously acquired 

“rules” or patterns to new items – is a key aspect of human 

linguistic competence. Given the semantics of novel verbs, 

both adults and children are able to determine whether or 

not this verb can be used in a particular construction 

(Ambridge et al, 2008; in press; submitted). (It is worth 

noting in passing that such findings are problematic for a 

purely statistical entrenchment account). Although we are 

aware of no studies that have investigated this phenomenon 

with regard to un-prefixation, it is reasonable to suppose 

that adults would be able to generalize in this way.  

The second simulation was therefore designed to 

investigate the model‟s ability to generalize the knowledge 

it has extracted from the training set to novel items. This 
was done by removing 25% of the items from the training 

set (a different random set was held out for each of five 

runs). Testing then took place only on the items that were 

held out during training. Fig 2 shows the performance 

(average activation of the correct output node) of the model 

for these items, averaged over the five runs. As with the 

previous simulations, the model was trained for 100,000 

trials. As can be seen from Fig. 2, the model is successful in 

generalizing its acquired knowledge to all three classes. 

 

 

 
  

 

 

 

 

 

 

 

 

Fig. 2: Performance of the model on novel items. 

Retreat from Overgeneralization 

While the data presented thus far demonstrate that the 

model is capable of generalization, they do not demonstrate 

that the model – like children – produces, and then retreats 

from – overgeneralizations.  

The data presented in Fig 1 suggest that the model 

produces overgeneralization errors, in that many zero verbs 

are incorrectly classified as un- or dis- verbs until relatively 

late in training. Nevertheless, this pattern is not necessarily 

indicative of overgeneralization behaviour. Even if a large 

percentage of zero verbs are not classified as such by a .70 

criterion, it does not necessarily follow that the model is 
willing to overgeneralize on these items. For example, a 

verb activating the zero unit at 0.6 and the un- and dis- units 

each at 0.2 would be said to have failed in classifying the 

verb as a zero verb, but it would be odd to claim that the 

model was overgeneralizing the verb to un-/dis-. In order to 

more closely determine the model‟s willingness to over-

generalize, we determined which output node showed the 

highest activation level for each of the zero verbs (for the 

simulation in which no verbs were held out). The results of 

this analysis are shown in Fig. 3. Early in training the zero 

node is most active for about 45% of zero verbs. Thus, 

when the reversative feature is switched on, the most active 
node is the un- or dis- node for 55% of zero-verbs (i.e, the 

model can be said to overgeneralize 55% of zero verbs to 

either un- or dis- when under functional pressure to do so). 

This decreases to around 10% at the end of training. Thus 
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the model can be said to show the retreat from 

overgeneralization that is characteristic of children‟s 

learning. 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3: Most active nodes for presentations of zero forms.  

  
There are two possible reasons for the model‟s successful 

simulation of the pattern of overgeneralization on zero 

verbs. The theoretically interesting possibility is that this is 

caused by the presence of the reversative feature at test. On 

this explanation, it is the functional pressure of „wanting‟ to 

reverse a verb (rather than an incorrect classification) that 

causes the model to overgeneralize (as we would argue is 

the case for children). A less interesting possibility, 

however, is that the class of zero verbs may simply be 

difficult for the model to learn (for example, it may be that 

zero verbs form a class that is less semantically cohesive 
than either un- or dis- verbs). This may cause the model to 

incorrectly classify zero verbs as either un- or dis- verbs. 

Indeed, misclassifications were the major cause of 

overgeneralization errors in Li And MacWhinney‟s (1996) 

simulations. 

This possibility was tested by re-running our first 

simulation (with no items held out), with the modification 

that the reversative feature was switched on (when relevant) 

during training, but not at test, thus providing a baseline 

measure of the model‟s ability to classify items into the 

correct category. As in the first simulation, an item was 

considered correctly classified when the activation on the 
target node exceeded 0.7. The results of this analysis are 

shown in Fig. 4. As this figure demonstrates, the model is 

actually very successful in learning the zero-class. Thus, 

after a mere 5,000 trials, the model correctly classifies 75% 

of the zero-verbs. 

These data suggest that the cause of the model‟s 

overgeneralizations is not the fact that the model incorrectly 

classifies many of the zero-verbs (though it may incorrectly 

classify some). Rather (as we would argue happens with 

children) the functional pressure to produce a reversative 

form (as instantiated in the model with the reversative 
feature) overrides the semantics of the zero class. With 

increased training the model (like children) learns to ignore 

this pressure and retreats from overgeneralization. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 4 Proportion of correctly classified items in the absence 

of the reversative feature. 

Modeling Adult Acceptability Judgments 

The data presented thus far show that the model displays a 
pattern of learning, generalization, overgeneralization and 

retreat from overgeneralization that is generally similar to 

that shown by children. In order to determine if the 

behaviour displayed by the model matches human behaviour 

more closely, we assessed the extent to which the model can 

simulate adult acceptability judgments.  

Acceptability judgments of the base and un- form of each 

of the 160 verbs were obtained from 20 adult speakers of 

(British) English. Forms were presented in sentences with 

two different versions counterbalanced across participants. 

For example, 10 participants rated Lisa bandaged her arm 

and Lisa unbandaged her arm whilst 10 rated Marge 
bandaged her friend’s leg and Marge unbandaged her 

friend’s leg. Looking across all verbs, the correlation 

between the two sets was r=0.76 for the un-prefixed forms 

and r=0.55 for the base forms (both significant at p<0.001). 

This represents a reasonable upper-bound when assessing 

the model‟s ability to predict the human acceptability 

judgments. 

In order to determine how well the simulation modeled 

the adult acceptability judgments, the mean adult judgments 

of (sentences containing) the un- forms were correlated with 

the model‟s activation of the un- node in the output bank 
(after 25,000 trials). Across all 160 verbs the correlations 

ranged from .68 to .73 for the five different runs of the 

model (all highly significant at p<0.001). Thus the model 

simulates to an impressive extent adults‟ ratings of the 

relative (un)acceptability of different un- forms. 

This high correlation reflects the fact that adult judgments 

of overgeneralization errors are not binary but graded. Verbs 

that are highly incompatible with the semantic cryptotype 

for the construction (e.g., talk) are rated as extremely 

ungrammatical with un- (all raters gave *untalk the lowest 

possible rating of 1/5). Non-reversible verbs that are, 

nevertheless, less semantically incompatible with the 
cryptoptype receive higher acceptability ratings (e.g., 

*unturn = 1.67/5), whilst still being rated as unacceptable.  

Indeed, even when looking only at the non-reversible (i.e,, 

zero) verbs, the model was able to predict the extent to 
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which adults would consider the un- forms to be acceptable 

(notwithstanding the fact that all were, to some degree, 

unacceptable). Although the correlations were low (range 

.20-30) they were statistically significant for four of the five 

runs (p‟s 0.01 – 0.05) and borderline for one (p=0.053). This 

is an important finding as the correlations calculated across 
all verbs will be somewhat inflated by the fact that verbs 

naturally cluster into two types: verbs that are reversible 

with un- and those that are not. Thus the adults and model 

could show a high correlation simply by rating the un- 

forms of all un-verbs as maximally acceptable (5/5 for 

adults, 1.0 un- unit activation for the model) and the un- 

forms of all zero and dis- verbs as maximally unacceptable 

(1/5 and 0.0). The fact that significant correlations between 

the predicted and actual acceptability of un- forms was 

observed, when looking only at verbs that are not 

reversible, demonstrates that the correlation observed was 

not simply an artefact of the fact that the verbs can be 
divided into two classes (un-taking and not-un-taking).  

No significant model-adult correlations were found for 

acceptability ratings of the un- form of verbs that do take 

un- (i.e., where the un- form is acceptable, the model cannot 

predict the relative acceptability of the different un- forms). 

However, this is probably simply due to the fact that there is 

little relative acceptability (i.e., little variance) to explain, 

with most forms being rated as close to 5/5 (M=4.41, 

SD=0.76). The only un-taking verbs that received un- form 

ratings lower than 4/5 were unarm, undelete, unmask and 

unscramble (with the first two probably representing 
misclassifications). In any case, this issue is irrelevant to the 

question of the retreat from overgeneralization, as all these 

un- forms were acceptable (indeed, all had been encountered 

by the model and, presumably, the adults). 

Discussion 

The aim of the present study was to replicate and extend 

Li and MacWhinney‟s (1996) simulation of children‟s 

learning of un- prefixation. Specifically, we sought to 

implement a more plausible training regime in which both 
non-reversed and (where appropriate) reversed un-/dis- 

forms were presented in proportion to their frequency in a 

representative corpus. Another innovation was the 

introduction of a functional „probe‟ for the reversative form 

which allowed us to investigate children‟s 

overgeneralization errors, and the retreat from such errors, 

in a more plausible way.  

The first point to note is that the present model actually 

displayed better learning of the training set than Li and 

MacWhinney‟s (1996) original model. Thus we can be 

confident that the success of the previous model did not 
depend on unrealistic assumptions concerning the input or 

learning task, as a version of the simulation with (we would 

argue) more realistic assumptions actually performed better. 

The two key improvements would seem to be the more 

realistic training regime (including presentation of both 

reversed and non-reversed forms) and the presence of the 

reversative feature, which helps the model distinguish 

between reversible and non-reversible forms.  

In addition to improved learning of the training set, the 

model was able to demonstrate generalization, 

overgeneralization and subsequent retreat from 

overgeneralization in a way that maps onto reports of 
children‟s performance. More impressively, the model was 

able to predict the relative (un)acceptability of the different 

un-prefixed forms as determined by adult raters.  

With regard to theories of acquisition, the model adds to a 

growing body of evidence which suggests that pure 

statistical learning cannot explain how children form and 

retreat from grammatical (over)generalizations. Instead, 

what seems to be required is an account in which 

probabilistic learning of the semantics of particular verbs 

and constructions plays a key role (e.g., the ILVACS account 

of Ambridge et al, in press). 

Of course, this model as it currently stands does not solve 
the „no-negative-evidence‟ problem. To do so a model 

would need to determine which verbs are non-reversible or 

reversible with un- or dis-, without being given this 

information in the form of the correct output activation 

pattern. Such a model would likely need a more complex 

architecture than the simple feed-forward network used 

here. Nevertheless, the present set of simulations has 

demonstrated that a model that uses verb semantics to 

probabilistically learn verbs‟ argument-structure and 

morphological privileges is on the right tack with regards to 

solving the „no-negative-evidence‟ problem.  
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Abstract 

Cognitive vulnerabilities provide a clear link of how 
individuals are exposed to the elements of the risk in 
hopelessness and later to the formation of recurrence and 
relapse in depression. It has also been associated with the 
negative social support and inferential styles. Therefore, it is 
crucial to understand how these concepts are interrelated, and 
defined. This paper presents a model of the dynamics of a 
human’s developmental state in relation to the social support 
and negative cognitive thought formation (cognitive 
depressogenic thought). Theory in cognitive vulnerability is 
used to serve as a foundation of this model. Simulation 
experiments under different parameter settings pointed out 
that the model is able to produce related behaviour as 
described in several literatures. In addition, using a 
mathematical analysis, the equillibria of the model has been 
determined and analyzed.  

Keywords: Risk of Relapse and Recurrence in Depression, 
Hopelessness, Cognitive Depressogenic Thought, Cognitive 
Vulnerability.  

Introduction 

 

Cognitive vulnerability is one of the main concepts that 

play an important role to escalate the risk of relapse in 

affective disorder (depression). In a broader spectrum, it is a 

defect belief, or structures that are persistently related for 

later emergent in psychological problems. Therefore, by 

understanding this vulnerability and ways to overcome it, a 

risk of relapse or recurrence in depression can be reduced. 

Before further reviewing the underlying concepts of the 

vulnerability, it is essential to understand its connection 

between relapse condition in unipolar depression and social 

support. Unipolar depression is a mental disorder, 

distinguished by a persistent low mood and loss of 

awareness in usual activities (Segal, et al. 2003). Normally, 

under a certain degree of stressors exposure, an individual 

with a history of depression will develop a negative 

cognitive content (thought), associated with the past losses. 

Such cognitive content is often related to the maladaptive 

schemas, which in a long run will cause individual’s 

ongoing thought capability to be distorted and later to be 

dysfunctional (Beck, 1987).  

However, this cognitive distortion can be reduced through 

appropriate supports from other members within the social 

support network (Roberts & Gotlib, 1997). Social support 

network is made up of friends, family and peers. Some of it 

might be professionals and support individuals in very 

specific ways, or other people in this network might be 

acquaintances in contact with every day (Heller & Rook, 

1997). It has been suggested that social support naturally 

can help to prevent and decrease stress through positive 

inferences, which later curbs the formation of cognitive 

vulnerability. However, some literatures have shown that 

certain supports provide contrast effects (Coyne, 1990; 

Panzarella & Alloy, 1995; DeFronzo et al., 2001). Rather 

than attenuating the negative effects from stressors, it will 

eventually amplify the individual’s condition to get worse.  

In this paper, these positive and negative effects from 

social support interaction and its relation with cognitive 

thought are explored. To fulfil this requirement, a dynamic 

model about cognitive depressogenic thought is proposed. 

The proposed model can be used to approximate a human’s 

cognitive depressogenic thought progression throughout 

time. This paper is organized as follows. The first section 

introduces main concepts and existing theory of cognitive 

depressogenic thought and hopelessness. Thereafter, a 

formal model is described. The model has been simulated 

and later followed by a mathematical analysis. Finally, 

conclusion summarizes the paper with a discussion and 

future work for this model.  

 

Underlying Concepts in Cognitive  

Depressogenic Thought 
 

Although it is well documented that social support 

mitigates a risk of relapse, but there is a condition where 

feedbacks from the social support members may indirectly 

escalate the risk of relapse (DeFronzo et al., 2001). Such 

feedbacks are considered as “maladaptive inferential 

feedback” (MIF), and normally increase the negative 

thought formation. Prolong exposure towards this effect will 

later develop a serious cognitive vulnerability. Contrary to 

this, an adaptive inferential feedback (AIF) provides a 

buffer to reduce the threat, by countering negative 

inferences for negative event (DeFronzo et al., 2001). AIF 

asserts that when a social support member offers comfort by 

attributing the source of negative event to be unstable, or 

implies that event directs neither negative consequence 

(characteristics) towards that individual, it will later 

diminish the risk of creating maladaptive inferences.  

These conditions also can be explained through the 

Expanded Hopelessness Theory of Depression. It elaborates 

the possibility of social processes with the presence of 

negative cognitive thought, and stress will later contribute to 

the development of vulnerability towards depression 

(Dobkin et al., 2004; Panzarella et al., 2006). Major focus of 
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this theory is the specific mechanisms which inferential 

feedback (both AIF and MIF) may influence the 

development of hopelessness, cognitive depressogenic 

thought, and later vulnerability in depression. However, this 

paper will be focusing more to the formation of cognitive 

depressogenic thought while retaining important aspects of 

theory.    

According to Alloy et al. (1999), there is an evident to 

show that individuals response differently towards stressful 

life events.  Some individuals may develop severe or long 

lasting depression, while others stay healthy or develop mild 

and short-lived depression. This is the result from 

individuals’ interpretation towards their experience 

influences over the negative event, resulting from the 

formation of cognitive depressogenic thought. Cognitive 

depressogenic thought refers to the negative style of 

thinking, characterized by a tendency to attribute negative 

events to be persistent and widespread in many aspects of 

life (Abramson et al., 1999; Alloy et al., 2004). Individuals 

with this condition are likely to infer the negative life events 

as self-attributions of being worthless and flawed. As a 

result, these particular individuals are exposing themselves 

towards vulnerability of recurrence or relapse in depression.  

The Expanded Hopelessness Theory of Depression 

relates the development cognitive depressogenic thought 

through two precursors. First, the present of positive social 

support feedback (AIF) acts as a buffer to reduce 

individuals’ possibility of having cognitive depressogenic 

thought over time. Second, individuals with cognitive 

depressogenic thought will make negative inferences when 

facing negative events. This condition is also associated 

with less AIF from the social support members (Panzarella 

et al., 2006). Moreover, both of these conditions capable to 

predict changes in stressful events. Therefore, it can be 

further used to elaborate the immunity level of individuals 

(as contrast in vulnerability concept). In addition, many 

studies have also associated the lower risk of depression 

with the presence of AIF (Alloy et al., 2000; Crossfield et 

al, 2002).  

As indicated in several previous works, inferential 

feedbacks provide one of the substantial factors towards the 

development of cognitive depressogenic thought over time. 

By combining either one of these two factors together with 

situational cues, it leads to the formation of either cognitive 

depressogenic inference or positive attributional style. 

Situational cues refers to a concept that explains 

individuals’ perception that highly influenced by cues from 

events (environment).  Individuals under the influence of 

negative thought about themselves will tend to reflect these 

negative cognitions in response to the occurrence of 

stressors. These later develop the conditions called “stress-

reactive rumination” and “maladaptive inference”.  Stress 

reactive rumination reflects a condition where individuals 

have difficulty in accessing positive information, and further 

develop a negative bias towards inference (maladaptive 

inference) (Spasojevic & Alloy, 2001; Robinson & Alloy, 

2003). This process is amplified by previous exposures 

towards cognitive depressogenic thought episode. After a 

certain period, both conditions are related to the formation 

of hopelessness. Hopelessness is defined by the expectation 

that desired outcome will not occur, or there is nothing one 

can do to make it right (Abramson et al., 1989). Prolong and 

previous exposure from hopelessness will lead to the 

development of cognitive depressogenic thought. However, 

this condition can be reduced by having a positive 

attributional style, normally existed during the presence of 

AIF and low situational cues perception (Dobkin et al., 

2004). 

In short, the following relations can be identified from 

the literature: (1) prolong exposure towards MIF, negative 

events, and high-situational cues can lead to the 

development of cognitive depressogenic thought. (2) a 

proper support (AIF) will reduce the risk of further 

development of future cognitive depressogenic thought. (3) 

Individuals with high situational cues and proper support 

will be less effective in reducing the progression of 

cognitive depressogenic thought, compared to the 

individuals with less situational cues.  

Modelling Approach 

This section discusses the details of the dynamic model. 

The characteristics of the proposed model are heavily 

motivated by the research discussed in the previous section.   

In this model, three major components will represent the 

dynamic of interactions between social support feedback 

and individuals involved in negative thought formation 

during the brink of relapse and recurrence in depression. 

These components are; environment, inferential feedbacks, 

and thought formation. Environment explains the condition 

of stressors, while inferential feedbacks represent the 

inferential style communicated by the social support 

members to the individuals and, finally thought formation 

summarizes the interaction results from those conditions. By 

coupling these main concepts, it provides a building block 

in designing an individual model for cognitive 

depressogenic thought dynamics. Figure 1 depicts the 

relationship between the details of these components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Model of Cognitive Depressogenic  

Thought Dynamics  
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Once the structural relationships in the model have been 

determined, then model later can be formalized. During the 

formalization process, all nodes are designed in a way to 

hold values ranging from 0 (low) to 1 (high).  Interaction 

among interrelated nodes will determine the new value of it, 

either by a series of accumulative or instantaneous effects. 

The following explains the detail of the model.  

 

Negative events (NEVt): In the model, the negative events 

are generated by simulating several dynamic t time 

conditions using weighted sum w, of major events; life 

events (Le), chronic (Ce), and daily (De) events.  

 

NEVt(t) = w1.Le(t)+ w2.Ce(t)+ W3.De(t) , 

 

In this case, the role of these events is to represent the 

condition of stressors. These events are seen as very intense 

(high negative event) when NEVt(t) � 1, and less-intense 

when NEVt(t) � 0.  

 

Situational cues (SiC): Situational cues are computed by 

combining three factors together; consistency (CtC), 

consensus (CsC), and distinctiveness (DtC) cues. Higher 

situational cues represent a condition where an individual 

will behave according to the external environment rather 

than individual’s intellect or dispositional.  

 

SiC(t) = ϖ1.CtC(t)+ϖ2.CsC(t)+ϖ3.DtC(t), 

 

Cognitive depressogenic inferences (CDi) explains the 

combination of a maladaptive inferential style (MiF) with 

several components, namely; situational cues (SiC), 

cognitive depressogenic thought (CdT), and negative events 

(NEVt). The  α value is used to distribute the proportion of 
contributions among these variables in this equation.  

 

CDi(t) = α.MiF(t) + (1-α). [SiC(t).CdT(t).NEvt(t)]. MiF(t) 

 

Positive attributional style (PtS) is an attributional style 

that is highly related to an adaptive inferential style (AiF). It 

also has a negative relationship with bad situational cues, 

negative events, and cognitive depressogenic thought.  

 

PtS(t)=η.AiF(t) + (1-η). [1-(SiC(t). NEvt(t).CdT(t))].AiF(t). 

 

Stress reactive rumination (SrR) is based on the 

interaction between cognitive depressogenic inference and 

cognitive depressogenic thought. Parameter β  is used to 
regulate the contribution of these variables.  

 

SrR(t) = β.CDi(t) + (1-β). CdT(t) 

 

Maladaptive inference (MdI) has a positive relationship 

with the stress reactive rumination, and contrary for the 

positive attributional style. This opposite effect reflects the 

condition of stress buffering concept delivered by positive 

social support feedbacks. The intensity of this inference 

process is controlled by parameter γ. 
 

MdI(t) = γ.SrR(t).(1-PtS(t)) 

 

Hopelessness (Hps) and Cognitive depressogenic thought 

(CdT) are derived from the accumulative (temporal relation) 

process of certain cases in a time interval between t and ∆t. 
Hopelessness relates with the formation of maladaptive 

inference, while the hopelessness is related to the 

development of cognitive depressogenic thought. These 

relationships are formulated as the following; 

 

Hps(t+∆t) = Hps(t) +(1-Hps(t)).ψ.(MdI(t)-φ.Hps(t)).  

       Hps(t).∆t 
 

CdT(t+∆t) = CdT(t) + (1-CdT(t)).ϕ.(Hps(t)-τ.CdT(t)). 

       CdT(t).∆t 
 

where ψ, ϕ, φ, and τ denote the proportion of changes for all 
respective equations.  

 

Immunity (Im) has a negative relationship with the 

formation of cognitive depressogenic thought. The value of 

ϒ provides the proportional rate of the contribution between 
based-immunity (IMnorm) and cognitive depressogenic 

thought. IMnorm represents the baseline immunity for each 

individual.  

 

Im(t) = ϒ. Imnorm+(1-ϒ).(1-CdT(t)). Imnorm 

 

Using all defined equations, a simulator has been developed 

for experimentation purposes, specifically to explore 

interesting patterns on inferential feedbacks and 

depressogenic thought. Figure 2 depicts the screenshot of 

the simulator.  

Figure 2: A Screenshot for the Developed Simulator 

 

This simulator is designed and developed under a visual 

programming platform. It allows a graphical user interface 

for experimental and parameters settings purposes.  
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Figure 5: Cognitive Depressogenic Level for 

Each Individual during Repeated Stressors 
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Figure 4: Dysphoric Depressogenic Level for Each 

Individual during Fluctuated Stressors 

 

Simulation Traces 

 

In this section, the model was executed to simulate 

several conditions of individuals with the respect of 

exposure towards negative events, feedbacks from the social 

support members, and situational cues. With variation of 

these conditions, some interesting patterns can be obtained, 

as previously defined in the earlier section. For simplicity, 

this paper shows several cases of cognitive depressogenic 

thought levels formation using three different individual 

attributes. These cases are; (i) an individual A with a good 

feedbacks from the social support members, and using a 

good judgment about the situation, (ii) an individual B that 

receives good feedbacks but with bad judgment about the 

situation, and (iii) an individual C with bad feedbacks from 

the social support, and bad judgment about the situation.  

 

Table 1: Individual Profiles  

Individual  Parameters Setting  

A SiC=0.2, MiF=0.1, AiF=0.8 

B SiC=0.8, MiF=0.1, AiF=0.9 

C SiC=0.9, MiF=0.8, AiF=0.1 

 

The duration of the simulated scenario is up to t = 1000 (to 

represent the conditions within 42 days) with three negative 

events. The first event consisted of the prolonged and 

gradually decreased stressors, while the second event dealt 

with the decreased stressor. The third event simulates the 

repeated stressors.  For all conditions, the initial cognitive 

depressogenic thought was initialized as 0.5.  

 

Case # 1: Prolonged Repeated Stressor with Different 

Individuals Inferential Feedback and Situation Cues 

During this simulation, each type of individual attribute has 

been exposed to a prolonged stressor condition. The result 

of this simulation is shown in Figure 3. 

 

 

 

 

 

 

 

 

  

 

 

 

In this simulation trace, it shown that an individual C (high 

situational cues, and negative inferential feedback) tends to 

develop a cognitive depressogenic thought, in contrast with 

the others. Individual A (low situational cues, and positive 

inferential feedback) shows a rapid declining pattern in 

developing the cognitive condition. Note that the individual 

B (high situational cues and positive inferential feedback) 

has also developed a decreasing pattern towards the 

cognitive condition. However, the individual B has a lesser 

decreasing effect towards a negative thought despite a high 

positive support, given that this individual tends to perceive 

negative view about the situation. Persistent positive support 

from the social support members helps him/her to reduce 

the development of cognitive thought throughout time.  

Case #2: Decreased Stressor with Different Individual 

Inferential Feedback and Situational Cues 

In this simulation trace, there are two conditions were 

introduced, one with a very high constant stressor, and with 

no stressor event. These events simulate the condition of 

where individuals were facing a sudden change in their life, 

and how inferential feedbacks and perceptions towards 

events play important to role towards the diminishing of 

cognitive thought. The result of this simulation is shown in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A comparison for each individual shows that individual C 

gets into a sharp progression towards a high cognitive 

thought after direct exposure towards a heighten stressor. At 

the start of a high constant stressor, both individuals A and B 

develop cognitive thought. However, after certain time 

points, those progressions dropped and reduced throughout 

time. As for the individual C, even the stressors have been 

diminished, the level cognitive depressogenic thought was 

still high for several time points until it decreased.  

 

Case # 3: Rapid Repeated Stressors with Different 

Individual Inferential Feedback and Situational Cues 

For this simulation, each type of individual has been 

exposed to a stream of repeated stressors, with a rapid 

alteration between each event. In a real situation, it 

simulates the cummulative effect conditions, where repeated 

strikes had the effect of escalating the overall intensity of 

stressors.  

 

 

 

 

 

 

 

 

 

0
0.1

0.2

0.3
0.4

0.5
0.6
0.7

0.8

0.9
1

1.1

1 101 201 301 401 501 601 701 801 901

Stressors 

C 

B 
A 

Figure 3 Cognitive Depressogenic Level for Each 

Individual during Prolonged Stress 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

207



Figure 5 illustrates the effects of repeated stressors 

condition towards different individuals. Note that the 

individual C develops a gradual increasing level of 

cognitive thought, while both individuals A and B show a 

contrast effect. Using a similar experimental setting, by 

using tmax=5000, the end of the experimental results show 

individual C will have a persistent cognitive depressogenic 

value equal to 1.  

Mathematical Analysis 

 

 In this section, the equillibria properties are analyzed 

using a mathematical formal analysis. The equillibria 

explains condition where the values for the variables which 

no change occur. This condition can be represented as 

having any differences in temporal function between time 

point t and t+∆t are equal to zero (in particular for both 
temporal relations in Hps and CdT). To obtain possible 

equilibria values for the other variables, first the model is 

described in a differential equation form. In addition, to 

achieve these equilibria, all external conditions are assumed 

constant.  

i)  dCdT(t)/dt=(1-CdT).ϕ.(Hps-τ.CdT).CdT 

ii) dHps(t)/dt = (1-Hps).ψ.(MdI-φ.Hps).Hps 

Next, the equations are indentified describing  

i) dCdT(t)/dt= 0 

ii) dHps(t)/dt =  0 

Therefore, these are equivalent to; 

i) CdT=1 or  Hps=τ.CdT or CdT=0 

ii) Hps =1 or  MdI=φ.Hps or Hps=0 

 

 From here, a first of conclusions can be derived where 

the equilibrium can only occur when the cognitive 

depressogenic thought level is equal to 1, hopelessness 

equals the cognitive depressogenic thought (if τ=1), or no 
cognitive depressogenic thought takes place. By combining 

these three conditions, it can be re-written into a set of 

relationship in (A ∨ B ∨C) ∧ (D ∨ E ∨ F) expression: 

(Hps =1 ∨ MdI=φ.Hps ∨ Hps=0) ∧ (CdT=1 ∨  Hps=τ.CdT 

∨ CdT=0) 

 

From this, this expression can be elaborated using the law of 

distributivity as (A ∧ D) ∨ (A ∧ E) ∨,... , ∨ (C ∧ F). This 

later provides possible combinations equillibria points to be 

further analyzed.  

 

Condition  # 1:  CdT=1 

From this case, it can be further derived that respective 

values for the equilibrium condition to take place. These 

values can be calculated from the following formulae.  

CDi = α.MiF + (1-α).(SiC.NEvt.MiF) 

PtS = η.AiF + (1-η). (1-(SiC. NEvt)).AiF 

SrR = β.[α.MiF + (1-α).(SiC.NEvt.MiF)] + (1-β)  
MdI = γ.[β.(α.MiF + (1-α).(SiC.NEvt.MiF)) + (1-β).(1-  

((η.AiF + (1-η).(1-(SiC.NEvt).AiF)))] 

Im = ϒ. Imnorm 

This equillibria describes the condition when individuals are 

experiencing an intense negative cognitive thought 

throughout time will eventually have their level immunity 

reduced to the lowest boundary of individuals’ limit. This 

condition creates higher vulnerability towards the 

development of onset during the present of negative events. 

It also represents the conditions where individuals with high 

maladaptive inferential feedbacks and situational cues levels 

over prolong period tend to develop cognitive depressogenic 

thought. Simulation traces in Case #1 and #3 confirm this 

equilibrium condition.  

 

Condition # 2: CdT=0 

Another special case of an equilibrium condition is when 

the CdT is zero. In this case, the following values are found: 

CDi = α.MiF  

PtS=η.AiF  

SrR = β.(α.MiF ) 

MdI = γ.β.(α.MiF ).(1-η.AiF) 

Im = ϒ. Imnorm+ (1-ϒ) Imnorm 

From this, it is an equilibrium, which would be considered 

as a good condition since the stable individuals’ immunity 

describes people with a good mental condition (less 

vulnerable towards stressors). Having this, it shows that 

individuals with high adaptive inferential feedbacks and low 

situational cues tend to have a low cognitive depressogenic 

thought level even during prolonged exposure towards 

stressors. All simulation traces from experiments (case #1, 

#2, and #3) confirm this condition. This condition is 

imperative to reduce the formation of potential relapse / 

recurrence caused by negative events.  

 

Condition # 3: Hps=ττττ.CdT 
In this condition (if τ=1), the following values are found: 
CDi = α.MiF + (1-α). (SiC.Hps.NEvt). MiF 

PtS=η.AiF + (1-η). (1-(SiC.NEvt.HpS)).AiF 

SrR = β.(α.MiF + (1-α). (SiC.Hps.NEvt). MiF) +  

 (1-β).HpS 

MdI = γ.[β.(α.MiF + (1-α). (SiC.Hps.NEvt). MiF) +  

 (1-β).HpS.(1-(η.AiF + (1-η)).(1- 
(SiC.NEvt.HpS)).AiF)] 

Im = ϒ. Imnorm+(1-ϒ).(1- HpS). Imnorm 

This equilibrium condition represents where the individuals 

remain constant in a cognitive depressogenic thought state 

over time points. If Hps >τ..CdT , this condition illustrates 

the individuals are progressing to have a positive cognitive 

thought and vice versa.   

 

Conclusion 

 

 In this paper, a model to investigate the phenomenon of 

the cognitive depressogenic thought has been developed. 

The proposed model is designed from several scientific 

findings in cognitive depressogenic thought and 

hopelessness.  It provides a useful insight to understand the 
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dynamics of related concepts in individual’s cognitive 

depressogenic thought, inferential feedbacks, and negative 

events. To this end, the model is presented in a dynamic 

model, to allow possible experimental settings for a variety 

of different conditions. Using a visual programming 

language, several numbers of simulation experiments under 

different parameter settings have being performed. Despite 

of validating the model will be carried out in future, these 

experimental results pointed out that the model is able to 

produce behaviour of different types of inferential feedback, 

and it is bear a resemblance of several results in related 

literatures.  

 In addition, by a mathematical analysis, equillibria 

conditions of the model have been determined. This 

mathematical analysis is equally essential to reveal the 

occurrence of equilibrium conditions, primarily to illustrate 

the convergence and stable state of the model. Future work 

of this model will be specifically focus for potential 

integration with our existing relapse and recurrence model 

in unipolar depression. Having this model coupled, it will 

provide a better cognitive perspective on how cognitive 

depressogenic thought is related to the recurrence and 

relapse in depression. Furthermore, it will promote a better 

way to formulate support in automated monitoring and 

health informatics systems.  
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Abstract

Human beings, from the very young age of 18 months, have
been shown to be able to extrapolate intentions from actions.
That is, upon viewing another human executing a series of ac-
tions, the observer can guess the underlying intention, even be-
fore the goal has been achieved, and even when the performer
failed at achieving the goal. We identify an important prelim-
inary stage in this process, that of determining whether or not
an action stream exhibits any intentionality at all. We propose
a model of this ability and evaluate it in several experiments.

Keywords: Intention; Cognitive Modeling.

Introduction
The topic of imitation has been the focus of much research in
cognitive science and psychology (Meltzoff & Decety, 2003),
neurophysiology (Rizzolatti, Fogassi, & Gallese, 2001), and
artificial intelligence. Understanding the mechanisms under-
lying imitation and the time-line of their development is a part
of understandingTheory of Mindand other aspects of social
cognition. The AI community tries to model and implement
this ability in software agents and robots, for the purpose of
producing socially intelligent systems that can interact more
meaningfully and usefully with humans.

Many different types of imitation exist, from the lower lev-
els of gestural, facial and vocal mimicking to the higher level
of goal imitation. The latter—the ability to understand the in-
tention underlying a stream of actions, and reproduce the in-
tended goal—is the type that we focus on here. How exactly
this process takes place is yet an open question, and different
researchers have addressed different aspects of it.

One of the more intriguing studies done in this area is by
Meltzoff (1995), who has shown that 18-month old children
are able to imitate the goal of an acting adult,even when all
they see is a series of failed attempts. However, children are
not able to do this when they observe arbitrary, intention-less,
motions. These results, according to Meltzoff, assert the pres-
ence of some form of Theory of Mind at this young age.

Artificial systems have yet to reach a performance level
comparable to that reported by Meltzoff. Much of the work
on modeling this ability has focused on identifying the goal
itself. Rao, Shon, and Meltzoff (2007) lay forth a Bayesian
model for imitating goals that have been realized, and state
that they intend to develop it in order to handle unrealized
goals as well. Hongeng and Wyatt (2008) parse visual input
and attempt to infer the goal before it is completed based on

visual cues such as color and shape. However, when deal-
ing with intentions that have not been realized—i.e., when
the acting agent failed at achieving its goal—the problem be-
comes much more challenging. Since the observed end-state
in this case is not necessarily a goal, the observing agent must
first determine whether or not there is anything worth imitat-
ing here, that is, if the actions were performed with a goal in
mind, and only then can it proceed to attempt to infer what
exactly that goal was.

Indeed, the open challenge we tackle in this work is that
of identifying whether or not an action stream has any under-
lying intention at all. In Meltzoff’s setup (described in more
detail later), the behavior of the control groups has shown
that when action streams did not have any underlying inten-
tion, the observing children did not attempt to imitate the act-
ing adult. This is crucial, since before the observing agent
embarks on the intimidating task of guessing what the goal
actually is, it would be wise to first decide whether there is
any goal to look for.

In this paper we model this ability of discerning intentional
action from unintentional action. The key idea underlying our
work is the principle of rational action, which states that an
agent that has a goal will take actions to achieve this goal. In-
spired by this principle, we determine the intentionality of
observed sequences of actions by looking at whether they
areefficient, i.e., they monotonically move the agent further
away—in problem state space—from its initial state.

We evaluate the model in two very different environments.
First, we reproduce two of Meltzoff’s experiments in a dis-
crete version, using STRIPS notation1, and show that our
method results are compatible with his. Second, we report
on experiments in which our method results were contrasted
with adult human judgment of surveillance videos. While we
only have preliminary results in this environment, they are
very promising and show that our method tends to evaluate
motions similarly to humans.

Background and Related Work
There is a vast amount of literature on the general topic of im-
itation and on, specifically, goal imitation. We cannot hope
to cover it all here. We note that throughout the paper, we
use the terms ”goal” and ”intention” colloquially, while a

1Formal language for describing states and actions in AI plan-
ning (Fikes & Nilsson, 1971).
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clear distinction is sometimes made between them in previous
work, e.g., (Tomasello, Carpenter, T. Behne, & Moll, 2005).

From the computational research, we refer here only to two
of the more recent ones on goal inference. Meltzoff himself
took a first step in this direction (Rao et al., 2007), by mod-
eling the task in a Bayesian framework. They trained their
model on several example trajectories leading to different
goals, so that when given a test scenario the model could de-
termine the goal, before it was reached. Hongeng and Wyatt
(2008) analyze real-world video input, and use learning algo-
rithms to determine higher-level goals from low level move-
ment. Both these works build on past experience—multiple
exposures to a limited set of possible goals, and learning ac-
tions that are associated with them. They also both assume
intentionality, and therefore go directly to the task of infer-
ring what that intentionality is. Thus our work on recognizing
intentionality complements theirs.

Harui, Oka, and Yamada (2005) attempt to determine
whether intentionality is present at all. However, their results
are based mainly on vocal cues, such as ”oops”, to signal an
accidental action as opposed to an intentional one. We ignore
such features, since in Meltzoff (1995)’s paradigm they were
neutralized. No one else, to the best of our knowledge, has at-
tempted to computationally identify intentionality in action.

There are several psychological theories regarding the
stance taken when dealing with intentionality. Meltzoff
(2002) takes the mentalistic stance that infants’ ability to
interpret intentionality makes use of an existing theory of
mind—reasoning about the intents, desires and beliefs of oth-
ers. Gergely and Csibra (2003), on the other hand, take a tele-
ological stance, that infants apply a non-mentalistic, reality-
based action interpretation system to explain and predict goal-
directed actions. As Gergely and Csibra say themselves, this
teleological evaluation should provide the same results asthe
application of the mentalistic stance as long as the actor’sac-
tions are driven by true beliefs, as is our case.

The principle of rational action (Gergely & Csibra, 2003;
Watson, 2005) plays a major role in intentional action. It
states that intentional action functions to bring about future
goal states by the most rational actions available to the actor
within the constraints of the situation. In other words, in-
tentional action is necessarily efficient and as such, proceeds
monotonically away from the initial state.

A Method of Intentionality Recognition

We first describe briefly Meltzoff’s 1995 experiments. We
then present our technique for determining intentionality.

Motivation
In order to understand the motivation for our model, as well
as the setup used to evaluate it, we briefly describe some de-
tails of Meltzoff’s experiment. The purpose of his experiment
was to test whether children of 18-months of age are able to
understand the underlying intention of a sequence of actions,
even when that intention was not realized (the acting agent
failed to achieve the goal).

For five different novel toy objects, a target action was cho-
sen. For example, for a two-piece dumbbell-shaped toy, the
target action was pulling it apart. For a loop and prong device,
the target action was to fit the loop onto the prong. The chil-
dren were divided into four groups—”Demonstration Target”,
”Demonstration Intention”, ”Control Baseline” and ”Control
Manipulation”. The children in the ”Demonstration Target”
group were shown three repetitions of a successfully com-
pleted act, such as pulling apart the dumbbell, or hanging the
loop on the prong; their voluntary response was to reproduce
the same act when the objects were handed to them. The
children in the ”Demonstration Intention” group were shown
threefailed attemptsby the adult to produce the goal, where
the adult (seemingly) failed at reaching it. These children’s
re-enactment of the goal reached a level comparable to that of
the children who saw the successful attempts. This shows that
children can see through the actions to the underlying inten-
tion, and extrapolate the goal from the actions. The children
in the ”Control Manipulation” group saw the object manipu-
lated three times in ways that were not an attempt to reach the
chosen target act. This was done in order to make sure that
mere manipulation of the object is not enough for the chil-
dren to reproduce the goal. The last control group—”Control
Baseline”—had the children just see the object, without it be-
ing manipulated at all. Both control groups did not show sig-
nificant success at reproducing the target act.

Meltzoff’s experiment shows that when children discern
an underlying intention, as in the two Demonstration groups,
they attempt to imitate it. When they do not detect such an
intention, as in the Control groups, they do nothing, or some-
times mimicked the arbitrary acts of the adult (in the ”Con-
trol Manipulation” group; obviously, children were imitating
what they understood to bethe intention of the adult).

Thus a model of goal imitation must first be able to model
the ability to discern whether there is an underlying intention.
Only then is it relevant to attempt to discern what that inten-
tion is. This would explain why children in both ”Demon-
stration” groups were motivated to look for an underlying in-
tention, while children in the ”Control Baseline” group were
not. This also explains why children in the ”Control Manipu-
lation” group sometimes reproduced the actions of the adult,
even when it was not exactly what the experimenter had in
mind. As long as the trace exhibited some ”rationality of ac-
tion”, or efficiency, the children concluded that there was an
intention worth imitating.

Recognizing Intentionality
We denote the observation trace byt = s0, ...,sk, i.e. a se-
quence of states, brought about by the actions of the demon-
strating agent.s0 is the initial state, andsk is the terminal
state. The task of the observing agent is to decide, given this
trace, whether there was an underlying intention or whether
the acting agent behaved unintentionally.

Inspired by the principle of rational action, we check for
some form of efficiency in the trace. It is reasonable to ex-
pect that a trace with an underlying intention will exhibit a
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clear progression from the initial state towards the goal state,
which is the most efficient way to bring about that goal, start-
ing from the initial state. Note that we do not know at this
stage whether or not there is an underlying goal to the trace,
and even if there is, if it is reached successfully. On the other
hand, unintentional traces would not be driven by such effi-
ciency, and would fluctuate towards and away from the initial
state, without any clear directionality.

To do this, we define a distance measuredist. This dis-
tance measure is dependent on the nature of the world be-
ing modeled. For example, when dealing with geographical
targets, the distance could simply be the Euclidean (and in-
deed it is, in one of our experiments). In a discrete state-
space, defined by STRIPS notation, we use Bonet and Geffner
(1999)’s Heuristic Search Planner to generate optimal plans
from the initial state to every state in the trace, and the num-
ber of action steps in each generated plan is taken to be the
distance to the respective state. If the demonstrating agent
acts efficiently—taking only optimal action steps that bring
it closer to the goal—then the distance will keep increasing.
While if it acts randomly, executing various actions that do
not necessarily lead anywhere, the distances will fluctuate.

There are a few requirements for the distance measure. We
do not require this distance to obey symmetry (d(s1,s2) =
d(s2,s1)). However, this distance should always be positive
and equal 0 only from a state to itself. Using any such dis-
tance measure, we capture the notion of optimality, in the
sense of a shortest path from one state to another.

Thus from the original state trace we induce a sequence of
distance measurementsd1 = dist(s1,s0), ...,dk = dist(sk,s0),
measuring theoptimal (minimal) distancebetween each state
in the sequence, and the initial state. Thus, for every state,
we have an indication of how much the demonstrating agent
would have had to invest (in time, number of elemental ac-
tions, or any other resource, depending on how the distance is
defined), had it been intending to reach that state. We argue
that enough information is preserved in this sequence for our
observing agent to come to a satisfying decision.

We want to calculate from this sequence a measure of in-
tentionality, which we take to be the proportion of local in-
creases in the sequence—at how many of the states along the
trace has the distance from the initial state increased as com-
pared to the previous state, out of the total number of statesin
the trace. This will give us an idea of how efficient the action
sequence is. More formally,

u = |{di > di−1}
k
i=1| (1)

is the number of states in the trace where the distance from
the initial state increases, as compared to the distance at the
previous state. Taking this number and dividing it by the total
number of states in the trace,

p =
u

|{dk}
k
i=1|

(2)

gives us a measure of intentionality for the action sequence.

The higher the resultingp, the more intentionality is at-
tributed to the action. If a binary answer is preferred, we can
determine a cutoff level above which we conclude intention-
ality is present, and below which we conclude it is not.

For example, in the case of clear intentionality, we would
expect a strictly monotonically increasing sequence of dis-
tances; the agent proceeds from the initial state, at each step
moving farther and farther away from it, and closer and closer
to the intended goal. At the other end, if the observed agent
is not driven by an intention to reach any particular state, we
would expect the sequence to fluctuate in a seemingly random
fashion, with the agent sometimes moving away from the ini-
tial state and sometimes moving back towards it. Of course,
this is merely a motivational argument. In the next section we
show that this simple intuitive method does indeed produce
the expected results.

Implementation and Evaluation

In order to evaluate the success of our proposed measure of
intentionality, we implemented it in two different environ-
ments. The first uses a discrete abstraction of Meltzoff’s ex-
periments, modeled in standard AI planning problem descrip-
tion (STRIPS), and the second uses surveillance videos.

Discrete Versions of Meltzoff’s Experiments
We model Meltzoff’s experiment environment as an 8-by-8
grid, with several objects and several possible actions which
the agent can execute with its hands, such as grasping and
moving. We implemented two of the five object-manipulation
experiments mentioned by Meltzoff: The dumbbell and the
loop-and-prong. For the dumbbell, there is one object in the
world, which consists of two separable parts. The dumbbell
can be grasped by one or both hands, and can be pulled apart.
For the loop-and-prong, there are two objects in the world,
one stationary (the prong), and one that can be moved around
(the loop). The loop can be grasped by the hand, and released
on the prong or anywhere else on the grid. As previously de-
scribed, we use Bonet and Geffner (1999)’s HSP to compute
the distance measure.

We manually created several traces for the dumbbell and
for the loop-and-prong scenarios, according to the descrip-
tions found in Meltzoff’s experiment, to fit the four different
experimental groups. For example, a visual representationof
the ”Demonstration Target” trace is given for the dumbbell
object in Figures 1(a)–1(i).

In addition, we created a random trace, which does not ex-
hibit any regularity. We added this trace since the children
in Meltzoff’s ”Control Manipulation” group were sometimes
shown a sequence with underlying intention, albeit not the
target one. For each trace we calculated the sequence of dis-
tances, using the above mentioned HSP algorithm, and then
computed the proportionp.

Results
Figure 2 show some plots of the sequence of distances asso-
ciated with the Dumbbell experiments. The step number in
the sequence is measured in the X axis. The Y axis shows
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(a) Initial state. Both
hands at 0,0, dumb-
bell at 5,5.

(b) Step one. Right
hand moving towards
dumbbell.

(c) Step three. Right
hand continuing to-
wards dumbbell.

(d) Step five. Right
hand grasping.

(e) Step seven. Left
hand moving.

(f) Step nine. Left
hand at dumbbell.

(g) Step eleven.
Pulling apart.

(h) Step twelve. Re-
leasing one hand.

(i) Step thirteen. Re-
leasing other hand.

Figure 1: Dumbbell Demonstration Target (left to right, top
to bottom).
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(b) Random.

Figure 2: Distance as a function of state in sequence in the
Dumbbell experiments.

the distance. Figure 2(a) shows an almost perfectly monoton-
ically increasing distance trace for the ”Demonstration Intent
II” trace, where the right hand slips off the dumbbell, and so
returns to the state it was at before it grasped it. Since only10
out of 12 of the states showed an increase in the distance from
the initial state, relative to the previous state, the intentional-
ity score is 10/12. Figure 2(b) shows the distance sequence
for the ”Random” trace. Here the graph fluctuates, demon-
strating the unintentionality of the trace.

Table 2 shows the calculated measure of intentionality, for
each of the traces in the prong-and-loop experiment, and Ta-
ble 1 shows the same for the dumbbell experiment. In both
tables, each row corresponds to a different type of state se-
quence. The right column shows the measure of intentionality
as computed by the method described above.

In Meltzoff’s experiments, every child was shown three
traces, and only then was handed the objects. There is cer-
tainly information in this seeming redundancy; see (Meltzoff,
Gopnok, & Repacholi, 1999) who show that when only one

trace was shown to the ”Demonstration Intention” group, the
children were unable to reproduce the goal. However, we do
not treat this at this stage in our model. So, while every child
was shown three possibly different traces, we calculated our
measure of intentionality separately for each of these traces,
which is why we have more than one row in the table for some
of the groups.

For example, the prong-and-loop procedure failed in
two different ways in Meltzoff’s ”Demonstration Intention”
experiment—either with the loop being placed too far to the
right of the prong (”Demonstration Intention I” in Table 2),or
too far to the left (”Demonstration Intention II”). Both these
actions received an intentionality score of 1, since the end-
state was reached in the most efficient possible way. In the
discussion section we elaborate on the meaning of this.

The dumbbell procedure as well failed in two different
ways—with the right hand ”accidentally” slipping off the
dumbbell while trying to pull it apart (”Demonstration Inten-
tion I” in Table 1), or with the left hand slipping off (”Demon-
stration Intention II”). When the right hand slipped off it
ended up slightly closer to the point where it was before the
action was initiated, as opposed to where the left hand ended
up when it slipped off. For this reason, the intentionality mea-
sure for ”Demonstration Intention I” is slightly lower thanfor
”Demonstration Intention II”.

Trace Measure of Intentionality
Demonstration Target 1
Demonstration Intention I 0.8333
Demonstration Intention II 0.9166
Control Baseline 0
Control Manipulation 0.8333
Random 0.5384

Table 1: Calculated measure of intentionality for STRIPS im-
plementation of the dumbbell experiment.

Trace Measure of Intentionality
Demonstration Target 1
Demonstration Intention I 1
Demonstration Intention II 1
Control Baseline 0
Control Manipulation I 0.7777
Control Manipulation II 0.7777
Control Manipulation III 1
Random 0.5555

Table 2: Calculated measure of intentionality for STRIPS im-
plementation of the prong-and-loop experiment.

In both experimental setups, the ”Demonstration Target”
trace received a clear score of 1, the highest possible inten-
tionality. This happened because every step in the trace was
necessary for bringing about the goal in the most efficient
way—each and every state progressed away from the initial
state and towards the goal state. The ”Control Baseline” trace
received a 0, since nothing at all happened in that trace—the
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world remained static, at the initial state, without any change
throughout the trace. The ”Random” trace received a low
score, just a bit above 0.5, since the number of states pro-
gressing away from the initial state was roughly equal to the
number of states returning towards it. The ”Demonstration
Intention” traces exhibited a significant measure of intention-
ality, as did the ”Control Manipulation”. The latter can be
explained by observing, as mentioned above, that even when
the adults manipulated the objects in a way that was not the
original intention of the experimenter, nevertheless the ma-
nipulationdid exhibit an intentionality to reachsome state,
as opposed to just wandering about aimlessly in the space of
possible states. For the dumbbell object, the arbitrary actwas
pushing the ends inwards (this same act was demonstrated
three times). For the prong-and-loop object, the arbitrary
acts were moving the loop along an imaginary line above the
prong, from right to left (”Control Manipulation I”), from left
to right (”Control Manipulation II”), and placing it just be-
low the prong (”Control Manipulation III”). This last act re-
ceived the ultimate intentionality score, since the end-state
was reached by the most direct path.

Video Experiment
A second set of experiments was carried out in order to com-
pare our model’s results to those of human observers. In
particular, we are interested in how human observers classify
real-life human movement, and whether their judgment of in-
tentionality correlates with those of our model. To test this,
we used the CAVIAR video repository of surveillance videos.
We selected a dozen movies from the repository. With respect
to intentionality, these range from movies that show very de-
liberate movements (a person crossing a lobby towards an
exit), to some that are less clear (a person walking to a paper
stand and browsing, then moving leisurely to a different lo-
cation, etc.). We compared human subjects’ judgment of the
intentionality of motions in these videos, to the predictions of
our model.

Let us begin by describing how we measure intentionality
using our model. The ground truth position data of the se-
lected videos is a part of the repository, and we use it as a
basis for our intentionality measurements. The planar coordi-
nates of the filmed character in every frame in the video were
taken as a state in the trace, and the distance measure we used
was the Euclidean distance. As above, for every state we cal-
culated the distance from the initial state, and then checked
for how many of those states the distance increased, relative
to the previous state.

Figure 3(a) shows a graph of the path of movement of the
observed character, in planar coordinates, in one of the videos
from the repository (video bww1gt). Because we are plot-
ting planar coordinates, the amount of time spent at each point
is not represented here. Figure 3(b) shows a plot of the dis-
tances of each state in the path, from the initial state. The X
axis measures the video frame number. The Y axis measures
the distance from the initial location of the person in question.
For example, the measure of intentionality for this movement

path wasp= 0.48133. Using a cutoff value of 0.5, this move-
ment was classified as non-intentional. The interested reader
is invited to watch the video and compare it to the graphs
presented here.

(a) Path of movement. (b) Distances of each state from
initial state.

Figure 3: Examples from the bww1gt video.
Those same videos were shown to human subjects who

were asked to write down their opinion regarding the inten-
tionality of the viewed character. They were given the option
of segmenting the video if they thought the character changed
its intention along the trace. Here we faced some difficulty in
the experiment design. In pilot experiments, it became clear
that asking the subjects to directly rank the “strength of in-
tentionality” of a video segment leads to meaningless results.
For instance, some subjects in pilot experiments chose to give
high intentionality marks to a video segment showing a per-
son seemingly walking around aimlessly. When we asked for
an explanation, the answer was that the person in the video
clearly intended to pass the time.

We thus needed to measure intentionality indirectly. To do
this, subjects were requested to write down a sentence de-
scribing the intent of the person in the video, typically be-
ginning with the words “The person intends to ... ”. The
idea behind this is that in segments where there is clear in-
tentionality, a clear answer would emerge (for instance, “The
person intends to exit the room”); in other video segments,
the unclear intentionality would result in more highly varied
answers (e.g., some would write “intends to pass the time”,
while others would write “intends to walk”, etc.). This di-
vergence can be measured by various means; we chose the
information entropy function as it is used in statistics to mea-
sure dispersion of categorical data.

Results
We unfortunately did not complete the final analysis of the re-
sults. However, preliminary results seem to indicate that our
model’s classification of the movement as intentional corre-
lates with the results obtained from the human subjects. In
particular, in videos showing clear goals the human subjects
tend to agree on the way the intention is described. In videos
that are less clear, there is indeed divergence of the answers.
Moreover, the divergence is also temporal: In movies where
the goal is unclear, subjects disagreed not only on the de-
scription, but also on the internal segmentation of the video
clip into segments of changing intentions. Some subjects cut
the movie into several segments, while others did not. They
also did not agree on the timing of the segments. Such dis-
agreement was not noticed in the clearer movie clips.
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Discussion
This work measures intentionality using a very basic feature
of the stream of action. We ignore other aspects of the dy-
namics of the movement that certainly contain information re-
garding intentionality. Moreover, we assume a state-spaceof
sufficient resolution and detail. We find justification for this
in the psychological literature. Blakemore and Decety (2001)
quote several works on how static images convey dynamics.
Meltzoff (2007) himself uses such a discretization in yet an-
other variant of his original experiment. In this version, in-
stead of showing the children the full dynamics of the action,
he showed them three successive static states. This technique
assumes that such a representation contains enough of the in-
formation regarding the intent of the actor. In the same pa-
per, Meltzoff also describes the failed attempt to separatethe
dumbbell as ”hold the dumbbell and then remove one hand
quickly”, which is again a very physical description, similar
to the way we modeled the experiment. Although it does not
convey the notion of ”effort”, this description is yet enough
to give the children a sense of intentionality.

Another point worth addressing is the high intentionality
scores that some of the demonstrations received—at times the
highest possible (p = 1), equal to that of the ”Demonstration
Target” group. We stress again that we are dealing here with
a preliminary stage in the process of goal imitation, that of
intentionality detection. It would be wrong to conclude that a
maximal score of intentionality indicatessuccessat achieving
the goals. Rather, we only conclude intentionality of the ac-
tion and leave the question of whether the reached end-state
was indeed the intended goal for a later stage.

Our model also does not deal with the fact that the demon-
strations were repeated three times for every child. This infor-
mation can also be used in determining intentionality (see,for
example, Watson (2005) who mentions persistence as a sign
of intentionality), as well as for the later stage of determining
whether the reached end-state is the intended goal.

Future Work
Having only just touched the tip of the iceberg regarding the
intriguing phenomena of intentionality detection and goalim-
itation, there is yet much work to be done. In addition to
more rigorously testing and evaluating our current model, we
intend to broaden it to deal with the notions of persistence
and equifinality—information carried by the repetition of ev-
ery demonstration three times. It would also be interesting
to add the possibility of handling varying environmental con-
straints, such as obstacles, which affect the calculation of the
distance measure, as well as treating false beliefs regarding
those environmental constraints, and seeing how they affect
the conclusion reached regarding intentionality.
Acknowledgments. Videos were taken from EC Funded
CAVIAR project/IST 2001 37540. This research was par-
tially supported by ISF grant #1357/07.
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Abstract 

This paper addresses the use of Hebbian learning principles to 

model in an adaptive manner capabilities to interpret somebody 

else’s emotions. First a non-adaptive neural model for emotion 

reading is described involving (preparatory) mirror neurons and a 

recursive body loop: a converging positive feedback loop based 

on reciprocal causation between mirror neuron activations and  

neuron activations underlying emotions felt. Thus emotion 

reading is modelled taking into account the Simulation Theory 

perspective as known from the literature, involving the own 

emotions in reading somebody else’s emotions. Next the neural 

model is extended to an adaptive neural model based on Hebbian 

learning within which a direct connection between a sensed 

stimulus concerning another person’s body state (e.g., face 

expression) and the emotion recognition state is strengthened. 

 

Introduction 

In the Simulation Theory perspective on emotion reading 

(or Theory of Mind) it is assumed that a person uses the 

facilities involving the own mental states that are 

counterparts of the mental states attributed to another 

person; e.g., (Goldman, 2006). For example, the state of 

feeling pain oneself is used in the process to determine 

whether the other person has pain. More and more 

neurological evidence supports this perspective, in 

particular the recent discovery of mirror neurons that are 

activated both when preparing for an action (including a 

change in body state) and when observing somebody else 

performing a similar action.; e.g., (Rizzolatti, Fogassi, and 

Gallese, 2001; Wohlschlager and Bekkering, 2002; 

Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 

2002; Ferrari, Gallese, Rizzolatti, and Fogassi, 2003; 

Rizzolatti, 2004; Rizzolatti and Craighero, 2004; Iacoboni, 

2008).   

Mirror neurons usually concern neurons involved in 

the preparation of actions or body states. By Damasio 

(1999) such preparation neurons are attributed a crucial 

role in generating and feeling emotional responses. In 

particular, using a ‘body loop’ or ‘as if body loop’, a 

connection between such neurons and the feeling of 

emotions by sensing the own body state is obtained; see 

(Damasio, 1999) or the formalisation presented in (Bosse, 

Jonker and Treur, 2008). Taken together, the existence of 

mirror neurons and Damasio’s theory on feeling emotions 

based on (as if) body loops provides strong neurological 

support for the Simulation Theory perspective on emotion 

reading.  

An extension of this idea was adopted by assuming 

that the (as if) body loop is processed in a recursive 

manner: a positive feedback loop based on reciprocal 

causation between feeling state (with gradually more 

feeling) and body state (with gradually stronger 

expression). This cycle is triggered by the stimulus and 

ends up in an equilibrium for both states. In (Bosse, 

Memon, and Treur, 2008; Memon and Treur, 2008) it was 

shown how a cognitive emotion reading model based on a 

recursive body loop can be obtained based on causal 

modelling using the hybrid modelling language 

LEADSTO (Bosse, Jonker, Meij and Treur, 2007). In 

(Bosse, Memon, and Treur, 2009) it was shown how this 

hybrid causal model can be extended to obtain an adaptive 

cognitive emotion reading model. The adaptation creates a 

shortcut connection from the sensed stimulus (observed 

facial expression) to the imputed emotion, bypassing the 

own emotional states.  

In the current paper a different model is presented for 

similar mind reading phenomena. This time, instead of a 

causal modelling approach, a more neurological point of 

departure is chosen by using a neural network structure 

which is processed in a purely numerical manner using 

generic principles for neural activation and Hebbian 

learning. In this way the obtained model stays more close 

to the neurological source of evidence and inspiration. 

The structure of this paper is as follows. First, the basic 

neural emotion reading model is introduced. Next, it is 

shown how the model can be made adaptive, by adopting a 

Hebbian learning principle that enables the model to 

strengthen the connections between neurons. For both the 

basic model and the adaptive model, some simulation 

results are shown, and different variations are discussed. 

The paper is concluded with a discussion. 

 

A Neural Emotion Reading Model 

In this and the next section the model to generate 

emotional states for a given stimulus is introduced. It 

adopts three important concepts from Damasio (1999)’s 

theory of consciousness: an emotion is defined as ‘an 

(unconscious) neural reaction to a certain stimulus, 

realised by a complex ensemble of neural activations in 
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the brain’, a feeling is ‘the (still unconscious) sensing of 

this body state’, and a conscious feeling is what emerges 

when ‘the organism detects that its representation of its 

own body state has been changed by the occurrence of the 

stimulus’ (Damasio, 1999). Moreover, the model adopts 

his idea of a ‘body loop’ and ‘as if body loop’, but 

extends this by making these loops recursive. According 

to the original idea, from a neurological perspective 

emotion generation roughly proceeds according to the 

following causal chain; see (Bosse, Jonker and Treur, 

2008; Damasio, 1999) (in the case of a body loop): 

sensing a stimulus  →   

sensory representation of stimulus  →  

(preparation for)  bodily response  →  

sensing the bodily response  →   

sensory representation of the bodily response  →   

feeling the emotion 

As a variation, an ‘as if body loop’ uses a causal relation 

preparation for  bodily response  →   

sensory representation of the bodily response  
 

as a shortcut in the neurological chain. In the model used 

here an essential addition is that the body loop (or as if 

body loop) is extended to a recursive body loop (or 

recursive as if body loop) by assuming that the 

preparation of the bodily response is also affected by the 

state of feeling the emotion (also called emotional 

feeling):  

feeling the emotion  →  preparation for  bodily response   

as an additional causal relation. Damasio (2004) also 

assumes such recursively used reciprocal causal 

connections: 

 ‘… feelings are not a passive perception or a flash in time, 

especially not in the case of feelings of joy and sorrow. For a 

while after an occasion of such feelings begins – for seconds or 

for minutes – there is a dynamic engagement of the body, almost 

certainly in a repeated fashion, and a subsequent dynamic 

variation of the perception. We perceive a series of transitions. 

We sense an interplay, a give and take.’ (Damasio, 2004, p. 92) 

Within the neural model presented here both the neural 

states for preparation of bodily response and the feeling 

are assigned a level of activation, expressed by a number, 

which is assumed dynamic. The cycle is modelled as a 

positive feedback loop, triggered by the stimulus and 

converging to a certain level of feeling and body state. 

Here in each round of the cycle the next body state has a 

level that is affected by both the level of the stimulus and 

of the emotional feeling state, and the next level of the 

emotional feeling is based on the level of the body state. 

This neural model refers to activation states of (groups 

of) neurons and the body. An overall picture of the 

connection for this model is shown in Figure 1. Here each 

node stands for a group of one or more neurons, or for an 

effector, sensor or body state. The nodes can be interpreted 

as shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Neural network structure of the model with body loop  

In the neural activation state of RN(s, f), the 

experienced emotion f is related to the stimulus s, which 

triggers the emotion generation process. Note that the 

more this neuron is strongly related to SRN(s), the more it 

may be considered to represent a level of awareness of 

what causes the feeling f; this may be related to what by 

Damasio (1999) is called a state of conscious feeling. This 

state that relates an emotion felt f to any triggering 

stimulus s can play an important role in the conscious 

attribution of the feeling to any stimulus s. 

 
node 

nr 

denoted by description 

0 s stimulus; for example, another person’s body 

state b'  

1 SS(s) sensor state for stimulus s 

2 SRN(s) sensory representation neuron for s 

3 PN(b) preparation neuron for own body state  b 

4 ES(b) effector state for own body state b 

5 BS(b) own body state b 

6 SS(b) sensor state for own body state b 

7 SRN(b) sensory representation neuron for own body 

state b 

8 FN(f) neuron for feeling state f 

9 RN(s, f) neuron representing that s induces feeling f 
 

Table 1  Overview of the nodes involved 
 

According to the Simulation Theory perspective a 

neural model for emotion reading should essentially be 

based on a neural model to generate the own emotions as 

induced by any stimulus s. Indeed, the neural model 

introduced above can be specialised in a quite 

straightforward manner to enable emotion reading. The 

main step is that the stimulus s that triggers the emotional 

process, which until now was left open, is instantiated with 

the body state b' of another person, for example a facial 

expression of another person. Indeed, more and more 

evidence is available that (already from an age of 1 hour), 

as an example of the functioning of the mirror neuron 

system (Rizzolatti, 2005), sensing somebody else’s facial 

expression leads (within about 300 milliseconds) to 

preparing for and showing the same facial expression 

    SRN(s) PN(b) 

    FN(f) 

effector  

state for b  

  RN(s, f)       

sensor  

state for s 

    SRN(b) 
sensor  

state for b 
 

own body 

state b  
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(Goldman and Sripada, 2004, pp. 129-130). Within the 

network in Figure 1 this leads (via activation of the 

sensory representation state SRN(b')) to activation of the 

preparation state PN(b) where b is the own body state 

corresponding to the other person’s body state b'. This 

pattern shows how this preparation state PN(b) functions 

as a mirror neuron. Next, via the recursive body loop 

gradually higher and higher activation levels of the own 

feeling state f are generated. 

To formally specify the neural model, the mathematical 

concepts listed in Table 2 are used. 

 
concept description 

N set of node numbers (as listed in Table 1); variables indicating 

elements of this set are i, j, k 

N' N\{0} the set of node numbers except the node for the stimulus s 

wij(t) strength of the connection from node i to node j at time t; this is 

taken 0 when no connection exists or when i=j 

yi(t) activation level of node i at time t 

neti(t) net input to node i at time t 

g function to determine activation level from net input  

γ change rate for activation level 

η learning rate for weights 

 

Table 2  Mathematical concepts used 
 

The function g can take different forms, varying from the 

identity function g(v) = v for the linear case, to a 

discontinuous threshold (indicated by β) step function with 

g(v) = 0 for v<β and g(v) = 1 for v≥β, or a continuous 

logistic threshold function based on 1/(1+exp(-α(v-β)) 

with steepness α. For the connections between nodes of 

which at least one is not a neuron the connections have 

been made simple: weights 1 and g the identity function; 

so w12 = w34 = w45 = w56 = w67  = 1 

The activation levels are determined for step size ∆t for 

all i ∈ N'  as follows: 
 

 neti(t) = Σj∈N  wji(t) yj(t) 

  ∆yi(t) = γ (g(neti(t)) - yi(t)) ∆t 
 

Note that for step size ∆t = 1 and change rate γ = 1, the 

latter difference equation can be rewritten to 
 

 yi(t+1) = g(neti(t)) 
 

which is a wellknown formula in the literature addressing 

simulation with neural models.  

The model description in the form of a system of 

differential equations can be used for an analysis of 

equilibria that can occur. Here the external stimulus level 

for s is assumed constant. Moreover, it is assumed that γ > 

0. In general putting ∆yi(t) = 0 provides the following set 

of equations for i ∈ N':  
 

 yi = g(Σj∈N  wji yj) 
 

For the given network structure these equilibrium 

equations are: 
 

 y1 = g(w01 y0) 

 y2 = g(w12 y1) 

 y4 = g(w34 y3) 

 y5 = g(w45 y4) 

 y6 = g(w56 y5) 

 y7 = g(w67 y6) 

 y8 = g(w78 y7) 

 y3 = g(w23 y2 + w83 y8) 

 y9 = g(w29 y2 + w89 y8) 
 

Taking into account that connections between nodes 

among which at least one is not a neuron have weight 1 

and g the identity function, it follows that the equilibrium 

equations are: 
 

 y2 = y1 = y0 

 y7 = y6 = y5 = y4 = y3 

 y8 = g(w78 y7) 

 y3 = g(w23 y2 + w83 y8) 

 y9 = g(w29 y2 + w89 y8) 

 

Example Simulations: Non-Adaptive Case 

The numerical software environment Matlab has been 

used to obtain simulation traces for the model described 

above. An example simulation trace that results from this 

model with the function g the identity function is shown 

in Figure 2. Here, time is on the horizontal axis, and the 

activation levels of three of the neurons SRN(s), FN(f), 

and RN(s,f) are shown on the vertical axis. As shown in 

this picture, the sensory representation of a certain 

stimulus s quickly results in a feeling state f, and a 

representation that s induces f. When the stimulus s is not 

present anymore, the activations of FN(f) and RN(s, f) 

quickly decrease to 0. The weight factors taken are: w23 = 

w83 = w89 = 0.1,  w78 = 0.5 and w29 = 0. Moreover, γ = 1, and 

a logistic threshold function was used with threshold 0.1 

and steepness 40. 

 
Figure 2:  Example simulation for non-adaptive emotion reading  

 

For the values taken in the simulation above, the 

equilibrium equations are:  
 

 y2 = y1 = y0 

 y7 = y6 = y5 = y4 = y3 

 y8 = g(0.5 y7) 

 y3 = g(0.1 y2 + 0.1 y8) 

 y9 = g(0.1y8) 
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As the threshold was taken 0.1 it follows from the 

equations that for stimulus level y0 = 0 all values for yi are 

(almost) 0, and for stimulus level y0 = 1 that all values for 

yi are 1, which is also shown by the simulation in Figure 2. 
 

An Adaptive Neural Emotion Reading Model 

As a next step, the neural model for emotion reading is 

extended by a facility to strengthen the direct connection 

between the neuron SRN(s) for the sensory representation 

of the stimulus (the other person’s face expression) and the 

neuron RN(s, f). A strengthening of this connection over 

time creates a different emotion reading process that in 

principle can bypass the generation of the own feeling. 

The learning principle to achieve such an adaptation 

process is based on the Hebbian learning principle that 

connected neurons that are frequently activated 

simultaneously strengthen their connecting synapse e.g., 

(Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 

2002; Wasserman, 1989). The change in strength for the 

connection wij between nodes i, j ∈ N is determined (for 

step size ∆t) as follows: 
 

   ∆wij(t) = η yi(t)yj(t)(1 - wij(t)) ∆t 
 

Here η is the learning rate. Note that this Hebbian learning 

rule is applied only to those pairs of nodes i, j ∈ N for 

which a connection already exists. 

Also for the adaptive case equilibrium equations can 

be found. Here it is assumed that γ, η > 0. In general 

putting both ∆yi(t) = 0 and ∆wij(t) = 0  provides the 

following set of equations for i, j ∈ N':  
 

 yi = g(Σj∈N  wji yj) 

 yiyj(1 - wij) = 0 
 

From the latter set of equations (second line) it 

immediately follows that for any pair i, j ∈ N' it holds: 
 

 either    yi = 0 

 or    yj = 0 

 or    wij = 1 
 

In particular, when for an equilibrium state both yi and yj 

are nonzero, then wij = 1. 

 

Example Simulations: Adaptive Case 

Based on the neural model for adaptive emotion reading 

obtained in this way, a number of simulations have been 

performed; for an example, see Figure 3. As seen in this 

figure, the strength of the connection between SRN(s) and 

RN(s, f) (indicated by b which is in fact w29) is initially 0 

(i.e., initially, when observing the other person’s face, the 

person does not impute feeling to this). However, during 

an adaptation phase of two trials, the connection strength 

goes up as soon as the person imputes feeling f to the 

target stimulus s (the observation of the other person’s 

face), in accordance with the temporal relationship 

described above.  

 

 

Figure 3:  Example simulation for adaptive emotion reading 

Note that, as in Figure 2, the activation values of other 

neurons gradually increase as the person observes the 

stimulus, following the recursive feedback loop discussed. 

These values sharply decrease as the person stops 

observing the stimulus as shown in Figure 3, e.g. from 

time point 40 to 76, from time point 112 to 148, and so on. 

Note that at these time points the strength of the 

connection between SRN(s) and RN(s, f) (indicated by b) 

remains stable. After the adaptation phase, and with the 

imputation sensitivity at high, the person imputes feeling f 

to the target stimulus directly after occurrence of the 

sensory representation of the stimulus, as shown in the 

third trial in Figure 3. Note here that even though the 

person has adapted to impute feeling f to the target directly 

after the stimulus, the other state property values continue 

to increase in the third trial as the person receives the 

stimulus; this is because the adaptation phase creates a 

connection between the sensory representation of the 

stimulus and emotion imputation without eliminating the 

recursive feedback loop altogether. Note that when a 

constant stimulus level 1 is taken, an equilibrium state is 

reached in which b = 1, and all yi are 1. 

The learning rate η used in the simulation shown in 

Figure 3 is 0.02. In Figure 4 a similar simulation is shown 

for a lower learning rate: 0.005. 

 

Figure 4:  Adaptive emotion reading with lower learning rate 
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Discussion 

In recent years, an increasing amount of neurological 

evidence is found that supports the ‘Simulation Theory’ 

perspective on emotion reading, e.g., (Rizzolatti, Fogassi, 

and Gallese, 2001; Wohlschlager and Bekkering, 2002; 

Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 

2002; Ferrari, Gallese, Rizzolatti, and Fogassi, 2003; 

Rizzolatti, 2004; Rizzolatti and Craighero, 2004; Iacoboni, 

2005, 2008). That is, in order to recognise emotions of 

other persons, humans exploit observations of these other 

persons’ body states as well as counterparts within their 

own body. The current paper introduces a numerical 

model to simulate this process. This model is based on the 

notions of (preparatory) mirror neurons and a recursive 

body loop (cf. Damasio, 1999, 2004): a converging 

positive feedback loop based on reciprocal causation 

between mirror neuron activations and neuron activations 

underlying emotions felt. In addition, this model was 

extended to an adaptive neural model based on Hebbian 

learning, where neurons that are frequently activated 

simultaneously strengthen their connecting synapse (cf. 

Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002; 

Wasserman, 1989). Based on this adaptive model, a direct 

connection between a sensed stimulus (for example, 

another person’s face expression) and the emotion 

recognition can be strengthened. 

The simulation model has been implemented in 

Matlab, in a generic manner. That is, the model basically 

consists of only 2 types of rules: one for propagation of 

activation levels between connected neurons, and one for 

strengthening of connections between neurons that are 

active simultaneously. These rules are then applied to all 

nodes in the network. To perform a particular simulation, 

only the initial activation levels and connection strengths 

have to be specified. Both for the non-adaptive and for the 

adaptive model, a number of simulations have been 

performed. These simulations indicated that the model is 

indeed sufficiently generic to simulate various patterns of 

adaptive emotion reading. An interesting question for 

further research is to what extent the model can simulate 

other neural processes as well. Another challenge for the 

future is to extend the model such that it can cope with 

multiple qualitatively different emotional stimuli (e.g., 

related to joy, anger, or fear), and their interaction.  
Validation of the presented model is not trivial. At 

least, this paper has indicated that it is possible to integrate 

Damasio’s idea of body loop with the notion of mirror 

neurons and Hebbian learning, and that the resulting 

patterns are very plausible according to the literature. In 

this sense the model has been validated positively. 

However, this is a relative validation, only with respect to 

the literature that forms the basis of the model. A more 

extensive empirical evaluation is left for future work. 

By other approaches found in the literature, a specific 

emotion recognition process is often modelled in the form 

of a prespecified classification process of facial 

expressions in terms of a set of possible emotions; see, for 

example, (Cohen, Garg, and Huang, 2000; Malle, Moses, 

and Baldwin, 2001; Pantic and Rothkrantz, 1997, 2000). 

Although a model based on such a classification procedure 

is able to perform emotion recognition, the imputed 

emotions have no relationship to a person’s own emotions. 

The neural model for emotion reading presented in the 

current paper uses a person’s own feelings in the emotion 

reading process as also claimed by the Simulation Theory 

perspective, e.g., (Goldman, 2006; Goldman and Sripada, 

2004). Besides, in the neural model presented here a direct 

classification is learnt by the adaptivity model based on a 

Hebbian learning rule. A remarkable issue here is that 

such a direct connection is faster (it may take place within 

hundreds of milliseconds) than a connection via a body 

loop (which usually takes seconds). This time difference 

implies that first the emotion is recognised without feeling 

the corresponding own emotion, but within seconds the 

corresponding own emotion is in a sense added to the 

recognition. When an as if body loop is used instead of a 

body loop, the time difference will be smaller, but still 

present. An interesting question is whether it is possible to 

design experiments that show this time difference as 

predicted by the neural model.  

Some other computational models related to mirror 

neurons are available in literature; for instance: a genetic 

algorithm model which develops networks for imitation 

while yielding mirror neurons as a byproduct of the 

evolutionary process (Borenstein and Ruppin, 2005); the 

mirror neuron system (MNS) model that can learn to 

‘mirror’ via self-observation of grasp actions (Oztop and 

Arbib, 2002); the mental state inference (MSI) model that 

builds on the forward model hypothesis of mirror neurons 

(Oztop, Wolpert, and Kawato, 2005), etc. A 

comprehensive review of these computational studies can 

be found in (Oztop, Kawato, and Arbib, 2006). All of the 

above listed computational models and many others 

available in the literature are targeted to imitation, whereas 

the neural model presented here specifically targets to 

interpret somebody else’s emotions. 

The approach adopted in the current paper has drawn 

some inspiration from the four models sketched (but not 

formalised) in (Goldman, 2006, pp. 124-132). The 

recursive body loop (or as if body loop) introduced here 

addresses the problems of model 1, as it can be viewed as 

an efficient and converging way of generating and testing 

hypotheses for the emotional states. Moreover, it solves 

the problems of models 2 and 3, as the causal chain from 

facial expression to emotional state is not a reverse 

simulation, but just the causal chain via the body state 

which is used for generating the own emotional feelings as 

well. Finally, compared to model 4, the models put 

forward here can be viewed as an efficient manner to 

obtain a mirroring process between the emotional state of 

the other person on the own emotional state, based on the 

machinery available for the own emotional states. 
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Abstract 
Human performance can seriously degrade under demanding 
tasks. To improve performance, agents can reason about the 
current state of the human, and give the most appropriate and 
effective support. To enable this, the agent needs a work 
pressure model, which should be valid, as the agent might 
otherwise give inappropriate advice and even worsen 
performance. This paper concerns the validation of an 
existing work pressure model. First, human experiments have 
been designed and conducted, whereby measurements related 
to the model have been performed. Next, this data has been 
used to obtain appropriate parameter settings for the work 
pressure model, describing the specific subject. Finally, the 
work pressure model, with the tailored parameter settings, has 
been used to predict human behavior to investigate predictive 
capabilities of the model. The results have been analyzed 
using formal verification. 

Introduction 
In demanding working circumstances the quality of the 
tasks performed by a human might be severely influenced 
(cf. Hancock et al., 1995, Hanley, 1997). Especially when 
tasks are performed in a critical domain, such effects are 
highly undesired. To improve task performance in such 
situations, personal assistant agents (cf. Kozieok and Maes, 
1993; Mitchell et al., 1994; Maheswaran et al., 2003) can be 
used to monitor the activities of the human, and intervene in 
case needed. Interventions could for example take the form 
of assigning (part of) the tasks to other humans, or give 
advice regarding the performance of the task. 

One crucial element in the support given by a personal 
assistant agent is that it should be given in appropriate 
circumstances: the agent should have an awareness of the 
state of the human. In Bosse et al. (2008a) a dynamical 
model has been presented that describes the cognitive 
workload experienced by humans, given knowledge of the 
human’s characteristics in combination with the tasks that 
need to be performed. The model is quantitative, based upon 
mostly qualitative theories from Psychology, but was not 
validated yet using human experiments. The primary focus 
of this paper is to develop and implement an approach for 
the validation of this human work pressure model. The 
validation has been performed by taking a number of steps. 
First of all, an experiment with 31 human subjects has been 

conducted. Hereby, the subjects were to play a game 
whereby they experience different amounts of workload. 
Each subject was given two conditions. Using the empirical 
data obtained from this experiment, parameter estimation 
techniques have been deployed to find appropriate 
parameter settings for the model to accurately describe the 
subject’s behavior in one of the conditions. Thereafter, these 
settings have been used to predict the behavior of the 
subject in the other condition. Finally, properties that relate 
to the work pressure model have been verified against the 
empirical data as well. 

This paper is organized as follows. First, the work 
pressure model is briefly explained. Thereafter, the setup of 
the experiment and the results of parameter estimation are 
shown. Next, the verification of properties against the 
empirical data, and finally the paper is concluded and future 
work is discussed. 

Work pressure model 
The Agent model for the Functional State (FS) of a human 
represents the dynamical state of a person when performing 
a certain task. States such as experienced pressure, 
motivation and exhaustion of the person are predicted, but 
also the performance quality and the amount of generated 
effort to the task..  

The model is based on two different theories: 1) the 
cognitive energetic framework (Hockey, 1997), which states 
that effort regulation is based on human recourses and 
determines human performance in dynamic conditions; 2) 
The idea, that when performing sports, a person’s generated 
power can continue on a critical power level without 
becoming more exhausted (Hill, 1993). In the FS model (cf. 
Figure 1) critical power is represented by the critical point: 
the amount of effort someone can generate without 
becoming more exhausted.  

As input the FS model uses external factors (task 
demands and environment state) and personal factors 
(experience, cognitive abilities and personality profile), 
which are used to determine a person’s dynamical state. In 
addition, it determines the relation of this state to the 
human’s actions with respect to the task (e.g. performance 
quality), represented in the Task Execution State.  

An example equation of the model is: 
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    E(t+Δt) = E(t) + Pos(η·(GE(t)-CP(t)) ·Δt) - π·RE(t)· Δt  
Here Exhaustion (E) builds up or reduces over time. 

When the generated effort (GE) is above the critical point 
(CP), exhaustion increases, otherwise exhaustion decreases 
depending on the level of recovery effort (RE). Parameters η 
and π determine the amount of increase or decrease. The 
function Pos(x) in this formula is defined as the maximum 
of x and 0. For more details on the model, see (Bosse et al., 
2008). 

 
Figure 1. Agent Model for an Operator’s Functional State 

Experimental setup 
First, an overview of the game and its participants is given. 
The main part of the experiment is a game which combines 
a shooting task and a calculation task. Thereafter, the 
procedure of the experiment is explained. A more detailed 
version can be found in Appendix A: 
http://www.few.vu.nl/~fboth/ICCM/appendix_A.pdf. 
Finally, a description is given of how data from the 
experiment has been used as input for the work pressure 
model. 

Game and Participants 
In the experiment the main task is a shooting game where 
the goal is to get as many points as possible. Objects 
(friends and enemies) were falling down in different 
locations at different speeds. The purpose is to shoot the 
enemies before they hit the ground. Shooting at a missile is 
done by a mouse click at a specific location; the missile 
would then explode exactly at the location of the mouse 
click. The speed with which the missile reaches this location 
is 79.6 pixels per second. When an object is within a radius 
of 50 pixels of the explosion, the object is destroyed. The 
number of points a participant receives for hitting an enemy 
is proportional to the proximity of the explosion. When a 
participant shoots a friend or when an enemy reaches the 
bottom of the screen, points are lost. When a friendly object 
reaches the bottom of the screen points are gained. Next to 
each of the objects, a calculation is written on the screen. A 
correct calculation indicates that the object is friendly and 
should not be shot. An incorrect calculation indicates that 
the object is an enemy and should be shot before it reaches 
the bottom of the screen. For a demo of the shooting game, 
see http://www.forcevisionlab.nl/demo/missilecommand.swf.  

In the study 31 persons participated (18 males, 13 
females, of which 25 students). They ranged in age from 17 

to 57 years with a mean age of 26 years. The experiment 
took approximately 1 hour for which participants received a 
voucher of 10 euro. In addition, there was a voucher of 100 
euro for the one with the best score on the game. 

Procedure 
For the experiment a 2 factor within subjects design was 
used. Two different conditions within each participant were 
tested. In Bosse et al. (2008a), two scenarios were simulated 
using the model. Scenario 1 started with a low task level and 
continued with a high task level. Scenario 2 started with a 
high task level and continued with a low task level. 
Condition was counterbalanced over participants to correct 
for a possible order effect, such that participants with an odd 
number started with condition 2 and even numbered 
participants started with condition 1.  

Participants started the experiment with filling out a 
personality questionnaire with questions from the NEO-PI-
R and the NEO-FFI (Costa and McCrae, 1992); with these 
questions some aspects of each participant’s personality 
were measured, to serve as input for the personality profile 
of the work pressure model. Neuroticism and extraversion 
were measured with the NEO-FFI. With the NEO-PI-R 
vulnerability (part of neuroticism) and ambition (part of 
conscientiousness) were measured.  

After the questionnaire, participants performed three 
small tests each consisting of 30 trials which were equal 
between participants. These tests served as input for model 
validation (see the next subsection and Appendix A for the 
explanation thereof). Instructions for each test were shown 
on the screen. The first test was a simple choice Reaction 
Time test (choice-RT), where a square was presented either 
left or right from a fixation cross at the centre of the screen. 
Participants had to react with either the left arrow (when the 
square was presented left) or the right arrow (when the 
square was presented right). The second test was a task 
where calculations were presented. Again, participants had 
to choose whether the calculation was correct (left arrow) or 
incorrect (right arrow). The third small test (mouse-RT) was 
another Reaction Time task; here a circular target was 
presented somewhere on the screen. Participants had to react 
quickly and precisely by clicking with the mouse as close as 
possible to the centre.  

After the three small tasks, participants practiced during 3 
minutes for the experiment-game described in the previous 
subsection. The goal of the practice task was familiarize 
with the shooting and calculation tasks in the game. After 
practice the participants started the experiment-game with 
either condition 1 or condition 2, which both took 15 
minutes. 

From experiment data to work pressure model 
In order to validate the model, data from the experiment was 
used to calculate the values of several concepts of the work 
pressure model, namely personality profile, basic cognitive 
abilities (BCA) and expertise profile, following theories 
from Psychology (Matthews & Deary, 1998; Plomin & 
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Spinath, 2002; Rose et al, 2002; Salgado, 1997). Hereby, 
several parameters are introduced that need to be estimated 
by the parameter estimation approach as well. Including 
this, the number of parameters that should be estimated is 
27. For the precise mathematical equations used, see 
http://www.few.vu.nl/~fboth/ICCM/appendix_D.pdf. 

Furthermore, from the experiment data the situational 
demands can be calculated. Although the scenarios were the 
same for all participants, the calculated task level could 
differ due to the performance quality. Therefore, Situational 
Demands were calculated per time step per participant. 
According to the model, situational demands and the 
expertise profile together contribute to task level.  
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TaskLevel = (1.5 – Exp)·SitD        (1) 

In the experiment, performance quality was measured in 
terms of efficiency and effectiveness. Efficiency represented 
the number of missiles necessary to shoot an enemy. 
Effectiveness was dependent on how close to the object the 
missile exploded (explosion fraction) and whether an enemy 
or friend was shot. In case of an enemy being shot: 

Effectiveness = (1+ explosion_fraction)/2.0        (2) 

Effectiveness was 0 when a friend was shot or an enemy 
landed. When a friend landed, effectiveness was 1. Using 
effectiveness and efficiency, the task execution state was 
calculated: 
ObjTES = (0.25·efficiency + 0.75·effectiveness)·2         (3) 

Estimation of parameters 
This section presents the results of parameter estimation for 
the work pressure model using two different methods: a 
gradient-based approach and an approach based on 
probabilistic search.  

Gradient-based parameter estimation 
To perform parameter estimation, a method based on the 
maximum likelihood principle has been applied (Sorenson, 
1980). In line with this principle a likelihood function of the 
measurement data and the unknown parameters is defined. 
This function is essentially the probability density function 
of the measurement data given the parameter values p(z|). 
Furthermore, it was assumed that the measurements 
contained noise which is zero-mean and has a Gaussian 
distribution. The measurement data were represented by the 
random, normally distributed variable z. Such an 
assumption is often made for dynamic systems in many 
areas. The parameter vector, which makes the likelihood 
function most probable to obtain the measurements z (… 
.. which maximizes the likelihood function) is called the 
maximum likelihood estimate; it is obtained by minimizing 
the error function: 
 
 
Here the measurements obtained are discrete time, N is the 
number of measurements, R is the measurement noise 
covariance matrix. The estimate of R is obtained as 

The maximum likelihood estimates are consistent, 
asymptotically unbiased and efficient (Sorenson, 1980). 

The calculation of the maximum likelihood estimate is 
performed iteratively. The estimate value at the (k+1) 
iteration is determined as: 
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Here the first gradient is defined as 

For the work pressure model the expressions for the 
partial derivatives w.r.t. the parameters (i.e., sensitivity 
coefficients) have been obtained analytically (see Appendix 
B: http://www.few.vu.nl/~fboth/ICCM/appendix_B.pdf). 
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The analytical determination of the second gradient is 
more involved, therefore a Gauss-Newton numerical 
approximation has been used for it: 
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Such an approximation does not cause a significant error 
in the parameter estimate. Furthermore, the use of the 
second gradient speeds up the convergence of the estimation 
process significantly. 

The state values of the system were calculated by 
numerical integration of the model equations using the 4th 
order Runge-Kutta method, which has proven to be both 
accurate and stable. The estimation error is calculated in 
each iteration as root mean square error:  

 
 
 

The parameter estimation procedure based on the 
maximum likelihood principle has been implemented using 
the following algorithm: 

Algorithm: ML-PARAMETER-ESTIMATION 
 

Input: Initial values of the parameters 1, maximal number of iterations 
itmax; satisfactory error value err_sat; matrix of the input values U; 
matrix of the output values Z 
Output: Maximum likelihood estimate ML 

1 i=1 
2 Until i  itmax perform steps 3-7 
3 Calculate the current state of the system using the model  
       equations 
4 Calculate the output root mean square error erri using (10).  
5 if err  err_sat, then ML = i; exit endif. 
6 if i < itmax, then 
   6a Calculate the noise covariance matrix R using (6) 
   6b Calculate the sensitivity coefficients /y  

   6c Calculate the first and second gradients using the formulae  
          (8) and (9) respectively. 
   6d Calculate the parameter values for the next iteration i+1 using (7) 
      endif 
7 i = i+1 
8 Find the minimum error errm in {erri| i=1..itmax}; then  
          ML = m; exit. 
The algorithm was implemented in the Matlab 7 
environment. The worst case complexity is estimated as 
O(NN||M), where NN is the number of integration points, || 
is the number of the estimated parameters, M is the number 
of outputs. The execution of an iteration took less than 2 sec 
on an average PC. 
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Simulated annealing 
The Simulated Annealing method uses a probabilistic 
technique to find a parameter setting. In this method a 
random parameter setting is chosen as the best available 
parameter setting at the start. Then a displacement is 
introduced into these settings to generate a neighbor of the 
current parameter settings in the search space. If this 
neighbor is found more appropriate representation of the 
observed human behavior then it is marked as the best 
known parameter setting otherwise a new neighbor is 
selected to evaluate its appropriateness. The displacement in 
the parameter settings depends on the temperature, in case 
the temperature is higher, the steps will become larger. The 
temperature at a certain time point for the parameter settings 
is defined as follows  

  Temperature = computational-budget-left  error (11) 

Here the computational budget is the number of neighbors 
to be tested for better approximation. The displacement in 
the parameter for example γ was derived from following 
equations selecting any one at random. 
γ=γ+Temperature  (1-γ)  random_no_between[0,1] (12a) 

or γ = γ-Temperature  γ  random_no_between[0,1] (12b) 
The method is described as follows: 
 

Algorithm: SA-PARAMETER-ESTIMATION 

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

TIME, sec

 

 

Performance quality
Situational demand
Empirical data

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

TIME, sec

 

 

Performance quality
Situational demand
Empirical data

 

Input: Initial randomly selected values of the parameters 1, 
computational budget C; observed human behaviour B;  
Output: Best estimate of parameter settings BE 

1  BE=1 
2  while C  0 perform steps 3-8 
3  Choose a random parameter setting  in neighbourhood of BE  using 
equation (11 and 12a, 12b). 
4 Calculate the output root mean square error err for  using (10).  

 5 Calculate the output root mean square error errBE for BE using (10). 
6 if err  errBE, then BE = ; errBE = err; endif. 
7 Decrease C;  
8 Temperature = C * errBE;  
9 output BE. 

 

Figure 2. Empirical data and the estimated output 
performance quality for subject 37 for condition1 (left) and 

condition 2 (right) 
In figure 2 performance quality for subject 37 is shown for 
computational budget 10000 and 900 observed human 
behavior. Here it should be noted that graph represents the 
curve generated with parameter settings producing 
minimum root mean square error found till the end of 
computational budget. The algorithm has been implemented 
in C++ and applied to the work pressure model. If C is 

computational budget, then the worst case complexity of the 
method can be expressed as О(CB), where B is the number 
of observed behaviors. Here it could be observed that 
computational complexity of this method is independent 
number of parameter. 

Results of the estimation 
The gradient-based and simulated annealing methods have 
been applied for the estimation of 30 parameters of the work 
pressure model (see Appendix C: 
http://www.few.vu.nl/~fboth/ICCM/appendix_C.pdf). The 
estimation has been performed for 31 subjects, for both 
experimental conditions. The initial setting of the 
parameters has been taken from Bosse et al. (2008a). This 
setting is grounded partially in the psychological literature; 
furthermore it ensures the desired properties of the modeled 
system. Figure 2 illustrates the empirical data and the 
estimated output performance quality for subject 37 for both 
conditions. 

The estimation by both methods showed similar 
behavioral patterns in the output of the model. However, the 
gradient-based method has a better precision in comparison 
to the simulated annealing. The root mean square errors 
calculated in both parameter estimation methods are given 
in Table 1. To evaluate the quality of estimation also other 
measures have been used. In particular, the Cramer-Rao 
bounds provide a useful measure of relative accuracy of the 
estimated parameters (Sorenson, 1980). 

 

Table 1. Root mean square errors of estimation by the 
gradient-based (GB) and simulated annealing (SA) methods 

for all subjects in both experimental conditions 
Error range < 0.1 [0.1, 0.25) [0.25, 0.4) > 0.4 

GB 21 11-20, 22, 24-41 - - Subjects 
in condi-
tion 1 

SA  40 11, 12, 22, 24-
26, 30, 32-39, 41

13-18, 20, 21, 
28, 29, 31 

GB 12, 15, 18, 
20, 21, 23, 
27, 30 

11, 13, 14, 16, 
17, 19, 22, 24-
26, 28, 32-41 

29, 31 - Subjects 
in condi-
tion 2 

SA 32 17, 26, 30, 31, 
34. 35, 37, 40 

12, 27, 38, 41 11, 13-16, 18-
23, 25, 28, 29, 
33, 36, 39 

 

This measure sets a lower bound on the standard 
deviation of the estimators: 
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For efficient estimation the equality holds. Furthermore, for 
the maximum likelihood method, I() = 2

E(), which also 
needs to be calculated for (9); thus no additional 
computation effort for the evaluation of this measure is 
required. Using this measure at least 57% (70% in the best 
case) of the estimated parameters have been identified as 
accurate for all subjects in both conditions (relative standard 
deviation (rsd)  5%). Other parameters, although less 
accurate (5% < rsd < 40%) still have a degree of confidence. 

Another useful criterion for judging the quality of the 
estimates is the correlation coefficients among the estimates 
calculated as: 
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Only one significant correlation between the parameters A 
and  has been identified. 

The precision of the parameter estimation is essential for 
prediction of the system dynamics using the model. To 
examine predictive capabilities of a model, cross-validation 
is often used. In the cross-validation of the work pressure 
model the empirical data of the condition 2 have been used 
for the parameter estimation, whereas the data of the 
condition 1 were used for validation of the model with the 
parameter estimates obtained from the condition 1. 

The prediction quality was determined by comparing the 
root mean square errors for both conditions. For most of the 
subjects (84%) in the GB estimation, prediction errors 
(Table 2) differ from the estimation errors (Table 1, subjects 
in condition 1) insignificantly (less than 10%). Furthermore, 
also cross-validation was performed, in which data from one 
of the settings were used for parameter estimation and data 
from the other setting were used for validation (Figure 3).  
 

Table 2. Prediction errors of estimation by the GB and SA 
methods for all subjects in condition 1 using the estimated 

parameters from condition 2 
Error range < 0.1 [0.1, 0.25) [0.25, 0.4) > 0.4 

GB 21 12-20, 22, 24-30, 
34-40 

11, 31, 32, 41 33 

SA - 17, 26, 31, 32, 
37, 40 

12, 13, 22, 25, 28, 
30, 34, 35, 38, 41 

11, 14-16, 18-
21, 29, 33, 39 
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Figure 3. Predicted dynamics for subject 37 in condition 1 
using the estimated parameters from condition 2 (left) and in 

setting 2 using the parameters from setting 1 (right).. 

Verification of Properties 
This section focuses on logical verification, another 
approach which has been used to validate the model. The 
idea is that properties are identified that are entailed by the 
work pressure model, and these properties are verified 
against the empirical data that has been obtained. In order to 
conduct such an automated verification, the properties have 
been specified in a language called TTL (for Temporal 
Trace Language, cf. Bosse et al., 2008b) that features a 
dedicated editor and an automated checker. This predicate 
logical temporal language supports formal specification and 
analysis of dynamic properties, covering both qualitative 
and quantitative aspects. TTL is built on atoms referring to 
states of the world, time points and traces, i.e. trajectories of 
states over time. In addition, dynamic properties are 
temporal statements that can be formulated with respect to 
traces based on the state ontology Ont in the following 

manner. Given a trace  over state ontology Ont, the state in 
 at time point t is denoted by state(, t). These states can be 
related to state properties via the formally defined 
satisfaction relation denoted by the infix predicate |=, i.e., 
state(, t) |= p denotes that state property p holds in trace  at 
time t. Based on these statements, dynamic properties can be 
formulated in a formal manner in a sorted first-order 
predicate logic, using quantifiers over time and traces and 
the usual first-order logical connectives such as , , , , 
, . For more details on TTL, see (Bosse et al., 2008a). 

Three main properties have been identified that follow 
from the work pressure model. The first property specifies 
that performance quality decreases in case a task level in a 
certain range is experienced: 
P1(min_level, max_level, d, x) 
If at time point t1 the task level is tl and the performance quality 
pq, and tl is in the range [min_level max_level], and until t1+d the 
task level does not cross these boundaries, then there exists a time 
point t2> t1 at which the performance quality is at most x * pq. 
P1(min_level, max_level, d, x)  
:TRACE, t1:TIME, pq1:REAL 

[ state(, t1) |= has_value(performance_quality, pq1) & 
    tl:REAL, t’:TIME  t1 & t’  t1 + d  
       [state(, t’) |= has_value(task_level, tl)  
        [ tl  max_level & tl  min_ level ] ] 
     t2:TIME > t1, pq2:REAL 
         [state(, t2) |= has_value(performance_quality,pq2) &pq2  x * pq1] 

This property has been verified using the following values: 
min_level is set to 20% above BCA, max_level is set to the 
highest task level encountered in the experiment, the 
duration d is set to 60 time steps (i.e. a minute real time), 
and x is set to 1 (i.e. performance quality should never go 
up, but can remain the same). These settings follow the 
model: in case a task level above BCA is experienced, the 
human becomes exhausted, and the quality can no longer go 
up. Results show that this property is satisfied in 60% of the 
empirical traces. 

The second property concerns the opposite: in cases 
where there is a task level between certain boundaries, the 
performance quality should be at least as high as before the 
period (note that the formal form has been omitted for the 
sake of brevity): 
P2(min_level, max_level, d, x) 
If at time point t1 the task level is tl and the performance quality 
pq, and tl is in the range [min_level, max_level], and until t+d the 
task level does not cross these boundaries, then there exists a time 
point t2> t1 at which the performance quality is at least  x * pq. 
Using the following settings:  max_level at 20% below BCA, 
min_level is set to 0 and d and x the same as for the previous 
property, this property is satisfied in 45% of the cases. In 
case a task level is experienced which is somewhat below 
the highest task level that can be handled without exhaustion 
building up (i.e. the BCA), then the performance will get 
better, or at least stay the same (as there is no exhaustion). 

The final property which has been verified concerns 
performance quality being higher for cases whereby there is 
a lower task level: 
P3(low_level, high_level) 
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In case the task level at a time point t1 is tl1, and at a time point t2 
the task level is tl2, and tl1 > high_level and tl2 < low_level, then 
there exists a time point t’ > t1 and there exists a time point t’’ > 
t2 such that the performance quality at time point t’ is lower than 
the performance quality at time point t’’.  
 

Using a low_level of 20% below BCA, and a high_level of 
20% above the cognitive abilities, this property is satisfied 
in 60.7% of the cases. The property complies with the 
model, because a task level beyond BCA results in 
exhaustion leading to a worsened performance, which is not 
the case for a task level far below BCA. In total, 25.0% of 
the cases comply with properties P1, P2, and P3. 

Discussion and conclusions 
To reason about the human behavior and support 
possibilities personal assistant agents often use (cognitive) 
models. To ensure that support is provided by agents in a 
timely and knowledgeable manner, such models should be 
accurate and validated. This paper contributes an approach 
to validate the work pressure model. In the following the 
performed validation steps of the approach are discussed. 

The experience with the experiment was that the 
participants were very motivated to perform well on the 
main task. This was not only due to the reward; they were 
also enthusiastic about the game itself. In order to keep the 
learning effect to a minimum and to maintain the 
participants’ concentration, every participant performed 
only two sessions of the 15 minute game. However, 
precision of parameter estimation will increase when 
measurements of more within-subject conditions are taken. 

The results obtained for the parameter estimation are 
satisfactory. However, a number of parameters (35% in 
average) were evaluated as less accurate, and, therefore, less 
reliable. Partially this can be explained by a large overall 
number of parameters being estimated. Most of the less 
precise parameters have a weak relation to the measured 
output (e.g., noise sensitivity) Furthermore, since the 
empirical data were collected based on irregular events (i.e., 
actions of humans), some intervals contained the amount of 
information insufficient for estimation. Despite this, as 
shown in the paper, the models with estimated parameters 
demonstrated good predictive capabilities in the cross-
validation, which is a strong indicator of the model validity. 

The trends as predicted by the model have also been 
verified against the empirical material. The results show that 
a reasonable percentage of the traces satisfy each of these 
individual properties. The combination of all three 
properties is however only satisfied in 25% of the cases, 
which can mainly be attributed to the aforementioned 
collection based on irregular events, making the data 
obtained more prone to sudden changes. 

The topic of model validation received much attention in 
the areas of Psychology and Social Science. In particular, a 
validation approach from (Yilmaz, 2006) distinguishes the 
validation phases similar to the ones considered in the paper 
(e.g., conceptual and operational validation); however, the 
precise elaboration of the phases is focused largely on social 
processes, which are not relevant for our work. Furthermore, 
examples of model validation are found in psychology, e.g. 

on the subject of visual attention (Parkhurst et al., 2002), 
however often no parameter estimation is involved. 

In the future research the considered parameter estimation 
methods will be extended for the case of real-time 
estimation, which accounts for human learning. 
Furthermore, a personal assistant agent will be implemented 
that is able to monitor and balance work pressure of the 
human in a timely and knowledgeable manner. 
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Abstract 

A crucial aspect of diagnostic reasoning is the integration 
of sequentially incoming information into a consistent 
mental representation. While research stresses the 
importance of working memory in such a task, it is not 
clear how the information represented in working memory 
can guide the retrieval of associated information from long-
term memory. Factors that might influence this retrieval are 
the amount of information currently in the focus of 
attention (Lovett, Daily & Reder, 2000) and the time since 
the information first became available (Wang, Johnson & 
Zhang, 2006). By comparing the results of different ACT-R 
models to human data from a sequential diagnostic 
reasoning task, we show that these factors do not 
necessarily influence the retrieval. Our findings rather 
suggest that in a task where information has to be actively 
maintained in working memory, each piece of this 
information has the same potential to activate associated 
knowledge from long-term memory, independent from the 
amount of information and the time since it entered 
working memory.  

Keywords: information integration; diagnostic reasoning; 
spreading activation; working memory; ACT-R 

Introduction 

Generating and evaluating explanations for data extracted 
from the environment is a key component of many 
everyday tasks like medical or technical diagnosis and 
social attribution. This kind of reasoning is often called 
diagnostic or abductive reasoning (Josephson & 
Josephson, 1994; Johnson & Krems, 2001). For example, 
in medical diagnostic reasoning a physician needs to find 
the best explanation for the set of symptoms displayed by 
a patient. In such a task, information (e.g., the patients’ 
symptoms) often becomes available step by step. The 
reasoner needs to integrate this information into a 
consistent mental representation that is updated every 
time a new piece of information becomes available. To 
find an explanation for the observed information, 
associated information (e.g., potential explanations for a 
set of symptoms) needs to be retrieved from memory. 

Working memory has been proposed to play a crucial 
role in such a task. It is needed to keep track of the 
subsequently gathered information (Baumann, 2001) and 
it might hold possible explanations for this information 
retrieved from the reasoners long-term memory 
(Baumann, 2001; Thomas, Dougherty, Sprenger & 
Harbison, 2008). However, it is not clear how the 
information is represented in working memory over the 
course of the task and how that influences the retrieval of 

associated information. The goal of this paper is to 
develop a better understanding of how information in 
working memory guides the retrieval of associated 
knowledge from long-term memory in a sequential 
diagnostic task.  

To achieve this, we implement different assumptions 
about the retrieval in ACT-R models and compare the 
model data to human data from a diagnostic reasoning 
experiment (Bauman, Mehlhorn & Bocklisch, 2007). 
Before we turn to describing the models, results and the 
related theories in detail, we want to point out that 
abduction in general and diagnosis in particular are 
complex tasks. In this paper we focus on memory 
retrieval, as it is a key aspect of these tasks.  However, 
one should keep in mind that the models are a 
simplification of the task, as they ignore more deliberate 
processes (as e.g. described by. Johnson & Krems, 2001) 

Theories 

Human memory might be understood as a set of elements, 
each of which is assigned a specific activation value. In 
this conception, a subset of the elements being activated 
above some specific threshold constitutes working 
memory (e.g., Just and Carpenter, 1992). In diagnostic 
reasoning, observations (e.g., the symptoms presented by 
a patient) and their possible explanations (e.g., diseases 
causing these symptoms) are held in memory. Given such 
a knowledge structure, observations can serve as a cue for 
the retrieval of associated knowledge. That is, information 
in the focus of attention (e.g., the symptoms presented by 
a patient) initiates a spreading activation process that 
activates associated information in long-term memory. 
Although this assumption has been made by various 
researchers (e.g., Arocha & Patel, 1995; Bauman et al., 
2007; Thomas et al., 2008), the nature of this spreading 
activation process is not yet fully understood. 

It has been argued that the total amount of activation 
that can be spread from working memory is limited and 
will be equally divided among the elements that spread 
activation (Lovett et al., 2000). Thus, the amount of 
activation spread by each single piece of information will 
depend on the amount of information that is currently held 
in the focus of attention. It has also been argued that 
information in working memory is subject to decay (e.g., 
Wang et al., 2006). That means that the activation spread 
from a specific piece of information in working memory 
to associated knowledge in long-term memory depends on 
the time since the information became available. 
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As noted above, in diagnostic reasoning the reasoner 
needs to find an explanation for information observed 
from the environment. As new information often only 
becomes available over time, the amount of information 
in working memory (i.e. the number of observations that 
need to be explained) as well as the ‘age’ of information 
in working memory (i.e. the time since the observation 
was made) varies. Therefore, sequential diagnostic 
reasoning is a field especially suited to test assumptions 
about information representation in working memory and 
its effect on retrieval from long-term memory. 

To test the different possibilities, we designed different 
cognitive models using ACT-R. In its current 
implementation, ACT-R’s declarative memory system 
consists of chunks (facts like Influenza can cause cough 
and fever) that represent declarative knowledge. Access to 
these memory elements depends on their activation 
(Anderson, 2007; Lovett et al., 2000). For each chunk, 
this activation is computed as the sum of its base-level 
activation and the associative activation from the current 
context (i.e. spreading activation). The base-level reflects 
the chunk’s previous usefulness in terms of the number of 
times it was used and the time that has elapsed since. The 
associative activation reflects a chunk’s usefulness in the 
current context and is computed as the product of the 
activation spread to it from some specific source (see 
below) and the strength with which it is related to that 
source (Anderson, 2007).  

The source that provides the activation to be spread is 
information about the current problem or task. This 
information is represented in one of ACT-R’s modules, 
the imaginal module. This module holds a mental 
representation of the problem currently in the focus of 
attention (Anderson, 2007). In a sequential diagnostic 
reasoning task, it is assumed that the imaginal module 
thus holds the information about all the data gathered so 
far. This information can then spread activation to 
associated knowledge held in declarative memory. To test 
the nature of the representation of information in working 
memory we implemented different modes of this 
spreading activation process in four ACT-R models.  

The first model addresses the question if the amount of 
information in the focus of attention should influence 
spreading activation. To test this, we used the standard 
implementation of spreading activation in ACT-R. In this 
implementation, the total amount of spreading activation 
is assumed to be equally divided among the information 
stored in the source chunk (Lovett et al., 2000). Thus, the 
activation spread by each single piece of information 
depends on the amount of information in the focus of 
attention. The more slots the source chunk contains, the 
less activation can be spread by each single slot.  

The second and the third model address the question 
whether information in working memory is subject to 
decay. In the second model, we use an equation for 
decaying activation proposed in a constraint satisfaction 
model (UECHO) by Wang et al. (2006). It assumes 
spreading activation to decay in curvilinear, negatively 

accelerated manner. Thus, information in working 
memory increasingly loses its impact over time. To test if 
decay needs to be negatively accelerated as proposed by 
Wang et al., or if a more simple assumption of decay 
would be sufficient, we implemented a third model using 
a linear decay function. In this model, information in 
working memory loses its ability to spread activation 
linearly over time. 

For being able to better access the explanatory power of 
the above models, we implemented a fourth model that 
serves as a control model. This model is most 
parsimonious, as it assumes a constant amount of 
activation spread by each piece of information in working 
memory. Thus, in this model, spreading activation neither 
depends on the amount of information held in working 
memory, nor on the time since the information became 
available. 

Experiment 

Human data was obtained in an experiment using an 
artificial diagnosis task (see also Baumann et al., 2007). 
Participants were told to imagine they are a doctor in a 
chemical plant and had to diagnose which chemical their 
patient had been in contact with. Therefore, they learned a 
knowledge structure consisting of nine different chemicals 
grouped into three categories. Chemicals were named 
with single letters and each chemical caused three to four 
symptoms (Table 1). Each symptom could be associated 
with two, three or six chemicals. Participants acquired this 
knowledge in an extensive training session, where they 
had to solve various tasks until reaching proficient 
performance. 

In two subsequent experimental sessions, participants 
then worked on 340 diagnostic reasoning trials. In each of 
these trials, symptoms belonging to a chemical were 
presented sequentially on the screen. At the end of each 
trial, participants were asked for their diagnosis (see 
Figure 1 for a sample trial). As each symptom had several 
possible causes, only the combination of symptoms in a 
trial allowed for unambiguously identifying the correct 
diagnosis. With the number of observed symptoms, the 
number of plausible diagnoses could be narrowed down, 
leaving the correct diagnosis (consistent to all symptoms) 
at the end of the trial. 

To track the activation of different explanations during 
the course of this reasoning task, a probe reaction task 
was used. After one of the symptoms in each trial, a single 
letter was shown. This could either be the name of one of 
the chemicals or not. Once the letter was presented on the 
screen, participants were to indicate as fast as possible 
whether it was a chemical or not. The idea of this probe 
reaction task is based on the idea of lexical decision tasks 
(e.g., Meyer & Schvaneveldt, 1971) according to which 
participants should respond faster to a probe that is 
activated higher in memory than to a probe of low 
activation. Using this measure, it was possible to monitor 
the activation of explanations over the course of the 
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sequential reasoning task with as little impact on the task 
itself as possible.  

 
Table 1. Summary of the material participants had to 

learn (original material in German). 
Group Chemical Symptoms 

B cough, short breath, headache, eye inflammation 

T cough, short breath, headache, itching Landin 

W cough, eye inflammation, itching 

Q skin irritation, redness, headache, eye inflammation 

M skin irritation, redness, headache, itching Amid 

G skin irritation, eye inflammation, itching 

K diarrhea, vomiting, headache, eye inflammation 

H diarrhea, vomiting, headache, itching Fenton 

P diarrhea, eye inflammation, itching 

 
Three different types of explanations were tracked in 

the experiment. First, the probed explanations could be an 
element of the current explanation (that is they were 
consistent to all symptoms observed so far). These probes 
are termed ’relevant’. Second, the probed explanation 
could be an explanation that was never considered during 
the current trial. These probes were termed ‘irrelevant’. 
Third, the probed explanation could have been considered 
relevant until some evidence inconsistent with that 
explanation forced participants to reject it. These probes 
are called ’rejected’. Rejected probes additionally varied 
with respect to the time since their rejection. They could 
be probed directly after rejection (just rejected); one 
symptom after rejection (rejected 1 symptom ago); or two 
symptoms after rejection (rejected 2 symptoms ago).  

 

 

Figure 1. Sample trial from Baumann et al. (2007) with B 
as a relevant probe. (Letters in parentheses represent 

relevant explanations). 

Models 

Four ACT-R models using different implementations of 
spreading activation from working memory were designed 
to test the assumptions presented above. Because ACT-
R’s memory system is dependent on patterns of retrieval 
time, the temporal order of events was modeled as closely 
as possible to the actual experiment. Thus, the models 
went through the same trials as human participants. After 
one symptom of each trial a probe was presented and the 
models had to indicate whether it was a chemical or not 
by typing ‘Y’ for Yes and ‘N’ for No respectively. At the 

end of each trial the models typed the letter representing 
the diagnosis. This was accomplished using ACT-R’s 
perceptual and motor modules that allow for modeling 
time to process visual stimuli and performing key strokes. 

As participants had received extensive training on the 
task prior to the experiment, the base levels of the chunks 
representing symptoms and probes or diagnosis 
respectively were all set to the same high level. 

To implement the integration of the sequentially 
presented symptoms we assumed one chunk to be placed 
in the imaginal module at the beginning of each trial. 
Over the course of the trial, the slots of this chunk were 
successively filled with the symptoms seen thus far. As 
noted above, we assumed the imaginal module to be the 
source of spreading activation, thus, only information 
stored in this module could spread activation to associated 
concepts in declarative memory. 

To solve the probe task, the model had to retrieve the 
explanation-chunk representing the probe letter. Due to 
spreading activation from the observed symptoms stored 
in the imaginal module, explanations associated to these 
symptoms received more spreading activation and could 
therefore be retrieved faster. Thus, as in human 
participants, the time to respond to a probe could be used 
as a measure for the activation of explanations in memory. 
As soon as the model was asked for the final diagnosis, it 
attempted to retrieve an explanation-chunk from memory. 
As the explanation most consistent to all observed 
symptoms obtained the highest spreading activation, this 
explanation was the one most likely to be retrieved. 

To model the different assumptions concerning the 
nature of activation processes in working memory, we 
varied the implementation of spreading activation from 
the imaginal module between the different models as 
described in the following. 

 
Model 1. In the first model, the amount of activation 
spread by each symptom depends on the number of 
symptoms observed so far. The imaginal module (holding 
the observed symptoms) can spread a certain amount of 
maximum activation that is equally divided among the 
symptoms: 

 
Wj = W/n (1) 

 
with Wj being the spreading activation associated with the 
jth symptom, W being the total amount of activation for 
the module and n being the number of symptoms hold by 
the module. This is the standard solution implemented in 
ACT-R. Thus, after the first symptom is presented, there 
is only one chunk in the imaginal module that can spread 
activation and thus, has a full spreading activation (set to 
1). The more symptoms placed in the module over the 
course of the trial, the less activation is spread by each of 
these symptoms.  
 
Model 2. For the second model, we implemented a 
function that assigned pre-specified amounts of activation 
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to be spread to the slots of the source chunk. The values 
associated with the slots were computed using a formula 
proposed for the decay of information in a constraint 
satisfaction model (Wang et al., 2006; see also Mehlhorn 
& Jahn, 2009) that assumed a non-linear negatively 
accelerated decay:  
 

Wj = Wj-1(1-d)√t (2) 
 
where Wj is the spreading activation associated with the jth 
symptom, d denotes a decay parameter that was set to 0.4 
and t denotes the time that has elapsed since the trial 
started. Thus, the most recent symptom always spreads a 
full amount of activation (set to 1). Over the course of the 
task, symptoms spread less activation the longer they are 
kept in the imaginal module. 
 
Model 3. The third model also used a function assigning 
pre-specified decaying amounts of activation. However, in 
this model we implemented a linear instead of a 
negatively accelerated decay. To make sure that not the 
total amount of the decay, but only the slope of the decay 
function would influence the outcome, we used equal 
values as in Model 2 for the most recent and the oldest 
symptom:  

 
Wj = W1-(j-1)((W1-W4)/3) (3) 

 
with Wj again being the spreading activation associated 
with the jth symptom and W1 and W4 being the spreading 
activation values for the most recent and the latest 
symptom as computed by formula (2). Thus, in this model 
the activation spread by symptoms decays away in a 
linear manner over time. 
 
Model 4. A constant amount of activation associated with 
each slot of the source chunk was implemented in the 
fourth model. Thus, Wj was set to a fixed value of 0.16 
that had shown to provide a good fit to the human data. 
Thus, in this model, activation spread by a piece of 
information in the imaginal module neither depends on 
the amount of information in the module, nor on the time 
since the information first entered the module. 

Results 

All four models were compared to the results produced by 
human participants on four dependent measures, namely 
the accuracy that was reached in the diagnosis and the 
probe task and the average reaction times for correct 
responses in these two tasks. 
 
Diagnosis Task. Table 2 shows the mean accuracies and 
the mean reaction times for the diagnosis task. All models 
were able to solve the diagnosis task reaching very good 
to perfect performance. Inspecting the reaction times for 
correct diagnoses reveals that all models produced about 
the same reaction times as human participants. 

 
Table 2. Mean accuracies and mean reaction times by 
models and human participants in the diagnosis task. 

 
 Mean accuracy 

(%) 
Mean RT (ms) - 

correct 
diagnoses 

Participants 96.1 608.09 

Model 1 100 606.87 

Model 2 98.4 571.21 
Model 3 99.1 555.13 
Model 4 100 658.31 

 

Probe Task. To analyze the accuracy of the probe task, 
for human data as well as for the models’ data, only trials 
with correct final diagnoses were used. To analyze 
reaction times to probes, trials on which either the 
diagnosis or the probe response was wrong, were 
excluded. This was done because for human participants it 
remains unclear what caused the wrong diagnosis or the 
wrong probe response. For example, a participant might 
have missed a symptom and thus reached a wrong 
conclusion, implying that the activation measured in the 
probe task is not the activation of the target letter but 
rather that of another, possibly irrelevant one. 

Human participants responded correctly to the probes in 
93.1% of the trials whereas all models reached 100% 
accuracy. Reaction times for the different probe types are 
illustrated in Figure 2. For all probe types, Model 4 fits 
the human data best. The other models deviated more 
from the human data, which is not only evident in overall 
faster reaction times, but also in the less well fitting 
patterns. The different fits are reflected by the R2 between 
participants’ data and the modeling results as well as the 
RMSSDs; being R2 = .35 and RMSSD = 2.75 for Model 
1, R2 = .37 and RMSSD = 3.00 for Model 2, and R2 = .44 
and RMSSD = 3.58 for Model 3, whereas Model 4 
reached a R2 of .80 and a RMSSD of .85. 

As can be seen in Figure 2, for relevant probes, 
participants’ reaction times decreased the closer the probe 
was presented to the end of the trial. Model 4 produced a 
pattern close to the participants’ data. In all other models, 
reaction times were too fast at the beginning of the trials 
and did not change substantially during the trials, 
indicating that the earlier symptoms were overweighed. It 
is notable that none of the models fit the positive 
acceleration (that is, a sudden drop in reaction times from 
symptom 3 to symptom 4) of the participants’ data. 

For irrelevant probes, participants’ response times 
decreased slowly over the trial. The models’ reaction 
times decreased as well, but except for Model 4, this 
decrease was much faster than for the participants. Again, 
the slopes of the curves differed between all models and 
the participant data. Participants reacted increasingly 
faster towards the end of the trial, while the models’ 
reactions decreased asymptotically toward some value. 
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Figure 2. Models’ and participants' reaction times for different probe types at different probe positions. 
 

For the just rejected probes, all models’ patterns 
matched the pattern provided by humans fairly well. 
However, the models’ responses were too fast. Again, the 
fourth model’s reaction times lie closest to the human 
data. For the probes rejected one symptom ago, all 
models’ patterns again roughly matched the ones provided 
by human participants; except that Model 4 showed a 
slight decrease instead of an increase in the reaction times. 
Despite the difference in the slope, Model 4 again 
produced reaction times closest to the human data. Also 
for probes rejected two symptoms ago, the best fit to 
human data was provided by Model 4. 

Discussion 

In this paper, we explored the influence of the 
implementation of different spreading activation 
processes in working memory during a diagnosis task. In 
the task, sequentially presented information needed to be 
integrated to find an explanation most consistent to all 
pieces of information. We compared the data provided by 
four ACT-R models that utilized different patterns of 
spreading activation to human data on several dependent 
measures. The analysis of diagnostic performance and the 
probe accuracy was important to show that all models 
were able to solve the task. However, the most interesting 
dependent variable is the probe reaction time. It not only 
provides a measure for how strongly different types of 
explanations are activated by the observed symptoms, but 
also how this activation changes over time. 

As the results show, neither the standard 
implementation of ACT-R (Model 1), assuming the 
amount of spreading activation in the focus of attention to 
depend on the amount of information held in the source 
chunk nor models assuming the spreading activation of 
information in working memory to decay away with time 
(Models 2 and 3), could account for the patterns found in 
human data. Varying the pattern of the decay function 
from a negatively accelerated decay in Model 2 to a linear 
decay in Model 3 also had no substantial effect on the 
model fit. Concluding, none of the models assigning 

varying activation-values to the information held in 
working memory were able to fit the data.  

Contrary to these models, our fourth model provided a 
pattern very close to the one provided by human 
participants. This model assumed the amount of spreading 
activation associated with each piece of information in 
working memory to be constant. Before discussing 
possible implications of this finding, we would like to 
address several potentially critical aspects of our 
approach.  

One could argue that the bad fit of the Models 1, 2 and 
3 might only be due to the high base levels assigned to the 
diagnosis chunks, thus causing the reaction times to be too 
short. To rule out this possibility, we also implemented 
the three models with lower base-levels. However, this 
did not improve the models’ fit, because it did not affect 
the pattern of the response times, but only the absolute 
level. 

Another possible source of criticism might be the 
different amount of total spreading activation that was 
used for the different models. That is, for example in 
Model 2, the sum of all activations assigned to the 
different slots of the chunk in the imaginal module was 
1.56, whereas the total spreading activation in Model 1 
was 1. To rule out possible criticism related to this point, 
we also implemented all four models in a way such that 
the total spreading activation was constant across the 
models. This, again, did not change much about the 
general data pattern.  

Conclusions 

Our results have several interesting implications. First, 
they question the implementation of spreading activation 
currently used in ACT-R. Second, they question the 
assumption of decay in working memory as proposed in 
some constraint satisfaction models. Why could those 
theoretical assumptions not be confirmed by our data? 
Does the amount of information in working memory 
really have no impact on how much activation can be 
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spread by each piece of information? And is information 
in working memory really not subject to decay?  

We would answer both questions with no. The results 
do neither implicate that there is no overall limit to the 
amount of activation spread from working memory nor 
that there is no decay. In our task, participants had to 
maintain a relatively small amount of information in 
working memory (up to four symptoms). This lies within 
the general range of working memory capacity (cf. 
Cowan, 2000). Thus, our results do not question that the 
total amount of activation spread from the focus of 
attention is related to working memory capacity (e.g., 
Lovett et al., 2000). Rather, this spreading activation 
might be assigned to the information in the focus of 
attention in a different way. That is, until the total 
capacity of working memory is reached, each piece of 
information seems to spread the same amount of 
activation. 

Moreover, only information that is not currently held in 
the focus of attention might be subject to processes of 
decay. That means, as soon as some piece of information 
becomes irrelevant to the current task or as the amount of 
information in the focus exceeds its limited capacity, this 
information might decay away. However, in our task, the 
information neither became irrelevant nor did it exceed 
the capacity of working memory during the whole 
reasoning process. When new symptoms are observed, the 
reasoner needs to integrate them with earlier symptoms to 
find an explanation consistent to all symptoms. Therefore, 
the older symptoms need to be actively maintained, and 
thus they do not decay. 

An interesting question for further research would be to 
take a closer look at what happens when the amount of 
information to be actively maintained during the task 
exceeds working memory capacity. As several authors 
suggest, in such cases the least activated information 
would be dropped from working memory (e.g., Thomas et 
al., 2008; Chuderski, Stettner & Orzechowski, 2006). 
Thus, this information should no longer be able to spread 
activation to associated information in long-term memory 
but instead it should become subject to decay.  

Concluding, our results shed some light on the 
representation of information in working memory during 
a sequential diagnostic reasoning task. They suggest that 
in such a task, each piece of this information has the same 
potential to activate associated knowledge from working 
memory. It will be an interesting question for further 
research to determine in how far this finding can be 
generalized from diagnostic reasoning to other tasks that 
require information to be actively maintained in working 
memory. 
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Abstract

Latent Semantic Analysis (LSA) is a statistical technique for
extracting semantic information from text corpora. LSA has
been used with success to automatically grade student essays
(Intelligent Essay Scoring), model human language learning,
and model language comprehension. We examine how LSA
may help to predict a reader’s interest in a selection of news
articles, based on their reported interest for other articles. The
initial results are encouraging. LSA (using default corpus and
setup) can closely match human preferences, with RMSE val-
ues as low as 2.09 (human ratings being on a scale of 1-10).
Additionally, an Adapting Measure (best parameters for each
individual) produced significantly better results, RMSE = 1.79.
Keywords: Adapting Measure; Latent Semantic Analysis;
LSA; human interest prediction; predicting ratings; news ar-
ticles

Introduction
The ability to accurately predict user preferences is valuable
to any system that strives to deliver meaningful data based on
a single query. It allows improved accuracy in the results de-
livered and by extension, superior service to a system’s users.
One example of this is the Netflix’s Cinematch algorithm,
which uses linear statistical models to provide their users with
estimates of how much they will enjoy a certain movie given
their prior movie preferences (Netflix, 1997). Latent Seman-
tic Analysis (LSA; Landauer & Dumais, 1997), a technique
designed to find relations between bodies of text, may offer a
suitable alternative for rating text documents. LSA has been
employed in a similar manner to predict grades for student
essays (Foltz, Laham, & Landauer, 1999), making it worth
exploring its worth as a model for user preferences. This pa-
per examines LSA’s capability to predict user preferences for
news articles and outlines an experiment designed and used to
this end. The problem space was defined by 3 factors. First,
we examine the effect of using different amounts of the arti-
cles’ content (title only versus title + content) on prediction
accuracy. Second, we examine how different methods for pre-
dicting interest compare (e.g. average rating of 3 closest ar-
ticles, weighted average of 9 closest ratings, etc.). Lastly, we
evaluated nomothetic (one size fits all) and idiographic (tai-
lored to individuals) approaches to predict user preferences.

Background
Latent Semantic Analysis Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997) is a statistical technique
for extracting semantic information from text corpora. It is
a powerful technique that has been used with success for
automatically grading student essays (Landauer & Dumais,

1997), to model human language learning (Landauer & Du-
mais, 1997), to model language comprehension (Lemaire,
Denhiere, Bellissens, & Jhean-Iarose, 2006), and more.

Although this paper focuses on LSA, other techniques
for modeling the human semantic space may be appropri-
ate (Blei & Lafferty, 2006; Blei, Ng, & Jordan, 2003; Grif-
fiths & Steyvers, 2004; Lindsey, Stipicevic, Veksler, & Gray,
2008; Matveeva, Levow, Garahat, & Royer, 2005; Veksler,
Govostes, & Gray, 2008), and will be assessed in future
work. Moreover, we examine only one of many possible LSA
spaces, based on the work of Landauer & Dumais (1997),
constructed based on the TASA corpus (Zeno, Ivens, Millard,
& Duvvuri, 1995).

The TASA corpus contains a body of text which repre-
sents a collection or reading material that a college freshman
should be familiar with (Zeno, Ivens, Millard, & Duvvuri,
1995). The LSA-TASA space has been used frequently as
a model of human semantics (e.g. Griffiths, Steyvers, &
Tenenbaum, 2007; Landauer & Dumais, 1997; Veksler, Gov-
ostes, and Gray, 2008;), and is an appropriate first model to
use for current research. However, corpus selection makes
a great difference for any semantic modeling (Lindsey, Vek-
sler, Grintsvayg, and Gray, 2007), and other corpora will be
employed in future research to further improve predictions of
human ratings.

Intelligent Essay Scoring Intelligent Essay Scoring, in
particular the Intelligent Essay Assessor (IEA) is relevant to
current work. Intelligent Essay Assessment, in short, utilizes
LSA to grade student essays by comparing them with essays
of known quality based on the degree of conceptual relevance
and the amount of relevant content. When put to the test, Re-
sults indicated that this technique varied from a human grader
as much as two human graders varied from each other. This
shows that the Intelligent Essay Assessor performed almost
identically to human graders, showing a great deal of support
for LSA as a measure of semantic similarity (Foltz, Laham,
& Landauer, 1999). The proposed model differs from IEA in
that it does not work with a predetermined set of ranked bod-
ies of text, opting instead to learn the user’s ranking system
and attempting to emulate it.

Theory
LSA represents semantics as a multidimensional vector-
space. A given body of text can be represented in this se-
mantic space by a vector. The relatedness between any two
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such vectors can then be measured based on the angle be-
tween them. The greater the angle between two vectors, the
greater the difference semantically between the two concepts
represented by said vectors.

We believe that humans assign utility values to semantic
concepts, and that these values can be measured and utilized
to model human interest. The assumption is that the closer
two articles are in semantic space, the closer their interest
values should be for any given participant. Figure 1 helps to
illustrate this idea further, where similar semantic topics have
similar interest values for a sample human participant. Thus,
the interest value for any new vector drawn in this semantic
space may be predicted based on which existing vectors it is
closest to.

The experiment described below tests this prediction. The
idea is that by comparing the articles having known human
interest values with a new article having none yet assigned,
we can predict the utility value of the new article. By taking
the average interest value of the n most closely related LSA
vectors, we can infer a value for the unknown article. Giving
more weight to vectors that are more closely related to the un-
valued article’s vector may increase the prediction’s accuracy
(this may compensate for cases where the known semantic
interest space is sparse, and only a small number of articles
have a high relatedness to the unrated article).

Modeling
In the experiment we explore the problem space mentioned
in the introduction based on its three defining factors.

Content Size
The experiment inspected the effect content size held over the
accuracy of the predictions. When considering news articles,
we used the title text versus the full article text to examine
this. We wanted to know if the titles’ of the articles alone
would give enough information for rating predictions. The
assumption was that the article titles would give a fair indica-
tion of the article’s representation in a semantic space (as is
the case much of the time for human readers). On the other
hand it may be better to base predictions on the full set of
data, in this case article content.

Measures
Several measures were used to predict utility values to
each user’s articles. Averages of the n closest related
articles to the one being rated were used, with n =
3,5,7,9,11,15,25,33,100,299. Weighted averages and dou-
ble weighted averages of the same amounts were also cal-
culated in averages of the n closest vectors. The weighted
average was used to determine a predicted interest for article
a as follows:

WA(a) =

n
∑

k=1
LSA(a,xn)×Rating(xn)

n
∑

k=1
LSA(a,xn)

(1)

Figure 1: An example of a semantic space displaying article
vectors, their titles, and the utility value assigned to them by
a fictitious human participant.

where xk is the nth most closely related article and
LSA(a,xk) is the measure of the relatedness between a and
xk . The Double weighted average is calculated almost the
same except that the measure of the relatedness between a
and xk is squared like so:

WA(a) =

n
∑

k=1
LSA(a,xn)2×Rating(xn)

n
∑

k=1
LSA(a,xn)2

(2)

Each measure was tested using the LSA vectors for only
the article’s title as well as the article’s title and content.
There is no comparison between articles rated by different
users. Also, the averages were rounded, so that an integer
value was assigned as the predicted rating. For each user, the
root mean squared error (RMSE) of the predicted utility val-
ues from the user defined utility values was calculated as an
indication of overall performance.

Nomothetic Versus Idiographic
Finally the prediction accuracy between two distinct ap-
proaches was measured and compared. The Nomothetic ap-
proach simply used one content size and one measure with
every user. This static approach was applied to every combi-
nation of content size and measure. The idiographic approach
involved an Adapting Measure, which tried every combina-
tion of content size and measure to predict a given user’s util-
ity values, and chose the most accurate on a user by user basis.

Experiment
The primary purpose of this experiment was to measure the
accuracy of LSA in predicting a user’s interest in regards to
news articles based off that user’s previous ratings.

Procedure and Design
Participants 200 undergraduate students of RPI partici-
pated for course-credit. Twelve of the participants failed to
finish the experiment, and their data was subsequently re-
moved from any further analysis.
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Figure 2: (a) Average RMSE values for Average (A), Weighted Average (WA), and Double-Weighted Average (DWA) measures
for predicting interest values, using either the article Title, or its Content to create the LSA vector. (b) A comparison of the
average RMSE values of an Adapting Measure, the nomothetic measure with the lowest RMSE (weighted average of 25
articles), and the Average Interest Heuristic (average of 299 articles).

Design The experiment employed a single-group design
with no between-subject variables. 400 news articles were
taken from Reuters.com and classified into 20 categories
based on their content. The categories used were: Sports, En-
tertainment, US News, Environment, Health News, Lifestyle-
Health, Politics, International, Business News, Deals, Private
Equity, Mergers & Acquisitions, Science, Internet, Lifestyle-
Technology, Technology, Lifestyle-Travel, Oddly Enough,
Lifestyle-Living, and Lifestyle-Autos. Each category con-
tained 20 articles. These articles were pulled from the Reuters
RSS feed the week before the experiment was run so as to
offer the most recent articles possible to the Participants for
grading. The experiment itself was designed as a web appli-
cation and the Participants were instructed to complete it at
home, allowing a greater number of participants to contribute.

Procedure Before the online experiment began, the partic-
ipants were instructed to provide their name, gender, age, and
major. Participants were then instructed to rate 300 articles,
chosen randomly from the aforementioned set of 400 articles.
Each article was to be rated on a scale of 1 to 10 with 1 signi-
fying indifference and 10 signifying that an article perfectly
matches the participants interest. The participants were also
told that they did not have to read the articles if they could
gauge their interest by the title alone. The experiment ap-
peared in the browser as a list of 10 article titles hyperlinked
to their source with 10 radio buttons underneath each title la-
beled 1-10 to allow the participants to submit their ratings
with ease. Once the participants rated 10 articles, they would
be able to click a button at the bottom of the screen which
would reload the page with 10 new articles. The experiment
would not allow the participants to move on to the next page
of 10 articles without first rating the 10 that were currently
displayed After the 300 articles were rated, the participants
were then asked to complete a questionnaire that gave us valu-
able feedback in regards to the experiment’s procedure. Pilot

participants were able to finish the experiment in less than
one hour.

Results and Analysis
Each measure’s performance (i.e. how accurately they pre-
dicted the participants’ ratings) is displayed as RMSE values
in Figure 2 and Table 1.

Content Title
n A WA DWA A WA DWA
3 2.31 3.29 2.28 2.51 2.48 2.48
5 2.23 2.17 2.17 2.41 2.36 2.37
7 2.21 2.12 2.12 2.37 2.30 2.31
9 2.20 2.11 2.11 2.35 2.28 2.28

11 2.18 2.10 2.10 2.34 2.27 2.27
15 2.19 2.09 2.09 2.31 2.24 2.24
25 2.18 2.09 2.09 2.28 2.21 2.21
33 2.19 2.10 2.10 2.27 2.21 2.21
100 2.22 2.14 2.14 2.26 2.19 2.19
299 2.25 2.20 2.20 2.25 2.20 2.19

Table 1: RMSE values from the graph in Figure 2a.

It appears that using the actual content of the article to fill
the semantic space is superior to using just the title text. This
is most likely due to the greatly increased amount of text used
to create the article vectors. Larger bodies of text allow for
stronger similarity between the articles’ content, and there-
fore better results. Focusing purely on the content based in-
formation, it is evident that there is no benefit to using double
weighted averaging, as it offers almost identical results to just
using the weighted averages. The best overall measures seen
here are the weighted averages of 15 and 25 articles (WA15
and WA25). Given this information we can say that the best
nomothetic measures are weighted averages of somewhere
between 15 and 25 of the most closely related articles.
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Also worth noting is the performance increase from us-
ing the average rating of all 299 articles. Using the partici-
pant’s average interest value as a heuristic for approximating
their interest in any one article, results in an average RMSE
of 2.25. This Average Interest Heuristic may be used as a
performance baseline. The average difference in RMSE val-
ues between WA25 and the Average Interest Heuristic is .16.
This is a dramatic difference, considering that real-world rat-
ing prediction algorithms are competitive to the RMSE val-
ues of .001. Consider, for example, the Netflix Prize contest
where RMSE improvements in the thousandths place are the
difference between being in the top 5 and being in the top 26.
(Netflix, 1997).

Although WA25 produces the lowest average RMSE,
greater accuracy can be achieved by using an Adapting Mea-
sure. By choosing the best measure for each participant,
performance is increased. In other words, whereas WA25
may be the best rating predictor for one participant, a sim-
ple WA15 may be more appropriate for another. The aver-
age RMSE value for using the Adapting Measure is 1.74.
A repeated measures ANOVA revealed significant differ-
ences between the Adapting Measure (M=1.74, SE=.04),
WA25 (M=2.09, SE=.04), and the Average Interest Heuris-
tic (M=2.25, SE=.05), F(2, 557) = 38.272, p < .001.

Conclusions
The experiment determined that LSA warrants further study
as a model of predicting human interest. Initial results for
predicting participants’ interests in news articles (using the
default LSA corpus and setup) were very positive, resulting
in RMSE values as low as 2.09 using a nomothetic method.
The idiographic method resulted in significantly better perfor-
mance still, RMSE = 1.74. A greater degree of article content
seems to lead to more informative LSA vectors, and better
rating predictions. Lastly, we have narrowed down the list of
measures for further examination to Weighted Averaging of
15 to 25 closest articles, disregarding Averaging and Double-
Weighted Averaging methods of rating estimation. With fur-
ther study and experimentation we believe that this impres-
sive level of accuracy can be improved to an even greater pre-
cision.

Future experiments will involve rating predictions for more
diverse text (e.g. comics, books, scientific papers). Modifica-
tions to the current model will be explored, using alternative
(more modern) training corpora for LSA, and different mod-
eling techniques.
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Abstract
This paper focuses on Bayesian modeling applied to the exper-
imental methodology. More precisely, we consider Bayesian
model comparison and selection, and the distinguishability of
models, that is, the ability to discriminate between alternative
theoretical explanations of experimental data. We argue that
this last concept should be central, but is difficult to manipu-
late with existing model comparison approaches. Therefore,
we propose a preliminary extension of the Bayesian model se-
lection method that incorporates model distinguishability, and
illustrate it on an example of modeling the planning of arm
movements in humans.
Keywords: Bayesian modeling; model selection; distin-
guishability; arm movement; trajectory planning; human con-
trol.

Notation
δ a single data point
∆ a set of data points
x,y coordinates for data points
mi a single model (the i-th)
M a set of models
θ a single parameter value
Θ a set of parameter values
D measure of distinguishability

Introduction
In probabilistic modeling, models are usually encoded by a
term that describes the probability of an experimental datum
δ, given the model Mi: P(δ |Mi).

When the purpose is to select a model out of several alter-
natives, given some observed data points, the P(δ | Mi) term
is usually hierarchically encapsulated in a higer-level model,
which relates several models M, several possible parameter
values for these models Θ, and several data points ∆:

P(M ∆ Θ) = P(M)P(Θ |M)P(∆ | Θ M) . (1)

This leads to a variety of interesting model selection tech-
niques, like the Maximum Likelihood Estimator (MLE),
the Maximum A Posteriori estimator (MAP), various least
squares based estimators, or algorithms using the Akaike In-
formation Criterion (AIC), the Bayesian Information Crite-
rion (BIC), or, more generally, the Bayesian Model Selection
method (BMS). We refer the interested reader to previous re-
views of these techniques (Myung & Pitt, 2004; Hélie, 2005).

All of these methods, at their core, aim at selecting a model
out of a class of models, in order to maximize the fit mea-
sure, or some compound of the fit and model complexity.
One of the possible extensions is, instead of selecting one
single model, to consider the whole distributions over models
P(M | ∆) in order to gain a better understanding of the relation
between the best model and the next best models. The issues
here are legitimate: how is the best model winning over the
rest? Is it only marginally better?

However, some further questions, that are relevant in terms
of scientific methodology, cannot easily be treated on the ba-
sis of Eq. (1) alone. Indeed, it is a very simple structure,
which places at the heart of the analysis the fit of a single
datum δi to a single model m j, in the term P(δi | [M = m j]).

For instance, a couple of questions, that are crucial for
the scientific methodology, are: “are mi and m j predict-
ing different results?”, and “where should the next exper-
iment investigate in order to clarify whether mi or m j is
the best model?”. In other words, the central issue here
is the distinguishability of models mi and m j (Berthier, Di-
ard, Pronzato, & Walter, 1996) 1, in particular with respect
to the space of experimental data. Instead of caring about
the particular fit, or lack thereof of a model, the concern
is about the relative fits of available models; are models
with relatively close fits able to being discriminated, or not?
The two above questions could then be translated mathe-
matically by P(distinguishable | [M1 = m1] [M2 = m2]) and
P(xT+1 | [distinguishable = 1]) (using an informal notation
for the moment).

However, it appears that Eq. (1) is too limited to allow for
an easy formulation of the inclusion of the distinguishability
of models. The fit and experimental adequacy of a model, in
science, is a complex concept; capturing this rich and diffi-
cult concept in a single number that would form the basis of
an absolute ranking might be a red herring. Indeed, even the
composition of the notion of fit and generalization into a sin-
gle measure has proven a challenging task for a wide variety
of modeling approaches, even though the two concepts are re-
lated. Therefore, we propose to pursue an alternate route, de-
veloping explicit mathematical formulations of the measure
of interest, so as to allow their principled manipulation, using
Bayesian inference.

Therefore, we propose to extend here the hierarchical
model of Eq. (1) so as to incorporate the notion of distin-
guishability of models. The central component is to augment
the model fit term with a model comparison term.

In the remainder of this paper, we develop the theoretical
distinguishability analysis Bayesian model, illustrate it on a
hypothetical example, and finally apply it to a scientifically
relevant area, the modeling of the planning of arm movements
in humans.

Bayesian model distinguishability
Let m1 and m2 be two models under consideration. Consider
a data space where x are inputs, and models m1 and m2 pre-
dict outputs y1 and y2, respectively, according to the term

1This is not a self reference, despite the homonymy of the second
author.
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Figure 1: P(D = 1 | x y M1 M2 Θ1 Θ2) plotted against P(M =
M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y).

P(y | x θ M), which is the general likelihood term. Let D
be a probabilistic variable, that is binary: it can take values 1
if the models are distinct, and 0 if the models are not distinct.
Therefore, we are interested in P(D | x y θ1 M1 θ2 M2): what
is the probability that the models are distinguishable given an
experimental point x,y and two models?

We define the hierarchical model of model comparison, our
alternative to Eq. (1) for the purpose of manipulating distin-
guishability, as follows:

P(D x y M1 M2 Θ1 Θ2)
= P(M1 M2)P(Θ1 |M1)P(Θ2 |M2)

P(x)P(y | x M1 M2 Θ1 Θ2)
P(D | x y M1 M2 Θ1 Θ2)

We call the term P(D | x y M1 M2 Θ1 Θ2) the a posteriori
distinguishability, because it is the distinguishability of M1
and M2 with respect to some already observed data point x,y,
as opposed to P(D |M1 M2 Θ1 Θ2), which is the a priori dis-
tinguishability of M1 and M2, irrespective of any data point.
The latter will be obtained via Bayesian inference from the
former, as shown below.

a posteriori distinguishability
Model We define P(D | x y M1 M2 Θ1 Θ2) as follows:

P(D = 1 | x y M1 M2 Θ1 Θ2) =√
(P(M = M1 Θ = θ1 | x y)−P(M = M2 Θ = θ2 | x y))2 .

It is illustrated Fig. 1 2

This measure of distance between model recognition given
an experimental data has some interesting properties; for in-
stance, the probability that D = 1 is 0 if and only if the proba-
bilities P(M = M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y)
are equal. The probability that D = 1 is 1 if and only if either
one of P(M = M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y)
is 1 and the other is 0.

2Alternative definitions, based on other Lp norms, do exist and
have been explored experimentally. For instance, we also used the
absolute distance of the difference (the L1 norm). However, these
alternate definitions do not appear to yield dramatically different re-
sults. The issue of the distinguishability of distinguishability mea-
sures is a topic for further research.
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Figure 2: Left: The models are clearly distinguishable. Right:
In case of higher standard deviation, the indistinguishability
gap between the predictions is wider.
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Figure 3: Left: Hardly distinct models (gaussian distributions
with same means and close standard deviations). Right: Mod-
els with different means and different standard deviations.
Note the asymmetry of the bump of distinguishability around
the left gaussian model, which corresponds to the cases where
it is recognized as the correct model.

Another property of our measure of distinguishability is to
be noted: it is symmetric with respect to M1 and M2, contrary
to previous approaches (Navarro, Pitt, & Myung, 2004).

Finally, since D is a binary variable, we easily turn our dis-
tinguishability into a probability measure by defining P(D =
0 | .) = 1−P(D = 1 | .): a posteriori distinguishability inte-
grates to one. Therefore, the probability distributions over D
can fully be described by a single number. By convention, in
the remainder of the paper, we only focus on P(D = 1 | .).
Example We give a straightforward example, in order to
illustrate the a posteriori distinguishability of models.

We define two models m1 and m2, of the same family of
models, both being defined by Gaussian probability distribu-
tions over some arbitrary unit. We set x to some arbitrary
value for the moment, in order to have a mono-dimensional
data point, over y. Finally, we only consider two possible sets
of parameters θ1 and θ2. In the following figures, we show
how P(D | x y M1 M2 Θ1 Θ2) evolves as a function of y, in
different cases for θ1 and θ2.

The first example is when the two models clearly predict
different outcomes over y. The Gaussian probability distribu-
tions for m1 and m2 are centered on values µ1 and µ2 that are
far apart, in the sense that µ1− µ2 � σ1 and µ1− µ2 � σ2.
This case is shown Fig. 2 (left). It can be seen that the distin-
guishability measure is very high over the whole space, ex-
cept for the data points that fall right between the two mean

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

239



predictions µ1 and µ2. When the certainty in these predictions
gets lower, the indistinguishability gap between the predic-
tions is wider (Fig. 2, right).

Another example concerns the opposite case and is shown
Fig. 3 (left): the models are hardly distinct, except if data
points fall very far from the predicted means (the flatter of the
two models is recognized). Finally, we show Fig. 3 (right) the
general case of varying means and standard deviations.

a priori distinguishability
A priori distinguishability is the analysis of models and their
prediction, without reference to any actual experimental data
point. In this paper, we have chosen to separate the data space
in two components, x and y, which have different practical
interpretations. x is the input data, that is to say, the part of
the experimental point which is decided by the experimenter.
On the other hand, y is the output data, that is to say, the
measure which is made in experimental condition x.

For instance, if studying free falling objects, x might be
weights, and y the time that it takes for an object of weight x to
fall from the top of the tower of Pisa. When studying human
memory, x might be the time of presentation of a stimulus to
a participant, and y the number of features of that stimulus
which are correctly recalled by the participant.

Having these two components in the data space opens two
variants for a priori distinguishability. Firstly, it can be the
distinguishability of models M1 and M2 for a given experi-
mental condition x, without knowing y:

P(D | x M1 M2 Θ1 Θ2) ,

which we refer to as the a priori distinguishability proper. It
can also be the distinguishability of models M1 and M2 for all
experimental conditions x and possible outcomes y:

P(D |M1 M2 Θ1 Θ2) ,

which we refer to as the overall a priori distinguishability.
Both can be obtained from a posteriori distinguishability

by Bayesian inference from the hierarchical model of model
comparison P(D x y M1 M2 Θ1 Θ2). Indeed, assuming
uniform probability distributions over discrete x and y vari-
ables 3:

P(D | x M1 M2 Θ1 Θ2) ∝ ∑
y

P(D | x y M1 M2 Θ1 Θ2) ,

P(D |M1 M2 Θ1 Θ2) ∝ ∑
x,y

P(D | x y M1 M2 Θ1 Θ2) .

Fig. 4 shows the a priori distinguishability of two mod-
els that are based on Gaussian probability distributions, with
means that are linear in x and standard deviations that are
constant, and equal between the two models:

P(y | x M = M1) = Gµ=a1x+b1,σ=k(y)
P(y | x M = M2) = Gµ=a2x+b2,σ=k(y)

3An interesting case would be to consider when y is assumed to
be distributed according to the average prediction given by all con-
sidered models: P(y) = ∑x,M,Θ P(y | x M Θ). We will not develop
this further here.
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Figure 4: A priori distinguishability. Left: each model is
linear with some normal noise of small standard deviation
(σ = 1.0). As a result, models are easily distinguished in
most of the space. Right: the noise is increased around the
linear predictions (σ = 5.0): in the whole middle portion of
the space, models are hardly distinguishable.

The left panel of Fig. 4 shows the case where the standard
deviation k is small for the two models, so that they are highly
distinguishable for almost all input data x, except where the
means get close, because the linear functions a1x + b1 and
a2x + b2 cross. The right panel shows a similar case, where
the standard deviations σ = k are larger, so that the region
where models are less distinguishable is larger.

The computation of the overall a priori distinguishability
is not detailed here, but it is trivial that it yields a higher dis-
tinguishability for the two models on the left panel than for
the two models of the right panel of Fig. 4.

Full scale example: human arm control and
planning strategies

Having illustrated the distinguishability model on a few
mono-dimensional examples in previous sections, we now
turn to a more complex scenario. We study here the planning
and execution of movements for a two degree-of-freedom
arm.

Human arm geometric model and notation
We consider a simple model of the right human arm, using
two segments of same unitary length and two joints, α1 the
shoulder angle, and α2 the elbow angle. This arm is con-
strained to move in the horizontal plane, and its endpoint
(wrist) position is described by its x,y coordinates in this
plane.

We only consider a limited range for possible arm config-
urations, that include biologically relevant positions: α1, the
shoulder angle, ranges from −π/6 (arm extended behind the
subject) to 5π/6 (arm crossing, in front of the chest). The
elbow goes from α2 = 0 when the arm is outstretched, to a
maximum value which is function of the shoulder position:
when the arm is away from the chest, we assume the elbow
can bend totally (α2 = π), while when the arm is close to the
chest, this restricts the elbow angle to decrease linearly with
α1, so that when α1 is maximum, α2 only goes up to π/2.

The shoulder position is set at the origin (x,y) = (0,0).
The set of possible angular joint configurations defines a
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Figure 5: Overhead view of the horizontal plane, the reach-
able workspace (red or grey crosses), and some examples of
possible arm configurations (blue or solid dark segments).
The green square (light grey) delimits the integration space
for computing the a priori distinguishability (see main text).

workspace of possible reachable positions for the endpoint,
which is shown Figure 5. Each of these endpoint positions
can be described either in the joint space by a pair of angular
coordinates α1,α2, or in a Cartesian reference frame by the
pair of x,y endpoint coordinates in the workspace.

Models of trajectory formation: interpolation in the
joint space or in the workspace?
Movements in this two dimensional space are defined be-
tween a start position S and an end position E. Trajecto-
ries between these points are assumed to take a unitary in-
terval of time; in other words, each trajectory is indexed by a
time variable τ that goes between 0 and 1, with α1(0),α2(0)
(or x(0),y(0)) being the start position S and α1(1),α2(1) (or
x(1),y(1)) being the end position E.

There are two main hypotheses concerning the planning
of movements in this context: movements might be planned
in the articulatory or joint space (intrinsic planning), or they
might be planned in the Cartesian workspace (extrinsic plan-
ning) (Palluel-Germain, Boy, Orliaguet, & Coello, 2006). We
further assume, for these two alternatives, that the planning
process is a simple linear interpolation (Hollerbach & Atke-
son, 1987)

Bayesian models Mint and Mext

Here, we define the two probabilistic models we consider.
The first model, Mint assumes that movements are planned

in the intrinsic reference frame. In other words, given start
joint angular values S = (α1(0),α2(0)) and end joint angular
values E = (α1(1),α2(1)), the trajectory to be followed is
chosen so that, for all time index τ ∈ [0,1], the joint values
α1(τ),α2(τ) are interpolated linearly between the start and
end positions.

The start and end positions of movements constitute the x
“input” experimental condition of our data space. The chosen
and planned trajectory is the output of this experimental point,

what the model is predicting; in order to simplify the compu-
tational analysis, we choose to summarize the whole planned
trajectory by a single point along this trajectory, the one at
time τ = 1/2. Furthermore, we assume this point is observed
in the Cartesian space x,y. In other words, the “output” data
point, y, is the endpoint position xint(1,2),yint(1/2) reached
at time τ = 1/2 along the trajectory planned in intrinsic co-
ordinates. Around this predicted position, we will assume
some noise, normally distributed, using a two-dimensional
gaussian probability distribution with mean µint and diagonal
covariance matrix S:

µint =
[

x(1/2)
y(1/2)

]
, S =

[
σ 0
0 σ

]
.

Finally, Mint has no internal parameter Θint , which simpli-
fies the notation.

We can now make Mint formal in the Bayesian program-
ming notation:

P(y | x M = Mint)
= P(x y | α1(0) α2(0) α1(1) α2(1) M = Mint)
= Gµ,S(x,y)

The second model, Mext , on the other hand, assumes that
movements are planned in the extrinsic reference frame,
that is to say, directly the Cartesian workspace. In other
words, given start joint angular values S = (α1(0),α2(0)) and
end joint angular values E = (α1(1),α2(1)), these are first
converted into Cartesian start and end positions x(0),y(0),
x(1),y(1). Then the straight segment, in the workspace, that
connects these two points is the predicted trajectory. Triv-
ially, the predicted middle point at time τ = 1/2 is the geo-
metric middle of the segment (assuming a symmetric velocity
profile).

As previously, we assume some normally distributed noise
around the middle of the segment xext(1/2),yext(1/2):

P(y | x M = Mext)
= P(x y | α1(0) α2(0) α1(1) α2(1) M = Mext)
= Gµext ,S(x,y)

We show Fig. 6 some examples of trajectories predicted
by the intrinsic planning model Mint and the extrinsic plan-
ning model Mext , and the predicted points for the middles of
these trajectories, at τ = 1/2. A special case can be seen
where the trajectories are superposed: this is when the line
that passes by the start point S and end point E also passes
through the shoulder position (0,0). As previously demon-
strated, in this case of radial movements, the predicted trajec-
tories are straight segments both in the intrinsic and extrinsic
models (Hollerbach & Atkeson, 1987).

Distinguishability of intrinsic and extrinsic
interpolation models
Having defined the two intrinsic and extrinsic models in the
Bayesian framework, by the terms P(y | x M = Mint) and
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Figure 6: Some trajectories from the same starting position S:
α1(0) = π/6,α2(0) = 4π/6, predicted by the intrinsic plan-
ning model Mint (curved trajectories, in orange or light grey)
and the extrinsic planning model Mext (straight segments, in
purple or dark grey).

P(y | x M = Mext), we can then encapsulate them in the
Bayesian metamodel of distinguishability. This allows to
compute, for each possible movement to be performed in the
workspace, the a priori distinguishability between Mint and
Mext .

More precisely, we restrict the considered movements to
those that can be performed by both strategies. Indeed, be-
cause the reachable space is not convex (see Fig. 5 or Fig. 6)
some movements do have solutions in the intrinsic model, but
not in the extrinsic model. In other words, for some pairs of
start and end positions, the segment between them lies outside
of the reachable space. For instance, this is the case for trajec-
tories with the arm fully outstretched at the starting position.
For this reason, we restrict our analysis for a convex subre-
gion of the reachable space (the green rectangle of Fig. 5),
and only compute the distinguishability of models for move-
ments where both the start and end positions are inside it.

For a given movement, defined by a start position S =
(α1(0),α2(0)) and an end position E = (α1(1),α2(1)), we
compute the a priori distinguishability of models Mint and
Mext , by integrating over all possible data points. Here again,
we only consider possible data points that fall inside the green
rectangle of Fig. 5.

Therefore, we obtain, for all possible movements, the prob-
ability values P(D = 1 | α1(0) α2(0) α1(1) α2(1) M1 =
Mint M2 = Mext).

Result analysis However, since all possible movements de-
fine a four dimensional space, this distinguishability measure
cannot easily be visualized and interpreted as is. Some se-
lections and projections to lower dimensional spaces is re-
quired, for the distinguishability measure to be plotted. We
will firstly present results for a given start position (for all
possible end positions), and secondly, aggregated results for
all possible pairs of start and end positions.

We further define three projections, to analyse the results.

Figure 7: Top row: distinguishability of models plotted
against the amplitude of a movement. Middle row: dis-
tinguishability of models plotted against the distance of a
movement. Bottom row: distinguishability of models plotted
against the angle difference with respect to radial lines. Left
column: distinguishability of models for all possible move-
ments starting from S = (π/6,π/3). Right column: distin-
guishability of models for all possible movements starting
from S = (5π/8,π/6).

We will group movements according to their amplitude, their
distance to the shoulder, and their angle difference with re-
spect to radial lines.

The amplitude of a given movement from start position S
to end position E is simply defined as the Cartesian distance
between S and E in the workspace.

The distance of a given movement from start position S to
end position E we define as the distance to origin of the point
at τ = 1/2 predicted by Mext . In other words, we consider
the distance between the shoulder position and the middle of
the segment between S and E in the workspace: some move-
ments are performed very near the body, some movements are
performed near the outside limits of the workspace.

Finally, the angle difference with respect to radial lines, for
a given movement from start position S to end position E, we
define as the angle difference between the segment SE and
the segment from shoulder position (0,0) to S. This measure
allows to see whether a given movement is purely radial (go-
ing straight away from or to the shoulder), or if it is a circular
movement (tangent to some circle centered on the shoulder).

We show Fig. 7 the distinguishability analysis for three dif-
ferent starting positions. Fig. 8 shows the aggregate results
for all possible starting positions.
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Figure 8: Distinguishability of Mint and Mext for all possible
movements. Top left plot: distinguishability plotted against
the amplitude of movements. Top right plot: distinguishabil-
ity plotted against the distance of movements. Bottom plot:
distinguishability plotted against the angle difference with re-
spect to radial lines.

Result interpretation From these results, some conclu-
sions can be drawn.

The most prominent feature is that the models Mint and
Mext appear to be most distinguishable when movements are
large. Indeed, the distinguishability of models is high for
movements of large amplitude, and gets to 0 when the move-
ments are very small. This is confirmed easily by intuition:
for large movements, the geometry of the arm has the most
impact on the curve predicted by Mint . In other words, we see
here the effect of the direct kinematic transform.

A second feature is that, for all possible movements, the
distinguishability of models does not seem to be dependent
of the distance of the performed movement. However, an ex-
ception is to be noted: when movements are performed near
the outer boundary of the reachable space, the models be-
come hardly distinguishable: their distinguishability dips to
0. This is a confirmation of a fact that was already demon-
strated mathematically (Hollerbach & Atkeson, 1987). This
was a very important finding, as it allowed to cast doubt on the
discrimination power of a previous experiment, where partic-
ipants had to perform movements bringing them to that outer
boundary (Soechting & Lacquaniti, 1981).

A final feature we wish to analyze concerns the angle of
movements with respect to radial lines. Contrary to the pre-
vious case, this finding contradicts, or rather refines, previous
mathematical developments. Indeed, it was shown previously
that purely radial movements render the intrinsic and extrin-
sic planning models not distinguishable (Hollerbach & Atke-
son, 1987). Indeed, in this case, both models predict that
the trajectories performed are straight (radial) segments. We
also confirmed this in one of the example trajectories shown
Fig. 6. However, this indistinguishability is purely spatial:
when considering the time profile of trajectories, they be-

come distinguishable. This is shown by the bottom plot of
Fig. 8: while it is true that radial movements entail, overall,
a slightly lower distinguishability of models, there are radial
movements where Mint and Mext are still distinguishable. This
can also be demonstrated by isolating these trajectories, and
analyzing them. And indeed, even for radial movements, the
positions predicted at time τ = 1/2 are different for the two
models. This was also shown on the example radial trajectory
of Fig. 6.

Conclusion
In this paper, we developed an original Bayesian metamodel
that integrates the notion of distinguishability of models. It
allows to manipulate this concept using Bayesian inference,
to compute a posteriori distinguishability of given models,
but also their a priori and overall a priori distinguishability.
We illustrated our model on an example about the planning
of arm movements in humans, and showed how it could be
used to analyse the space of all possible experimental points.
For instance, it was shown that radial movements are indis-
tinguishable spatially, are distinguishable in the temporal do-
main, and finally, that movements of large amplitude could
be used to better discriminate between the alternative models
of intrinsic and extrinsic planning.

Further theoretical developments include using the dis-
tinguishability metamodel to draw experimental condi-
tions, given that we look for discriminating power, us-
ing Bayesian inference to compute a term of the form
P(x |M1 θ1 M2 θ2 D = 1).
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Abstract

We propose a computational model of human navigation,
which encompasses both geometry-based and landmark-based
navigation strategies. This model is based on a study of hu-
man cognitive strategies during a path memorization task in
a Virtual Reality (VR) experiment. Participants were asked
to memorize predefined paths in a large-scale virtual city
(COSMOpoliS c©). Our computational model qualitatively re-
produces the results of this experiment. This model uses the
Bayesian formalism, and focuses on the interplay between the
elementary cognitive strategies hypothesized above. It offers
an original interpretation of the way these strategies might be
articulated, departing from the classical hierarchical structure.
This novel view might be fruitful for robotic models from a
biomimetic perspective, where managing representations of
large-scale and complex environments is still a challenge.

Keywords: Bayesian modeling; human navigation; navigation
strategies; landmark-based navigation; path integration.

We discuss here the results of an experiment, in which we
have explored the existence of elementary cognitive strategies
used for spatial encoding in humans. We have found that,
while navigation mainly relies on landmark recognition and
encoding for path memorization, the sudden disappearance of
these brings in light a back-up mechanism strategy enabling
the participants to navigate, although with less accuracy, us-
ing geometrical cues alone. These are the first evidence of
equivalent components between humans and animals in this
context.

In models of navigation, these observations of “back-up”
mechanisms usually lead to modeling independent subsys-
tems of navigation, and portraying them as hierarchically
articulated. We believe this view of independent subsys-
tems being hierarchically articulated to be simplistic, as it
merely pushes back the problem of understanding how dif-
ferent sources of information are integrated in the central ner-
vous system.

In this paper, we propose a probabilistic model that tack-
les this problem in an original manner. We develop a model
of navigation, which, although composed of a single com-
ponent, can mimic both landmark-based and geometry-based
navigation strategies. Bayesian inference is the principle,
which enables this single representation of the environment
to give rise to several navigation strategies. The overall be-
havior of our model is dictated by the availability of sensory
cues. When there are no uncertainties about the sensed land-
marks, our model performs as landmark based navigation. On

Figure 1: Top-view of the virtual city and archetypal errors
observed in the condition where landmarks are removed be-
tween memorization and reproduction. In light gray (green),
the learned paths. In black (blue to red), the reproduced paths
by the participant. For example, in the top-right panel, note
how the central building was passed from the right in the
learned path, and from the left in the participant’s reproduc-
tion.

the other hand, when landmarks are not sensed, the model
performs as geometry based navigation. In the following, the
term “navigator” will refer to a simulated, imaginary partici-
pant that would navigate in our virtual city according to our
mathematical model.

The model qualitatively reproduces patterns of errors we
observed in the COSMOpoliS c© experiment. In this exper-
iment, humans participants were immersed in a VR city us-
ing a VR helmet. They could navigate using a joystick for
forward translations, and turn their body in the real world
for virtual rotations (with a magnetic tracker set on the VR
helmet). Participants were presented a movie of a trajectory,
and were asked to memorize it (memorization phase). Af-
ter seeing the movie twice, they were set in the starting end
of the path and asked to reach its end, actively (reproduction
phase). Landmarks (posters on walls, lampposts, etc.) were
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disposed in the city. Experimental conditions were defined
by the availability of the landmarks in both the memorization
and reproduction phase. We focus here in two conditions:
in the Landmark condition, landmarks were available both in
memorization and reproduction. In the Probe Trial condition,
landmarks were removed between memorization and repro-
duction.

The data showed that all participants were able to success-
fully reach a goal in a virtual city in the Landmark condi-
tion. Data also showed that the goal was also reached when
landmarks were removed between memorization and repro-
duction (Probe Trial). However, in that case, patterns of error
could be observed quite frequently in the paths that partici-
pants made in order to reach the goal (see Fig. 1). Partici-
pants quite commonly reached the goal using a variant of the
memorized path, passing buildings from the wrong side, for
instance. Surprisingly, very few participants were actually
conscious of these discrepancies.

The rest of this paper is structured as follows. Firstly, we
briefly review the related work on hierarchical modeling of
human, animal or robotic navigation. We then present the
Bayesian model we developed in order to have our simulated
navigator reproduce this pattern of error: we first introduce
our simplifying assumptions, then define the model and de-
scribe its simulation. Finally, we discuss the interpretation of
our model as was defined, as well as of the relevance of our
simplifying assumptions. The paper concludes on a discus-
sion on the way our assumptions could be relaxed, yielding
perspectives on the future work.

Related modeling works
Both life sciences and robotics have made the modeling of
navigation capabilities of autonomous entities a crucial point
of research, and a wide variety of models already exists. We
focus here on hierarchical models of navigation.

In the domain of mobile robotics, modeling the environ-
ment that a robot has to face, usually in the form of a map,
is a crucial problem. The most promising approaches rely
on the probability calculus, thanks to its capacity for han-
dling incomplete models and uncertain information. These
approaches include – but are far from limited to – Kalman
Filters, Markov Localization models, (Partially and Fully)
Observable Markov Decision Processes (POMDP and MDP),
and Hidden Markov Models (see (Diard, Bessière, & Mazer,
2003) for a general introduction).

In this domain of probabilistic modeling for robotics, hi-
erarchical solutions are currently flourishing. The more ac-
tive domain in this regard is decision theoretic planning: one
can find variants of MDPs that select automatically the parti-
tion of the statespace (see for instance (Hauskrecht, Meuleau,
Kaelbling, Dean, & Boutilier, 1998)). Another class of ap-
proaches that rely on deterministic notions is based on the
extraction of a graph from a probabilistic model, like for ex-
ample a Markov Localization model (Thrun, 1998), or a MDP
(Lane & Kaelbling, 2002).

However, the main philosophy used by these hierarchical
approaches is to try to extract, from a very complex but in-
tractable model, a hierarchy of smaller models Automatically
selecting the right decomposition is of course a very difficult
problem. Moreover, even obtaining in the first place the ini-
tial, complex model, is still a difficult challenge in the general
case.

From a bio-mimetic perspective, it appears obvious that a
global, complex, large-scale model is not the starting point
of the acquisition of representations of space (B. J. Kuipers,
2000). Therefore, some robotic approaches, integrating in-
sights from biology, rather start from low-level behaviors and
representations, and then try to combine them so as to ob-
tain large-scale representations (Diard & Bessière, 2008; B. J.
Kuipers, 2000; B. Kuipers, Modayil, Beeson, MacMahon, &
Savelli, 2004; Victorino & Rives, 2004). Indeed, the study of
navigation capabilities in life sciences assumes right from the
start of its analysis that navigation is hierarchical in nature, as
can be easily assessed experimentally (Voicu, 2003).

The hierarchies of models proposed in some of these works
(Trullier, Wiener, Berthoz, & Meyer, 1997; Franz & Mal-
lot, 2000; B. J. Kuipers, 2000; B. Kuipers et al., 2004) have
several aspects: they are hierarchies of increasing navigation
skills, but also of increasing scale of the represented environ-
ment, of increasing time scale of the associated movements,
and of increasing complexity of representations. This last as-
pect means that global topologic representations, which are
simple, come at a lower level than global metric representa-
tions, which are arguably more complex to build and manip-
ulate. This ordering stems from the general observation that
animals that are able to use shortcuts and detours between
two arbitrary encoded places (skills that require global metric
models) are rather complex animals, like mammalians. These
skills seem to be mostly absent from simpler animals, like in-
vertebrates.

Works by Jacobs and Schenk go a step further, by propos-
ing the Parallel Map Theory (PMT) (Jacobs & Schenk, 2003),
in which a study of phylogenetically equivalent neuroanatom-
ical areas across different species helps hypothesize common
hierarchies of representations of space. In other words, they
propose a model of how the different layers in the above the-
ories might be implemented in the central nervous system.

Finally, Wang and Spelke (Wang & Spelke, 2002) assume
three subsystems, two of which being a path integration (PI)
and a view dependent place recognition system. These two,
in the context of the current paper, can be seen as analogous
of what we will denote as the environment geometry-based
and landmark-based navigation systems, respectively.

However, to the best of our knowledge, the question of
how different subsystems of a hierarchy of models can ex-
change information in a principled manner is still an open
issue. In other words, most existing models of animal nav-
igation describe hierarchies by identifying individual layers,
but do not tackle the problem of how these layers are linked.
They usually assume that a supervisor subsystem is respon-
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sible for selecting the interaction between individual compo-
nents, but rarely describe the way this supervisor could work,
or even discuss its plausibility (e.g. the reference frame selec-
tion subsystem of Redish & Touretzky (Redish & Touretzky,
1997)).

Our model precisely proposes an original articulation be-
tween a representation of a memorized path and resulting
strategies of navigation.

Model
In this section, we develop a Bayesian model, which qualita-
tively reproduces the observed patterns of errors (see Fig. 1).
Being preliminary, our model requires several simplifying as-
sumptions that we describe first. We then describe how, given
these assumptions, this single model is defined and used in
order to simulate the navigator in the virtual city in both the
Landmark and Probe Trial conditions. We finally discuss the
similarity between the simulation and experimental data.

Simplifying assumptions
Our model requires two major assumptions: the first concerns
the identification of orientations by the navigator; the second
concerns the identification of landmarks.

Firstly, we assume that the navigator uses a global refer-
ence frame for orientations. This means that an estimate of
the navigator’s bearing with respect to some origin is avail-
able at every moment. Given this estimate, the navigator
knows which direction it is currently going. This helps it
classify elementary displacements according to the direction
followed. This implies a separation between the estimation of
orientations and the estimation of positions. Neuroanatomi-
cally, such a separation appears to be plausible: estimations of
orientations might be grounded in head-direction cells (Stack-
man & Taube, 1997; Taube, 1998); estimations of positions
might be grounded in place cells (Redish & Touretzky, 1997).
However, to the best of our knowledge, such a separation
is rarely present in robotic models, where, usually, the pose
x,y,θ of the robot is considered, with similar mathematical
treatment for position x,y and orientation θ.

In order to be used, this orientation reference frame does
not need global sensory cues. Indeed, instead of being based
on some external cue, the origin could be based on the starting
orientation of the navigator (Berthoz et al., 1999).

We further assume that this global reference in orientation
does not drift during the navigation of the path. Indeed, in
COSMOpoliS c© and in our simulation, all angles between
streets are 90◦ angles, thus reducing risks of disorientation
(drifting of the orientation reference frame). With these as-
sumptions, in our model, we only need four possible orien-
tations for the global reference frame. In the following, we
denote “up” the starting direction, “down” the opposed direc-
tion, and “left” and “right” the two remaining directions.

Secondly, we assume that landmarks in the virtual city
are all unique and easily recognizable. We assume they are
placed at the intersections or decision points, as it has been

shown that the relevance of a landmark to solving naviga-
tion tasks is explicitly encoded in the central nervous system
(Janzen & Turennout, 2004). We further assume that land-
marks can be used to recognize all intersections in the city
without errors. These assumptions allow the model to include
certainties (probabilities of 1) about the landmark and their
recognition, when they are available.

Model definition

We now define a two-variable model.
The first variable, denoted Lt , is the location at time t, i.e.

the intersection the navigator is in, as defined by the land-
mark appearing at this intersection. Assuming n different
landmarks and intersections in the virtual city, l1, l2, . . . , ln,
we thus define: Lt = {l1, l2, . . . , ln}. The second variable,
denoted A, is the direction that should be followed at in-
tersection lt . According to our assumptions concerning the
global orientation reference frame, we define A by A =
{up, left,down, right}.

We thus define the joint distribution:

P(A,Lt) = P(Lt)P(A | Lt),

by applying Bayes rule. The first term, P(Lt), is the likeli-
hood to be in some intersection. We define this term by a
uniform probability distribution: P(Lt = lt) = 1/n. The sec-
ond term, P(A | Lt), represents probability distributions over
directions to follow, given the identity of the intersection the
navigator currently is at. We define this term by Conditional
Probability Tables (CPT). We assume the navigator identifies
these CPTs during the path memorization phase of the exper-
iment. In other words, during path presentation, the naviga-
tor counts the number of times it went “up”, “down”, “left”
and “right”, and builds the CPTs that reflect these frequen-
cies. The CPTs follow Laplace succession law distributions,
which are similar to histograms, except that probabilities for
unobserved cases are never zero 1.

There is one such CPT for each landmark seen along
the memorized path. As we have assumed all landmarks
to be unique, and assuming that the paths never pass
twice in the same intersection (which is the case in the
COSMOpoliS c© experiment), these learned distributions are
all of the same type: the probability is close to 1 for the actual
direction followed along the path, and close to 0 for the three
directions not followed.

1Laplace succession law probability distributions merge a prior
distribution with observed data. The formula is P(A = i | Lt = lt) =
ni+w
N+kw , with ni the number of times a particular case i has been ob-
served, N the total number of observations, k the size of the domain
of the variable, and w a parameter which tunes the speed at which
the initial uniform distribution is modified as the observations are
collected. A Laplace succession law converges toward a histogram
when the number of observations N is large. Assessing a biologi-
cally plausible weight w is an open question (out of the scope of this
paper and experiment).
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Model usage
Having learned the CPTs during the path presentations, the
model is now fully defined. The joint distribution P(A,Lt) is
available to the navigator, and we describe here how it can be
used to drive the navigator during the path reproduction, in
the Landmark and Probe Trial conditions.

In both cases, the navigator must decide, at each intersec-
tion, the direction to follow in order to accurately reproduce
the path it memorized. In the Landmark condition, inter-
sections can be identified during the learning phase as well
as during the reproduction phase. Therefore, when arriving
at an intersection, the value lt of the current intersection is
available, and can be used to select the relevant probability
distribution over actions P(A | Lt = lt). Once this distribution
is selected, choosing the action with the highest probability
value will lead the navigator along the memorized path, with-
out errors.

Alternatively, the navigator can draw at random according
to the memorized probability distribution. In this case, errors
in the reproduction could occur, their frequency depending on
the parameter w chosen for learning CPTs.

In the Probe Trial condition, landmarks are not available
in the city anymore in the reproduction. Therefore, when ar-
riving at an intersection, it is not possible for the navigator
to know the value of lt . However, using Bayesian inference,
P(A) can be computed: it is the probability distribution over
actions to take at each intersection, without knowing the in-
tersection identity. The computation is as follows:

P(A) = ∑
Lt

P(A,Lt) ∝ ∑
Lt

P(A | Lt).

This computation yields the best estimate available to the
navigator in order to choose what direction to go at each inter-
section during the reproduction. Drawing at random accord-
ing to P(A) allows the navigator to reproduce the memorized
path in the best manner, given the absence of visual cues.

Model simulation
We have simulated the model in an idealized version of the
VR city, abstracting ourselves from issues related to the small
scale of the VR city COSMOpoliS c©. We call this ideal, sim-
ulated city EQUApoliS. EQUApoliS is a regular, infinite grid
of square blocks, with simulated unique landmarks at each
intersection.

We defined a path to be learned and reproduced (narrow
black path in Fig. 2). When the navigator memorizes this
path, it learns by observation CPTs, one for each intersection.
One such CPT is shown Fig. 3.

In the Landmark condition, the memorized path is accu-
rately reproduced. Indeed, recall that the CPTs in this con-
dition can be read so as to provide, at each intersection, a
probability distribution over actions that clearly encodes the
direction that was followed during path memorization. There-
fore the navigator is driven along a path which is an exact
reproduction of the memorized path.

Figure 2: Typical trajectories obtained by the simulated navi-
gator in the Probe Trial condition. In narrow black, the mem-
orized path, in bold black, the simulated reproduced path.
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Figure 3: The CPT learned for the term P(A | Lt = 4): this is
the probability distribution for the fourth intersection of the
memorized path (see Fig. 2). At this intersection, the navi-
gator observed twice a movement to the right. This yields a
high probability value of going right (0.875, assuming w is
set to 0.1).

In the Probe Trial condition, however, landmarks are not
available anymore, and P(A) must be computed. In this ex-
ample, this leads to the probability distribution shown Fig. 4.
As the path contains 12 moves in the same direction as the ini-
tial orientation (we note this direction “up”), 7 moves to the
“right”, 1 move “down”, and 1 move to the “left”, the com-
putation for the term P(A) in the Probe Trial gives the prob-
ability distribution shown. At each intersection, we draw at
random according to P(A), until 21 displacements have been
made: Fig. 2 shows typical trajectories obtained in this man-
ner (bold trajectories).

Discussion
Interpretation of the proposed model
The simulation results illustrate that the proposed computa-
tion of the P(A) distribution can be interpreted as a “path
integration” component, both in an intuitive sense and in a
mathematical sense.

In an intuitive sense, the probability distribution over ac-

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

247



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

leftdownrightup

P(A)

Figure 4: The CPT computed for the term P(A) in the Probe
Trial simulation.

tions drives the navigator toward the goal in the correct gen-
eral direction. Indeed, P(A) as computed can be interpreted as
an estimation of the angle from the starting orientation to the
goal. For instance, the distribution shown Fig. 4 encodes the
knowledge that, to reach the goal, the navigator must mainly
go “up” and “right”, and it also encodes the relative propor-
tions of these elementary displacements. P(A), seen is this
manner, not only encodes an estimate of the bearing of the
goal, it also encodes the accuracy or reliability of that esti-
mate, by the spread or uncertainty of the obtained probability
distribution.

Let us now recall the mathematical sense of a path inte-
grator. Let ~p(t) be the path, i.e. the sequence of elementary
displacement vectors at time t,0 ≤ t ≤ T . The vector ~V (t)
representing the global displacement from the initial time 0
to time T is then given by:

~V (t) =
Z T

0
~p(t).

In our formulation, time is not continuous, but discretized
using events which are the passage at intersections. This ex-
plains the use of a discrete summation over intersections Lt
instead of a continuous integral over time. Moreover, we
assume the elementary displacements are not known deter-
ministically, as in ~p(t), but are encoded using the probabil-
ity distributions P(A | Lt). Therefore, the equation P(A) ∝

∑Lt P(A | Lt) can be interpreted as a Bayesian, discrete ver-
sion of a path integration mechanism.

The simulation shows that our model qualitatively repro-
duces the patterns of errors made by participants in the Probe
Trial. Indeed, in the simulated Probe Trial path reproduc-
tion (Fig. 2), we observe that, even though the navigator is
driven in the general direction of the goal, the order in which
the elementary displacements were performed in the learned
path are completely forgotten. This is a direct consequence
of the way the probability distribution P(A) is computed.
In ∑Lt P(A | Lt), the summation can exactly be interpreted
as an aggregation of all observed displacements. In other
words, the sequencing of displacements, which is present in
P(A | Lt), is not present anymore in P(A).

The model structure proposes an original hypothesis con-
cerning the interplay between the landmark-based cognitive

strategy and the path integration strategy for spatial navi-
gation. Whereas, in the literature, they are commonly pic-
tured as independent mechanisms hierarchically articulated
by a main system / back-up system relationship, in our
model, there is only one navigation system. When all sen-
sory information are available, this system corresponds to the
landmark-based navigation; when some sensory inputs are
missing, the same system can operate in a degraded mode,
and then exhibits properties of a path integration mechanism.

Relaxing our assumptions: towards experimental
predictions and new protocols
We now discuss the relevance of the simplifying assumptions
required by our model, which leads us to its possible exten-
sions and the experimental predictions it can provide.

We have assumed, in the model, that all landmarks could be
identified with no errors. In a real world navigation scenario,
it is of course highly improbable that visual landmarks are
never ambiguous. In the COSMOpoliS c© experiment, land-
marks were unique along the trajectory. However, the study
of the way places and intersections are identified is a complete
domain of investigation in itself. The goal is to distinguish
the intersection identity Lt from the perceived sensory cues
at that intersection P1, . . . ,Pk. For instance, landmarks are
not the only cues that can be used to identify intersections,
as configurations of landmarks could play a role (Mallot &
Gillner, 2000), and geometrical configurations of the inter-
section itself (T-shaped, X-shaped) is probably also encoded
(Stankiewicz & Kalia, 2007). In our model, we have assumed
that the intersection identity Lt to be readily available; in prac-
tice, it could be estimated according to P(Lt | P1, . . . ,Pk). De-
termining the perceptual components P1, . . . ,Pk and the struc-
ture of this perceptual model is subject of future work.

Another major simplification in our model is the lack of
temporal dependency between intersections. Indeed, it is
highly probable that pairs 〈Lt ,Lt+1〉 of landmarks perceived
in sequence, or even higher order sequences 〈Lt , . . . ,Lt+m〉
are used for memorizing paths. Sequences of actions might
also serve as large-scale cues for memorizing the paths. This
could be incorporated in m-order Markov models of the form
P(Lt , . . . ,Lt+m,At , . . . ,At+m). It might be interesting to use
future experimental data in order to estimate m, i.e., the length
of the sequences of sensory and motor cues used for path
memorizing.

Finally, we wish to discuss the way we generate simulated
paths with the model. Indeed, so far, we have assumed the
navigation could use probability distributions over actions,
and draw at random, at each intersection, directions to fol-
low. In the current simulation, no memory whatsoever is in-
cluded in this process. In other words, our simulated navi-
gator would not be able to know if it was “unlucky” in its
progress, and was deviating away from the memorized orien-
tation to the goal. However, it appears obvious that human
navigators would update their estimation of the orientation
to the goal as they progress towards it. Mathematically, it
would be straightforward to enrich our model to reproduce
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such a mechanism. Unfortunately, the current experimental
data would not enable us to determine the biological plausi-
bility of any such mathematical development.

Conclusion
We have presented a preliminary model of large-scale human
navigation in a virtual city. This model successfully quali-
tatively reproduces patterns of errors that were observed in
human participants. In the Landmark condition, where all vi-
sual cues are present, both the participants and the simulated
navigator accurately reproduce the learned path. In the Probe
Trial condition, where the visual cues needed to recognize
the current position are missing, both the participants and the
simulated navigator are still able to reach the goal, but both
do so using variants of the learned paths.

The proposed model is based on Bayesian modeling. A
single probability distribution encodes the learned path. It
encodes properties of the learned path, and can be used to
generate different strategies according to the availability of
cues. In the Landmark condition, the probability distribution
can be read directly, and the navigator performs as if using a
landmark-based navigation strategy. Whereas, in the Probe
Trial condition, the probability distribution can be used to
generate the best estimate about actions to perform, thanks
to Bayesian inference, and the navigation then performs as
if using a geometry-based navigation strategy. Having a sin-
gle model, which is the basis of several navigation strategies,
departs from the classical view where each strategy is inde-
pendently encoded and which requires an arbitrator for hier-
archically articulating them.

This could provide novel insights into the cognitive mecha-
nisms involved in human navigation and space representation,
and hopefully, could be transferred to biomimetic robotic ar-
chitectures, where managing hierarchical representations of
complex environments is still a challenge.
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Abstract 

 
The development of large-scale cognitive models 
introduces significant computational challenges. Large 
declarative memories are a case in point. It is not 
computationally feasible to load a large declarative 
memory into the process space available for execution of 
a cognitive model. Fortunately, computer science 
provides us with relational databases to support access to 
large external stores of information from within an 
executing process. This paper motivates and describes 
the interfacing of the ACT-R cognitive architecture with 
a relational database to support large declarative 
memories within ACT-R models.  

Keywords: large-scale cognitive modeling; large 
declarative memory, ACT-R cognitive architecture, 
relational database. 

The Need for Large Declarative 

Memories 

The typical cognitive model models a specific 

laboratory task with modest declarative memory (DM) 

requirements. The DM of such models can be loaded 

into the process space of the model and executed 

efficiently. The ACT-R cognitive architecture 

(Anderson, 2007; Anderson et al., 2004) comes with 

efficient data storage and access mechanisms for 

managing modest size declarative memories within the 

process space of the model. However, the development 

of cognitive models of complex tasks requires more 

substantial DMs. At some point, the size of declarative 

memory becomes too large to be loaded into the 

executing process as a whole and external data storage 

and access mechanisms are needed.  

Researchers in the Air Force Research Laboratory, 

Human Effectiveness Directorate, Cognitive Models 

and Agents Branch (AFRL/RHAC) in collaboration 

with the Cognitive Engineering Research Institute 

(CERI), AGS TechNet and L3 Communications are 

engaged in a project to develop a Synthetic Teammate 

(Ball et al., 2009) capable of functioning as the Air 

Vehicle Operator (AVO), or pilot, in a 3-person team 

task simulation of an Uninhabited Aerial Vehicle 

(UAV) performing reconnaissance missions (Cooke & 

Shope, 2005). All the major components of the 

Synthetic AVO are being developed within the ACT-R 

cognitive architecture, including language 

comprehension (Ball, Heiberg & Silber, 2007), 

language generation, dialog and situation models, and 

task behavior (Myers, to appear). The use of ACT-R 

reflects our commitment to develop a cognitively 

plausible, yet functional synthetic agent. We believe 

that adhering to well-established cognitive constraints 

may actually facilitate the development of functional 

agents by pushing development in cognitively plausible 

directions which are more likely to be successful in 

modeling complex human behavior than non-

cognitively plausible alternatives.  

The Synthetic AVO must communicate with the 

planning officer, who plans the route, and the payload 

operator, who takes pictures of targets, in order to 

accomplish a 40 minute reconnaissance mission 

involving more than 12 waypoints, many of which are 

targets. As a result, language comprehension is an 

important component of the larger Synthetic AVO 

model. Further, the range of vocabulary and 

grammatical constructions used by the teammates to 

communicate with the AVO is extensive and 

unpredictable. An analysis of spoken transcripts 

between all human teams participating in several earlier 

studies identified a total of 2500 unique words in 19K 

spoken utterances and an analysis of text chat 

transcripts in a recent study identified 1700 unique 

words in 5500 text chat messages. Overall, we expect 

the model to require a vocabulary of 10-15K words and 

multi-word units to be capable of adequately modeling 

human communicative behavior on this complex task. 

By itself, the language comprehension component is 

pushing the scale of DM beyond the capacity of the 

existing ACT-R data storage and access mechanisms. 

To support the projected vocabulary, we are pursuing 

the integration of a large subset of the WordNet lexicon 

(Fellbaum, 1998; Miller, 1998) into the model. 
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Table 1: Summary of the SGP parameters introduced by the persistent-DM module. 

Parameter Name Description of Parameter Behavior 

PDM-active Enable/disable the use of persistent DM 

PDM-add-DM-serializes Determines if add-dm produces DB chunks or not 

PDM-resets-clear-DB Enable/disable the clearing of the persistent DM during model resets 

PDM-DB-name Name of PostgreSQL database containing the persistent DM of interest 

PDM-user Username required by the PostgreSQL DBMS for DB access 

PDM-passwd Password required by the PostgreSQL DBMS 

PDM-DBMS-hostname DBMS hostname provided as a machine name or IP address 

 

To accomplish this, we are leveraging the WN-Lexical  

interface to ACT-R developed by Bruno Emond (2005). 

The WN-Lexical interface provides a capability to load 

all of WordNet into ACT-R’s DM at once. However, on 

our hardware the model exhausts the memory capacity 

after just 30% of WordNet is loaded.  

Although we do not envision using the entire 

WordNet lexicon in our language comprehension 

model, we do expect to use a large enough subset for it 

to be problematic for the existing ACT-R data storage 

and access capabilities. To support the integration of a 

large subset of the WordNet lexicon into the language 

comprehension model, an external data storage system 

is needed. WN-Lexical provides a capability to load 

individual words into DM as needed, retaining unused 

words in an external store. However, this capability is 

not tightly integrated with ACT-R’s declarative 

memory module and cannot take advantage of ACT-R 

DM mechanisms like spreading activation. This is 

problematic since there is a high level of lexical 

ambiguity in the WordNet lexicon (e.g. the word ―dog‖ 

has eight senses in WordNet) and spreading activation 

is a key mechanism for dealing with such ambiguity. 

Ideally, the external data storage capability should 

be transparent from the perspective of ACT-R and 

DM—i.e. whether the model is accessing a word from 

an internal or external data store should not affect the 

behavior of the model. The next section describes just 

such a capability. 

Persistent DM for ACT-R 

Current Declarative Module 
The chunks constituting declarative memory in ACT-R 

6 are stored internally in a single data structure. When a 

retrieval request is executed by the ACT-R declarative 

module, a process carried out by the module essentially  

uses constraints in the retrieval request and computed 

activations to identify which chunk matching the 

constraints (if any) should be accessed from the data 

structure and placed into the retrieval buffer. This 

process is simple and effective when the number of 

chunks in the data structure remains below a certain 

threshold. As the number of chunks in declarative 

memory increases, the process slows and eventually 

breaks down. 

An ACT-R user wanting to model cognitive 

processes dependent on declarative memories larger 

than a critical threshold therefore requires new data 

storage and access mechanisms to support DM chunk 

storage and retrieval. Fortunately, the modular nature of 

ACT-R and the software design of ACT-R 6 greatly 

facilitate the development and deployment of 

alternative chunk storage and retrieval mechanisms.  

New SQL Functionality 
To meet large DM requirements, we’ve developed a 

chunk storage and retrieval capability in ACT-R 6 

based on PostgreSQL, a powerful, open source object-

relational database management system (DBMS). This 

―persistent-DM‖ module outsources chunk storage to an 

industrial-strength external DBMS while leaving ACT-

R’s retrieval calculus untouched. The persistent-DM 

module (defined in a single file) modifies the behavior 

of ACT-R’s declarative module by: (1) introducing 

seven control parameters; (2) providing programmatic 

support for managing the interaction between ACT-R 

and the PostgreSQL DBMS; (3) extending the retrieval 

process; and (4) modifying the comparison of chunk 

slots. Table 1 describes the seven control parameters. 

The persistent-DM module’s parameters allow the 

ACT-R modeler to easily control the behavior of the 

module. For example, toggling the PDM-active 

parameter from T (on) to NIL (off) disables use of 

PostgreSQL and returns the chunk storage/retrieval 

behavior of ACT-R back to its default. Setting PDM-

add-DM-serializes and PDM-resets-clear-DB to T (yes) 

when persistent DM is enabled allows a modeler to 

populate the persistent DM with chunks explicitly 

defined in a model. Lastly, setting PDM-add-DM-

serializes and PDM-resets-clear-DB to NIL (no) when 

persistent DM is enabled allows a modeler to make a 

DM that persists across model runs available, without 

having to comment out parts of the model. The 

persistent-DM module provides the ACT-R modeler 

with programmatic support for the definition and 

management of external PostgreSQL databases. A 
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modeler using the persistent-DM module can 

programmatically: 

– Generate and use generic SQL queries to interact 

with persistent external knowledge bases. 

– Serialize (write) and de-serialize (read) ACT-R 

chunks in massive knowledge bases. 

– Use transactions, rollbacks and commits to protect, 

undo, and save changes to declarative memory. 

Most importantly, a modeler using the persistent-DM 

module can transparently: 

– Employ PostgreSQL DBMS-based alternatives to 

the default chunk addition, removal, and merging 

processes in ACT-R 6. These alternatives don’t 

change the calculus underlying ACT-R’s 

declarative module, they just change the way 

retrieval requests are used to determine the subset 

of chunks from declarative memory that will 

participate in the calculation of activation during 

the retrieval process. 

– Use retrieval constraints based on regular 

expressions. 

To use the persistent-DM module, an ACT-R 

modeler needs to: (1) install the PostgreSQL DBMS on 

a computer (the computer can be the modeler’s 

workstation or a dedicated remote server); (2) install a 

common-lisp library supporting interaction with 

PostgreSQL; (3) drop the persistent-DM module 

definition file into the ACT-R 6 ―modules‖ directory; 

(4) activate the module by adding something like the 

following to the SGP section of a model. 

(sgp :pdm-db-name "model-v5-DM"

:pdm-user "Scott"

:pdm-passwd “Open_Seseme"

:pdm-resets-clear-db T

:pdm-add-dm-serializes T

:pdm-active T

...

 

Figure 1: Activating and configuring the persistent-

DM module in an ACT-R model. 

The activation of the persistent-DM module has no 

impact on model behavior. However, wall clock 

performance of the ACT-R simulator is impacted. 

Chunk serialization and de-serialization processes 

depend on non-trivial information exchanged with the 

PostgreSQL DBMS and using persistent-DM when 

models have small declarative memories exacts a fixed 

and relatively high cost. If the cost of using persistent-

DM remains essentially fixed, then persistent-DM will 

eventually outperform ACT-R’s default declarative 

memory system when models have large enough 

declarative memories. To find out where this tipping 

point is, and to better understand when we should and 

shouldn’t use the persistent-DM module, we conducted 

a comparative analysis of default and persistent-DM. 

Computational Efficiency of Retrievals 

from Different Size Declarative Memories 

When the number of chunks maintained by an ACT-R 

model remains low, keeping them on-hand in an 

internal data structure facilitates optimal simulator 

performance. Under these circumstances, the cost of 

forming an external query, dispatching the query to a 

DBMS, and interpreting the return from a DBMS 

exceeds the cost of comparing candidate chunks to 

retrieval constraints. When the number of chunks 

maintained by an ACT-R model exceeds a certain 

value, keeping them on-hand in an internal data 

structure exceeds lisp/machine memory limits and the 

framework crashes. Under these circumstances, 

modeling can only proceed if a DBMS is used. Between 

these two extremes is a decision space in which the 

benefits of using persistent-DM gradually exceed the 

costs. To start exploring the nature of this decision 

space, a controlled evaluation of the performance of the 

persistent-DM was conducted. During this evaluation, 

three factors were systematically varied: 

– Type of DM: default or persistent 

– Size of DM: ~1K, ~5K, ~10K, ~20K, ~80K or 

~240K chunks 

– Retrieval Constraints: 1, 2, 3 or 4 slot/value 

requirements 

Each of the differently sized DMs was defined by a 

separate ASCII file containing a single call to ACT-R’s 

―add-dm‖ command. Under conditions where the type 

of DM being evaluated was default, these files were 

loaded into ACT-R and ―add-dm‖ added chunks to the 

internal chunk table. Under conditions where the type 

of DM being evaluated was persistent, PostgreSQL 

databases containing these same chunks were connected 

to by the persistent-DM module. 

aardwolf-noun-pos
ISA noun
parent  "none"
token  "type"
type  noun
super-type  noun
subtype  noun
form  nil
word  aardwolf-word
gram-form  common-sing
animate  animate

 

Figure 2: ACT-R chunk specification of a noun 

describing an aardwolf part-of-speech. 
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Chunks used in the evaluation represented nouns. 

The ACT-R specification of the noun chunk type 

consisted of nine slots (see Figure 2). 

Regardless which type of DM was being evaluated, 

retrieval requests intended to recover 10 randomly 

chosen chunks from each differently sized DM were 

executed to assess wall-clock retrieval times. Figure 3 

shows example retrieval requests based on 1 and 4 

retrieval constraints. 

+retrieval>
ISA noun
parent  "none“

...

+retrieval>
ISA noun
parent  "none"
super-type  noun
word  aardwolf-word
gram-form  common-sing

 

Figure 3: Example ACT-R retrieval requests based on 

1 and 4 retrieval constraints. 

Additional retrieval constraints lead to more specific 

retrievals but require additional slot/value comparisons. 

Evaluations of ACT-R’s retrieval process lead us to 

believe that the use of additional slot/value constraints 

in more constrained retrieval requests would impose a 

time cost when ACT-R’s default retrieval mechanisms 

are employed. We incorporated the retrieval constraints 

factor into the evaluation in order to systematically 

assess the actual costs (if any) of employing greater 

retrieval constraints. Due to database indexing and SQL 

query optimizations; additional constraints shouldn’t 

impose similar time costs. The incorporation of the 

retrieval constraints factor into the evaluation allowed 

us to directly assess the efficiency (or lack of) of SQL 

queries based on composed constraints. 

During the evaluation, 2 performance measures were 

recorded: 

1. Setup-time: The amount of time it took to make 

chunks in the differently sized DMs available to 

ACT-R’s retrieval process. 

2. Retrieval-time: The amount of time it took to 

actually retrieve a chunk matching the retrieval 

constraints. 

Table 2 lists the average setup times we measured in 

the evaluation of default and persistent DM. Times in 

the table clearly show that loading a declarative 

memory specification into ACT-R through default 

methods requires an increasing amounts of time when 

declarative memory size increases. The details of the 

relationship between the size of DM and set-up time, 

while interesting, do not contribute to the point that as 

declarative memory grows, a load-time problem 

appears. Consequently, they won’t be discussed further. 

The failure of ACT-R to load 240,000 chunks into 

default declarative memory provides us with an initial 

estimate of the number of chunks—at least as complex 

as our noun chunk type—beyond which ACT-R 

becomes unstable on our hardware. Lastly, the cost of 

connecting to an external PostgreSQL DBMS was 

found to be relatively constant. 

Table 2: Summary of setup times (in msec) 

~1K ~5K ~10K ~20K ~80K ~240K

default 98 375 981 2828 103395 NA

persistent 82 90 90 94 86 86  
 

Ten retrieval times were recorded under all 6x4 

combinations of DM size and retrieval constraints. 

These measures were analyzed using a repeated 

measures ANOVA. Since default DM was unable to 

accommodate 240,000 chunks, retrieval times are 

missing in Figure 4. The persistent DM retrieval times 

under these circumstances were not included in the 

repeated measures ANOVA. All main effects and 

interactions were found to be highly significant. The 

significant Size of DM X Retrieval Constraints X Type 

of DM interaction (F(12,108) = 3.682, p<0.001) is 

illustrated in Figure 4. The figure shows that while 

wall-clock retrieval times are uninfluenced by the size 

of declarative memory when persistent DM is used, 

they are significantly influenced by the size of 

declarative memory when default DM is used. When 

declarative memory contains more than approximately 

80,000 chunks, the benefits of keeping chunks in an 

internal data structure are lost. 80,000 chunks seem to 

be the point at which things decidedly favor persistent-

DM; at least given the complexity of our noun chunk 

type. Using additional retrieval constraints imposes no 

additional time costs on persistent DM. A clear, and 

eventually significant, relationship between constraints 

and retrieval time can be seen in default DM. 

While this simple evaluation reveals some of the 

capabilities of persistent-DM, much work needs to be 

done. For example, activations were not computed in 

the comparative study. When sub-symbolic chunk 

properties are calculated and maintained in ACT-R’s 

declarative module, symbolic properties of candidate 

chunks such as fan and type inheritance can easily lead 

to a dramatic need to obtain properties of non-candidate 

chunks. In order to begin to understand the costs and 

benefits of persistent-DM, the calculation of activation 

was inhibited. We are planning follow-up evaluations 

that will systematically control fan and chunk type 

inheritance in order to further explore the capabilities of 

the persistent-DM module. 
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Figure 4: Summary of wall-clock retrieval times.

Conclusions 

We have integrated a relational database with the ACT-

R cognitive architecture to support the creation of large, 

externalized, persistent declarative memories whose 

behavior matches that of existing internal declarative 

memories. We are using this capability in the 

development of a complex model of a Synthetic AVO 

capable of communicating with human teammates in 

performance of a reconnaissance task. More generally, 

such a capability is needed in the development of 

complex cognitive models with significant declarative 

memory requirements and this capability aligns with 

our research focus on large-scale cognitive modeling 

(cf. Douglass & Luginbuhl, 2008). 

Future Directions 

The interface to the external database is currently 

functional and outperforms ACT-R’s internal data 

storage and access mechanisms on large declarative 

memories under a range of conditions as demonstrated 

in the previous section. However, we believe there is 

room for significant improvement and optimization of 

the performance of the interface. In particular, the 

retrieval of a word from DM actually involves a chain 

of retrievals which includes all the elements in the fan 

list of the word. In the worst case, this chain could 

consume much of declarative memory, bringing the 

system to its knees. Besides needing to retrieve the fan 

list for a word in order to compute activations, if the 

retrieval template is highly unconstrained, many DM 

chunks will match and the computations may exceed 

process internal resource capacities. We bumped into 

this problem early on in a version of the model which 

only used spreading activation based soft constraints on 

word retrieval. If the retrieval template contains no hard 

constraints on the form of the word to be retrieved, 

relying exclusively on spreading activation to bias the 

retrieval, then ACT-R must compute the activation of 

every word in DM to determine which word to retrieve. 

This is computationally explosive and was unworkable 

with a mental lexicon of just 2500 words. We were 

forced to reinstate a whole word hard constraint on 

retrievals, with a fallback to a first letter hard constraint 

and spreading activation based soft-constraint on 

matching words if the whole word retrieval fails. 

Currently, these retrievals are executed by different 

productions. However, we are exploring the possibility 

of using the regular expression capability provided by 

the persistent DM module (a slot name preceded by ―~‖ 
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invokes this regular expression matching capability) to 

conditionally retrieve the whole word first and if that 

fails then retrieve the word with highest activation 

matching the first letter, all within a single retrieval 

production. Given a conditional retrieval capability, a 

whole word match would terminate the retrieval, 

returning the matched word, and the less constrained 

and more computationally expensive first letter match 

with spreading activation  over matching words would 

not occur.   

We are also planning on using the regular expression 

matching capability to support retrieval of perceptual 

units at multiple levels of representation. The 

perceptual module of ACT-R currently divides the 

linguistic input into word units using a function called 

chop-string. This function relies on spaces and 

punctuation to delimit words. For example, the input 

―he went.‖ would be divided into ―he‖ ―went‖ and ―.‖. 

However, sometimes words contain punctuation and 

shouldn’t be divided—for example ―etc.‖ and ―didn’t‖. 

And sometimes words can have a space as in ―ad hoc‖ 

and ―a priori‖. In the case of ―didn’t‖, the chop-string 

function returns ―didn‖ ―’‖ and ―t‖ and it takes three 

attention fixations and several productions per ―word‖ 

to process this input. Given the rapidity with which 

humans process language during reading—

approximately 225 msec per space delimited word 

during silent reading (Rayner, 1998)—this treatment of 

―didn’t‖ is unlikely to be cognitively plausible. To 

bring the language comprehension model into closer 

alignment with reading results, what is needed is a 

capability to recognize the largest unit in DM which 

matches the input, often matching multi-word units in a 

single attention fixation. To achieve this we are 

implementing a capability to do retrievals at multiple 

levels using a disjunction of perceptual units derived 

from the input. For example, ―didn’t‖ will lead to an 

attempt to retrieve either ―didn’t‖ or ―didn‖ within a 

single retrieval specification, ―John’s‖ (as in ―John’s 

book‖) will lead to an attempt to retrieve either 

―John’s‖ or ―John‖, ―etc.‖ will lead to an attempt to 

retrieve either ―etc.‖ or ―etc‖, ―went.‖ will lead to an 

attempt to retrieve either ―went.‖ or ―went‖, ―a priori‖ 

will lead to an attempt to retrieve either ―a priori‖ or 

―a‖ and ―because of‖ will lead to an attempt to retrieve 

either ―because of‖ or ―because‖.  

Finally, longer term we are contemplating pushing 

ACT-R’s activation computation into the database—

transparently from the perspective of ACT-R and DM. 

This would avoid the need to retrieve large numbers of 

chunks from external DM in order to compute their 

activations within the ACT-R process. 
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Abstract 
This paper presents a cognitive model of stimulus-response 
compatibility (SRC) effects for a situation in which 
location-relevant and location-irrelevant tasks are 
intermixed within a single trial block. We provide a 
computational explanation of the cognitive processing 
involved in the mixed-task condition.  The model is based 
on the Instance-Based Learning Theory, developed 
originally to explain decision making in dynamic tasks, and 
the ACT-R theory of cognition.  The comparison of the 
model's outputs to human data demonstrates high similarity, 
and the model offers an explanation for sequential 
modulations of the SRC/Simon effects observed when 
compatible and incompatible trials repeat or switch. Several 
possibilities to apply this model to novel tasks are discussed. 

Keywords: Instance-Based Learning; ACT-R; Simon effect; 
Stimulus-response compatibility; Situation; Decision; Utility; 
Experience. 

Introduction 
In everyday activities, there are numerous situations where 
one is required to perform multiple tasks concurrently or in 
a sequence. The nature of performance is often altered in 
such a task condition, compared to that for a single task 
performed in isolation. Thus, studies of multi-task 
performance have been of major interest to basic and 
applied researchers. The main aim of the present research is 
to develop a computational model of human performance in 
a multi-task condition, in which task performance is known 
to be different from that for a single-task condition. 

In choice-reaction tasks, responses are faster and more 
accurate when stimuli are mapped to spatially compatible 
responses than when they are mapped to spatially 
incompatible responses.  The difference in response times 
and accuracy for the compatible and incompatible mappings 
is termed the stimulus-response compatibility (SRC) effect. 
SRC has been recognized as one of the critical principles for 
human interface design (Proctor & Vu, 2006) as well as a 
major motivation for theories of human perception and 
action (Hommel, Müsseler, Aschersleben, & Prinz, 2001).  

The SRC effect is known to be so robust that it is obtained 
even when stimulus location is irrelevant to performing the 
task, the variation known as the Simon Effect (Simon, 1990). 
The robustness of the SRC/Simon effects has also been 
demonstrated using a variety of stimuli (Proctor, 
Yamaguchi, Zhang, & Vu, 2009), response modes (Wang, 
Proctor, & Pick, 2003), and more realistic tasks such as 
flight operations (Yamaguchi & Proctor, 2006).   

However, the Simon effect can be reduced, eliminated, or 
even reversed when participants practice a choice-reaction 
task with the incompatible mapping prior to performing the 
Simon task (Proctor & Lu, 1999). Similarly, the Simon 
effect is attenuated when participants perform the Simon 
task concurrently with the SRC task (Marble & Proctor, 
2000); that is, when location-irrelevant (the Simon task) and 
location-relevant (the SRC task) tasks are intermixed. The 
Simon effect increases somewhat when the SRC task 
requires a compatible mapping but reverses to a negative 
effect of at least the same absolute size when the SRC task 
requires an incompatible mapping.  

A dominant cognitive explanation of the SRC/Simon 
effects is a dual-route account (Proctor & Vu, 2006), which 
assumes two distinct response-selection processes, 
characterized as direct and indirect routes. The indirect route 
is presumed to activate a response based on the intentions 
created through the instructed stimulus-response (S-R) 
mappings. In contrast, the direct route is presumed to 
automatically activate a response corresponding to the 
stimulus location, which facilitates responding when that 
response is correct but interferes when it is incorrect. 
However, given recent findings that the SRC/Simon effects 
can be attenuated in mixed-task conditions and after practice 
with an incompatible-mapping task, the response-selection 
process that gives rise to the SRC/Simon effects does not 
seem to be as purely automatic as it is typically described in 
the literature.  

In contrast to the dual-route account, the present paper 
provides a computational model of the SRC/Simon effects 
developed based on the Instance-Based Learning Theory 
(IBLT; Gonzalez, Lerch & Lebiere, 2003). The goal of the 
current paper is to determine how the IBLT would predict 
the learning and performance obtained from an experiment 
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in which human subjects performed mixed Simon and SRC 
tasks. 

We first provide a description of the task and the human 
data collection protocols, and then present the development 
of the IBLT model and the fits of the model predictions to 
human data. The paper concludes with examples of how the 
model can be used to generate predictions for novel task 
conditions.  

Experiment on Mixed Simon/SRC Task 
The task adopted here is similar to those used by Marble 
and Proctor (2000), in which participants performed mixed 
location-relevant and location-irrelevant tasks. Though their 
experiments separately examined the influences of the 
compatible and incompatible mappings on the Simon effect 
by individually mixing these mapping trials with the Simon 
task, the present experiment mixed both compatible- and 
incompatible-mapping trials with the Simon task.  

Thirty-two undergraduate students at Purdue University 
participated in the experiment. They were recruited from the 
subject pool of introductory psychology courses and 
received partial course credits. All participants reported 
having normal or corrected-to-normal visual acuity, normal 
color vision, and normal hearing. 

The experiment was conducted individually in a dimly lit 
cubicle and controlled by a custom application constructed 
by VisualBasic 6.0 (VB). The imperative stimuli were 
circles (5 mm in diameter) presented on the left or right side 
of the screen (6 cm from the center of the screen). The 
circles were colored in green, red, or white. Participants 
responded according to the color of the stimulus on some 
trials (the Simon trials) and to the location of the stimulus 
on other trials (the SRC trials).  Green and red circles were 
used for the Simon trials, and a white circle was used for the 
SRC trials. Responses were made by pressing a left (‘z’) or 
right (‘/’) key on the computer keyboard. 

On the Simon trials, a red circle required pressing of one 
response key, and a green circle required pressing of the 
other response key. The color-key mapping was 
counterbalanced across participants. The location of the 
circle was task-irrelevant. 

On the SRC trials, a mapping cue, a horizontal or vertical 
line (5 mm in length) colored in white and centered on the 
screen, was presented simultaneously with the white circle. 
For half of the participants, a horizontal line required 
pressing a response key on the same side as the location of 
the circle (compatible-mapping trials), and a vertical line 
required pressing a response key located on the opposite 
side to the location of the circle (incompatible-mapping 
trials). For the other half, the cue-mapping relation was 
reversed.  

Each trial started with a white fixation cross presented at 
the center of the screen for 500 ms, followed by a blank 
screen lasting for 500 ms. Then, a circle appeared on the left 
or right of the screen, with a horizontal or vertical line if it 
was an SRC trial. The circle was presented until a response 
was made or for 1,500 ms if no response was made. When 

participants pressed an incorrect key, an error tone was 
presented from the external speakers positioned on the left 
and right of the screen. The frequency of the tone was 400 
Hz, lasting for 500 ms. No feedback was given for a correct 
response but a blank display was presented for 500 ms. 
Thus, the inter-trial intervals for correct and incorrect 
responses were the same. A trial ended with a 1-s blank 
screen, and the next trial started with the fixation cross.  

Response time and accuracy were recorded on each trial. 
Response time was the interval between onset of a circle 
and depression of a response key. Both speed and accuracy 
were emphasized in instructions. An experimental session 
lasted less than an hour. 

Each participant performed four trial blocks. In each 
block, 80 trials were the Simon trials, and another 80 trials 
were the SRC trials (40 trials for the compatible mapping 
and 40 trials for the incompatible mappings). These trial 
conditions appeared equally often in each block in a random 
order. 

An experimental session started with a block of practice 
trials. The practice block consisted of 16 Simon trials and 
16 SRC trials (8 trials for each mapping). Participants were 
allowed to repeat the practice block as many times as they 
wanted, so that they were sufficiently familiar with the task 
requirements (no participants repeated more than 3 practice 
blocks). Results of this experiment are presented in a later 
section, where they are compared to the results of the IBLT 
computational model.  

Development of the IBLT Model 
We propose that IBLT provides reasonable cognitive 
explanations for the SRC and Simon effects. IBLT was 
originally developed as a way to explain and predict 
decision making in dynamic, complex tasks (Gonzalez, et 
al., 2003). The theory evolved from the idea that decisions 
are made from experience and that one could manipulate 
experience and therefore predict decisions made in the 
future.  

IBLT proposes that people remember past experiences in 
terms of “instances.” At each decision-making situation, an 
instance is retrieved and reused depending on the similarity 
of the current situation to the cues stored in the instance.  

 An instance is composed of three parts: situation, 
decision, and utility of that decision in that situation 
(situation-decision-utility or SDU triplet). In IBLT, 
decisions from experience involve five mental stages in a 
closed-loop decision making cycle: recognition, judgment, 
choice, execution, and feedback. Although IBLT the general 
decision process and particular mechanisms of decisions 
from experience are independent from the computational 
implementation of the theory, IBLT has borrowed many of 
the proposed mechanisms from the mathematical 
representations in ACT-R (Anderson et al., 2004).  

ACT-R is an integrated computational cognitive 
architecture resulting from decades of cumulative effort by 
an international community of cognitive researchers, and it 
provides IBLT with the following advantages for a 
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computational implementation; (a) procedural and 
declarative memory modules, including both conscious and 
unconscious (i.e., statistical) reasoning and learning 
mechanisms, that have been validated by hundreds of 
laboratory experiments; (b) perceptual and motor modules 
that incorporate many known human-factors parameters and 
provide principled limitations in the interaction with an 
external learning environment; and (c) a method for 
assembling small, sub-second cognitive steps into 
computational models that can learn to perform increasingly 
complex dynamic tasks while interacting directly with 
information-processing systems and other human and 
synthetic agents.  ACT-R has two levels of knowledge 
representation and manipulation; symbolic (knowledge 
representation) and subsymbolic (set of statistical and 
mathematical procedures to manipulate the symbolic level). 

Symbolic level of the Simon/SRC model 
For the current Simon/SRC task, the SDU instance (referred 
to as "chunk" in ACT-R) had the structure shown in Table 
1. The first column defines the slot names of the instance 
while the second and third columns provide description of 
SDU slots. Color in Table 1 refers to the value of the color 
slot in the IBLT model, where it can contain the values red 
(R) and green (G) for the Simon trials and white (W) for the 
SRC trials. Orient is the value in the orientation slot, 
representing the orientation of the mapping cue used only 
for the SRC trials. Orient can contain horizontal (H) or 
vertical (V) for the SRC trials, and it is set at NO for the 
Simon trials where no mapping cue is used. Position slot 
provides the position of the imperative stimulus on the 
screen and can take only two values; left (Lt) and right (Rt). 
The Decision slot in Table 1 defines whether the decision is 
to press the left (‘z’) or right (‘/’) key on the computer 
keyboard to respond to the stimulus on the SRC and Simon 
trials. The Utility slot stores the utility of the decision, 
which is unknown at first and then updated after the IBLT 
model receives feedback from the task on its previous 
decision. The Utility slot can take three values; +1 (for 
correct decision), -1 (for incorrect decision), and 0 
(unknown). 
 

Table 1: SDU structure of Instance 
 

Slot Name Description SDU 
Color Stimulus Color Situation 
Orient Stimulus Orientation Situation 

Position Stimulus Position Situation 
Decision Key-press Decision Decision 
Utility Utility of Decision Utility 

IBLT-State State in IBLT Theory Meta-Slot 
 

In the above table, the IBLT-State (a Meta-Slot not used 
in IBLT model processing) could hold a value from any of 
the five process states of recognition, judgment, choice, 
execution, and feedback depending on the state of execution 
of the IBLT model on the Simon/SRC task. This slot only 
serves to distinguish the stage of IBLT modeling process. 

As in Gonzalez et al. (2003), in IBLT the decision making 
starts with the recognition process in search for alternatives 
(the left or right keys) and the classification of the current 
situation as typical or atypical. The current situation is 
typical if there are memories of similar situations (i.e., 
instances of previous trials that are similar enough to the 
current situation). If it is typical, then the retrieved instance 
is used in judging the value of the decision to be made in the 
current situation. If the situation is atypical (i.e., no instance 
similar to the current conditions is found), a judgment 
heuristic is applied. Next, a decision point comes into place; 
whether to search for more alternatives or to execute the 
current best alternative. The answer to the choice is 
determined by the decision maker’s “aspiration level,” 
similar to Simon and March’s (1958) satisficing strategy. In 
the Simon/SRC task, given their simplicity, the choice is 
simply made by making the same choice as the one in the 
decision slot of the retrieved instance (if nothing was 
retrieved, then a choice is made randomly for a key press, 
i.e., by a random judgment heuristic). After the execution of 
an action, if the response was incorrect, the SDU that led to 
the incorrect decision is modified by updating the Utility so 
as to provide a better representation of the “goodness” of 
that action. 

The exact sequence of events in the IBLT Simon/SRC 
model is provided below. Each of the IBLT stages is 
represented by production rules (If-then rules) in ACT-R.  
Recognition According to the similarity of a task situation 
and instances stored in memory, if there is a recognition (or 
retrieval) failure (as it is the case in the first trial, since there 
is no instances stored) the model applies a random judgment 
heuristic to select the type of action required by the task; 
else if there is a recognition (or retrieval) success the model 
applies an instance based judgment procedure. 
Judgment When there is a recognition failure the model 
chooses a random number between 0 and 1 and if the 
number is greater than 0.5 then the right key is selected; else 
if it is less than or equal to 0.5 then the left key is selected. 
In case of recognition success, the model applies the 
decision of the instance that was retrieved successfully as 
the decision of the current instance. The model assigns the 
Utility slot of the current instance a value of unknown (i.e. 
0) at this point. 
Choice This refers to picking the selected key to press once 
the decision of retrieved instance or random heuristic has 
been made. 
Execution At this step the model presses the selected key 
and waits for feedback for the action. 
Feedback On obtaining the outcome of the decision just 
executed (error tone), the model updates the Utility of the 
current instance. If the decision made was correct it assigns 
Utility a value of +1; else if the decision made was not 
correct then it assigns Utility a value of -1.  

In the above algorithm, the Utility slot is used at the time 
of retrieval (i.e., the recognition process) to divide the 
declarative memory (DM) into collections of correct and 
incorrect decision instances and confine the retrieval to only 
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those instances that have in the past yielded correct decision 
outcomes (i.e., their Utility slots have a value of +1).  

Also, in the above algorithm, the productions were 
assumed to take an architectural default value of 50 ms 
(Anderson et al., 2004). There were some steps executed to 
read and encode the stimulus from the screen (visual time) 
and also to hear and encode the feedback tone of 400 Hz 
frequency (auditory time) in the model (in case of negative 
feedback). The visual and auditory times were assumed to 
be at the ACT-R default values of 185 ms and 100 ms, 
respectively.  

Sub-Symbolic level of the Simon/SRC model 
In ACT-R, each instance (or chunk) has an activation value 
that is used for retrieval in the recognition phase of the 
IBLT modeling process. An instance is retrieved from 
memory if the activation exceeds a retrieval threshold (RT), 
which sets the minimum activation with which an instance 
can be retrieved, and if the activation is the highest of all 
other instance activations at the time of retrieval. ACT-R 
defines activation of an instance as: 

ε++= ∑l liii PMBA     (1) 

where Bi is the base-level activation and reflects the recency 
and frequency of practice of the ith instance, which is given 
by 

)ln(
1∑ =

−=
n

j
d

ji tB      (2) 

where n is the number of presentations of the ith instance in 
the past; tj is the time since the jth presentation; and d is the 
decay parameter (bll) which is usually set at 0.5.  

Specification elements l in the PM summation are 
computed over the slot values of the retrieval instance 
specification (i.e., the current task context). Match Scale P 
reflects the amount of weighting given to the similarity in 
the slot l, which is a constant across all slots with the value 
set at 1.0. Match Similarities Mli represents the similarity 
between the value l in the retrieval specification and the 
value in the corresponding slot of the instance i. The PM 
mechanism as described above determines similarity 
between the retrieval specification and the potential 
retrievable instances in DM. We used a function to calculate 
the degree of similarity based on the absolute value of 
distance between Color, Position and Orient slots of the 
retrieval specification and the instances stored in DM.  

Finally, ε is the noise value, which is composed of two 
components; a permanent noise associated with each 
instance and an instantaneous noise computed at the time of 
a retrieval request. Both noise values are generated 
according to a logistic distribution characterized by a 
parameter s. The mean of the logistic distribution is 0 and 
the variance σ2 is related to the s value by 

σ2 = (π2/3) s2      (3) 

We set the instantaneous noise s value in the IBLT model to 
make it a part of the activation equation. 

For the purpose of modeling the Simon/SRC task, the 
parameters described above had the values given in Table 2. 

 
Table 2: IBLT (ACT-R) Parameters with Values 

 
Parameter/Slots Value 

RT -1.0 
bll 0.5 
s 0.25 
P 1.0 

Color Slot Value G = 3, R = 5, W = 0 
Orient Slot Value H = 3, V = 5, NO = 0 

Position Slot Value Lt = 0, Rt = 1 
 

Running the IBLT Model in the Simon/SRC 
Experiment 

The Simon/SRC task used for the experiment was originally 
developed in VB, and to make things compatible we used a 
VB version of IBLT that we have developed and calibrated 
to ACT-R (in LISP), reported in another research report 
(Dutt, Gonzalez & Lebiere, in preparation). 

We ran a total of 32 dummy model participants (the same 
as the number of human participants in the experiment) 
using exactly the same task software used to conduct the 
human experiment. Human participants were provided with 
a few practice blocks prior to the test blocks (see 
descriptions of the method). The collected human data 
revealed a high accuracy in the first block of the experiment, 
which suggests that the participants had obtained a certain 
amount of familiarity with the task prior to beginning the 
experiment. Therefore, the model performed two blocks of 
the practice phase (32 trials x 2) prior to the test trials to 
make the initial level of model performance comparable to 
that of human subjects. 

Soon after the model completed the practice blocks, it was 
run in the experiment. The model’s data on the Simon/SRC 
task was recorded by the task software in a text file. We 
later analyzed and compared the data collected from the 
model runs to that collected earlier on humans using 
commonly employed metrics R2 (for trend) and Root Mean 
Squared Error (RMSE; for closeness of fits). We used 
response time as our dependent variable for the purpose of 
analysis in this paper. 

Model Fits 
In the present paper, we focus on two main aspects of the 
human data; practice and sequential effects. To examine 
practice effects, we first analyzed the human data across the 
four learning blocks separately for Simon Corresponding 
trials, Simon Non-Corresponding trials, SRC Compatible 
trials, and SRC Incompatible trials. Figure 1 presents the 
practice effects observed from human participants and those 
generated by the IBLT model (error bars show 90% 
confidence interval around the point estimate). For human 
data, RT decreases with Block for all four conditions, and 
the shape of the functions shows typical learning curves. 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

259



 

The model output mimicked the human results, indicating 
that the IBLT model learned to perform the task in a similar 
way as human subjects did. The fit of IBLT model to the 
human data had R2 = 0.93 and RMSD = 80.54 ms (Simon 
Corresponding trials), R2 = 0.64 and RMSD = 84.54 ms 
(Simon Non-Corresponding trial), R2 = 0.98 and RMSD = 
61.21 ms (SRC Compatible trials), and R2 = 0.97 and 
RMSD = 62.96 ms (SRC Incompatible trials), respectively. 

To examine sequential effects, we analyzed response 
times as a function of Task Sequence (repeat/switch) and 
Mapping Sequence (repeated/switched) separately for the 
four trial conditions. Figure 2 (on next page) summarizes 
the results (error bars show 90% confidence interval around 
the point estimate). The trend is clear: When both task and 
mapping repeated, response times were reduced in both 
model and human data. Similarly, when both task and 
mapping switched, response times increased both in model 
and human data. The model outputs show similar patterns. 
The fit results are R2 = 0.96 and RMSD = 24.87 ms, for the 
Simon Corresponding trials, and R2 = 0.91 and RMSD = 
31.32 ms for the Simon Non-corresponding trials. For the 
SRC trials, the model fits had R2 = 0.97 and RMSD = 15.86 
ms for the Compatible trials, and R2 = 0.95 and RMSD = 
28.82 for the Incompatible trials.  

Discussion 
As shown, model fits were generally good with respect to 
practice and sequential effects in the present experiment, 
suggesting that the IBLT model provides a good account for 
performance in the mixed SRC/Simon task. The learning 
effect in the model is explained by the IBLT process and the 
ACT-R mechanisms involved, in which similarity and 
activation play a key role.   

Because the IBLT model uses only the correct instances 
in the selection of a response, the activation of the correct 
instances becomes much higher due to their repeated use 
and this increase in activation reduces the retrieval time for 
these instances. Thus, more and more correct instances are 
accumulated and retrieved, so that the model gradually 
transfers from an exploration phase (random judgment and 
retrieval of incorrect instances) to an instance exploitation 
phase (consistent retrieval of correct instances), thereby 
reducing reaction time over trials. The human RT for Simon 
Non-Corresponding trials in Figure 1 shows a slightly U-
shape pattern where the RT increases for the last two blocks. 
On the other hand, due to recency and frequency effects just 
described the IBLT model reduces RT even for those two 
blocks. This is the reason why the fits for this condition 
,particularly for R2, are poorer compared to other fits. 

Similarly, the sequential effects in the IBLT model occur 
because when the task and mapping repeat, the instance 
used on the previous trial has higher activation due to 
recency of its use. This increases the probability of that 
instance being retrieved on the current trial. Similarly, this 
instance-based retrieval also provides the explanation for the 
outcome that response times were longer when task and 
mapping switched.  

The present model can also be used to generate 
predictions in novel situations (Dutt & Gonzalez, 2008). 
Several generalizations of the model are possible.  One 
candidate for such a generalization is changing the 
proportion of the SRC and Simon trials in the experiment. 
The current IBLT model was implemented for an 
experiment where the numbers of the Simon and SRC trials 
are equal and thus their occurrences are equally likely on 
each trial. One could create situations in which the numbers 
of these trials are unequal, so that their likelihoods of 
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occurrences are biased. Another possibility is the condition 
where payoffs of correct/error responses for the Simon and 
SRC trials are varied. For example, rather than using a tone 
to indicate incorrect trials, we could use monetary payoffs 
as feedback to the model and create conditions in which 
correct decisions on certain trial types are reinforced, and 
incorrect decisions are penalized, more than those on other 
trial types. Also, although the present experiment mixed 
location-relevant and location-irrelevant tasks, the current 
model can be used to predict human behavior in pure SRC 
or Simon tasks. This is because the model’s current SDU 
structure does not change across the Simon and SRC trials. 

The IBLT model discussed in the present paper has a 
general structure that, when coupled with the general 
functioning of the IBLT approach, provides a starting point 
for future investigations in the present research field.  The 
current IBLT model can be used in a wide range of 
experimental conditions to generate predictions for novel 
tasks without major changes in the model structure, before a 
human experiment is conducted . 
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Abstract

Previous work has shown that in English ungrammatical cen-
ter embeddings are more acceptable and easier to process
than their grammatical counterparts (Frazier, 1985; Gibson &
Thomas, 1999). A well-known explanation for this preference
for ungrammatical structures is based on working-memory
overload: the claim is that the prediction for an upcoming
verb phrase is forgotten due to memory overload, leading to an
illusion of grammaticality (Gibson & Thomas, 1999). How-
ever, this memory-overload account cannot explain the recent
finding by Vasishth, Suckow, Lewis, and Kern (2008) that in
German no illusion of ungrammaticality occurs. We present a
simple recurrent network model that can explain both the pres-
ence of the grammaticality illusion in English and its absence
in German. We argue that the grammaticality illusion emerges
as a function of experience with language-specific structures,
not working memory constraints as argued for in Gibson and
Thomas (1999).
Keywords: sentence comprehension ; center embeddings ; il-
lusion of grammaticality ; working-memory models ; connec-
tionist models

Introduction
Consider the contrast in (1), discussed first by Frazier (1985)
(the original observation is attributed by Frazier to Janet
Fodor). Although the rules of English grammar allow a sen-
tence like (1a), such a complex structure is perceived by na-
tive English speakers to be less acceptable than its ungram-
matical counterpart (1b), in which the middle verb phrase,
was cleaning every week, is missing.

(1) a. The apartment that the maid who the service had
sent over was cleaning every week was well dec-
orated.

b. *The apartment that the maid who the service had
sent over was well decorated.

The first published study involving this contrast was an of-
fline questionnaire-based experiment by Gibson and Thomas
(1999). Their main finding was that ungrammatical sentences
such as (1b) were rated no worse than grammatical ones such
as (1a). In related work, Christiansen and Macdonald (2009)
show that ungrammatical sentences were rated significantly
better than the grammatical ones. We will refer to this sur-
prising finding as the grammaticality illusion.

At least two competing explanations exist for this illusion.
One is due to Gibson and Thomas (1999), who argue that the
prediction for the middle verb phrase is forgotten if memory

cost exceeds a certain threshold; this explanation relies on
the assumption that working memory overload leads to for-
getting. The second explanation is due to Christiansen and
Chater (1999) and Christiansen and Macdonald (2009), who
attribute the illusion to experience (exposure to particular reg-
ularities in the syntax of a language) as encoded in a con-
nectionist network. They trained a simple recurrent network
(SRN) on right-branching and center-embedding structures
and then assessed the output node activations after seeing the
ungrammatical sequence NNNVV (i.e., sentences like 1b).
The activations showed a clear preference for ungrammatical
structures, consistent with empirical data from English speak-
ers.

An important theoretical question is whether these
two explanations—the memory-overload account and the
experience-based account—can be distinguished. Although
the English data is consistent with both explanations, re-
cent work by Vasishth et al. (2008) provides revealing new
evidence regarding the grammaticality illusion. Vasishth
and colleagues carried out several self-paced reading and
eyetracking studies demonstrating that although the English
grammaticality illusion can be replicated in online measures
like reading time, in German the pattern reverses: readers find
the ungrammatical sentence (1b) harder to process than its
grammatical counterpart (1a). In other words, German read-
ers do not experience the grammaticality illusion.

Specifically, for English Vasishth and colleagues found
(across several experiments) longer reading times in the
grammatical condition (1a) either at the final verb or the word
immediately following it (or in both regions); whereas for
German they reported shorter re-reading times in the gram-
matical condition either in the final verb region and/or the
region following it.

The absence of the grammaticality illusion in German is in-
teresting because it cannot be explained by the memory-based
forgetting account as stated in (Gibson & Thomas, 1999).
The explanation due to Christiansen and Chater (1999), how-
ever, may be able to explain the German results (in addi-
tion to the patterns seen in English): since German relative
clauses are always head-final, German readers are exposed to
head-final center embeddings much more often than English
speakers. This greater exposure to head-final structures could
be the reason why German speakers are able to identify the
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missing verb but the English speakers are unable to do so.
In this paper, we extend the connectionist model of

Christiansen and Chater (1999) to generate predictions for
both the English and German structures, and demonstrate that
this experience-based account provides a better explanation
for the English and German data than an account based on
language-independent working-memory constraints.

The Model
Network Architecture, grammar and corpora
We used a simple recurrent network (Elman, 1990) for mod-
eling the effect of experience on forgetting. SRNs have been
used previously to model the effect of structural properties
in the language on comprehension performance (Christiansen
& Chater, 1999; MacDonald & Christiansen, 2002). Since
the predictions of an SRN are sensitive to probabilistic con-
straints in the input structure, they serve well to assess the ef-
fect of language-specific properties on learning. Furthermore,
the architectural limitations of an SRN and its gradient nature
give rise to human-like processing properties that have been
explained in terms of working memory capacity limitations
and decay in symbolic models. Our claim is that the gram-
maticality illusion is dependent on experience with word or-
der regularities of the language in question. In order to show
this we used a simple artificial language resembling simple
sentences and subject- and object-extracted relative clauses.
We also held the number of subject- and object-relatives equal
in the corpus. In doing so we made sure that the only vary-
ing factor between the two training languages was whether its
relative clauses are head-final or not.

The Corpora were generated from probabilistic context-
free grammars (PCFGs) originally designed by Lars
Konieczny (English) and Daniel Müller and Lars Konieczny
(German).1 For generating corpora and likelihood predictions
the Simple Language Generator (Rohde, 1999) was used. Ev-
ery training corpus consisted of 10,000 randomly generated
sentences. Test corpora were generated for every condition
consisting of 10 test sentences each. The networks described
below were built, trained, and tested in the Tlearn simulator
(Elman, 1992) on a Windows platform.

Training and Testing Procedure
Prior to training, all networks were initialized with random
connection weights in the range of [-0.15, 0.15] and the hid-
den units received an initial bias activation of 0.5. Each train-
ing included 10 individually initialized networks that were
trained on 10 different corpora, respectively. The networks
were trained for three epochs, where one epoch corresponded
to a full run through a corpus.

The SRNs were trained on a word-by-word continuation
prediction. Each input word produced an activation distribu-
tion over the output nodes which represented lexical entries.

1Both grammars can be found at http://cognition.iig.uni-
freiburg.de/teaching/veranstaltungen/ws03/projekt.htm.

In combination with a cross-entropy error calculation (all out-
put activations sum to 1) the activation distribution was com-
parable to a probability distribution over words.

The SRN’s prediction were assessed using grammatical
prediction error (Christiansen & Chater, 1999). The GPE al-
gorithm is based on the numerical differences between the
PCFG probabilities and the actual output. The GPE value is
a difficulty measure for every word in the sentence, which
can be used as a reading time predictor (MacDonald & Chris-
tiansen, 2002).

Modeling the grammaticality illusion
The SRN trained on English sentences had 31 input and
output units and 60 hidden units. Each input and output
unit stood for one lexical entry in the lexicon. The lexicon
consisted of five nouns, four intransitive and four transitive
verbs in singular, plural and past tense forms and one end-
of-sentence marker (EOS). At every NP the probability of an
RC embedding was 0.1.2 An RC could be realized as a sub-
ject relative (SRC) or an object relative clause (ORC) with
equal probability.3 Probabilities for transitivity and number
status were also equal. The longest sentence in the corpus
for English had 18 words. The German lexicon contained 21
words, including four verbs and nouns in singular and plu-
ral forms, the respective determiners in nominative and ac-
cusative, the comma and the EOS marker. In consequence
the SRN trained on German had only 21 input and output
units. The longest corpus sentence had 41 words, including
the obligatory commas in German relative clauses. Both the
English and German grammars included a number agreement
between subjects and their predicates. In German a number
and case agreement between determiner and noun was also
included.

Christiansen and Chater (1999) reported node activations
for the region after an NNNVV sequence. For better com-
parison with empirical data we extended their study to obtain
GPE values for both conditions on all regions after the miss-
ing verb. Consider for example the error values on seeing
V1 after the sequence ‘N1 N2 N3 V3’, which is ungrammati-
cal because V2 is missing. In case the network is not aware of
the ungrammaticality, this should be reflected by similar GPE
values for both the grammatical and the ungrammatical con-
dition at V1. In order to model that we set the target probabil-
ity at V1 to the same value as in the grammatical condition.
(Meaning the probability distribution is conditioned by the
assumption that V2 has actually been seen.) In consequence,
an expectation of a V2 at this point would increase the GPE.
So, in the ungrammatical condition an SRN with a more ac-
curate grammar representation would produce a higher pre-

2These are the probabilities used by Konieczny in his grammar;
MacDonald and Christiansen have used 0.05. The precise number
is arbitrary; the essential point is that relative clauses should be less
frequent than simple sentences.

3We did not encode the well-known difference in probability of
occurrence between SRCs and ORCs because we were not modeling
this difference; this assumption does not affect the results presented
here.
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diction error than an SRN wrongly predicting V1 instead of
V2.

For the English case, the GPE values would be lower in
the ungrammatical condition. This effectively means that the
SRN is unable to make correct predictions based on long-
distance dependencies, but bases its predictions on rather lo-
cally consistent sequences. For example after seeing V3 the
network only predicts one more verb because the observation
of N1 is too weakly encoded in the hidden representations
to influence the predictions. Consequently, on V1 the error
for the ungrammatical condition should be lower because in
the grammatical condition V1 is the third verb which is in-
consistent with the SRN’s predictions. The preference for the
ungrammatical structure should continue on the post-V1 re-
gions because a locally coherent context with two verbs is
easier to handle than a context of three verbs.

We first tested whether the SRN makes the same predic-
tions as previous work on the English grammatical and un-
grammatical structures (Christiansen & Macdonald, 2009).

Simulation 1: English
The SRN, which was trained on the English corpus, was
tested on the grammatical and the ungrammatical condition
after one, two, and three epochs.

The grammar we used was more complex than Chris-
tiansen and Chater’s, but structurally compatible. Therefore
we expected that we would replicate their findings for En-
glish. In particular, the GPE values for the V1 and post-V1 re-
gions should receive lower values in the ungrammatical con-
dition (see corpus example 2b).

(2) a. The judge that the reporters that the senators un-
derstand praise attacked the lawyers .

b. *The judge that the reporters that the senators un-
derstand attacked the lawyers .

Results for simulation 1 In order to compare the results for
the English self-paced reading and eyetracking experiments
in Vasishth et al. (2008) the assessed regions in the simula-
tion were the three verbs V3, V2, V1 and the post-V1 region.
The V2 region contains no datapoint in the ungrammatical
condition because the verb is dropped in the testing stimuli.

Figure 1 shows GPE values for the SRNs trained and tested
on the English grammar after one, two and three epochs of
training. The pattern corresponded to the empirical results;
the SRNs predicted an advantage for ungrammatical struc-
tures at V1 and post-V1. No effect was predicted on V3 be-
cause no difference in stimuli and probability between the
conditions is present at this point.

Simulation 2: German
We turn next to the simulations for German center embed-
dings. German relative clauses differ from English in at least
two respects (a third difference is the morphology of the rela-
tive pronoun; but we do not discuss this difference here due to
space constraints). First, German relative clauses are obliga-
torily head final; second, commas are obligatory in German
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Figure 1: Simulation 1. English double-embedded object rel-
ative clauses. The figure shows the GPE values (for three
epochs) for the three verbs and the subsequent region of the
grammatical and ungrammatical conditions. The dotted line
shows the ungrammatical condition. Epochs 3, 2, and 1 are
colored black, dark grey and light grey, respectively.

relative clauses (see 3 for an example). We return to the role
of commas later in the paper.

(3) a. Der Polizist , den der Mensch , den der Passant
verspottet , ruft , trifft den Jungen .

b. *Der Polizist , den der Mensch , den der Passant
verspottet , trifft den Jungen .

Results of simulation 2 Figure 2 summarizes the findings.
First, in the regions V2 and V1, the GPEs were lower com-
pared to the English sentences. Second, in contrast to the En-
glish case, the comparison by conditions did not reveal any
difference on the main verb (V1). Finally, a small but signif-
icant preference for the grammatical structure was found on
the post-V1 region (p < 0.001).

Discussion
The English and German center-embedding simulations sug-
gest that experience with head-final structures may furnish a
better explanation for the grammaticality illusion in English
(and its absence in German) than working-memory based ac-
counts such as Gibson and Thomas’. Both the English and
German reading patterns found in the literature can be mod-
eled by the SRN, whereas the working-memory based expla-
nation can only explain the English results.

Our results do not imply that working memory plays no
role in these constructions; rather, our claim is that experience
plays a dominant role. A plausible way to reconcile the two
accounts into one composite theory would have experience
modulating working-memory overload. These details are or-
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Figure 2: Simulation 2. German double-embedded object rel-
ative clauses. The figure shows the GPE values (for three
epochs) for the three verbs and the subsequent region of the
grammatical and ungrammatical conditions.

thogonal to our main finding, which is that experience de-
termines whether English and German readers can correctly
maintain predictions for upcoming verbs.

The role of commas in processing English
center embeddings

One objection to this experience-based explanation for the
grammaticality illusion (and its absence) is that the differ-
ence between English and German center embeddings could
be related to the obligatory presence of commas in German.
The commas in German relative clauses could lead to a strat-
egy that is not available in the English structures previously
studied. For example, readers could simply be counting the
number of commas in German, and this could make it easier
for them to detect ungrammaticality.

If commas alone (and not the head-final nature of relative
clauses) are responsible for the patterns observed in German,
then two straightforward predictions are that: (a) adding com-
mas to English relative clauses should result in a German-like
pattern for English sentences; and (b) removing commas from
German relative clauses should result in an English-like pat-
tern for German sentences.

Prediction (a) can be evaluated empirically but prediction
(b) cannot because, as mentioned earlier, commas are oblig-
atory in German relative clauses. As it turns out, Vasishth et
al. (2008) tested the prediction for English and found that the
presence of commas in English does not change the pattern;
the grammaticality illusion persists.

The question we address next is: What does the SRN
model predict for English RCs when commas are present?

Simulation 3: English with commas
For the simulation we extended the English grammar with
appropriate comma insertions and trained the SRNs on the
resulting corpora. In English non-restrictive object relative
clauses (ORCs), commas would appear after nouns in the be-
ginning of the sentence and after the verbs in the end. In
a double-embedded ORC there would be a comma after V3
and V2. Thus, the grammatical/ungrammatical sequence pair
is N,N,NV,V,V vs. N,N,NV,V. See (4) for examples.

For the SRN the comma effectively appears as a word cat-
egory with only one token which attaches to nouns or verbs
and is not involved in long-distance dependencies. Hence, the
activation pattern representing it should not be too complex.
In fact the learning of comma usage in ORCs can be reduced
to a counting recursion problem of the pattern aabb instead of
abba. As discussed in (Christiansen & Chater, 1999), count-
ing recursion is the easiest of the three recursion types for
both humans and connectionist networks. Thus, it is very
likely that the inclusion of commas facilitates processing in
the grammatical condition, lowering the respective GPE val-
ues.

(4) a. The lawyer , who the senator , who the judges
attack , understands , praises the reporters .

b. *The lawyer , who the senator , who the judges
attack , praises the reporters .

Results for simulation 3 See Figure 3 for the results after
one, two and three epochs. Compared to simulation 1, there
was a global improvement for both conditions, i.e., the GPEs
were lower in each region. On V1 training had more effect in
the ungrammatical than in the grammatical condition, result-
ing in a preference for the ungrammatical structure on V1 (as
in simulation 1). On post-V1 training affected the grammati-
cal condition more, however, not resulting in a grammatical-
ity preference.

In summary, the SRN model suggests that although the in-
sertion of commas in English helps to make better predic-
tions overall, training effects seem to be driven by rather
local consistency (Tabor, Galantucci, & Richardson, 2004),
(Konieczny & Mueller, 2007), affecting the ungrammatical
condition more than the grammatical one.

Importantly, the grammaticality illusion persists for En-
glish even when commas are present. This is consistent
with the empirical findings for non-restrictive English rela-
tive clauses: Vasishth et al. (2008) also found in a self-paced
reading study that the comma cue did not affect the grammat-
icality illusion in English.

The above findings raise an interesting question for Ger-
man: is the reversal of the grammaticality illusion in German
due only to the head-final nature of relative clauses, or do
commas also play a role in determining the outcome? The
only way to empirically disentangle the effect of head-finality
and commas in German would be to examine a language such
as Hindi, which also has head-final relative clauses but does
not require commas.
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Figure 3: Simulation 3. The figure shows the GPEs (for the
three epochs) of English center embeddings with commas.

Until such empirical evidence becomes available we can-
not definitively answer the question about the role of com-
mas, head-finality their interaction with experience. The SRN
model can however generate predictions regarding the role
of commas versus head-finality in German. We simulated
the acquisition of experience with German head-final rela-
tive clauses which do not have any commas at all; in effect,
we can simulate the learning of Hindi-type relative clauses
in German. If commas are (partly) responsible for the rever-
sal of the grammaticality illusion in German, then we should
see an English-like pattern; if head-finality alone is the crit-
ical factor, then we should see a preference for grammatical
structures even when commas are absent. This simulation is
presented next.

Simulation 4: German without commas
In German, the presence of commas could have a facilitat-
ing effect because the counting-recursion pattern aabb is not
only applicable in the ORC as in English but also in the
SRC (both are head-final structures in German, unlike En-
glish). Consequently, the SRN trained on the German cor-
pus should be very skilled on center-embedding recursion and
comma counting-recursion and hence will have much lower
error rates for the grammatical condition.

Thus, in German the removal of commas should make the
SRN’s predictions more error-prone. The verb-finality regu-
larity in German, however, could still result in better predic-
tions for the grammatical condition in German than in En-
glish. In order to test these predictions, simulation 4 tested
SRNs trained on a comma-free German grammar.

Results of Simulation 4 The GPE values of the simulation
involving German without commas (Figure 4) show a simi-
lar pattern as in English without commas. In the first epoch,

an ungrammaticality preference was found in a small effect
on V1 and a very pronounced effect on the region follow-
ing it. After completion of training, V1 and post-V1 show
a similar sized preference for the ungrammatical structure.
Surprisingly, the regularity of verb-final structures does not
seem to support correct predictions in German any more than
in English. Rather, the more regular application of commas
in German has a very facilitating effect on both conditions,
slightly more on the grammatical.
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Figure 4: Simulation 4. The GPEs for German center embed-
dings without commas.

General Discussion
The results of simulation 1 (English without commas) and 2
(German with commas) were consistent with existing empiri-
cal data from both offline studies and online (self-paced read-
ing and eyetracking) studies (Gibson & Thomas, 1999; Chris-
tiansen & MacDonald, 1999; Vasishth et al., 2008; Chris-
tiansen & Macdonald, 2009): the grammaticality illusion oc-
curs in English but not in German.

These simulations demonstrate that the inherent architec-
tural constraints of SRNs correctly predict both the grammat-
icality illusion in English double-embedded ORCs, as well
as the absence of the illusion in German. In addition, the
SRN model also makes the correct predictions regarding the
effect of commas in English relative clauses: although com-
mas reduce the GPEs, the grammaticality illusion persists in
English. This is consistent with the evidence presented by
Vasishth et al. (2008). Finally, we showed that in German
head-finality alone does not explain the absence of the gram-
maticality illusion; commas appears to be crucial for the pat-
terns observed.

Conclusion
This paper investigated the explanatory power of a particu-
lar implementation of the experience-based account for the
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grammaticality illusion. The well-known SRN modeling ap-
proach of MacDonald and Christiansen (2002), Christiansen
and Macdonald (2009) was adopted to test its predictions on
the forgetting effect in complex center-embedding.

The grammaticality illusion was predicted for English but
not for German, consistent with human data. However, fur-
ther simulations revealed the comma insertion as an important
factor for the German pattern.

A caveat is necessary here. An SRN trained on a sim-
ple grammar obviously does not learn exactly the same con-
straints as humans do. These simulations are rather approxi-
mations that are suggestive of the role that experience plays in
modulating memory processes. An important issue with the
SRNs’ predictions is their dependency on local coherence.
Interestingly, however, there is evidence that even human
readers rely on local coherence in certain structures (Tabor
et al., 2004). Another finding is that the simulations reported
by Christiansen and Chater (1999), and also the comma issue
in simulations presented here, showed that the SRN handles
counting-recursion better than other types. That may be the
reason for the strong facilitating effect of comma insertion
compared to head-finality.

More broadly, this work argues in favor of a uniform ac-
count of language-specific differences that are grounded in
experience and that emerge as a consequence of architec-
tural constraints. This account is broadly consistent with
a range of recent work that characterizes processing mod-
ulated by experience (Hale, 2001). At the same time, it is
clear that working-memory centered accounts capture a great
deal of the empirical base that purely experience-based ac-
counts cannot explain. Some examples are: the presence of
both similarity-based interference and similarity-based facil-
itation effects (Logačev & Vasishth, 2009), the interaction
of interference with locality (Van Dyke & Lewis, 2003) and
with antilocality (Vasishth & Lewis, 2006). Thus, it appears
that a principled composition experience as well as working-
memory constraints is necessary to explain the range of em-
pirical phenomena in sentence processing.
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Abstract
Modeling crowd behavior is an important challenge for cog-
nitive modelers. Unfortunately, existing computational mod-
els are typically not tied to cognitive science theories, and
are rarely evaluated against human crowd data. We investi-
gate a general cognitive model of crowd behavior, based on
Festinger’s Social Comparison Theory (SCT). We evaluate the
SCT model on general pedestrian movement, and validate the
model against human pedestrian behavior. The results show
that SCT generates behavior more in-tune with human crowd
behavior then existing non-cognitive models. Moreover, we
examine the impact of the different SCT model components
on the generated pedestrian behavior.

Introduction
Modeling crowd behavior is an important challenge for cog-
nitive science and psychology (Le Bon, 1895; Allport, 1924;
Turner & Killian., 1972). Accurate models of crowd behav-
ior are sought in training simulations, safety decision-support
systems, traffic management, and organizational science. In-
deed, a variety of computational models have been proposed
that exhibit crowd-like behavior in different tasks. For in-
stance, cellular automata models are used to model pedestrian
movements (Blue & Adler, 2000; Helbing & Molnar, 1997)
or people evacuating an area in emergency (Helbing, Farkas,
& Vicsek, 2000; Kretz, 2007).

Unfortunately, only a handful of existing models of crowd
behavior have been evaluated against real-world human
crowd data. Moreover, essentially no computational cogni-
tive models have been proposed which are tied to cognitive
science theory. Instead, existing models are often inspired
by particle physics (modeling individuals as particles), or by
cellular automata. Thus fitting in the models with a deeper
cognitive model of humans, or the mechanisms of a cognitive
architecture, is difficult.

Recently, we presented a novel cognitive model of crowd
behavior (Fridman & Kaminka, 2007), which has two key
novelties (compared to previous models): First, there is a
single computational mechanism (algorithm) used to gener-
ate different crowd phenomena (Fridman & Kaminka, 2009);
and second, it is inspired by social psychology theory. In
particular, the model is based on Social Comparison Theory
(SCT) (Festinger, 1954), a popular social psychology theory
that has been continuously evolving since the 1950s. The key
idea in SCT is that humans, lacking objective means to eval-
uate their state, compare themselves to others that are similar.

We believe that social comparison is a general cogni-
tive process underlying social behavior of each individualin
crowd. Unlike previous crowd models that concentrate on
specific behavior, the SCT model can account for different

crowd behaviors, depending on the perceptions and actions
available to each individual (Fridman & Kaminka, 2007).
However, while the SCT model proved superior to other com-
putational models in behaviors-specific measures (e.g., the
formation of lanes in bidirectional movement), it was never
validated against human crowd data.

In this paper we evaluate the SCT model on the specific
task of general pedestrian movement which includes individ-
uals, couples, and groups, all walking with different speeds,
and in different directions. We contrast the performance of
the model with a popular baseline model (Blue & Adler,
2000; Helbing et al., 2000), and explore the impact of dif-
ferent parameters and model components (e.g., bounds) on
the generated behavior. The evaluation was carried out by 39
human subjects who compared the behavior generated from
the different models to movies of real-world pedestrians. The
results clearly justify the the particular parameters selected in
earlier work (Fridman & Kaminka, 2007), and also demon-
strate the SCT model is superior to others in its fidelity to
human pedestrian behavior.

Background and Motivation
Social psychology literature provides several views on the
emergence of crowds and the mechanisms underlying its be-
haviors. These views can inspire computational models, but
are unfortunately too abstract to be used algorithmically.In
contrast, computational crowd models often ignore cogni-
tive and psychological processes underlying human behavior.
Moreover, only a little work was done in validating computa-
tional models against data of human behaviors.

General crowd psychology. A phenomenon observed with
crowds, and discovered early in crowd behavior research is
that people in crowds act similar to one another, often act-
ing in a coordinated fashion, which is achieved with little or
no verbal communication. Moreover, the crowd may cause
its members to behave differently than they would have in-
dividually. There are several different theories that explain
this crowd characteristics, focusing on the cognitive process
underlying each individual within the crowd.

Contagion Theory (Le Bon, 1895) emphasized a view of
crowd behaviors as controlled by a "Collective Mind", and
observed that an individual who becomes a part of the crowd
is strongly affected by it, to the extent that she is transformed
into becoming identical to the others in the crowd. Le Bon
explains the homogeneous behavior of a crowd by two pro-
cesses: (i)Imitation, where people in crowds imitate each
other; and (ii)Contagion, where people in a crowd behave
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very differently from the way they usually do, individually.
On the other hand, Convergence Theory (Allport, 1924)

states that crowd behavior is a product of the behavior of like-
minded individuals. According to Allport’s theory, individu-
als become a part of the crowd behavior when they have a
"common stimulus" with people inside the crowd; for exam-
ple, a common cause (Allport, 1924). Allport agrees with Le
Bon (1895) about the homogeneous behavior of the crowd.

Turner and Killian (1972) investigated Emergent-norm
Theory, which hypothesizes that crowd members indeed im-
itate each other, but also create new norms for the crowd as
the dynamics of the situation dictate. Thus while crowds are
not entirely predictable, their collective behavior is a function
of the decision-making processes of their members.

Specific models.Researchers have developed computational
models for simulation of collective behavior. However, these
models are not often tied to cognitive processes underlying
individual behavior in crowd and have rarely been validated
against human data.

For instance, to simulate pedestrian movements, Blue and
Adler (2000) use Cellular Automata approach, Helbing et al.
(Helbing et al., 2000) focus on physical and social forces of
attraction and repulsion that underlying each simulated entity.
A common theme in all of them is the generation of behavior
from the aggregation of many local rules of interaction. These
models ignore cognitive theories of crowds.

There are several models that account for psychological
and cognitive processes underlying agent behavior in crowd.
For example, Yamashita and Umemura (2003), propose a
model for panic behavior in which each agent acts based on
its instincts such as escape instinct, group instinct and imita-
tional instinct. Osaragi (2004) proposed a model for simulat-
ing pedestrian flow by using the concept of pedestrian mental
stress which may increase or decrease as a result of density.
However, these models only focus on cognitive processes un-
derlying specific behaviors like flocking or evacuation and not
account for general individual behavior in crowd.

One of the challenges in modeling crowd behaviors is the
validation process. There is a great absence of human crowd
behavior data that simulated models can be compared against.
Only a handful of investigations have utilized experimentsto
validate computational models against human data.

For example, Kretz (2007) proposes the Floor field-and-
Agent based Simulation Tool model (FAST) which is an ex-
tension of probabilistic cellular automata and discrete-space,
discrete-time model for pedestrian motion. The FAST model
has been validated against human data. In particular, the
model simulation results of evacuation scenario was com-
pared to results of evacuation exercise at a primary school.

Wolff (1973) examined pedestrian behavior in typical city
block, and noted on the coordinated behavior of crowd, in
term of creation of lanes in bidirectional movement or spread
effect in unidirectional movement. However, in this experi-
ment no quantitative data was presented. To learn more about
pedestrian flows (density, speed), Daamen and Hoogendoorn

(2003) performed empirical experiments on human crowds,
in particular in terms of movement of pedestrians. However,
these experiment focused only on the movement of indepen-
dent individuals, rather than families or friends.

Our long-term goal is to provide a single cognitive mech-
anism that, when executed by individuals, would give rise to
different crowd behaviors, depending on the perceptions and
actions available to each individual. In previous work (Frid-
man & Kaminka, 2007), we presented such a mechanism,
based on Social Comparison Theory. The model was eval-
uated on specific pedestrian movement phenomena, such as
creation of lanes in bidirectional movement; it was not evalu-
ated against human pedestrian movement.

A Model of Social Comparison
Our research question deals with the development of a com-
puterized cognitive model which, when executed individually
by many agents, will cause them to behave as humans do in
groups and crowds. We build on earlier work on the SCT
crowd model, briefly described below; the interested reader
is referred to (Fridman & Kaminka, 2007) for details.

According to social comparison theory, people tend to
compare their behavior with others that are most like
them (Festinger, 1954). To be more specific, when lacking
objective means for appraisal of their opinions and capabili-
ties, people compare their opinions and capabilities to those
of others that are similar to them. They then attempt to correct
any differences found.

Translated into an algorithm, we take each observed agent
to be modeled by a set of features and their associated val-
ues. For each such agent, we calculate a similarity values(x),
which measures the similarity between the observed agent
and the agent carrying out the comparison process. The agent
with the highest such value is selected. If its similarity isbe-
tween the given bounds (Smax andSmin), then this triggers ac-
tions by the comparing agent to reduce the discrepancy. The
upper bound (Smax) prevents the agent from trying to min-
imize differences with someone who is already sufficiently
similar, since such differences are not meaningful. The lower
boundSmin filters agents that are too dissimilar, and so should
be ignored. Thus, within the bounds an agent compares it-
self with those that differ from it sufficiently to matter. In
experiments, we examine the impact of SCT bounds on the
generated simulated behavior.

To reduce discrepancy, we determine the list of featuresfi
that indicate a difference with the selected agentc. We order
these features in an increasing order of weightwi , such that
the first feature to trigger corrective action is the one withthe
least weight. The reason for this ordering is intuitive, andwe
admittedly did not find evidence for it in the literature. How-
ever, in this paper we examine the impact of the correction
order on the quality of the simulated behavior.

1. For each known agentx calculate similaritys(x)

2. c← argmax s(x), such thatSmin < s(c) < Smax
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3. D← differences between me and agentc

4. Apply actions to minimize differences inD.

To implement final step of the algorithm, we assume that
every feature has associated corrective actions that minimize
gaps in it, to a target agent, independently of other features.
Festinger writes (Festinger, 1954, p.131): “The stronger the
attraction to the group the stronger will be the pressure to-
ward uniformity concerning abilities and opinions within that
group”. To model this, we use a gain functionGain for the
actiono, which translates into the amount of effort or power
invested in the action. For instance, for movement, the gain
function would translate into velocity; the greater the gain,
the greater the velocity.

Gain≡
Smax−Smin

Smax−s(c)
(1)

Validation Against Human Data
The SCT model was previously evaluated separately on dif-
ferent crowd behaviors (Fridman & Kaminka, 2007). In par-
ticular, different types of pedestrian movement phenomena
(such as creation of lanes in bidirectional movement of in-
dividuals, movement in small groups with and without ob-
stacles, etc.). When evaluated on such specific behavior, it
is possible to use community-recognized standard measures,
such as flow, number of lane changes, etc. However, when
evaluating the model against human data, it must account for
a fuller set of behaviors, all mixed together. For example,
when watching pedestrians, we can observe people moving
as groups like family, friends and couples or as individuals,
all walking with different speeds in bidirectional fashion.

A different evaluation methodology is thus needed. One
of the greatest challenge in modelling crowd behaviors is
the great absence of human crowd behavior data that can be
used as a basis for comparison. The main difficulty in cre-
ation of such data is that controlled experiments are com-
plex to design, and costly to execute, since they have to be
in large scale. There does not exist a standard methodology
of evaluation; some researchers generate accurate behavioral
data by engaging crowds in virtual environments (Pelechano,
Stocker, Allbeck, & Badler, 2008), while others do qualita-
tive comparisons of their models’ predictions against movies
of crowds, i.e., via observation experiments, e.g., (Helbing et
al., 2000; Kretz, 2007). We follow the same approach. Be-
low, we describe the observation experiments we executed to
evaluate the SCT model on general pedestrian behavior.

Comparing to Human Behavior
In this experiment we focus on general pedestrian behavior
where individuals and small groups (e.g., family and friends,
couples) walk with different speeds in bidirectional fashion.
Our hypothesis is that generating pedestrian behavior with
SCT model is more in tune with human pedestrian behavior,
compared to other models from the literature. We also want
to examine the impact of the model components (bounds, cor-
rection order, gain) on the quality of the simulated behavior.

We used human crowd movies where different pedestrian
behavior phenomena are presented (Figure 1(a)) and created
screen-capture movies of different models of the same behav-
ior (Figure 1(b)). We rely on experiments with human sub-
jects which compare each of the resulting simulated behaviors
to human crowd behavior. In addition, the subjects also voted
for the most similar and dissimilar simulated behavior.

(a)

(b)

Figure 1:Real (a) and Simulated (b) Pedestrian Behavior.

Simulated Behavior: Experiment Setup. To simulate
pedestrian behavior, we used Net-Logo. We define a sidewalk
with 104 patches in length and 10 patches at width. To fit to
human crowd density, the sample population comprised 30
agents. Agents were able to move in a circular fashion from
east to west or in opposite direction with different speeds.
Agents that belong to the same group have the same color. In
order to create small groups, couples and individuals, we de-
fine our population with 15 different colors (a large number
considering the population size). Agents were placed in ran-
dom positions at the beginning of the experiment, each agent
had limited vision distance of 10 patches and cone-shaped-
field-of-view of 120 degrees.

Each agent has a set of features and their corresponding
weights. For simulating pedestrian movement, we used the
following features and weights:color (weight 3); Walking
direction east or west (weight 2); andposition (weight 1),
given global coordinates. To account for the western cultural
intuition that friends (and family) walk side-by-side, rather
than in columns, we used another feature: The similarity in
position along the x-axis -X-Coordinate(weight 0.5).

The rationale for feature priorities, as represented in their
weights, follows from our intuition and common experience
as to how pedestrians act. Positional difference (distance,
side-by-side) is the easiest difference to correct, and theleast
indicative of a similarity between pedestrians. Directionis
more indicative of a similarity between agents, and color
(which we use to denote sub-groups within the crowds) even
more so. For instance, if an agent sees two agents, one in the
same direction as it (and far away), and the other very close
to it (but in the opposite direction), it will calculate greater
similarity to the first agent, and try to minimize the distance
to it (this may cause a lane change) and only then try to locate
itself on the same X-coordinate.

The similarities in different features (fi) are calculated
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as follows. fcolor = 1 if color is the same, 0 otherwise.
fdirection = 1 if direction is the same, 0 otherwise,fdistance=
1

dist , wheredist is the Euclidean distance between the posi-
tions of the agents and finally,fx−coordinate= 1 if x-coordinate
is the same, 0 otherwise. Each agent calculatess(x) accord-
ing to the model. If the chosen feature for closing the gap is
distance, then the velocity for movement will be multiplied
by the calculated gainGain. For other features (which are
binary), the gain is ignored.

We wanted to examine the impact of the SCT model com-
ponents on the quality of the simulated pedestrian behav-
ior. In particular, we wanted to examine the impact of SCT
bounds (Smin andSmax), gain function, and correction order on
the generated behavior. We define seven models, each empha-
sizing a different SCT component. The models are explained
below, and summarized in Table 1.

First we wanted to examine the impact of SCT bounds on
the generated pedestrian behavior. We hypothesize that more
narrow bounds will provide more similar behavior to individ-
ual model. To examine this hypothesis, we define the follow-
ing models:
• SCT-B-2-6.5 We setSmax to 6.5 (practically: no agent too

similar) andSmin to 2 (which means that agents that dif-
fer only in distance and in X-axis are not consider similar).
The gain is calculated according to Eq. 1 and the correc-
tion order is from the low weight features (distance) to high
weigh features. In this domain agents cannot change their
color, thus, the last corrected feature is direction. Our hy-
pothesis that this model will provide most similar behavior
to human pedestrians.

• SCT-B-5-6.5 We set theSmin to 5 which mean that agents
that similar at least in color and direction are consider to
be similar. Thus, in this model only agents with same color
and direction will move together.
Another component that we want to examine is the impact

of correction order on simulated pedestrian behavior. In the
SCT-H-L model we define the correction order to be from
high to low. Our agents cannot change their colors, and in this
model if the selected agent is moving in opposite direction,
the agent will first change it direction and then will try to
close the distance gap.

Finally, we wanted to evaluate the importance of the gain
in the model. We define the following models:
• SCT-NoGain Defined to be without the gain function (i.e.,

gain is constant 1).

• SCT-G-C2 The gain function is constant (2).

• SCT-G-C3 The gain function is constant (3).

• SCT-G-C4.5 The gain function is constant (4.5).

The various SCT models are contrasted with theindivid-
ual choicemodel, commonly used in pedestrian crowd re-
search (Blue & Adler, 2000; Helbing et al., 2000). In the
individual model, when forward movement of an agent is
blocked, an agent will arbitrary chooses different lane. Each

agent make its decisions independently of its peers. This
model has been shown to be qualitatively compatible with
pedestrian motion, and is often used as a baseline technique
in crowd research (see, for instance, (Kretz, 2007)).

Comparison to Human Crowd. In order to compare to
general behavior and not to be connected to specific video
clip, we used several video clips of human pedestrian behav-
ior and several screen-captured movies for each model. In the
simulated behavior we created three screen-captured movies
for each model that was randomly chosen for each subject.
In human behavior we used two sets of video clips that were
taken from different locations and in different times. The first
set of movie clips were taken in the morning in downtown
Vancouver, during rush hour. People are mostly walking in-
dividually, and only few are moving in small groups. The
second set of movie clips were taken in the afternoon in a
street that leads to the Eiffel tower in Paris, during leisure
time. Most of the pedestrians are families and friends that
move in small groups, or as couples. Each real-world video
clip was cut to be one minute long. To generate a one-minute
clip in the simulated behaviors, each model was executed for
5000 cycles ( 6 minutes), and the last minute was used.

We build a web based experiment which enables the sub-
jects to participate in their free time. First we presented a
brief description about the experiments. The subjects were
told that the purpose of the experiment is to compare each
of the simulated behaviors to human crowd behavior. How-
ever, the purpose of the simulation is not to simulate each
seen pedestrian in the human crowd, but to simulate the gen-
eral pedestrian behavior. The experiment was carried out in
two phases, a training phase that was presented to the subjects
after the experiment description, and an experiment phase.

The experiment was carried out using 39 adult subjects
(males: 28). Additional 6 subjects were dropped due to tech-
nical reasons (such as network problems that prevented them
from watching the clips). The subjects were ask to watch the
human pedestrian movie that was randomly chosen in each
experiment. Then, they were ask to watch screen-captured
movie of each model that was also chosen randomly. Af-
ter each simulated movie, the subjects were ask to rank the
seen behavior, that followed by question: To what degree the
seen simulated behavior is similar to previously seen human
behavior? (1—not similar, 6—most similar). At the end of
the experiment, we ask the subjects additional two questions:
What simulated movie was the most similar to human behav-
ior and what simulated movie was the most dissimilar. To
control for order effects, the order of presentation on the page
was randomized.

Initially we wanted to compare eight different simulated
behaviors to human pedestrian behavior, the individual choice
model and seven SCT models. We run a short pilot in
which we presented to three subjects the experiment and af-
terwards ask their opinion. All subjects claimed that the ex-
periment was too long. Moreover, they claimed that SCT-
B-2-6.5 model provide very similar behavior to that of SCT-
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Component SCT-B-2-6.5 SCT-B-5-6.5 SCT-H-L SCT-NoGain SCT-G-C2 SCT-G-C3 SCT-G-C4.5
Smax 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Smin 2 5 2 2 2 2 2
Gain Eq. 1 (func.) Eq. 1 (func.) Eq. 1 (func.) 1 (const) 2 (const) 3 (const) 4.5 (const)
Correction Order L-H L-H H-L L-H L-H L-H L-H

Table 1:SCT Models

H-L model and similar behavior was also observed in mod-
els SCT-NoGain, SCT-G-C2, SCT-G-C3 and SCT-G-C4.5.
Thus, we reduced the number of different models that pre-
sented to the subjects. In the experiment phase we compared
between four simulated behaviors. We used the Individual-
choice model, SCT-B-2-6.5, SCT-B-5-6.5 and one of ran-
domly chosen SCT-NoGain, SCT-G-C3 and SCT-G-C4.5
models. The models SCT-H-L and SCT-G-C2 were used only
in the training phase, and their results were not used.

Results
We first wanted to examine the ranking of the models in com-
parison to the actual crowd. The results are summarized in
Figure 2. The categories in the X-axis correspond to differ-
ent models. The Y-axis correspond to grades of the compared
models. Each set of bar shows the mean and median results.
A higher result indicates improved fidelity, i.e., greater simi-
larity to human pedestrian behavior.

Figure 2:Comparing to human pedestrian - Results

The results clearly demonstrate that the SCT-B-2-6.5
model provide most higher results than the compared mod-
els. While it may seem that the SCT-B-2-6.5 model results is
close to Individual and SCT-B-5-6.5 models results, accord-
ing to t-test (two-tailed) SCT-B-2-6.5 was found to be signif-
icantly different than the Individual model (p = 0.001) and
significantly different than SCT-B-5-6.5 (p = 0.03).

Another hypothesis underlying the experiment is that SCT
model with narrower bounds (Smin, Smax) will provide closer
behavior to individual model behavior, but not the same. In-
deed, the results demonstrate that SCT-B-5-6.5 is lying in be-
tween the SCT-B-2-6.5 and individual models. According to
t-test (two-tailed) SCT-B-5-6.5 was found to be significantly
different than SCT-B-2-6.5 (p = 0.03) and significantly dif-
ferent than the Individual model (p = 0.017).

Our last hypothesis was that SCT models without the gain
function will provide less similar behavior to human pedes-
trian behavior. The results clearly demonstrates that SCT-

NoGain, SCT-G-C3 and SCT-G-C4.5 models in which the
gain is fixed, get the lowest results.

When we ask the subjects: "What simulated behavior
was the most similar to human behavior?" The SCT-B-2-
6.5 model gets the highest number of votes. To the ques-
tion: "What simulated behavior was the most dissimilar to hu-
man behavior?", the subjects answered with the SCT-NoGain,
SCT-G-C3 and SCT-G-C4.5 models. The answers to these
two questions are shown in Figure 3.

Figure 3:Most similar/dissimilar: Results.

Discussion
The SCT model, described and evaluated above, stands on
two conceptual cognitive science legs. First, it draws a con-
nection between social comparison theory and crowd behav-
ior. Second, it interprets social comparison theory as admit-
ting superficial comparisons, i.e., at the level of visible dif-
ferences between agents, in addition to cognitive differences
(e.g., intentions). We address these two issues below.

Social Comparison in Crowds. To the best of our knowl-
edge, social comparison theory has never been connected to
crowd behavior phenomena. However, we believe that social
comparison theory may account for some important charac-
teristics of crowd behavior, as it clearly addresses processes
in groups, and no limit is placed on group size.

We focus here on one of the primary characteristics of
crowds is the similarity between individuals’ behaviors. This
is explained by a process ofimitation(Le Bon, 1895), conver-
gence of like-minded individuals (Allport, 1924), or emerg-
ing norms (Turner & Killian., 1972).

Social comparison processes can give rise to this phe-
nomenon. Festinger writes (1954, p. 124): "The existence of
a discrepancy in a group with respect to opinions or abilities
will lead to action on the part of members of that group to re-
duce the discrepancy". Indeed, one implication of SCT is the
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formation of homogeneous groups. Festinger notes (1954, p.
135):"The drive for self evaluation is a force acting on per-
sons to belong to groups, to associate with others. People,
then, tend to move into groups which, in their judgment, hold
opinions which agree with their own“. This quote, in particu-
lar, seems to be compatible with (Allport, 1924).

Do people engage in surface comparisons?Festinger hy-
pothesizes (Festinger, 1954, p. 117): "There exists, in the
human organism, a drive to evaluate his opinions and his abil-
ities". Thus a question that emerges with respect to the mech-
anisms described here is whether in fact the type of surface
comparisons are admitted by social comparison theory.

There has been extensive research clarifying the concepts
"abilities" and "opinions". Smith and Arnkelsson (2000) ex-
plain that ability evaluation refers to person performanceat
specific task. Festinger itself provide a link between abil-
ity and performance: "abilities are of course manifested only
through performance which is assumed to depend upon the
particular ability" (1954, p. 118). He then provide an exam-
ple: “Thus, if a person evaluates his running ability, he will
do so by comparing his time to run some distance with the
times that other persons have taken.” (1954, p. 118).

Moreover, the meaning of opinion comparison, was also
extensively investigated during the years. Goethals and Dar-
ley (1977) relate this concept to "Related Attributes Hypoth-
esis" meaning people will prefer to compare with others sim-
ilar to them on attributes that are related to their opinion or
performance. Festinger provide the basis for this research
claiming: "If persons who are divergent from one’s own opin-
ion or ability are perceived as different from oneself on at-
tributes consistent with the divergent, the tendency to narrow
the range of comparability becomes stronger" (1954, p. 133).
Goethals and Klein provide an example which directly ad-
mit surface comparisons: "An individual evaluating his or her
tennis-playing ability. He or she might compare with others
who are about the same age, who have the same degree of
recent practice and comparable equipment, and who are the
same sex" (Goethals & Klein, 2000, p. 25).

Summary
SCT is a cognitive model proscribing crowd behavior, in-
spired by Festinger’s social comparison theory (Festinger,
1954). A key novelty in SCT is its promise of domain-
generality. However, while SCT has been evaluated against
existing models in specific tasks, it was not validated against
human crowd data.

This paper presented validation of SCT model (and com-
peting models) against human crowd behavior. We evalu-
ate the SCT on pedestrian phenomena and showed that SCT
model generated pedestrian behavior more in tune to human
pedestrian behavior. The results are promising, and support
the general applicability of the SCT model. We are currently
exploring the use of SCT in this and other domains.
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Abstract 
This paper presents a comparison of two models, built on the same 

architecture, ACT-R, and on the same dynamic decision making 

task, RADAR.  The two models represent the Strategy-Based 

Learning (SBL) approach and the Instance-Based Learning (IBL) 

approach. The SBL approach assumes a certain set of predefined 

strategies, and learning occurs by selecting the most successful 

strategy over time. The IBL approach proposes that decisions are 

made based on retrieval of good past experiences stored in 

memory. This approach assumes no previous initial experience 

apart from that gained while performing the task. Both models 

were tested with respect to two criteria: fit to human data during a 

training exercise with RADAR and adaptability to test conditions 

that are either similar to or different from the training conditions. 

Our comparison results demonstrate that both models fit learning 

human data successfully, but the IBL model is more robust than 

the SBL model.  This exercise initiates a discussion of the SBL and 

IBL approaches to modeling choice and decision making in ACT-

R and a reevaluation of how to compare and assess computational 

models. 

 

Keywords: dynamic decision making; instance-based learning; 

strategy-based learning; consistent mapping; varied mapping; 

ACT-R. 

Introduction 

In cognitive psychology there have been at least two views 

of the world: that humans understand the world by means of 

rules and by particular domain-related events (Nisbett, 

1993).  In cognitive modeling these same two views are 

often reproduced in the behaviorism and connectionism 

debate (Anderson & Lebiere, 2003).  The debate in the late 

1980s led to an opposition between the two modeling 

approaches, in which connectionism was perceived to 

resemble the underlying neural structure better than did 

behaviorism, a focus on learning from environmental 

stimuli rather than from generic rules, and a focus on 

subsymbolic manipulations rather than symbolic 

representations.  In reality the two approaches have more in 

common than what was recognized in this debate. 

ACT-R is a hybrid architecture composed of both 

symbolic and subsymbolic aspects (Anderson & Lebiere, 

1998, 2003). The symbolic aspects are declarative and 

procedural. The declarative knowledge is represented in 

chunks, and the procedural knowledge is represented in 

productions (if-then rules). The subsymbolic elements of 

ACT-R are the neural-like statistical and mathematical 

mechanisms that manipulate the symbolic representations. 

ACT-R allows for two different approaches to modeling 

human behavior that are particularly relevant for decision 

making and learning: the Strategy-Based Learning (SBL) 

and the Instance-Based Learning (IBL) approaches. 

The SBL approach is the most popular approach to 

modeling choice and decision making in ACT-R (Lovett, 

1998). Under this approach, modelers determine the 

strategies by which humans perform a task, and they 

represent these strategies in the form of production rules. 

Choice among competing production rules is controlled by 

the ACT-R subsymbolic utility learning mechanisms.  Each 

production has a utility value that represents the rule’s 

probability of success and the costs involved in reaching the 

goal. The utility learning mechanism produces a gradual 

switch from less successful to more successful strategies 

over time. 

The IBL approach, although less popular, has been used 

successfully in representing decision making, mostly in 

dynamic situations (Dutt & Gonzalez, 2008; Gonzalez, 

Lerch, & Lebiere, 2003). Under the IBL approach, modelers 

determine the representation of declarative knowledge 

(chunks) in a task and represent a generic decision making 

process in production rules. This approach has been the 

basis for the development of a theory of decision making in 

dynamic tasks, called Instance-Based Learning Theory of 

Dynamic Decision Making, which provides IBL models 

with a generic decision making process (Gonzalez et al., 

2003). 

The main learning in this approach occurs at the 

declarative rather than the procedural level, where actions 

are based on the storage and retrieval of similar chunks in 

and from memory. Selection among chunks is based on 

ACT-R’s activation subsymbolic learning mechanisms. 

Each chunk has a value of activation determined by a 

number of factors including the recency and frequency of 

use of that chunk.  For example, recency and frequency of 

usage of a chunk determine the base-level activation, which 

represents the probability that a chunk is needed. The 

activation is also modulated by the degree to which a chunk 

matches the retrieval cues, with chunks encoding similar 

situations to the current one receiving some activation.  
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Over time, an IBL model transitions from the use of a 

general heuristic to the use of instances, as determined by 

the number of instances stored and the similarity of the 

situations confronted in the task (Gonzalez et al., 2003). 

This paper presents a comparison of two models, IBL and 

SBL models, both interacting with the same real-time 

decision making task, and both developed under the same 

architecture (ACT-R).  This effort differs from other model 

comparison efforts in that other model comparisons are 

often done to evaluate different ―architectures‖ and often 

aimed at determining the ―winning‖ model (Anderson & 

Lebiere, 2003; Cassimatis, Bello, & Langley, 2008). By 

comparing two different modeling approaches that represent 

decision making behavior in the same task and in the same 

architecture, we highlight the real value of model 

comparison: to understand the processes by which behavior 

is represented, the constraints that the different approaches 

impose upon the task models, and the comparison of the 

theoretical assumptions of the two approaches (Lebiere, 

Gonzalez & Warwick, 2009). The models interacted in real-

time with a dynamic decision making task called RADAR 

(Gonzalez & Thomas, 2008). 

We compared the SBL and IBL models according to two 

different dimensions:  (1) fit: how well each model fits 

human learning data in the task; and (2) adaptability: how 

well each model is able to reproduce the way humans 

having learned in one scenario of the task behave in a 

testing condition, in scenarios that are similar to or different 

from the training condition. The fit criterion is common in 

model comparisons, whereas the adaptability criterion is 

relatively new (Gluck, Bello, & Busemeyer, 2008).  The 

adaptability criterion we use here is similar to the 

generalization criterion method (Busemeyer & Wang, 

2000), which divides observed data into two sets: a 

calibration or training set to estimate model parameters and 

a validation or test set to determine predictive performance.  

However, we further test the adaptability of our models by 

examining the models’ ability to adapt to test conditions that 

are either similar to or different from the training conditions. 

Experiment on the RADAR Task 

The task used for this modeling effort is a dynamic visual 

detection and decision making task that has been used in 

past research to study automaticity (Gonzalez & Thomas, 

2008) and training principles (Young, Healy, Gonzalez, & 

Bourne, 2007). The task, called RADAR, is described in 

detail by Gonzalez and Thomas (2008), and thus here we 

only summarize the relevant elements. 

The goal in RADAR is to detect and eliminate hostile 

enemy aircrafts by visually discriminating moving targets 

among moving distractors in a radar screen. RADAR is 

similar to military target visual detection devices, in which a 

moving target needs to be identified as a potential threat and 

a decision is made on how to best destroy the target. The 

task has two components: (a) visual and memory search and 

(b) decision making. The visual and memory search 

component requires the participant to memorize a set of 

targets and then look for the presence of one or more targets 

on a radar grid. A target threat may or may not be present 

among a set of moving blips that represent incoming 

aircraft. The blips—in the form of digits, consonants, or 

blank masks—begin at the four corners of the radar grid and 

approach the center at a uniform rate. The detection of an 

enemy aircraft must occur before the blips collapse in the 

middle of the grid.  This is the main component used in the 

experiment described below. The decision-making 

component is not relevant for this human experiment. 

General Experimental Methods 

Forty-eight participants at the University of Colorado, 

Boulder were asked to interact with RADAR to respond as 

quickly as possible to target letters or digits occurring 

among distractor letters or digits. In addition to target 

detection, participants were required to count deviant tones 

(low and high frequency) among standard tones (medium 

frequency) that played in the background during the target 

detection task. The experiment consisted of a training 

session and a test session with a 1 week-delay between the 

two sessions. Half the participants trained with both the 

tone-counting task and the target detection task and half 

performed the target detection task in silence. At test, half 

resumed their training condition and half switched. 

There were 8 blocks during training and 8 blocks during 

testing, each consisting of 160 total trials. A trial is a group 

of 7 frames (RADAR screen and individual attempt to 

detect a target).  A memory set of 1 or 4 possible targets was 

shown to participants prior to starting a trial. At most 1 

frame within each trial contained a target. Each frame 

included either 1 or 4 non-blank blips among which there 

could be one target and zero or more distractors in the 7 

frames of a trial.  Targets and distractors were consistently 

mapped (CM: a target in the memory set never appeared as 

a distractor within a block) or varied mapped (VM: a target 

in memory set could appear as a target in one trial and as a 

distractor in another trial of a block). 

Half the participants saw digits as the targets on CM 

trials. For these participants, letters were the distractors on 

CM trials and were both the targets and distractors on VM 

trials. The remaining participants saw letters as the targets 

on CM trials. For them, digits were the distractors on CM 

trials and were both the targets and distractors on VM trials. 

There were 9 integers 1 to 9 and 9 consonants C, D, F, G, H, 

J, K, L, M used as targets or distractors. 

The 160 trials were divided into two session halves, each 

with 4 blocks (i.e. 80 trials), separated by a 5-min break. 

Blocks varied by mapping and processing load (number of 

items in the memory set and number of blips in each trial) 

condition. The four blocks in each session half included one 

of each combination of mapping condition and processing 

load (CM 1+1, VM 1+1, CM 4+4, VM 4+4). For the first 

session half these conditions occurred in the order CM 1+1, 

CM 4+4, VM 1+1, VM 4+4. For the second session half 

these conditions occurred in the reverse order VM 4+4, VM 

1+1, CM 4+4, CM 1+1. Thus, the average block position 

was the same for each condition across session halves. 
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We use correct detection time (in ms) as the dependent 

variable. Results are presented in a later section, where they 

are compared to the results from the IBL and SBL 

computational models. 

Instance-Based Learning Model 

The IBL model was based upon the Instance-Based 

Learning Theory (IBLT) and other IBL developments 

(Gonzalez et al., 2003).  IBLT was originally developed as a 

way to explain and predict decision making in dynamic, 

complex tasks (Dutt & Gonzalez, 2008; Gonzalez et al., 

2003). For the RADAR task an instance (referred to as a 

chunk in ACT-R) had the structure shown in Table 1. 

 

Table 1: Structure of an Instance in RADAR 

Slot Name Description Chunk 

Blip-Situation Value of Blip Situation 

Decision Spacebar Press Decision 

 

The Blip-Situation slot corresponded to the blip value 

(letter or number) occurring on the RADAR screen in one of 

the north-west, north-east, south-west, or south-east 

locations, respectively at a time.  In the case of 1+1 trials, 

three out of the four slot locations contained a NIL value. 

For the purpose of linear similarity calculations (discussed 

later), the nine consonants were numbered from 10 to 18. 

The Decision slot refers to the act of pressing or not the 

spacebar. Although typically instances have a Utility slot to 

categorize an experience as good or bad in a situation after 

the IBL model gets feedback, in this model, due to the task’s 

trial structure and the trivial feedback, we did not use such a 

slot.  

As per Gonzalez et al. (2003), the IBL starts with the 

recognition process in search for alternatives and the 

classification of the current situation as typical or atypical. 

A situation is typical if there are memories of similar 

situations (i.e., instances of previous trials that are similar 

enough to the current situation). If it is typical then the 

retrieved instance is used in judging the value of the 

decision to be made in the current situation. If the situation 

is atypical (i.e., no instance similar to the current conditions 

is found in memory), a judgment heuristic is applied (in the 

present case, the heuristic is ―wait for next blip‖). When a 

decision point comes into place at one of the four blip 

positions, NW, NE, SW, and SE, a choice has to be made 

whether to search for more alternatives or to execute the 

current best alternative. In the RADAR task, the choice is 

simply made by seeing if the retrieved instance is similar 

enough to the one of the current blip situations (in case 

nothing was retrieved or the instance that was retrieved did 

not equal the current blip situation, then a choice is made to 

wait for the next blip situation and not to press the spacebar 

key, i.e. by a ―wait for next blip‖ judgment heuristic). Thus, 

if something was retrieved from declarative memory, then 

the decision is to press the spacebar only if the retrieved 

instance is exactly the same as the current blip situation. 

Before the IBL process starts for each frame’s blips in a 

trial, the IBL model notices a set of target letters or numbers 

at the beginning of the trial in memory set and stores them 

in its declarative memory. Also the IBL process moves from 

one blip situation to another applying the process described 

below to each filled-in blip situation. The pattern of 

traversal between blip situations forms a Z (i.e., NW, NE, 

SW, and SE, respectively) until the frame time of 2.062 s 

runs out. If the IBL model cannot process all the filled-in 

blips before the frame time runs out, then it resets and starts 

at the NW filled-in blip for the next frame. Each of the IBL 

stages suggested in the IBLT (Gonzalez et al., 2003) is 

represented by production rules (if-then rules) in ACT-R: 

Recognition On a trial if there is a recognition (or retrieval) 

failure or if the retrieved blip does not match the current 

situation blip, then apply the ―wait for next blip‖ heuristic; 

otherwise if there is a recognition (or retrieval) success and 

a match between retrieved and current blips, then apply an 

instance-based judgment procedure. 

Judgment On a trial if there is a recognition failure or if the 

retrieved blips do not match the current blip situation, then 

apply a wait for next blip judgment heuristic in which the 

spacebar is not pressed but the next blip situation is 

considered in a Z order. In case of recognition (or retrieval) 

success where the retrieved instance matches the current 

blip situation, apply an instance based judgment where the 

decision is to press the spacebar. 

Choice The choice refers to picking the spacebar to press 

once the decision to press or not to press the spacebar has 

been made. 

Execution Execute the spacebar or no spacebar press 

decision and wait for feedback from the system. 

Also, in the above algorithm, the productions were 

assumed to take a commonly used value of 50 ms in ACT-

R. There were some steps executed to read and encode the 

blip stimulus from the screen (i.e., visual time) in the model 

as well as some time expended in hearing deviant tones in 

the tone counting task that ran in the background. The visual 

and auditory times to see and hear each blip situation or 

each tone respectively were assumed to be at the ACT-R 

default values of 185 ms and 100 ms, respectively.  

Sub-Symbolic Level of the IBL model 

In ACT-R each instance (or chunk) has an activation value 

that is used for making retrieval in the recognition phase of 

the IBL model. An instance is retrieved from memory if the 

activation exceeds a retrieval threshold (RT), which sets the 

minimum activation with which an instance can be 

retrieved, and if the activation is the highest of all instance 

activations at the time of retrieval. ACT-R defines activation 

of an instance as: 

  li

l

ii MPBA     (1) 

Where Bi is the base-level activation and reflects the 

recency and frequency of practice of the ith instance, which 

is given by 

)ln(
1





n

j

d

ji tB      (2) 

Where n is the number of presentations of the ith 
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instance; tj is the time since the jth presentation; and d is the 

decay parameter (bll) which is usually set at 0.5.  

Specification elements l in the PM summation are 

computed over the slot values of the retrieval instance 

specification. Match Scale P reflects the amount of 

weighting given to the similarity in Slot l, which is a 

constant across all slots with the value set at 1.0. Match 

Similarities Mli represent the similarity between the value l 

in the retrieval specification and the value in the 

corresponding slots of the current instance i. The PM 

mechanism as described above was computed by the Blip-

Situation slot of the instance. We used a function to 

calculate the similarity based on the absolute value of the 

distance between the Blip-Situation slot of the current 

instance and those retrieved from memory.  

Finally, is the noise value, which is composed of two 

components: permanent noise associated with each instance 

and instantaneous noise computed at the time of a retrieval 

request. Both noise values are generated according to a 

logistic distribution characterized by a parameter s. The 

mean of the logistic distribution is 0 and the variance

is 

related to the s value by 






s


      (3) 

We set the instantaneous noise s value in the IBL model 

to make it a part of the activation equation. 

For the purpose of modeling the RADAR task, the 

parameters described above had the values given in Table 2. 

 

Table 2: IBLT (ACT-R) Parameters with Values 

Parameter/Slots Value 

RT -18.0 

bll 0.5 

s 0.25 

P 1.0 

Blip-Situation Integers from 1 to 18 

 

Strategy-Based Learning Model 

In the SBL model we used four strategies. One of these 

strategies called "exhaustive equals" strategy was an optimal 

strategy, which would always yield the optimal press of the 

spacebar key and produce 100% accuracy in the detection 

task. The other three strategies were suboptimal strategies. 

These strategies represent practically feasible strategies for 

the task, and they provide competition that can be used to 

model performance, through the utility learning mechanism 

in ACT-R. The chunk structure for the SBL model was 

exactly the same as the one for the IBL model. 

The SBL model starts by making use of one of the four 

strategies defined in the model (if a strategy could not 

execute before a frame ended, then the model resets and 

tries to apply strategies again in the next frame). When the 

model executes, there is a competition set up between the 

three suboptimal strategies and the optimal ―exhaustive 

equals‖ strategy. The initial utility of the optimal strategy is 

set lower than that of the suboptimal strategies, and one of 

the suboptimal strategies executes in the task during the 

initial blocks. The suboptimal strategies give negative 

rewards, whereas the optimal strategy gives a positive 

reward whenever executed. The end effect is that although 

the suboptimal strategies fire initially, later the optimal 

strategy picks up because it has increased its utility through 

repeated positive rewards. Given below are the details of the 

different strategies in the RADAR’s SBL model. 

Exhaustive Equals Strategy Compare all filled-in blips on 

the RADAR screen with all targets seen at the beginning of 

the trial and press spacebar if a match is found. 

Random Equals Strategy Compare a randomly selected 

filled-in blip on the RADAR screen with a randomly 

selected target seen at the beginning of the trial and press 

spacebar if a match is found. 

Bottom Two Equals Strategy Compare the bottom two 

(SW, SE) filled-in blips with all targets seen at the 

beginning of the trial and press spacebar if a match is found. 

Top Two Equals Strategy Compare the top two (NW, NE) 

filled-in blips with all targets seen at the beginning of the 

trial and press spacebar if a match is found. 

Each strategy is represented in an ACT-R production 

rule. Each production has a utility associated with it that can 

be set directly by setting a parameter :u. Like activations, 

utilities for productions could have noise added. The noise 

is controlled by the utility noise parameter s, which is set 

with the parameter :egs in ACT-R. The noise is distributed 

according to a logistic distribution with a mean of 0 and a 

variance of 

. If there are a number of productions 

competing with expected utility values Uj the probability of 

choosing production i is described by the formula: 

 

Probability (i)=Exp (Uj/(2)
0.5

s) / Sum(Exp (Uj/(2)
0.5

s))

        (4) 

 

The summation is over all the productions that are 

currently able to execute (their conditions were satisfied 

during the matching).  Note however that Equation 4 only 

describes the production selection process. It is not actually 

computed by the system. The production with the highest 

utility (after noise is added) is the one chosen to execute. 

Also the utility learning mechanism updates the utility of a 

production (strategy) using the following equation: 

 

Ui(n) = Ui(n-1) + α * (Ri(n) – Ui(n-1))  (5) 

 

If Ui(n-1) is the utility of a production i after its n-1st 

application and Ri(n) is the reward the production receives 

for its nth application (set by :reward parameter), then its 

utility is Ui(n) after its nth application. In the above 

equation,  is the learning rate and is typically set at .2 (this 

value can be changed by adjusting the :alpha parameter with 

the sgp command). According to this equation the utility of 

a production is gradually adjusted until it matches the 

average reward that the production receives. A reward is 

delivered when a strategy fires, and the reward Ri(n) that 

production i receives is the external reward received minus 

the time from the production’s selection to the reward. This 

subtraction serves to give less reward to more distant 
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productions. This reinforcement goes back to all the 

productions that have executed between the current reward 

and the previous reward. 

For the purpose of the RADAR task, the parameters as 

described above had the following values. 

 

:egs 0.1 :ul t    (9) 

Exhaustive-Equals-Strategy :u -4 :reward +1 

Random-Equals-Strategy :u 5 :reward -1 

Bottom-Two-Equals-Strategy :u 10 reward -1 

Top-Two-Equals-Strategy :u 5 :reward -1 

 

The utility of the optimal strategy is lower than that of the 

three non-optimal strategies because we want to model to 

make errors similar to humans when it executes but reduce 

these errors overtime. The reward given to the suboptimal 

strategies decreases their utility, whereas the reward given 

to the optimal strategy increases its utility over time. The 

structure on utility and rewards might yield a monotonic 

dominance from the SBL approach even when changing 

environments and incorporating changes in the reward 

structure based upon changes in the environment is part of 

future work. Also, production compilation was not used in 

this model and it is a part of future work i.e. whether doing 

production compilation will make the SBL approach behave 

more like an IBL approach to modeling the experiment.  

Model Fits to Human Data 

The IBL and SBL models were run over 8 simulated 

participants in training and test conditions in RADAR. 

Figures 1 and 2 present the average times for correct 

responses during the training phase, including human data 

(Young et al., 2007) and SBL and IBL predictions. Figure 1 

gives the average data for the within-subjects blocks 

CM1+1, CM4+4, VM1+1 and VM4+4.  Both, the IBL and 

the SBL models fit the human data quite well, R
2
=0.98 and 

RMSD=69 ms for IBL, and R
2
=0.90 and RMSD=163 ms for 

SBL. 

 
Figure 1: Average correct response times (ms) for CM 1+1, 

VM 1+1, CM 4+4, and VM 4+4 blocks in human data and 

SBL and IBL models during training. The error bars show 

90% confidence intervals. 

Figure 2 gives the average time for correct responses for 

the IBL, SBL, and human data across the silent and tone 

between-subjects conditions in the RADAR task.  Again, 

both the IBL and the SBL models fit the human data very 

well, R
2
=1.00 and RMSD=43 ms for IBL, and R

2
=1.00 and 

RMSD=174 ms for SBL. In Figures 1 and 2, the SBL model 

seems to give generally higher time values compared to 

human data, and the SBL model has higher RMSD. This 

difference may be because in the SBL model the four 

strategies execute in productions in a fixed time (50 ms per 

production) and there is not speedup in the correct response 

times due to this fixed strategy execution time, whereas in 

the IBL model the speedup comes on account of activation-

retrieval time speedup. The retrieval time decreases if the 

activation of instances increases over blocks (Anderson & 

Lebiere, 1998). Also, it is clear from Figure 1 that both 

models (i.e., IBL and SBL) take more time in 4+4 blocks 

than 1+1 blocks (for both consistent and varied mapping). 

This finding demonstrates the effects of workload well 

known in behavioral studies of automaticity (Gonzalez & 

Thomas, 2008). The workload effect results from the extra 

time taken to process four rather than one item. 

 
Figure 2: Average correct response times (ms) for silent and 

tone conditions for human data and SBL and IBL models 

during training. The error bars show 90% confidence 

intervals. 

Similarly, the tone takes slightly more time to process 

than silent trials for both IBL and SBL models, as a result of 

the auditory productions to process the tones. Also, the 

difference is greater for the SBL model than the IBL model 

from the human data because in the SBL model there is no 

activation-retrieval speedup to compensate for time spent in 

tone counting whereas in the IBL model there is such a 

speedup, which reduces the overall time.  

To test the adaptability of both SBL and IBL models and 

given the limited space in this paper, we report the data for 

only those groups that switch: tone-to-silent (Figure 3) and 

silent-to-tone (Figure 4). The R
2
s for both the SBL and IBL 

models are very high at test (all are 1). Thus, the main 

difference between the models at test is in the RMSD 

measure. The SBL model has an RMSD = 160 ms when it is 

trained in tone and transferred to silent, whereas the IBL 

model's RMSD = 50 ms. The SBL model's RMSD when 

trained in silent and transferred to tone is 248 ms, whereas 

the RMSD value for the IBL model is 62 ms. 

Thus, one can conclude that both models, SBL and IBL, 

are quite good according to the adaptability criterion, but the 

IBL model produces values closer to the human data than 

the SBL model does. 
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Figure 3: Average correct response times (ms) for human 

data and SBL and IBL models across blocks, for training in 

the tone and testing in the silent condition. The error bars 

show 90% confidence intervals. 

 
Figure 4: Average correct response times (ms) for human 

data and SBL and IBL models across blocks, for training in 

the silent and testing in the tone condition. The error bars 

show 90% confidence intervals. 

Discussion and Future Work 

Researchers often evaluate computational models of human 

behavior by comparing how different architectures or 

modeling approaches would represent a common task. This 

mode of model evaluation has been highlighted more 

recently by several model comparisons and competitions. 

The research we present here compares SBL and IBL 

approaches to modeling choice, but in this comparison in 

addition to using the same task, RADAR, we compare SBL 

and IBL approaches under the same architecture, ACT-R. 

According to traditional goodness of fit measures, R
2
 and 

RMSD, both SBL and IBL approaches to model choice fit 

human performance during a training experiment in 

RADAR quite well. Both representations are able to 

reproduce human data during the training conditions that 

varied both between subjects in tone/no tone training, and 

within subjects on the consistency of mapping and 

workload.  When we compare the models in terms of their 

ability to adapt to transfer conditions, just as humans do, 

again both the SBL and IBL models have equally high 

values of R
2
.  But the IBL model was found to be closer to 

human data than the SBL model according to the RMSD 

measure during both training and test. 

These results demonstrate that the numerical measures 

might not be good enough to tease two models apart. 

Further, the generalization criterion might not be sufficient 

either. To us, the IBL model has some advantage over the 

SBL model that the numerical measures do not show: 

Because the IBL model continues filling the chunk structure 

from the environment during test, the changes in conditions 

of the environment are captured in the instances stored and 

retrieved from memory, whereas the SBL approach is blind 

to changes in the environment.  The SBL model continues 

applying the same strategies at test, which might not be as 

effective as they were during training, once the conditions 

of the task change. In addition, in dynamic situations the 

strategies are often unknown a priori or difficult to define at 

all. These are often discovered with task practice, and there 

is much evidence that learning in dynamic decision making 

tasks is implicit (Gonzalez et al., 2003).  Often humans are 

unable to explain any rules or strategies used to solve a 

dynamic problem.  Thus, we think that the IBL approach is 

more appropriate to model dynamic decision making 

(Gonzalez et al., 2003) than the SBL approach.   
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Abstract

We argue for two points in this paper. Firstly, formal models
can be a useful means for cognitive modelling, in particular
for domains that traditionally already use this kind of model.
Secondly, we present a formal model of how two of the ground-
ing metaphors for arithmetic proposed by Lakoff and Núñez
(2000) can be linked to basic notions of arithmetic using the
infomorphisms of the Information Flow theory.

Keywords: formal model, logic, metaphor, mathematics, scien-
tific discovery

The Cognition of Mathematics

As of yet, there is no cognitive model of the way in which

people invent mathematical concepts. As part of our research

on understanding the cognition of creating mathematical con-

cepts we are working towards such a model (Guhe, Pease,

& Smaill, 2009). We build on two streams of research: em-

bodied conceptualisation, which analyses mathematical ideas

as being constructed by the cognitive process of metaphor

(Lakoff & Núñez, 2000), and societal conceptualisation based

on Lakatos’s (1976) philosophical account of the historical de-

velopment of mathematical ideas. Both argue strongly against

the ‘romantic’ (Lakoff and Núñez) or ‘deductivist’ (Lakatos)

style in which mathematics is presented as an ever-increasing

set of universal, absolute, certain truths which exist indepen-

dently of humans. In contrast to this view, our main interest

in the Wheelbarrow project is how mathematical concepts are

formed and modified by the embodied and situated human

mind.

While there are cognitive models of learning mathematics

(eg Lebiere, 1998; Anderson, 2007), there are to our knowl-

edge no models of how humans create mathematics. Collect-

ing empirical data on how scientific concepts are created is

difficult, and this is true for case studies as well as labora-

tory settings. Using case studies (see, for example, Nersessian,

2008) suffers from the problems that they are not reproducible

(and therefore anecdotal) and that they are usually created

in retrospect, which means that they are very likely to con-

tain many rationalisations instead of an actual protocol of the

thought processes. Using a laboratory setting in contrast (cf

Schunn & Anderson, 1998) means that the experiment has to

be designed in such a way that the participants are limited in

their possible responses, ie their degree of freedom is limited

and it is uncertain whether or how this is different form the

unrestricted scientific process.

Lakoff and Núñez (2000) claim that the human ability for

mathematics is brought about by two main factors: our embod-

ied nature and our ability to create and use metaphors. They

describe how starting from interactions with the environment

we build up (more and more abstract) mathematical concepts

by processes of metaphor and abstraction. More precisely, they

distinguish two kinds of metaphors: grounding metaphors and

linking metaphors (p 53). In grounding metaphors one domain

is embodied and the other abstract, eg the four grounding

metaphors for mathematics, which we will describe below. In

linking metaphors, both domains are abstract, which allows the

creation of more abstract mathematical concepts. For example,

having established the basics of arithmetic with grounding

metaphors this knowledge is used to create – among others

– the concepts of points in space, spaces of any number of

dimensions and functions (p 387).

We follow Gentner (1983; see also Gentner & Markman,

1997, p 48) in assuming that metaphors are similar to analo-

gies. Gentner proposes that when comparing two concepts we

can distinguish between analogies, metaphors, literal similari-

ties or mere appearance similarities by looking at the number

of relations and properties that (the representations of) the

two concepts have in common. For analogies, mainly rela-

tions between concepts are matched, while for metaphors a

larger amount of properties are involved. Thus, the distinction

between analogy and metaphor is only a difference in degree.

According to Gentner’s (1983, p 156) structure mapping

theory the main cognitive process of analogy formation is a

mapping between the (higher-order) relations of conceptual

structures. Although we use this approach for creating com-

putational cognitive models of mathematical discovery (see

Guhe et al., 2009 for an ACT-R model using path-mapping

– a realisation of structure mapping in ACT-R developed by

Salvucci & Anderson, 2001), in this paper we will present a

formal model that specifies the particular grounding metaphors

that Lakoff and Núñez (2000) propose. This formalisation will

be a basis for enhancing the ACT-R model.

Lakoff and Núñez’s Four Basic Metaphors of

Arithmetic

Lakoff and Núñez (2000, chapter 3) propose that humans

create the conceptual space of arithmetic with four different

grounding metaphors that create an abstract conceptual space

from embodied experiences, ie interactions with the real world.

Since many details are required for describing these metaphors

adequately, we can only provide the general idea here.

Object Collection The first metaphor, arithmetic is object

collection, describes how by interacting with objects we expe-

rience that objects can be grouped and that there are certain
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regularities when creating collections of objects, eg by remov-

ing objects from collections, by combining collections, etc.

By the process of metaphor (analogy) these regularities are

mapped into the domain of arithmetic, for example, collections

of the same size are mapped to the concept of number and

putting two collections together is mapped to the arithmetic

operation of addition.

Object Construction Similarly, in the arithmetic is object

construction metaphor we experience that we can combine

objects to form new objects, for example by using toy building

blocks to build towers. Again, the number of objects that are

used for the object construction are mapped to number and

constructing an object is mapped to addition.

Measuring Stick The measuring stick metaphor captures

the regularities of using measuring sticks for the purposes of

establishing the size of physical objects, eg for constructing

buildings. Here numbers correspond to the physical segments

on the measuring stick and addition to putting together seg-

ments to form longer segments.

Motion Along A Path The motion along a path metaphor,

finally, adds concepts to arithmetic that we experience by

moving along straight paths. For example, numbers are point

locations on paths and addition is moving from point to point.

Note that these metaphors are not interchangeable. All are

used to create the basic concepts of arithmetic. For this initial

proposal we will only consider the first two metaphors.

Formal Models

The field of cognitive modelling makes only little use of formal

methods.1 A reason for this may be the recognition that tradi-

tional claims that logic describes the way humans reason do

not stand up to scrutiny – at least not in this generality.2 Con-

sequently, logic is hardly used for modelling human cognition.

However, this is throwing out the baby with the bath water,

because the rigour of logical models is a great methodological

advantage. Moreover, for the domain that we are interested in

(the cognition of mathematics) the results of the cognitive pro-

cesses (the mathematical structures and processes) are usually

already modelled with logic, which makes them easy to use.

Having said this, it is also clear that such models are on a high

level of abstraction, one comparable to differential equations

or statistics. An advantage of this high level is the models’

conciseness, which makes it easy to have models with a broad

coverage.

Artificial intelligence, mathematics and automated theory

formation, which all mainly use formal models, usually do not

consider the work carried out in cognitive modelling. A major

aim of our project is to bring the research in these disciplines

1‘Formal’ in the sense of logic or mathematics. Computational
models are formal as well, of course, and as they are usually realised
on digital computers, they are also logical models.

2To be fair, it should be noted that most logicians today would say
that logic describes how humans ought to reason. However, we pro-
pose that formal theories can contribute to understanding cognition.

closer to the research in cognitive modelling. Cognitive mod-

elling will also profit from our approach, because most of the

work on the cognitive abilities we are investigating (linguis-

tics, mathematics) is not done as cognitive modelling approach

but formally. Instead of recreating this research in cognitive

modelling it is advantageous to transfer or link the existing

research in a principled manner to cognitive modelling.

Finally, cognitive modelling is only concerned with creating

models of the mind. Only rarely is there a computational or

formal characterisation of the properties of the model itself.

For example, a cognitive reasoning model is not usually speci-

fied with respect to completeness (is the model able to make

all valid deductions?) or soundness (are all inferences drawn

by the model correct given the used premises?) Determining

such properties of a model (theory/system) is a strong point of

formal systems.

To illustrate that logic is still a useful way to describe cog-

nition we would like to draw attention to the Wason selection

task.3 The apparent failures of humans in this task can convinc-

ingly be explained as being effects of the participants having

problems ‘with interpreting how the experimenter intends the

task and materials to be understood’ (Stenning et al., 2006, p

63). In the case of the Wason selection task Schooler (2001)

and Stenning et al. (2006) demonstrate that the apparent short-

comings of the participants are due to their understanding the

task as being an inductive information gathering task rather

than a deductive one, where they are supposed to reason from

a set of premises to a conclusion. It has been observed that

participants have no problems drawing the conclusions de-

sired by the experimenter in a task with the identical logical

structure but framed as a task of, for example, reasoning about

the drinking age of youngsters.4 The reason, however, that the

inferences are ‘correct’ in this case is not, as is often suggested,

that the problem is set in a different domain (a social situa-

tion instead of an abstract logic task) but that the participants

understand the goal of the task in the way the experimenter

intends, namely as being a deductive task – for which logic is

a good model.

General Reasoning with Local Processing

A major difference between formal and cognitive modelling is

that formal models usually consider all the knowledge in the

3In the Wason selection task, the participants are presented with
four cards, showing letters and numbers, for example: A, B, 3, 8.
They are given a rule like If one side has a vowel, then the other
has an even number. The participants now have to decide, which
cards must be turned to see whether this rule is correct for these
four cards. They should turn as few cards as possible. (Stenning,
Lascarides, & Calder, 2006, p 28) The failure consists in the fact
that participants usually turn over more cards than is necessary to
draw the requested conclusion. This is often considered to be an
example of a confirmation bias (Ross & Anderson, 1982, p 149), ie
the preference to seek information that confirms held beliefs instead
of trying to disconfirm such beliefs.

4The cards show the name of a drink on one side and the age of
the drinker on the other, eg whiskey, orange, 19, 16. The rule is If you
drink alcohol, then you must be over 18 years old. The participants
are instructed to check whether all drinkers follow the rule.
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system in each step. However, it is clear that this is not how

cognition works. Instead only a small subset of the available

knowledge is used for each computational step such as the

firing of a production rule. This reduction of the considered

knowledge to what we call a local context (Guhe, 2007) is

the main reason why cognitive processes require much less

computational power than artificial systems. Furthermore, the

reason that (natural) cognitive systems can cope with the com-

plexities of the real world while an artificial system is either

prone to fall off a cliff (not enough knowledge considered) or

being caught by a predator (computations are too slow), is that

current artificial systems are very bad at establishing suitable

local contexts – if they do it at all.

A reason for this is that the idea of a localised processing is

a big challenge for formal models, because not taking all avail-

able knowledge into account can introduce inconsistencies,

which will almost inevitably cause the system to fail. However,

the Information Flow theory by Barwise and Seligman (1997)

provides just what is needed to define distributed, localised

formal systems. This means, the system consists of multiple

subsystems (classifications, theories, local logics) that are con-

nected by infomorphisms in a formally sound way. This makes

it almost ideally suited for describing cognition in a formal

manner, because humans are not only good at establishing

local contexts but also at connecting the local contexts.

Coming back to the reasons for using formal methods the

advantage of using logic for cognitive modelling is that it pro-

vides a general-purpose mechanism for reasoning – which is

a main motivation for inventing and using logics in the first

place. Although it is clear that human reasoning is strongly

influenced by the current task and the current task demands,

there is also a general ability to reason from premises to con-

clusions. It seems wasteful to have, for example, a different

version of modus ponens in each task model. This does not

mean that we propose a ‘logic module’, just that a general

reasoning ability exists somewhere in the system. It can be

implemented with means provided by existing cognitive archi-

tectures.

We have three main cases in mind where such a general

reasoning mechanism is useful. Firstly, it can be used as a

general model of distributed reasoning: if the system knows

something within a local context and also knows how this

knowledge is connected to another local context, then there

is a principled way to use this connection to reason about the

distal local context. Secondly, on a local level the reasoning

on the chosen local context retains all the desirable properties

of the chosen logic (soundness, completeness). Thirdly, such a

mechanism is a good way to approach cognitive mathematics,

because the results of the cognitive process (the mathematical

structures) are already represented formally.

Information Flow

This section provides a short introduction to Information Flow

theory. We will focus on the aspects that we need for our

formalisation; a detailed discussion of Information Flow can

be found in Barwise and Seligman (1997). We only need

three of the main notions for our purposes here: classification,

infomorphism and channel.

Classification A classification A consists of a set of tokens

tok(A), a set of types typ(A) and a binary classification relation

àA between tokens and types. In this way, the classification

relation classifies the tokens, for example, for a token a >

tok(A) and a type α > typ(A) the relation can establish aàA α.

Graphically, a classification is usually depicted as in left

part of figure 1, ie with the types on top and the token on the

bottom.

typ(B)

tok(A) tok(B)

⊧B⊧A

typ(A)
f  ̂

f  ̌

Figure 1: Two classifications (A and B) and an infomorphism

( f ) in Information Flow

Infomorphism An infomorphism f � A� B from a classi-

fication A to a classification B is a (contravariant) pair of

functions f = ` f ˆ; f ˇe that satisfies the following condition:

f ˇ(b) àA α iff b àB f ˆ(α)

for each token b > tok(B) and each type α > typ(A), cf figure 1.

Note that the ‘type relation’ f ˆ and the ‘token relation’ f ˇ

point in opposite directions. (They are contravariant.) As a

mnemonic the ˆ of f ˆ points upwards, where the types of

classifications are usually written.

Channel A channel is a set of infomorphisms that have a

common codomain. For example, the channel C depicted in

figure 2 consists of a family of four infomorphisms f1 to f4

that connect the four classifications A1 to A4 to the common

codomain C. The common codomain is the core of the channel.

Note that the infomorphisms of defining a channel are all pairs

of functions, ie f1 = ` f1̂ ; f1ˇe, etc.

A3

A1

C

f3

f1

A2

f2

A4

f4

Figure 2: Channel C = � f1; f2; f3; f4� and its core C

The core is the classification that contains the information

connecting the tokens of the classifications A1 to A4. The to-

kens of C are called connections, because they connect the
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tokens of the other classifications. In our application to arith-

metic the core is the arithmetic knowledge that represents what

is common to the different source domains – the common arith-

metic properties of object collections, object constructions,

etc.

Channels and cores are the main way in which Information

Flow achieves a distributed, localised kind of representing

knowledge. In other words, this is the property of the Infor-

mation Flow approach the fits to the localised representation

and processing found in cognition. At the same time, infomor-

phisms provide a principled way of representing the connec-

tion between the different local contexts. This is not the place

to go into the details about this aspect of Information Flow, but

Barwise and Seligman (1997) give a comprehensive account

of the properties that are or are not preserved when following

an infomorphism from one classification to another one.

Formalisation of the Arithmetic Metaphors

The basic idea of how to apply Information Flow theory to

the four basic metaphors of Lakoff and Núñez (2000) is that

each domain (object collection, object construction, measur-

ing stick, motion along a path and arithmetic) is represented

as a classification and the metaphors/analogies between the

domains are infomorphisms.

Information flow (which give the theory its name) captures

regularities in the distributed system (see the First Principle

of Information Flow, Barwise & Seligman, 1997, p 8). So, the

infomorphisms between the four source domains and the core

(arithmetic) capture the regularities that link these domains

to arithmetic, and the arithmetic classification represents the

knowledge of what these domains have in common. (A full

arithmetic classification contains more than these commonali-

ties – think of arithmetic concepts arising by linking metaphors

like the concept of zero –, but for our current purposes it suf-

fices to think of it this way.)

Object Collection

Classification We define a classification CL for the domain

of object collections, cf table 1. The tokens of the object

collection domain are actual physical instances of collections

of objects that are or have been encountered by the cognitive

agent. Formally, we represent them as sets of objects named

collA, collB; : : :

The tokens are classified by the size (cardinality) of the

collection, ie types are sets with a number of distinct elements.

Following Lakoff and Núñez (2000, p 55) we assume an innate

or early developed subitising ability, ie the ability to determine

the cardinality of small object collections of up to three or four

objects. As a convention we write oc1 for the type set with one

object, oc2 for the one with two objects, etc.

The classification relation àCL for object collections relates

those sets for which each object of the token set can be mapped

to exactly one object of the type set, ie no object of the token

set and no object of the type set is left over and each object is

mapped to exactly one element of the other set.

Table 1: The arithmetic is object collection metaphor.

object collection arithmetic

collections of objects of the same size numbers

size of collection number

bigger greater

smaller less

smallest collection the unit (one)

putting collections together addition

taking a smaller collection from a

larger collection

subtraction

Given this classification, we can now assign a type to each

token, eg collA àCL oc2;collB àCL oc1. Figure 3 shows an ex-

ample for an object collection with three objects.

obj1
obj3 obj2

collectionX oc3

Figure 3: Example of the token–type relation for an object

collection with cardinality 3

By proposing this classification we do not want to suggest

that this is the only suitable classification for object collections;

it is simply one that is suited for our goal of linking this

source domain to arithmetic. A classification suitable for other

purposes may be a classification by kind like blocks or balls.

Size The size of an object collection is the cardinality of the

type set. Thus, given a token set collA, a type set ocA with

collA àCL ocA

sizeCL(colA) = SocAS:

Smallest collection The smallest collection (the unit collec-

tion) is the type set with a single object, ie oc1.

Bigger and smaller For comparing two object collections

the type sets are aligned and a one-to-one mapping is estab-

lished between the two type sets for as many elements as

possible. The bigger collection is the one with at least one

unmapped object. The smaller object collection is the other

collection.

Formally, we define it as follows. Given two type sets ocA

and ocB:

biggerCL(ocA;ocB) =

¢
¨̈

¦
¨̈
¤

true; if SocAS A SocBS;

f alse; if SocAS < SocBS:

smallerCL is the inverse.

Although not mentioned by Lakoff and Núñez (2000) in

this context, two object collections are equal (in size) if they
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have the same type (or if they have the same cardinality):

equalCL(ocA;ocB) iff ocA = ocB:

Putting collections together Putting separate and disjoint

collections together is the union of token sets:

putTogetherCL(collA;collB) = collA8 collB:

The corresponding type is the type set that has a one-to-one-

mapping between all objects in both sets. We write this as

ocA •CL ocB (where collA àCL ocA and collB àCL ocB), which

is another possible type. Note that because the sets are disjoint

SocA8ocBS = SocAS+ SocBS.

Taking a smaller collection from a larger collection Tak-

ing a smaller set from a larger set5 is the set difference. Thus,

for two object collections collA and collB with collA àCL ocA,

collB àCL ocB and biggerCL(ocB;ocA):

takeSmallerCL(collA;collB) = collA� collB

The corresponding type is ocA XCL ocB (with collA àCL ocA

and collB àCL ocB), which is another possible type.

Object Construction

For the object construction domain we define a classification

CN. In contrast to CL the tokens and types of this classification

are not defined as simple sets but as sets of sets. We name

token sets as consA;consB, etc and type sets as ocnA;ocnB, etc.

Note that in contrast of CL there is no implicit (and incidental)

coding of size in the types of CN as the types can have just as

complex substructures as the tokens, see the examples below.

Table 2: The arithmetic is object construction metaphor.

object construction arithmetic

objects numbers

smallest whole object the unit (one)

size of object size of number

bigger greater

smaller less

constructed object result of arith-

metic operation

whole object a whole number

putting objects together to form

larger objects

addition

taking smaller objects from larger

objects to form other objects

subtraction

Smallest Whole Object A smallest whole object is repre-

sented as a singleton set for token sets, ie a set that contains

one physical object that cannot be deconstructed. The corre-

sponding type set is the set containing the empty set, ie �g�.

5Note that attempting to take a larger set from a smaller set has
no physical correlate. This operation can only be performed in the ab-
stract arithmetic domain, where it leads to the invention (or discovery)
of negative numbers.

Size of Object The size of an object is the cardinality of the

flattened type set. Thus, given a token set consA and a type set

ocnA with consA àCN ocnA

sizeCN(consA) = S f lat(ocnA)S:

A flattened set is obtained by applying the function f lat:

f lat(�A1;A2; : : :�) =

¢
¨̈

¦
¨̈
¤

�A1; f lat(A2; : : :)�; if SA1S = 1;

� f lat(A1); f lat(A2; : : :)�; otherwise:

f lat is defined on sets in general and is not restricted to CN.

Bigger and smaller Analogous to the definition for object

collections, bigger is defined as

biggerCN(ocnA;ocnB) =

¢
¨̈

¦
¨̈
¤

true; if size(ocA) A size(ocB);

f alse; if size(ocA) < size(ocB):

smallerCN is the inverse.

Constructed Object A constructed object is an object that

consist of other objects. Thus, a constructed object is a set that

has other object sets as elements. That is, given sets consA,

consB, . . . the constructed object set is �consA;consB; : : :�.

Whole Object Physical objects are always whole objects.

Putting Objects Together to form Larger Objects

Putting objects together is defined as the union of the sets

of object sets:

putTogetherCN(consA;consB; : : :) = �consA;consB; : : :�:

The corresponding type is ocnA•CN ocnB (with consA àCN cnsA

and consB àCN cnsB), which is another possible type.

For example, given the object sets (oX being a

representation of a physical object) ��o1�;�o2��,

��o3�;��o4�;�o5��� and �o6� the assembled object is

���o1�;�o2��;��o3�;��o4�;�o5���;�o6��.

Taking Smaller Objects from Larger Objects to Form

Other Objects Taking smaller objects from larger objects is

defined as the set difference. More precisely, the result of this

operation is a pair of sets – the difference set and the subtracted

set. Thus, given two sets consA and consB with consB ⊂ consA

takeSmallerCN(�consA;consB�) = (�consA�consB�;consB):

For example, given the object set ��o1�;��o2�;�o3��;�o4��

the object �o4� can be removed by

��o1�;��o2�;�o3��;�o4����o4�

The smaller object taken from the larger object is then �o4�

and the remainder of the larger object is ��o1�;��o2�;�o3���.

The type of this operation is ocnA XCN ocnB (with consA àCN

cnsA and consB àCN cnsB), which is another possible type.
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Arithmetic

The classification AR representing arithmetic consists of the

abstract numbers as tokens and concrete instances (uses) of

numbers as types (for example as in There are seven trees).

The smallest number is 1.6

The arithmetic operations are defined as usual.

Metaphor Infomorphisms

With these three classifications, the infomorphisms between

the two classifications representing the source domains (CL

and CN) and the core AR are straightforward.

Infomorphism from Object Collection to Arithmetic

The infomorphism linking the object collection domain to

arithmetic is defined as f � CL� AR. The relation between

types is then f ˆ(ocA) = SocAS, the relation between tokens

f ˇ(num) = collA where num is an arithmetic number and collA
is a representation of the physical object collection that the

number refers to.

The smallest collection is f ˆ(oc1) = 1, and the comparison

relations and operations are defined as follows:

• f ˆ(biggerCL) = A

• f ˆ(smallerCL) = <

• f ˆ(•CL) = +

• f ˆ(XCL) = −

Infomorphism from Object Constructions to Arithmetic

Similar to the definition above, the informorphism g � CN�

AR relates types as gˆ(ob jA) = S f lat(ob jA)S and tokens as

gˇ(num) = consA, where consA represents the object being

referred to by the number and where num àAR ν, consA àCN

cnsA with size(cnsA) = ν. The other properties are defined as:

• gˆ(�g�) = 1

• gˆ(biggerCN) = A

• gˆ(smallerCN) = <

• gˆ(•CN) = +

• gˆ(XCN) = −

Channel

Given these two infomorphisms, the channel C is the set of

these two infomorphisms (C = � f ;g�).

Conclusions and Future Work

We have argued that a formal approach like Information Flow

can be used to great advantage for cognitive modelling. We

provided a formalisation of the basic aspects of two of the

grounding metaphors proposed by Lakoff and Núñez (2000)

that humans use for creating arithmetic. Although this high

6Note that there is no physical correspondence to 0. The absence
of a physical object collection is not a collection. The object con-
structed of no object is not an object (it does not exist). Remember
that historically 0 is a very late invention/discovery, a reaction to
certain needs in arithmetic, cf also Lakoff and Núñez (2000).

level of modelling does not directly address human task per-

formance, it offers important insights into the generalisations

of the different source domains required to invent arithmetic.

We will extend our formalisation (1) to include the other

basic metaphors and the linking metaphors within arithmetic;

(2) by adding further notions from Information Flow to the

formalisation, in particular regular theories and local logics.

With these extensions we will be able not only to represent

the required knowledge but also to model the corresponding

processes.
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Abstract 
In this project we investigate, how a theory about the impact 
of drugs (alcohol) on cognition could look like. We used 
simulated agents ("mice"), which live in groups, to understand 
the effects of alcohol. The agents are programmed according 
to the Psi - theory, which is a theory about the interaction of 
cognitive, emotional and motivational processes. We added to 
the normal (simulated) environment of the mice, which in-
cludes sources of food, water and "healing herbs", sources of 
"julihuana", which is a beer-like beverage. Although in the 
original formulation of the theory the consumption of drugs 
was not considered, the behaviour of the "mice", which have 
access to "julihuana" changed in a way, which exhibits strong 
parallels to human behaviour. The drunken and (after a time) 
often addicted mice lost their social contacts (less friends), 
their cognitive processes (perception, remembering, planning) 
became rough and shallow. The mice felt "strong" when 
drunken and very weak without julihuana. When drunken 
therefore they became very aggressive, but depressive when 
without julihuana. 

Keywords: memory; plan; addiction; cognitive map, alcohol; 
action-regulation. 

Cognition and Drugs 
In nearly every human culture drugs play an important, of-
ten however detrimental role. Men (but animals, too) are 
inevitably attracted by drugs. The relationship of drugs to 
cognitive processes is close. Especially intellectuals, writers, 
painters, composers seem to exhibit a strong tendency to 
alcoholic beverages (see Lange-Eichbaum, 1986). Accord-
ingly you will find Beethoven as a heavy drinker, Mozart, 
too. Goethe every day drank two bottles of wine, he was an 
alcoholic according to the standards of today, Schiller drank 
even more. A theory about human behaviour should be able 
to answer the question, why drugs are so attractive. In this 
paper we will try to answer this question – and some more 
about the impact of alcohol on cognitive, emotional and 
motivational processes. 

The Mice 
The mice are simulated agents, which live in an environ-
ment an example of which can be seen in figure 1. The envi-
ronment forms an island with different regions. On region 1 
food is growing, region 2 offers water, region 3 offers heal-
ing herbs, where the mice can cure their wounds. Wounds 
can be the result of aggressions of other mice (the mice can 
even kill each other!) or the results of falling stones in cer-

tain dangerous regions in the "world" of the mice. Region 4 
is such a dangerous region. (The "world" of figure 1 is only 
an example. The mice' worlds normally are much larger!) 

In "alcoholic" environments some of the waterholes are 
exchanged by regions which offer julihuana instead of wa-
ter. Julihuana is an alcoholic beverage, a kind of palm-beer. 
It was invented by Julia Hagg and therefore is called julihu-
ana. 

The mice do not know their environment completely, but 
have to explore it to learn where fresh water, food or healing 
herbs (or julihuana, region 5) could be found or which re-
gions are dangerous. The mouse' memory contains cognitive 
maps in the form of landmark paths to goals in the environ-
ment. A projection of such a path on the "world" of the mice 
can be seen in figure 1. 

1

12

3

2

5

4

4

 

Figure 1: The environment of the mice. 

Additionally the mice have a social memory about their 
friends and enemies. The mice have a desire for social con-
tacts and those mice with whom they have such contacts 
become "friends". Friends help each other with food or wa-
ter or when a mouse is attacked by another one. (Such an 
aggression naturally is the basis for enmity!) Help in a dan-
gerous situation strengthens friendship. If it is not strength-
ened the memory of friends and enemies decays by time. 
The same is true for the cognitive maps of the environment. 

The mice can get offspring. For this purpose they have 
sexual desires, too. The mothers educate their children, i.e. 
they "tell" them, where food or water can be found and 
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which places are dangerous and who is a friend or an en-
emy. 

The Psychic Organization of the Mice 
Figure 2 exhibits a rough sketch of the mice' psychic or-
ganization. There is a motivational system, which controls 
the direction of behaviour. Additionally there is a unit 'Per-
ceive and Act' which transforms the general directives of the 
motivational system into real actions. It adapts general plans 
or directives to the conditions of the current situation. The 
third unit, Thinking, is used if no appropriate plan for the 
actual goal (the actual motive) is available in memory. In 
this case the unit Thinking tries to construct a new plan by 
planning activities.  

 

Image of
Situation

MotivMotivation Perception

ActionThinking

World

Memory

Plan

 

Figure 2: The Aristotelian soul of the mice. 

This organization is nothing else but the basic organiza-
tion of the "soul" which Aristotle postulated (Aristoteles, 
Buch II). It includes the three basic Aristotelian "capabili-
ties", Motivation, Perception (and Action) and Thinking, 
which together produce the capability of "striving". This 
Aristotelian Architecture is rough, but it is sound and a good 
starting point to debate the overall structure of the "soul". 
(The Aristotelian concept of "soul" is quite simple and 
straightforward and astonishing close to information theory: 
"Soul" is nothing else but the controlling and monitoring 
device of the body and the soul itself is a physical function.)  

The mice are programmed according to the Psi-theory, a 
theory about the interaction of cognitive, motivational and 
emotional processes (Bach; 2009; Dörner, 1999; Dörner et 
al. 2002). The mice are cognitively reduced (to fit in rather 
big numbers into a normal PC), but emotionally elaborated. 
Therefore these beings are called "mice", as mice are nice, 
but small. Now we are going to explain some basics of the 
Psi-theory. 

 
Motivation The unit Motivation is the core of the whole 
system. Its organization is shown in figure 3. There are a 
number of "tanks" (mathematically: accumulative stores), 
which represent the need-system. The "Hunger-tank" for 
instance is filled up by the intake of food and emptied by the 

consumption of energy by the activities of the body. At-
tached to the tank is a system, which indicates the setpoint 
deviation of the actual level in the tank. All the other tanks 
are organized in the same way. 

We assume that five needs or need groups are sufficient to 
generate all kinds of human motives, namely existential 
needs (hunger, thirst, pain, …), sexuality, affiliation (need 
for binding to a group), certainty (need for predictability of 
the events in the environment or for the explanation of such 
events) and competence (need for mastery, need for the abil-
ity to solve problems). These needs can amalgamate to form 
"macro-needs" or need-amalgames.  
 

+ ++

Selector

+ + +

Hunger, Thirst, etc Pain Sexuality Affiliation Certainty Competence

Actual Motive

 

Figure 3: The motivational system. 

The Selector-system is very important for action regula-
tion. It makes a choice between the different active needs 
(setpoint-deviation >0) and selects the need with the highest 
motive-strength. Motive-strength is calculated according to 
the expectancy (of success)  value (of the need) - principle. 
The higher the setpoint deviation the higher is the value (of 
the satisfaction) of the need. The expectancy of success is 
calculated either on the basis of the knowledge about goal-
paths in memory, i.e. knowledge about paths which lead for 
instance to a water hole. Additionally the "general compe-
tence" is taken into account, which is the basis of the calcu-
lation of success-expectancy, when knowledge about goal-
leading paths doesn't exist. In this case the "General Compe-
tence" is heuristic competence, the confidence in finding a 
method to reach the goal. "General competence" is nothing 
else, but the level of the competence tank. Roughly the sys-
tem Selector works according to the expectancy–value - 
principle: it selects a goal according to the setpoint devia-
tions of a tank, the goals which are known to result in an 
increase of the level of the "tank" and the success probabil-
ity. This is calculated on the basis of the success-probability 
of a known operator (for instance a landmark – path as rep-
resenting a sequence of motions towards a goal) and the 
level of the competence tank, representing "general compe-
tence". 

The tanks for affiliation, certainty and competence are 
"information-tanks". This means that no material or energy 
fills or empties these tanks, but signals, information. In the 
case of the affiliation tank the inputs are signals of legiti-
macy (L-Signals; Boulding, 1974). These are signals of "ok-
ness", a clap on the shoulder or a smile. For the certainty 
tank the input are signals of certainty, for instance a progno-
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sis which comes true. The tank is emptied by signals of un-
certainty, a prognosis which comes false or a situation 
which is inscrutable. Input signals for the competence tank 
are signals of efficiency, the solution of a problem for in-
stance is a signal of efficiency. But each satisfaction of a 
need is a competence signal, too. The competence-tank is 
emptied by failures. 

Additionally to the emptying signals for the affiliation and 
the competence tank a "leak" exists. These tanks therefore 
empty by time, without any signals. This is very important, 
as this means, that automatically a desire to reestablish so-
cial relations and to reaffirm competence will arise after 
some time. 

Cognition Cognitive processes are processes of perceiving, 
memory search and planning, i.e. construction of a plan as a 
sequence of steps towards a goal. The system Selector of the 
motivational system activates memory search to look for 
goal leading paths. If it does not find such a path it activates 
a planning process to construct a sequence of steps towards 
a goal. This process in the mice is realized as the GPS – 
process of Newell & Simon, 1972, the General Problem 
Solver. – It is very important to understand that cognitive 
processes are emotionally modified. This means, that their 
form alters as a consequence of emotional changes. 

Emotion We believe that it is sound to consider emotions 
not as processes of their own, but as forms of the organiza-
tion of motivational and cognitive processes dependent on 
the level of the uncertainty and – most important – the com-
petence tank. So for instance anxiety means a low level in 
the certainty and the competence – tank. These low levels 
produce a high level of arousal, a low resolution level, i.e. 
rough cognitive processes, flight tendencies, but aggressive 
tendencies, too. Additionally in anxiety "weak" processes of 
exploration may be started to diminish uncertainty. Anxious 
persons however will mostly try to defend their model of the 
world against falsification, for their image of the world is 
the last hold to protect them from despair. Therefore anx-
ious persons will easily believe, what is in correspondence 
with their image of the world, but will never accept news 
disconfirming their view of the world. This combination of 
credulousness and distrust is a modulation of perceptive 
processes and impedes effective exploration. 

In a similar way other emotional states and processes can 
be characterized as systems of cognitive and motivational 
processes triggered by the level of the certainty and the 
competence tank. Emotions are adaptations of cognitive and 
motivational processes to competence and certainty as 
measured by the level in the respective tanks. An empty 
competence tank "says": "You should be extremely cautious 
when acting, as you are helpless! Whatever you will do 
could be a mistake or failure with a high probability!" 
(Naturally the competence tank does not "say" anything. But 
it generates the respective behavioural tendencies.) 

An empty certainty tank "says": "You are not able to fore-
see, what will happen. Therefore your vigilance should be as 
high as possible. Not one moment you should stop to moni-

tor your environment!" Under such conditions of high vigi-
lance elaborated planning processes are nearly impossible; 
therefore vigilance impairs planning processes and hence 
the quality of action. 

The most basic emotions are pleasure and unpleasure. 
How do they fit into this model of emotions? In the simplest 
way! Pleasure is a filling of the competence tank. This im-
plies to feel strong, to relax (because there does not exist 
any danger which cannot be overcome), to foresee nothing 
but successes in the future. 

And unpleasure? It means emptying the competence tank. 
This however means to feel weak, depressive. Normally it 
means stress, high arousal, low resolution level of cognitive 
processes. The current problems seem to be insolvable. Fu-
ture looks dark. 

The General Organization Figure 4 shows a rough sketch 
of the interplay of processes and data according to the Psi-
theory. The System "Selector" generates an actual goal and 
looks for an appropriate action. For this purpose it looks for 
a transition from the momentary given situation to the goal. 
If it finds such an operator, the operator is executed. If not, 
planning is activated. If this is successful the plan is run. 
This could be successful or not. If not, explorative activities 
are activated to gain a better understanding of the structures 
and possibilities of the environment and hence to be able to 
construct another plan. If this is successful, the new plan 
will be run, otherwise the system shifts to a behaviour of the 
trial-and-error type. 
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Figure 4  The general organization of the behaviour of the 
mice. See text. 

Very important are "interrupts". As the level of the tanks 
changes nearly from moment to moment, the conditions for 
the selection of an actual goal change , too, as the basis of 
the selection of the actual goal is the expectancy-value – 
principle. If because of failures the level of the competence 
tank becomes low, the behaviour of the mice looses sustain-
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ability. The goals will change rather frequently as with each 
failure the competence of the actual intention decreases and 
other intentions may take over. 

The Effects of Alcohol 
What are the impacts of alcohol on human behaviour? The 
direct effect is to feel good, to feel "strong". Everything 
becomes manageable; there are no problems. On the other 
hand the ability to follow one line of thought is impaired. 
Sustainability diminishes. Thinking becomes rough and 
shallow, but to a certain degree is less supervised and there-
fore could be "creative" (see Feuerlein, 1998; Lindenmeyer, 
2005).  

Abuse of alcohol for a longer time results in a loss of so-
cial contacts and an inability to sustain intentions for a 
longer period. Short time and working-memory seem to be 
impaired. Self-control suffers and people often lose their job 
because of inefficiency. Alcholics often become depressive 
(when not drunk) see Schuckit, 1994. 

To investigate the impact of alcohol to the mice' behav-
iour we used environments which were different only in that 
respect, that in the alcohol-version some of the waterholes 
were replaced by sources of julihuana. When a mouse 
drinks julihuana, the first time simply because she is thirsty, 
there will be an input to the competence tank. This means 
that the mouse will feel good, much better than if she had 
drunk water. The input to the competence tank however is 
different to a normal efficiency signal as it is not accompa-
nied by learning a new method to overcome difficulties or 
by the affirmation, that, what has been done, has been an 
appropriate method to achieve goals. Alcohol produces an 
efficiency signal without any effort. What is the effect of 
julihuana to the behaviour of the mice? 

 

Figure 5: The average number of friends (per mice) of the 
J- and the Non-J- mice over a period of 100000 (=10) cy-
cles. (One cycle corresponds to 30 Mice-minutes. 100000 

cycles mean 50000 hours or 5.7077 years or 5 years and 258 
days.) 

Motivational Effects 
The most significant motivational effect is that the julihu-
ana-mice (J-mice) have a much lower affiliative motivation 
than the "normal" mice (Non-J-Mice), which have no access 
to Julihuana. Normally for the mice social contacts are the 
main source of competence, of "feeling good". To a high 
degree affiliation is replaced by alcohol with the J-mice! 
Figure 5 shows that the (average) number of friends  dimin-
ished considerably with the J-mice. The same applies to the 
enemies (not indicated on Figure 5.) - The difference is sig-
nificant on the 0.001 – level. (The same applies for all the 
other differences between the J- and the Non-J-mice in this 
article.) 

The shrinking of the social contacts of the mice is in good 
accordance about what a lot of authors report about alcohol-
ics. It is typical for alcoholics, that their social environment 
shrinks, see Feuerlein, 1998). This again had a severe im-
pact on the population development of the mice. Figure 6 
shows, that the growth of the population is much slower 
with the J-mice than with the Non-J-mice. 
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Figure 6: The growth of the population. 

This is mainly due to the fact that the J-mice had less sex-
ual contacts. For the mice, as for men, too, mostly sexual 
contacts have the condition that the partners like each other, 
are "friends", so to speak. As the number of friends is less 
for the J-mice than for the others, the number of sexual con-
tacts diminishes, too, with the consequences visible on fig-
ure 6. 

Additonally to the impact which julihuana has on the 
competence tank, we increased in another experiment the 
impact to the certainty tank. This means, that julihuana di-
minishes uncertainty (lack of predictability and "explain-
ability" of the "world"). This additional impact of julihuana 
to the need-system of the mice increased the attractiveness 
of the drug considerably as visible in figure 7. This effect is 
due to the lower resolution level of the cognitive processes. 
Perception and remembering on a low resolution level be-
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come rough and "overinclusive". Objects, which are only 
similar are treated as if they were identical. An apple is a 
pear!  

 

Figure 7: Attractiveness (measured as relative frequency 
per cycle when alcohol is actual goal) of julihuana when it 
only has an effect on competence and when it has an effect 

on uncertainty, too. 

May it be, that this is the main reason for the attractive-
ness of drugs for writers and composers? One of the reasons 
to create something is to bring order to a world which is 
perceived as chaotic. The lowered resolution level under the 
influence of a drug decreases the chaotic character of the 
world and therefore satisfies the need for certainty. And 
therefore a drug relieves the "suffering about the world", 
which is characteristic for many intellectuals. 

 

Figure 8: Successful planning activities (relative fre-
quency per cycle) of the J-mice and the Non-J-mice. 

Cognitive Effects 
To take alcohol has an impact on the cognitive abilities of 
the mice. Cognition becomes rough, perceiving and plan-
ning on a low resolution level become deficient. Figure 8 
shows the number of successful planning activities with the 
J-mice and the Non-J-mice. The relative number of success-
ful plans diminishes significantly with the use of alcohol. 

This is due to two factors. One is, as above mentioned, the 
low resolution level of cognitive processes, which produces 
bad plans, which will not work. The other one is the lower 
sustainability of the planning activities with the J-mice. 
They loose the hope for success earlier than the Non-J-mice, 
because the level of the competence tank is generally lower 
for the J-mice (see figure 10).  

Planning normally means to construct a branching "tree" 
of operations or locomotions to fill the gap between the 
starting point and the respective goal. A branch in this tree 
is abandoned if there seems not to be any hope that it can be 
extended further in the direction of the goal. In the mice 
such a decision is based on the competence level. As the 
level of the competence tank is lower with the J-mice than 
with the Non-J-mice, the J-mice have the overall tendency 
to give up planning too early.  

Emotional Effects 
Rough and undifferentiated perception is one of the reasons 
for the J-mice to be more aggressive than the Non-J-mice. 
On figure 9 this is visible. This difference is due to the fact 
that the Julihuana-mice simply fail to perceive the strength 
of their respective opponent because of the low resolution 
level and therefore become more often entangled in a fight. 

Additionally when drunken the J-mice simply felt 
stronger than their respective opponents and therefore were 
more daring and incautious. 

 

 

Figure 9: Aggressions in the population of the J- and the 
Non-J- population (relative frequency per cycle). 
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Figure 10: Desire for competence in the J- and Non-J-
population. 

Summary of the Results 
"What I cannot create, I do not understand!" said Richard B. 
Feynman. We tried to simulate the effects of the consump-
tion of alcohol on psychic processes simply by introducing a 
beverage for simulated agents, which effects the level on the 
"competence tank". This produced a number of results 
which are in good accordance with what is known about the 
effects of the use of alcohol with humans. The social con-
tacts of the mice diminish and their ability to organize ex-
tended actions, too. Additionally the mice became both: 
more daring when drunken and more cautious and anxious 
when not drunk.  

As we originally not constructed the Psi-theory to cover 
the phenomena of the consumption of alcohol we consider 
the success in reproducing these effects as a validation of 
the theory.  
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Abstract 

Recent research suggests that chimpanzees are capable of 
level 1 perspective taking (Flavell, 1992), but that its 
expression is limited to situations of increased competition 
(Brauer, Call, & Tomasello, 2007). We present a model 
utilizing gaze-following that learns in response to the 
behavior of a competitor. The model not only learns the 
proper application of the perspective taking strategy but also 
the critical spatial characteristics that influence the 
competitive pressure. 

Introduction 
Under normal conditions most children will eventually 

develop a full theory of mind and have full visual 
perspective taking (Corkum & Moore, 1995,1998; Moll & 
Tomasello, 2006).  Most researchers believe that 
chimpanzees have neither a full theory of mind nor full 
visual perspective taking (Povinelli et al., 1994; Tomasello 
& Call, 1997).  Whether chimpanzees have any perspective 
taking ability at all has been subject to some recent debate. 

Experimental studies using a variety of paradigms have 
previously been unable to find strong evidence for 
perspective taking.  In fact, two of the major experimental 
labs consistently agreed that chimpanzees had no visual 
perspective taking ability (Povinelli et al., 1994; Tomasello 
& Call, 1997).  However, a novel paradigm suggested that 
chimpanzees did, in fact, know what others could and could 
not see (Hare et al., 2000; 2001).  In this paradigm a 
subordinate and dominant chimpanzee competed with each 
other for two pieces of food, one of which was hidden to the 
dominant (figure 1, left). Since the subordinate preferred the 
hidden food, Hare et al. concluded that it was aware of the 
dominant’s visual perspective (2000, 2001). 

Unfortunately, in a series of experiments, Karin-D'Arcy 
and Povinelli (2002) were unable to replicate the original 
Hare et al. (2000) findings.  Karin-D'Arcy and Povinelli 
used a more stringent coding methodology and suggested 
that chimpanzees do not understand what others can and 
cannot see but instead use a variety of competitive strategies 
to succeed in such scenarios, such as preferring food near 
barriers. 

One difference, however, between the two sets of 
experiments was the size of the testing area.  In the original 
Hare et al. (2000) experiment, the testing area was 3m x 3m, 
but Karin-D'Arcy and Povinelli (2002) used a smaller 
testing area that was 2.6m x 1.8m.  It is possible that this 
size difference could have driven the dynamics and the 
competitiveness of the situation for the chimpanzees.  For 

example, in a smaller area, it is possible that, since the 
submissive was released before the dominant, the 
submissive was able to quickly grab the food, making the 
use of visual perspective taking less relevant.  In the larger 
area, the competitive aspects of the area could make a quick 
grab of the food less effective since it would take the 
submissive longer to approach the food. 

 
Brauer, Call, and Tomasello (2007) tested this idea by 

making several changes to their experimental paradigm, 
using the stronger methodology that Karin-D'Arcy and 
Povinelli (2002) suggested and manipulating the spatial 
characteristics and therefore the competitive nature of the 
situation.  Specifically, Brauer et al. (2007) manipulated the 
location of the food to be nearer or farther away from the 
submissive (figure 1).  They found that in the less 
competitive situation where the food was closer to the 
submissive, chimps did not seem to use visual perspective-
taking.  However, in the more competitive situation where 
the food was further away, chimps did seem to use visual 
perspective taking, preferring to pursue the hidden food 
(figure 2).  

While the empirical data suggests that chimpanzees do 
have some form of visual perspective taking, it is unclear 
what degree of visual perspective taking is needed.  Other 
researchers have suggested different levels of visual 
perspective-taking, mostly focused around the development 
of human children (Flavell, 1992).  This work suggests that 
human infants, by one year of age, can follow another’s 
gaze to targets (Corkum & Moore, 1995; 1998).  By 12-15 
months, a child knows a great deal about what others can 
and can not see, including (a) that an adult’s line of sight is 
blocked by a screen unless it is transparent or has a window 
in it (Caron et al. 2002; Dunphy-Lelii & Wellman, 2004); 
(b) that an adult will not be able to see a target while their 
eyes are closed (Brooks & Meltzof, 2002); and (c) that an 

subordinate subordinate 
Figure 1. Dual-food layout for Brauer, et al (2007). 

Visible and hidden food nearer subordinate (left), and 
further away (right).   
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adult can see something that the child can not when the 
adult looks to locations behind them or behind barriers 
(Moll & Tomasello, 2004). 

Most researchers interpret these findings as evidence of 
level 1 visual perspective-taking (Flavell, 1992):  
understanding the content of what a child sees may differ 
from what another may see.  Level 2 visual perspective 
taking is achieved when a child understands that people can 
see the same view from different perspectives.  After level 1 
and 2 visual perspective taking, normally developing human 
children also achieve a full theory of mind (knowing that 
others can have different thoughts and beliefs). 

Hare, Call, & Tomasello (2001) suggested that 
chimpanzees are able to engage in level 1 visual perspective 
taking but not level 2.  We modeled level 1 visual 
perspective taking to determine if it is sufficient to match 
the data from Brauer et al. (2007). We embed our simulation 
within a learning framework as well to explore how 
different competitive strategies can be learned. 

Specifically, a model of chimpanzee competitive food 
foraging was developed within ACT-R  (Anderson, Bothell, 
Byrne, Douglass, Lebiere, & Qin, 2004) utilizing the 
architecture’s procedural learning mechanisms and a new 
gaze-following capability to support level 1 perspective 
taking. 

Experiment 
The refined methodology of Brauer et al. (2007) used a 
testing environment that was 2.5m x 2.6m, with barriers 
placed at the extreme sides of the cage. In the near 
condition, the barriers were equidistant between the two 
entrances. For the far condition they were moved 0.5m 
closer to the dominant’s entrance. Food pieces were either 
placed behind the barrier (visible to the subordinate only) or 
on top (visible to both). On each trial, there could be two 
pieces of food (one hidden and one visible), one visible or 
one hidden.  

The trial began when the subordinate’s door was opened 
allowing it into the environment. After the subordinate 
entered the cage, the dominant’s door was opened (usually 
within 2s). The subordinate’s food preference was recorded 
when it made a reaching gesture in the direction of a piece 
of food before the dominant had approached any barrier. 

The single food trials were control conditions testing the 
possibility that the subordinate might simply prefer food 
located near barriers (Karin-D'Arcy & Povinelli, 2002). The 
critical comparison is between the two distance conditions. 
When the pieces of food were near the subordinate, it chose 
indiscriminately. Because of its head start (~2s), the 
subordinate could pursue either piece, and was often able to 
acquire both. However, when the food was closer to the 
dominant, the subordinate preferred the hidden food almost 
2:1 (figure 2). 
  

 

Figure 2. Subordinates prefer hidden food when 
competitive pressures are greatest (right). Error bars are SE 

(Brauer, et al, 2007).  

Model 
Models of both the dominant and subordinate 

chimpanzees were built in ACT-R (Anderson, et al., 2004). 
These models were run within the Player/Stage environment  
(Collett, MacDonald, & Gerkey, 2005) that mimicked the 
structure of the actual experiment.  

As an integrated architecture, ACT-R provides multiple 
mechanisms for representation and learning. These 
particular models rely upon ACT-R’s procedural memory 
and learning. At any given time there is a set of productions 
(if-then rules) that may fire because their conditions match 
the current external state of the environment or internal state 
of the model. From this set of competing productions, a 
single one is selected and fired, ultimately modifying the 
environment or internal state. ACT-R uses the predefined or 
learned utilities of productions to determine which will be 
fired.  

To learn production utilities, ACT-R uses an elaboration 
of the temporal-difference (TD) algorithm (Sutton & Barto, 
1998). The elaboration in ACT-R is more applicable for 
human learning and allows it to be more easily incorporated 
into a production-system framework (Fu & Anderson, 
2006). Briefly, any time reinforcement is given (e.g., a 
banana eaten or physical punishment) the reinforcement 
value is propagated back in time through the rules that had 
an impact on the model receiving that reinforcement.  
Reinforcements (either positive or negative) gradually shift 
utility values and therefore the relative probability that a 
particular production will be selected over others within a 
set of competitors.  

The application of ACT-R to non-human cognition 
presents many challenges. Even though chimpanzee 
cognition shares many similarities to that of humans, the 
architecture may still provide too much capability. Because 
of this we intentionally used the least-common-denominator 
in these models. The chimpanzee models make no use of 
declarative encoding or retrievals, nor does it engage in any 
imaginal operations. The models are driven predominantly 
by reactive productions and rely upon an impoverished goal 
representation (merely storing what target to pursue). 
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Gaze-following 
To implement gaze-following in ACT-R, a new set of 
optional constraints were introduced to the visual search 
mechanism. ACT-R’s basic visual search mechanism takes 
a request to find a percept matching some set of features 
(e.g. where is a red object?). The possibly features include 
both visual properties (i.e. color, size) and limited spatial 
information (e.g. nearest the current focus of attention). The 
location of the first matching object is returned to the model 
allowing it to attend to that location and encode the actual 
visual representation of that percept. 

Within this mechanism, gaze-following was implemented 
as a directed visual search along a retinotopic vector. 
Specifically, instead of returning the first matching location 
in search, the full set of matches is passed through a 
secondary filter. This filter merely sorts the locations by 
their distance from the retinotopic vector. Given a starting 
point and either an angle or an end point, the visual search 
returns the location on an object somewhere along that line 
within a specified tolerance. Knowing the visual location of 
the dominant chimp (A in figure 3) and the food (C in figure 
3), the subordinate performs a visual search for any object 
along the line segment AC. Finding the barrier (B), the 
subordinate can (generally) assume that the food is not 
directly visible to the dominant. 
 
 

Figure 3. Retinotopic searches to find objects 1) between 
A and C or 2) along the ray starting at A. 

 
This simple mechanism allows the visual system to find 

objects along a gaze line, or any potential obstructions 
between two points. While this mechanism is not accurate 
for all gaze-directions (particularly as the ray approaches the 
viewer), they are adequate for basic searches. More 
advanced gaze-following is addressable by having the 
model perform more detailed processing of the returned 
visual locations and the actual visual percepts at those 
locations, such as testing the distance, size, or opacity of an 
obstruction. Given the nature of the experimental 
environment, these higher-level strategies were not 
implemented. 

Model Structure 
The dominant and subordinate models are composed of the 
same constituent parts. Each model performs a full 
environment scan from its current position, looking not only 
for the food, but also the other chimpanzee and the buckets. 
The targets are evaluated to determine which should be 
pursued. 

Environmental Scan The environmental scan is a rapid 
visual search of the environment that attends to all visible 

objects. If the object is a piece of food, a bucket, or another 
chimpanzee, the first occurrence is retained in the model’s 
limited goal representation. If no objects are found, the 
model physically rotates its body to get a different view of 
the environment.  

Target & Strategy Evaluation Once a target has been 
attended to it must be evaluated. For the dominant model 
this is simple: if it’s food, pursue it, otherwise keep looking. 
The subordinate has more to consider. First, the subordinate 
must determine whether the food is near or far. Once 
classified, the subordinate can then choose which strategy to 
use. It can either try to make a mad-dash for the food (grab-
and-go), or use gaze-following to ensure that the coast is 
clear. If the subordinate chooses grab-and-go, it runs the risk 
of contention with the dominant, particularly if the food is 
far away. For gaze-following, the subordinate will use the 
location of the dominant’s head and the target to find any 
intermediate object that may be a visual barrier. If a visual 
barrier is found, the subordinate assumes the dominant 
cannot see the target and will pursue it. If no barrier is 
found, the subordinate rescans the environment ignoring the 
rejected target. 

 
Figure 4. Two choice points for the subordinate model. 

The model must learn which distance threshold to use for 
classification and then which strategy to use. 

Target Pursuit Since the Brauer, et al. experiment recorded 
food preference based on the initial reaching behavior, 
models’ food preferences were recorded immediately after 
evaluation. The full models, however, are able to navigate in 
the environment, grab food and even strike each other. 

Model Assumptions and Parameter Selection 
At their heart all models are simplified abstractions of their 
respective phenomenon. Simplifications can be for reasons 
of computational tractability, interpretability, or theoretical 
relevance. The models described here must operate at a 
high-level of fidelity in order to capture the embodied nature 
of the task. The computational costs of the embodied 
simulations required a handful of simplifying assumptions. 

Environmental Assumptions 
In the actual experiment, doors into the experiment cage 
were opened allowing the chimpanzees to enter the space. 
After the subordinate entered, the dominant’s door was 
opened, typically after around 2 seconds. Lacking doors in 
the simulation, each model was “beamed” into the 
experiment space. The delay between the subordinate and 
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the dominant was fixed at 2 seconds. Since the 
subordinate’s food preference is only recorded if it is made 
before the dominant makes one, this delay acts as a scalar 
for the food preference measure. Increasing the delay allows 
the subordinate more time to choose, increasing the absolute 
food preference scores. 

Model Assumptions 
Learning Brauer, et al (2007), Hare et al. (2000; 2001) and 
Karin-D’Arcy & Povinelli (2002) all noted a lack of 
learning within their studies. All concluded that the 
preferences and skills exhibited had developed prior to 
testing. For the models to exhibit these behaviors they either 
have to be hand tuned by the modeler or they must be given 
sufficient training prior to testing. Having an architecture 
that can learn allows us to avoid the problem of custom 
tuned models. Each model was run through a series of 
learning trials, which consisted of ten sets of the full 
factorial design of the experiment (e.g. single & dual pieces 
of food at both the near & far distances), for a total of 60 
trials. This was a rough surrogate for the individual’s life 
experience with competitive food foraging. 

Additionally, since gaze-following is learned over time in 
humans (Corkum & Moore, 1995), initial utilities of the 
gaze-following productions were lowered below those of the 
grab-and-go productions (to -1.5). This provides an early 
bias towards grab-and-go, delaying the onset of gaze-
following, potentially providing the model with the time 
necessary to learn the distance classifications.  

Reinforcement Probabilities In order to learn from these 
trials, the models must receive some reinforcement based 
upon their target choices. However, since the trials 
terminate after target choices are made they normally 
wouldn’t receive any reinforcement. One alternative would 
be to run each trial to completion (after either has actually 
consumed the food or been hit). Unfortunately, full trials, 
with the possibility of the dominant chasing the subordinate 
around the cage, are extremely costly computationally (by 
almost an order of magnitude).  

Reinforcements were provided based on the model target 
choices. When either chooses an uncontested piece of food, 
it is rewarded. When both the dominant and subordinate 
decide to pursue the same target there is some chance that 
the dominant will charge and strike the subordinate. 
Naturally, as the distance between the target and dominant 
decreases, the probability that the subordinate will be 
punished for pursuing that same target increases. All other 
things being equal, when the distance to the target is 
equivalent, there is roughly a 50% chance that the 
subordinate will be able to reach the target first. The chance 
of being hit is further reduced by the subordinate’s two-
second head start in the experiment design. The qualitative 
behavioral pattern (i.e. subordinate preferring hidden food 
when both pieces are closer to the dominant) holds through 
probability values where P(hit|near) < 0.5 ≤ P(hit|far) ≤ 1.  

Generally speaking, the higher the probability of being hit 
for any given distance, the more likely the subordinate will 
select the more conservative gaze-following strategy. The 

values P(hit|near)=0.1 and P(hit|far)=0.9 were settled upon 
after a high-level exploration of the parameter space. 
Simulations testing the validity of these assumptions using 
the full trial protocol are ongoing.  

Hit Probabilities Reinforcement Values ACT-R’s 
reinforcement learning mechanism relies ultimately on time 
as its metric (Fu & Anderson, 2006). This forces the 
modeler to map physical rewards and punishments into a 
temporal reference frame. For this experiment, the reward 
for getting a piece of food was set at the average maximum 
time to complete the task using the gaze-following strategy 
(4 seconds). The punishment for being hit needs to be 
greater in magnitude than the food reward in order to pull 
apart the two primary strategies. Parameter explorations 
yielded good convergence rates for punishments around 8 
seconds.  

ACT-R’s default utility learning rate of 0.2 was used. The 
only other parameter modified was the utility noise (0.1), 
which permits weaker productions to occasionally be 
selected over their stronger competitors.  

Simulation Results 
For this model to be a viable account for the subordinate 
chimpanzee’s behavior not only must it fit the aggregate 
food preference measure, but it must also be able to 
correctly classify the target distances and prefer the gaze-
following strategy for far targets. Because the individual 
learning histories result in greater downstream behavioral 
variability, large numbers of models had to be run to arrive 
at stable results. The results presented here are the derived 
from 1000 individual model runs. 

Distance classification 
The key factor in the results presented by Brauer, et al 
(2007) is that the preference for choosing the hidden piece 
of food is dependent upon how close the food is to the 
dominant chimpanzee. While they did not do a full 
parametric exploration of the factor, the simple difference of 
half a meter was sufficient to tease apart the behaviors.  

Similarly the model had to be able to correctly classify the 
target distances as near or far. At the distance choice-point 
(figure 4), three productions are in competition, setting the 
distance threshold to 1.5, 1.6, or 1.7m. Subsequent 
productions then classify the target’s distance using that 
threshold. In the simulation, target distances ≥ 1.6m 
correspond to the far condition. Within each model we can 
simply examine the relative utilities of the distance 
threshold productions; 41% of the models converged upon 
the correct threshold of 1.6m, 21% at 1.5m and 14% at 
1.7m. The remaining 24% of the models showed no clear 
preference as the threshold utilities were all within the 
model’s utility noise. 

Strategy Selection 
When the food is near, it is perfectly rational for the 
subordinate to make a mad-dash for either piece. With the 
two-second head start, there is little chance that it will be 
punished. On the other hand, when the food is further away 
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(and closer to the dominant), it makes sense to use the gaze-
following strategy even though it takes longer and requires 
waiting for the dominant to enter the experiment space. If 
the subordinate were to use grab-and-go for far targets, it 
would run an increased risk of contention with the 
dominant, even with its head start. On average gaze-
following took 0.75 – 1.5 seconds longer than grab-and-go.  
While this increase in execution time ultimately reduces the 
temporally discounted reward, it effectively avoids the 
much more costly punishment when conflict does occur. 
Figure 5 shows the percentage of model strategic 
preferences. The majority of the models preferred grab-and-
go when near and gaze-following when far.  
 

Figure 5. Percentage of models preferring a given strategy 
for both near and far target classification. 

Model Fit 
Even with the model complexity and resulting downstream 
behavior variability, the fits were strong (RMSE=7.2%, 
R2=0.96). The qualitative pattern (i.e. preference for hidden 
food when far and equivalence for near) holds across the 
majority of the hit probability ranges discussed earlier.  
 

 

Figure 6. Model (circles) fit to Brauer, et al (2007) data. 
RMSE=7.2%, R2=0.96 

Distance & Strategy Interactions 
The variability in the behavior of any given subordinate 
model is a direct result of its experiences with the dominant 
model. That some learned the wrong distance threshold or 
frequently choose the wrong strategy is hardly surprising. 
Looking more closely at these models is particularly 

informative from a rational analysis perspective. All of the 
models that settled on the 1.5m distance threshold used the 
gaze-following strategy exclusively for far targets (which 
would have been virtually all of the them). Similarly, over 
half the models that settled on 1.7m as the distance 
threshold preferred gaze-following when targets were both 
far and near. These overly conservative models were able to 
stabilize in their patterns because there was no disincentive 
for misclassifying targets as far only near, particularly since 
they could rely upon gaze-following to compensate for 
incorrect distance classifications. 

Discussion 
The simulation presented provides a process model of 
chimpanzee competitive food foraging that combines the 
awareness that individual visual experiences are different 
(i.e. Flavell, level 1) and a simple gaze-following 
mechanism. Leveraging the existing reinforcement-learning 
component in ACT-R, the model learns to prefer the more 
conservative gaze-following strategy when the risk of 
punishment is increased (i.e. when the food is closer to the 
dominant).  The model shows that its “awareness of the 
other’s visual experience” need not entail full visual 
perspective taking (Hare, Call, & Tomasello, Animal 
Behaviour, 2001). Knowledge of the particular spatial 
relationships that the dominant is experiencing are also 
unnecessary. 

Obviously this does not preclude the possibility that 
chimpanzees possess level 2 skills. It is worth considering 
how a model of full perspective taking would perform in 
this situation. Such a model was actually developed before 
the one reported here. It performed egocentric 
transformations of its own perspective, aligning them with 
the perceived position and orientation of the dominant (e.g. 
Hegarty & Waller, 2004). This model was able to learn the 
same qualitative behavioral pattern, but at an increased cost. 
Perspective transformations are particularly costly in terms 
of time; often taking 2-4x longer than gaze-following 
depending on assumptions of representational capacity and 
mental transformation rates. 

What is perhaps more interesting is that if full perspective 
taking and gaze following are allowed to compete, gaze 
following is consistently preferred. While gaze following 
isn’t as accurate at assessing visibility, it is accurate enough 
within the confines of the task and significantly faster. 
Given this, it is unlikely that one could find evidence of full 
perspective taking in the current experimental paradigm.   

These models arose out of our growing interest in 
embodied cognition. While fully situating a model in an 
environment makes some tasks quite simple (i.e. inferring 
intent based on gaze direction), it comes at the cost of 
requiring higher fidelity models and simulations. This 
higher fidelity brings with it increasingly complex dynamic 
interactions between the model and environment (including 
other intelligent agents). Our work with human-robot 
interaction has shown us that these dynamic interactions 
cannot be ignored.  
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Conclusions 
A computational learning model was developed that is able 
to effectively reason about what another can and cannot see. 
This embodied model is able to learn and exploit regularities 
in the environment (target distances) to adapt to a 
competitor’s behavior. The model is able to do this with 
only a basic gaze-following mechanism instead of relying 
upon full visual perspective taking (Hare, Call, & 
Tomasello, 2001). This mechanism, implemented as a 
general directed visual search, provides an important 
developmental step towards the development of theory-of-
mind (Baron-Cohen, 1995; Butterworth, 1991).  
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Abstract 
In this paper a computational decision making model is presented 
based on the Somatic Marker Hypothesis. The use of the model is 
illustrated for the domain of fighter pilot decision making. Hereby, 
simulation runs have been performed upon this scenario, and the 
results thereof have been formally verified based upon properties 
inspired on Damasio’s Hypothesis. 

Keywords: decision making, experience, somatic marker. 
  

Introduction 
Decision making usually involves expectations about 

possible consequences of decision options and uncertainty 
about them. Traditionally the literature on decision making 
was dominated by the  Expected Utility Theory; e.g., von 
Neumann and Morgenstern, 1944; Friedman and Savage, 
1948; Arrow, 1971; Keeney and Raiffa, 1976. Here, 
decision making takes place by calculating expected 
utilities for all of the options and choosing the option with 
highest expected utility. The expected utilities themselves 
are determined based on the probabilities of the possible 
outcomes for the option when chosen, and the gain or loss 
for that outcome, thus founding the approach in probability 
theory. This approach to decision making can be considered 
to aim for an idealised rational approach, where, for 
example, emotions or biases play no role. As a model for 
practical human decision making the Expected Utility 
Theory has been strongly criticized, as humans are bad in 
estimating probabilities, and also may allow emotions and 
biases to play a role in a decision making process, as is 
found in several experiments; e.g., (Tversky and 
Kahneman, 1974;  Kahneman and Tversky, 1979). 

Contrasting with the aim of the Expected Utility Theory 
to ban emotions from decision making, Damasio (1994) 
observed surprisingly bad decision making behaviour in 
patients with damage of brain regions related to body 
mapping and regulation and feeling emotions (patients with 
certain kinds of prefrontal damage and with compromised 
emotions). They often keep on considering different options 
without choosing for one of them. This has led Damasio to 
the view that decision making inherently depends on 
emotions felt, which relate to sensed body states (Damasio, 
1994). His theory is known as the Somatic Marker 
Hypothesis. 

In this paper a computational decision making model is 
presented which draws inspiration from the Somatic Marker 

Hypothesis. The main purpose of this model is to create 
agents which show realistic human behaviour, and not to 
replicate the precise human decision process. This makes 
the Somatic Marker Hypothesis a suitable choice, as it 
provides a reasonable amount of detail on these decision 
processes. Although the validity of the theory is sometimes 
doubted (see e.g. Dunn, Dalgleish and Lawrence, 2005), it 
can still considered to be a useful source of inspiration for 
the development of agents for the aforementioned purpose. 
The use of the model is illustrated for the domain of fighter 
pilot decision making. This extends the work as presented 
in (Hoogendoorn et al., 2009) by having a more 
sophisticated version of somatic markers (including specific 
goals and tradeoffs between such goals), as well as a case 
which addresses more interesting aspects of the decision 
making process. First, the Somatic Marker Hypothesis is 
explained in more detail, after which the computational 
model is described. Thereafter, simulation results are 
presented, including formal properties that have been 
verified against the generated results.  
 

Decision Making and Experience 
The Somatic Marker Hypothesis provides a theory on 

decision making which dedicates a central role to 
experienced emotions. Damasio explains the name of his 
theory as follows: 

‘Because the feeling is about the body, I gave the phenomenon the 
technical term somatic state (“soma” is Greek for body); and because it 
“marks” an image, I called it a marker. Note again that I use somatic in the 
most general sense (that which pertains to the body) and I include both 
visceral and nonvisceral sensation when I refer to somatic markers.’ 
(Damasio, 1994, p. 173) 

This theory consists of two main ideas: (1) the way in 
which somatic markers affect decisions, and (2) the way in 
which somatic markers depend on past experiences. 
Concerning (1), if a decision is to be made between options 
which can lead to potentially harmful or advantageous 
outcomes, each of such options induces a somatic response 
which is experienced as a feeling and used to mark the 
option outcome, thus signalling its danger or advantage. For 
example, when a negative somatic marker is linked to a 
particular option outcome, it serves as an alarm signal for 
that particular option. Similarly, a positive somatic marker 
serves as an encouragement to choose that option. Damasio 
describes the use of a somatic marker in the following way:  

‘the somatic marker (..) forces attention on the negative outcome to 
which a given action may lead, and functions as an automated alarm signal 
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which says: Beware of danger ahead if you choose the option which leads 
to this outcome. The signal may lead you to reject, immediately, the 
negative course of action and thus make you choose among other 
alternatives. The automated signal protects you against future losses, 
without further ado, and then allows you to choose from among fewer 
alternatives’   (Damasio, 1994, p. 173) 

 ‘In short, somatic markers are a special instance of feelings generated 
from secondary emotions. Those emotions and feelings have been 
connected by learning to predicted future outcomes of certain scenarios. 
When a negative somatic marker is juxtaposed to a particular future 
outcome the combination functions as an alarm bell. When a positive 
somatic marker is juxtaposed instead, it becomes a beacon of incentive. 
This is the essence of the somatic marker hypothesis. (..) on occasion 
somatic markers may operate covertly (without coming to consciousness) 
and may utilize an ‘as-if-loop’. (Damasio, 1994, p. 174) 

Concerning (2), the way in which somatic markers are 
associated to decision options in a given situation depends 
on previous experiences with options chosen in similar 
circumstances. For example, the pain or joy experienced as 
a consequence of the outcome for a certain option that was 
chosen in the past has been stored in memory and 
automatically pop up (are felt again) when similar 
circumstances and options may occur. How somatic 
markers relate to past experiences is described as follows: 

‘Somatic markers are thus acquired through experience, under the 
control of an internal preference system and under the influence of an 
external set of circumstances which include not only entities and events 
with which the organism must interact, but also social conventions and 
ethical rules. (Damasio, 1994, p. 179) 

This element of Damasio’s theory shows how based on 
experience ‘intuition’ or ‘gut feeling’ is created which aids 
the decision process in an automatic manner. This makes 
the theory useful for decision processes where such aspects 
play an important role, which is the case for the domain of 
pilot behaviour considered here. 
 

Model Description 
 The model has been defined as a set of temporal relations 
between properties of states. A state property is a 
conjunction of atoms or negations of atoms that hold or do 
not hold at a certain time. The exact choice for what atoms 
to use depends on the actual model and domain and is 
defined by an ontology for that model. To model dynamics, 
transitions between states are defined.  
 In order to obtain an executable formal model, the states 
and temporal relations between them have been specified in 
LEADSTO, a temporal language in which the temporal 
relations can be defined in the form of rules that can be 
executed. Let α and β  be state properties. In LEADSTO 
specifications the notation α →→e, f, g, h β,  means:  

 

if state property α holds for a certain time interval with duration g, then 
after some delay (between e and f state property β will hold for a certain 
time interval h. 

 

 For more details of the LEADSTO format, see (Bosse, 
Jonker, van der Meij & Treur, 2007).  As all of the temporal 
relations used in the model are of the form α →→0,0,1,1 β,  the 
notation α →→ β will be used instead. 
 
The Decision Making Process 

The central process in the model is the Decision Making 

process. Its input is the current situation, the list of possible 
options from which one option is to be selected and the 
somatic markers. The situation is represented by an atom 
supplied by the environment and can be seen as the result of 
the agent’s perception of its environment. For example, in 
the case described earlier, the agent could encounter an 
enemy fighter from its side. In the model the Decision 
Making process would receive the atom 
observed(enemy_from_side).  

In the Decision Making process for each option the 
option preference, a real number between 0 and 1,  is 
determined. Both somatic markers and rational utility 
values are used to calculate option preferences. The option 
with the highest option preference is then selected for 
execution. 
 Execution of the selected option will result in some 
change in the environment of the agent and the agent will 
observe this outcome. This outcome is then evaluated, 
resulting in a set of real numbers between 0 and 1, one per 
goal, where a higher value means a more positive 
evaluation. These evaluation values are then used to adapt 
the appropriate somatic markers associated with each goal. 
The selected option itself is also input for the evaluation 
process, as the evaluation is about the consequences of this 
selected option. The value of the outcome evaluation is then 
used to adapt the somatic markers the agent has. In 
subsequent decisions the updated somatic markers are used. 
 
Step 1: Somatic Evaluation  
The purpose of the Somatic Evaluation process is to assign 
a real value between 0 and 1 to each option. This value, the 
somatic evaluation value, is determined per option by 
adding the weighted values of the different types of somatic 
markers associated with the option and current situation. 
For each goal the agent has, there is a different type of 
somatic marker. There is also a weight value for each type 
of somatic marker with which the value of the somatic 
marker is multiplied. This way, it is possible to vary the 
influence each type of somatic marker has on the final 
somatic evaluation value, which can be used to represent 
personal characteristics. The formula for determining the 
somatic evaluation value is: 

 

sev(O)t = w1·smv(G1,O)t + w2·smv(G2,O)t + ... + wn·smv(Gn,O)t   
 

where sev(O)t is the somatic evaluation value for option O 
at time t, smv(Gi, O)t the value for the somatic marker 
associated with goal Gi at time t, wi the weight for goal Gi. 
Note that the somatic markers are those for the current 
situation. The weights add up to 1, so that the somatic 
evaluation value remains within 0 and 1. For the sake of 
brevity the temporal properties defining this process has 
been omitted. 

 
Step 2: Option Elimination 
The next step is the Option Elimination process. All the 
atoms of the form somatic_evaluation_value(O, V), generated in the 
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Somatic Evaluation process, are transformed into atoms of 
the form remaining_somatic_evaluation_value(O, V) if V does not fall 
below a threshold value. All other atoms of that form are 
discarded, effectively eliminating the options associated 
with those atoms. In P1 and P2 this process is formalised. 
P1   somatic_evaluation_value(O, V) & value(threshold, Th) & V ≥ Th →→ 

remaining_somatic_evaluation_value(O, V) & somatic_evaluation_ 
ended 

P2   remaining_somatic_evaluation_value(O, V) & not(decision_making_ 
ended) →→ remaining_somatic_evaluation_value(O, V) 

 
Step 3: Rational Analysis 
 The next subprocess is the Rational Analyis. In this 
process a rational utility is calculated for each option for 
which the atom remaining_somatic_evaluation(O,V) holds. 
According to Damasio (1994), the rational phase is partly 
influenced by the preceding somatic marking. For this 
reason the assumption is that the remaining somatic markers 
are used in determining the outcome of the rational phase, 
which is a number of utility values.  
 In the design of the model there are atoms of the form 
belief(utility(S, O, U)) which couple each situation S and each 
option O with a real value U between 0 and 1, indicating the 
utility for that option in that particular situation. More 
elaborate utility functions are certainly possible but fall 
outside the scope of this paper.  

 

P3  remaining_somatic_evaluation_value(O, V) & 
belief(current_situation(S)) & belief(utility(S, O, U)) →→ option_utility(O, 
U) 

P4  remaining_somatic_evaluation_value(O, V) & option_utility(O, U) & 
value(rational_ratio, R) →→ 
option_preference(O, R * U + (1-R) * V) 
 

 Property P3 defines the determination of an option utility 
for each remaining option. This consists of attaching to each 
remaining option the utility that the agent believes is the 
expected utility for that option considering the current 
situation.  In P4 for each remaining option the option 
preference is determined. This value is taken as a weighted 
average between the somatic evaluation value and the 
option utility. The parameter rational ratio determines what 
weight the option utility has in determining the option 
preference. In other words, a higher rational ratio shifts the 
Decision Making process more towards the rational side, 
while a lower rational ratio makes the Decision Making 
process more intuitive. 
 After P4 has been applied, the selected option is 
determined by taking the option with the highest option 
preference. The temporal properties that define this final 
selection are not included in this paper for the sake of 
brevity. 
 The selected option is then executed, which results in 
some outcome that is used for adapting the somatic 
markers. 
 
Adaptation of the Somatic Markers 
 As Somatic Marking is a process rooted in experience, 
the model includes a mechanism for adapting the somatic 
markers according to the evaluations of outcomes that result 
from the execution of the selected option. This mechanism 

consists of a update function that takes both previous and 
current experiences in account. An update function 
described in (Jonker and Treur, 1999) has been chosen to 
represent the Somatic Marker adaptation mechanism. This 
is a typical update function, similar to many other kinds of 
update function that are regularly used for modelling 
dynamics but it is certainly possible to use similar 
functions. The following formula describes the update 
function as used in the model: 

 

smv(G, O)t = (1-d) · smv(G, O)t-1 + d · ev(G,O) t-1       
 

In this formula, the variable smv(G, O)t  is the value of the 
somatic marker of option O associated with goal G at time t. 
The variable ev(G, O)t is the evaluation value, a real value 
between 0 and 1. The parameter d is a real value also 
between 0 and 1 which determines the decay of the memory 
of previous experiences . A high value for d will cause the 
somatic markers to rapidly change in accordance with the 
evaluation values. In other words, the parameter d 
determines to what degree previous experiences are retained 
in relation to new experiences. A lower value for d will 
result in a more stable memory of experiences, while a 
higher value for d results in a somatic marker that is heavily 
influenced by recent experiences. 
 Determining the evaluation value is based on the concept 
of a body state. In (Damasio, 1997, p. 180), Damasio states 
that  
‘At the neural level, somatic markers depend on learning within a system 
that can connect certain  categories of entity with the enact-ment of a 
body state, pleasant or unpleasant.’ 

 So it appears that the body either reacts positively or 
negatively in response to the outcome of an action. The 
precise dynamics of what body state is generated depends 
on innate dispositions (primarily survival related), and 
social conditioning. In the model this is represented by a 
number of atoms of the form resulting_body_state(G, Oc, V), one 
for each goal-outcome combination. 

The following LEADSTO rules show how the somatic 
marker adaptation is modelled. 
P5 belief(outcome(Oc)) & belief(current_situation(S)) & 

belief(selected_option(O)) &  resulting_body_state(Oc, G, V) →→ 
evaluation(G, O, V) 

P6  evaluation(G, O, Ev) & somatic_marker(G, S, O, Smv) & 
value(decay_parameter, D) →→ updated_somatic_marker(G, S, O) & 
new_somatic_marker_value(G, S, O, (1-D) * Smv + D * Ev) 

 Each time the agent observes the outcome of an option it 
executed, it determines a resulting body state. In P5, the 
value v of the resulting_body_state relevant to the current 
outcome of an executed option is used as evaluation 
value in the update function to modify each somatic 
marker belonging to that option. This way, the agent 
learns from its experiences. 
 

Case Study 
 In order to test the model, a case has been constructed 
that represents a simplified environment from the domain of 
fighter airplane combat. In this case there is a single fighter, 
controlled by an agent, which is flying some kind of 
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mission. Its goal is to arrive at his target. However, at some 
point it detects an enemy aircraft. This forces the agent to 
make a decision on how to deal with this situation, which is 
done by an implementation of the model described in this 
paper. 
 There are 3 different situations that the agent can 
encounter: the enemy approaches from the front, the side or 
from behind. In this case, the agent has four options to deal 
with these situations: 
1. The agent can continue its flight in order to reach his target. 
2. The agent can engage the enemy 
3. The agent can turn around and return to base. 
4. The agent can take an detour to its target, which requires it to fly over 

the enemy anti-air position. 

 The outcome of the execution of one of these options 
depends on the current situation and is probabilistic 
determined. For example. executing the option engage_enemy 
in the situation enemy_from_behind has a 30% chance of the 
agent being shot down, a 50% chance of the agent defeating 
the enemy and reaching the target and a 20% chance of 
defeating the enemy and being force to return to base. 
Appendix A† gives more details on the case and the 
reasoning behind the choices being made. 
 In the next two sections the choices for determining the 
utility values and resulting body states are explained.  

The utility for each option in each situation that has 
been chosen for this case are shown in Table 1. 
 

Table 1: Utilities 
 

Situation  

Enemy  
from side 

Enemy  
from 

behind 

Enemy  
from front 

Continue-mission-direct-route 1 1 0 
Continue-mission-detour 1 1 1 

Engage-enemy 0,5 0,5 0,5 O
pt

io
n 

Return-to-base 0,5 0 1 

 The reasoning behind this allocation of utility values is 
that mission success and survival have a higher priority than 
defeating the enemy fighter. In general the agent has the 
orders to try to complete the mission and to avoid the 
enemy fighter and only to engage the enemy fighter if the 
opportunity to do so is good enough in its own ‘opinion’. 
 Therefore the continue-mission options have high utility 
values, except when the enemy comes in from the front. In 
that situation the continue-mission-direct-route has low 
utility, as survivability is important and the agent has to try 
to avoid the enemy fighter. Engage-enemy has always a 
medium utility, as it is left to the agent’s discretion to 
choose whether to engage. The utility for return-to-base is 
heavily dependent on the enemy fighter’s angle of 
approach: if the enemy comes from the front, continuing the 
mission will be dangerous and so return-to-base is a good 
option, while if the enemy comes from behind, return-to-
base is a bad option as the agent has the orders to avoid the 
enemy. 
 
Resulting Body States 

                                                        
† http://www.cs.vu.nl/~mhoogen/damasio-appendixA.pdf 

Table 2 shows the representation of the resulting body states 
for each outcome. A value of 1 represents a positive body 
state, a value of zero a negative body state. The body states 
are coupled to goals and the allocation of values is based on 
how good an outcome is for reaching that goal. 
 Lethality is about defeating the enemy, so all outcomes 
that include the defeat of the enemy result in a positive 
outcome. Being shot down is the only way of having a 
negative body state in regard to survivability, as in all other 
outcomes the agent survives unharmed. Finally, in this case 
resource control is mainly about fulfilling the mission 
objective, so all outcomes in which the target is reached 
result in a positive body state. 

Table 2: Resulting body states 
 

Goals  
Lethality Survivabi

lity 
Resourc
e control 

Shot down 0 0 0 
Back at base 0 1 0 

Reached target 0 1 1 
Enemy defeated & reached 

target 
1 1 1 

O
ut

co
m

es
 

Enemy defeated & back at 
base 

1 1 0 

 
Simulation Results 

 The model described in the previous sections has been 
used to run a number of simulations, using the LEADSTO 
software environment as described in (Bosse et al, 2007). 
An environment and scenario for the agent has been 
implemented based on the case described earlier. Hereby, 
all three scenarios as presented before have been addressed. 
 In order to test whether different weights for somatic 
markers lead to different behaviour, for four different 
settings of somatic marker weights simulations have been  
run. The exact settings are shown in Table 3. 
 

Table 3. Somatic weight settings 
 

Setting W(Lethality) W(Survivability) W(resource 
control) 

1 0,33 0,33 0,33 
2 0,50 0,25 0,25 
3 0,25 0,50 0,25 
4 0,25 0,25 0,50 

 In setting 1, all types of somatic markers have equal 
influence in the determination of the somatic evaluation 
value. In settings 2, 3, and 4 the marker weights for 
respectively lethality, survivability and resource control are 
set higher, increasing the influence of the associated 
somatic markers on decision making. 
 For all situation-weight setting combination, a simulation 
has been run. In each simulation the decision making model 
receives 50 times the same situation to decide on. The 
results of these simulations have been verified, as shown in 
the next section. Table 4 shows how many times each 
option has been selected with different somatic weight 
settings for the enemy-from-front scenario. 

Table 4. Option selection in situation enemy-from-front 
Somatic weight setting  

Setting 
1 

Setting 
2 

Setting 
3 

Setting 
4 

Continue-mission-direct-route 0 0 0 0 
Continue-mission-detour 3 4 2 4 

Engage-enemy 0 32 0 13 O
pt

io
n 

Return-to-base 47 14 48 33 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

301



 In this situation, when the somatic markers associated with 
the lethality goals have a higher weight, the option engage-
enemy is selected much more often than with a neutral 
setting. This also the case to a lesser extent when resource 
control has a higher weight, as in this situation the option 
engage-enemy leads much more often to the outcome 
reached target than any other option. There is little 
difference between the results of the neutral setting and 
setting 3, where survivability has a higher weight, as in the 
neutral setting return-to-base is already predominantly 
chosen. This is probably due to the allocation of utility 
values, in which a high emphasis is laid upon survivability. 
 In Table 5 and 6 the option selection for the other two 
situations are shown.  

Table 5. Option selection in situation enemy-from-side 
Somatic weight setting  

Setting 
1 

Setting 
2 

Setting 
3 

Setting 
4 

Continue-mission-direct-route 11 36 47 48 
Continue-mission-detour 4 4 3 2 

Engage-enemy 19 9 0 0 O
pt

io
n 

Return-to-base 13 1 0 0 
 

Table 6. Option selection in situation enemy-from-behind 
Somatic weight setting  

Setting 
1 

Setting 
2 

Setting 
3 

Setting 
4 

Continue-mission-direct-route 49 48 49 49 
Continue-mission-detour 1 2 1 1 

Engage-enemy 0 0 0 0 O
pt

io
n 

Return-to-base 0 0 0 0 

Figure 1 shows an example of how somatic evaluation 
values change under influence of experience. 
Figure 1. Change of somatic evaluation value over time with weight setting 2 

in situation enemy-from-front 

 The somatic evaluation value for the option continue-
mission-direct-route does not change, as this option is never 
selected. The somatic evaluation value for continue-
mission-detour drops under the threshold of 0.25 after 4 
selections, which means that this option will not be 
considered again and consequently not be selected at all. 
For the option return-to-base this happens after 14 
selections. The somatic evaluation value for engage-enemy 
fluctuates strongly as there is a great variation between 
differing outcomes which lead to different resulting body 
state values. 
 This example shows that the agent has learned that in this 
situation continue-mission-detour and return-to-base are 
bad options and will only consider engage-enemy and 
continue-mission-direct-route in the future.  
 

Verification  
In order to verify whether the behavior of the model indeed 
complies to the Somatic Marker Hypothesis as proposed by 
Damasio, a logical verification tool has been used. Below, 
the formal language underlying this verification tool is 
explained, after which properties are shown that have been 
verified against a variety of traces. 
 The verification of properties has been performed using a 
language called TTL (for Temporal Trace Language), cf. 
(Bosse et al., 2009) that features a dedicated editor and an 
automated checker. This predicate logical temporal 
language supports formal specification and analysis of 
dynamic properties, covering both qualitative and 
quantitative aspects. TTL is built on atoms referring to 
states of the world, time points and traces, i.e. trajectories 
of states over time. In addition, dynamic properties are 
temporal statements that can be formulated with respect to 
traces based on the state ontology Ont in the following 
manner. Given a trace γ over state ontology Ont, the state in 
γ at time point t is denoted by state(γ, t). These states can be 
related to state properties via the infix predicate |=, where 
state(γ, t) |= p denotes that state property p holds in trace γ at 
time t. Based on these statements, dynamic properties can 
be formulated in a sorted first-order predicate logic, using 
quantifiers over time and traces and the usual first-order 
logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. For more 
details, see (Bosse et al., 2009). 
  The properties that have been verified against the 
simulation traces are shown below. The first property  (P1) 
expresses that a negative evaluation of an option in a given 
situation with respect to a certain goal results in the somatic 
marker value for that option going down.  
P1: Lowering specific somatic marker value 
If an option  O has been selected, and the evaluation of this option with 
respect to a goal G is bad, then the somatic marker value of this option for 
goal G will be lower than before. 
∀γ:TRACE, t1:TIME, O:OPTION, S:SITUATION, G:GOAL, V1:REAL, E:REAL 
[ [ state(γ, t1) |= belief(selected_option(O)) &  
    state(γ, t1) |= belief(current_situation(S)) & 
    state(γ, t1) |= somatic_marker(G, S, O, V1) & 
    state(γ, t1) |= evaluation(G, O, E)  & E < NEUTRAL ] 
  ⇒ ∃t2:TIME > t1, V2:REAL 
       [ state(γ, t2) |= somatic_marker(G, S, O, V2) & V2 < V1 ] ] 
 

In case the overall evaluation of an option in a given 
situation is below neutral, then the total somatic evaluation 
value goes down. This is expressed in property P2. The 
overall evaluation value is the weighted sum of the 
evaluation values for all goals. Note that the remaining 
formal forms have been omitted for the sake of brevity.  
P2: Lowering overall evaluation value 
If an option O has been selected, and the overall evaluation of this option is 
bad, then the value of the total somatic evaluation value for option O will 
go down. 
 

The idea of Damasio is that certain options are no longer 
considered because they are not appropriate in a given 
situation. This idea is expressed in property P3 which states 
that once the total somatic evaluation value is below the 
threshold, the option will no longer be selected.  
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P3: Ignoring values below threshold 
If the total somatic evaluation value for an option O is below the threshold, 
then this option is never selected.  
Finally, property P4 expresses that eventually an option is 
selected which has a higher evaluation value than neutral. 
 
P4: Eventually a good option is selected 
There exists a time point such that an option O is selected which scores 
good for all goals. 
 

The properties above have been verified against 12 
simulation traces (3 situations, each consisting of 4 settings) 
During the verification process, a value of 0.5 has been used 
for the constant NEUTRAL. It was shown that property P1-
P3 are satisfied for all traces. Property P4 however is not 
satisfied for the case whereby the enemy comes from the 
front, and the weight setting 3. The same holds for the case 
enemy from behind with setting 2. This is due to the fact 
that the probability of an option having a positive 
evaluation for these scenarios is very small, and does not 
occur in the trace which has been checked. 

 
Conclusions 

Damasio’s Somatic Marker Hypothesis (Damasio, 1994) 
shows how emotions play an essential role in decision 
making. It gives an account of how feeling (or 
experiencing) emotions in certain situations over time leads 
to the creation of a form of intuition (or experience) that can 
be exploited to obtain an efficient and effective decision 
making process for future situations met. Example of 
patients with brain damage related to feeling emotions show 
how inefficient and ineffective a decision making process 
can become without this somatic marking mechanism. 
Damasio’s theory contrasts with the earlier tradition in 
decision making models, where the focus was on rational 
decision making based on the Expected Utility Theory, and 
where the aim was to exclude effects of emotions and biases 
on decision making; e.g., (von Neumann and Morgenstern, 
1944; Friedman and Savage, 1948; Arrow, 1971; Keeney 
and Raiffa, 1976). 

To formalise Damasio’s Somatic Marker Hypothesis an 
approach was chosen based on the following assumptions. 
o For a given type of emotion, somatic markers are related to 

combinations of contexts and decision options for this context. 
o When a decision has to be made within a given context, somatic 

evaluation values associated to the options are used. 
o Somatic markers and somatic evaluation values are expressed as real 

numbers between 0 and 1. 
o Contexts and decision options are expressed as discrete instances. 
o Within a given context, every decision option gets a somatic 

evaluation value associated based on the somatic markers. 
o Decision options with low associated somatic evaluation value are 

eliminated from further decision processing. 
o For the remaining decision options a (utility-based) rational analysis is 

made in which the somatic evaluation values serve as biases. 
o Based on experiences for outcomes of chosen options for a given 

context, the somatic markers are adapted over time. 

As for fighter pilots crucial decisions have to be made in 
very short times, it seems plausible that they heavily rely on 
such mechanisms. When applied to specific scenarios, the 
model shows patterns as can be expected according to 

Damasio’s theory. Creating the model is one of the first 
steps in larger research program. In next steps the model 
will be compared to decision making behavior of human 
pilots in a simulation-based training setting.   
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Abstract

Recent research in attention indicates it involves three 
anatomical networks concerned with alerting, orienting and 
executive control (cf. Posner & Fan, 2007). The 
Attentional Network Test (ANT) provides a behavioral 
measure of the efficiencies of these three networks within a 
single task (Fan, MaCandliss, Sommer, Raz & Posner, 
2002). This work adapts an ACT-R 6.0 model of adult 
performance on ANT (Hussain & Wood, 2009) to model 
the performance of children (aged 6, 7, 8, 9 and 10) on a 
child-friendly version of the task (Rueda, Fan, McCandliss, 
Halparin, Gruber, Lercari, Posner, 2004). Modifications are 
carried out within the framework of the ACT-R cognitive 
architecture (Anderson, Bothell, Byrne, Douglass, Lebiere, 
& Qin, 2004; Anderson & Lebiere, 1998). Models 
simulating the child study results indicate that 
improvements in latency and error rate can be attributed to 
incremental improvements in processing time and 
reduction in errors of commission respectively. In contrast 
the models indicate a qualitative difference between 
children under 9 and older age groups in both alerting 
efficiency attributed to specific reductions in processing 
surprise stimuli in the younger age groups, and executive 
control efficiency between 6 year olds and older age groups 
attributed to a slower ability in 6 year olds to focus the 
target in incongruent stimuli. An inhibiting effect of the 
alerting network on congruency, not found in the child 
study, was found in the model data consistent with adult 
studies (Callejas, Lupianez & Tudela, 2004; Fan, Xiaosi, 
Kevin, Xun, Fossella, Wang, Posner, 2009). Investigation 
of model performance under invalid spatial cueing 
conditions compared to adult model performance (Hussain 
& Wood, 2009) finds the models are differentiated by a 
slower ability to disengage from invalidly cued locations in 
the child models but are similar in benefiting from the 
facilitating effects of cueing on processing congruent 
stimuli. 

Keywords: Attentional Networks; Attentional Network 
Test; ANT; ANT-C; Alerting; Orienting; Executive 
Control; Computational Modeling; ACT-R; Cognitive 
Development.

Introduction: Attentional Networks
Posner and Peterson (1990) propose that attention 
comprises a system of anatomical regions which can be 
divided into the networks of alerting, orienting and 
executive control. Alerting performs the function of 
achieving and maintaining a vigilant state; orienting refers 
to selective visual-spatial attention; and executive control 

involves monitoring and resolving conflict in the presence 
of conflicting information. Neuroscience studies have 
shown that different brain regions are associated with 
each network (Raz & Buhle, 2006). Orienting consists of 
three operations, namely disengagement, movement and 
engagement each associated with separate brain areas 
(Posner & Peterson, 1990). 

Various behavioral tasks have been used to study the 
behavior of these networks, such as vigilance tasks, 
cueing tasks, Stroop task and so forth. Fan and colleagues
(Fan, et al., 2002) designed the Attentional Network Test 
(ANT) that measures the efficiencies of all three networks 
in a single behavioral task. ANT is a 30 minute reaction-
time based task combining cueing experiments (Posner, 
1980) and flanker effects (Eriksen & Eriksen, 1974).

Attentional Network Test Adapted for Children 
ANT-C is a child-friendly version of the combination of 
flanker and cueing paradigms used with adults modified 
to study the development of the networks in children 
(Rueda, et al, 2004). A series of experiments studied age 
groups ranging from 6 to 10 years in terms of the latency, 
accuracy and efficiencies of the networks. Figure 1 shows 
the design of ANT-C adapted to be more child-friendly by 
replacing the target stimuli with five colorful fish. There 
are four cue conditions: no-cue, center-cue, double-cue 
and spatial-cue and three congruency conditions: neutral, 
congruent and incongruent. Other than the replacement of 
the arrows with fish and the colorful display, the 
experimental setup remains the same. 
Each trial begins with a central fixation cross followed by 
a cue (or a blank interval, in the no-cue condition) 
informing participants that a target will occur soon, and 
possibly where (spatial cue). The target always appears 
above or below the centre screen fixation point. An 
invalid cue (not part of the child study but explored in this 
paper to assess the effect of invalid cueing on 
disengaging) appears as a spatial cue but in the location 
opposite to where the target subsequently appears. The 
target array is either a fish on its own (neutral), or a 
central fish surrounded by flanking fish that point in 
either the same direction (congruent) or opposite direction 
(incongruent). Based on the direction of the centre fish,
the children press the corresponding left or right button on 
the mouse. Reaction time (RT) spans stimulus 
presentation to button press.  
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Figure 1: Child version of the Attentional Network Test (ANT-C), in which yellow fish on a blue background replace flanker
arrows in the adult version of ANT (Rueda et al, 2004). 

The duration of each trial is 25-30 minutes and children 
are given sufficient practice on the task before the data is 
formally collected. The formulae used to calculate the
efficiencies remain the same as in the adult study, given 
in equations 1-3 (Fan et al, 2002). An invalid cue 
condition to study the effect of disengagement of attention
is calculated as given in equation 4 (Callejas, et al, 2004; 
Fan et al, 2009).

Alerting  = RT (no-cue)  - RT (double-cue)                 (1)
Orienting  = RT (center-cue) - RT (spatial-cue)             (2)
Executive control = RT (incongruent) - RT (congruent)(3)
Validity      = RT (invalid-cue) - RT (valid-cue)             (4)

The child study (Rueda et al, 2004) reported that 
latency and accuracy improve over age, up to adulthood. 
The efficiency of the alerting network is much higher in 
children up to 9 years with no significant change across 
age. By age 10 and for adults alerting efficiency 
significantly reduces. The orienting network seems to be 
relatively stable up to 10 years with no change. Rate of 
development of executive control seems to reduce 
significantly from ages 6 to 7, but after that seems to 
stabilise up to adulthood with no significant change.
Results are similar for 10 year olds and adults on both 
ANT and ANT-C. This paper compares the results from 
experiment 1 of the Rueda et al (2004) study that reports 
performance of age groups 6-9, and the partial results 
from experiment 2 for performance of 10 year olds on 
ANT-C, with model performance.

Simulating the Performance of Children on 
ANT-C Using ACT-R

A symbolic model of adult behavior on ANT (Wang and 
Fan, 2004) re-implemented in ACT-R 6.0 and extended to 
model invalid cueing and inter-network modulation 
effects (Hussain & Wood, 2009) is modified and adapted 
to simulate children’s performance on ANT-C (Rueda et 
al, 2004). The ACT-R model display was not modified to 
show colorful fish instead of arrows as from the point of 
view of the functionality and behavior of the ACT-R 
model, it would not make a difference (ibid.) The 
important element to be captured here is the behavior in 
terms of the cuing and congruity information content of 
the display, and not color, shape and other visual aspects
of the stimuli. The child models were also run on a 
variation of the task incorporating invalid cuing to assess 
validity efficiency (eq. 4) and the disengaging effect. 
Performance is compared with recent findings from adult 
human studies (Fan et al, 2009) and adult model 
performance (Hussain & Wood, 2009) based on the adult 
human studies of Fernadez-Duque & Black (2006) and 
inter-network modulation effects (Callejas et al, 2004). 

Design and Functionality of the Model
The major functionality of the model remains the same as 
the Hussain & Wood (2009) model of ANT simulating 
healthy young adults. It consists of four blocks of code:
(1) fixation and cue expectation, (2) cue processing,      
(3) stimulus processing and (4) responding to stimulus. 
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Associated with each functional step are a number of
condition-action (if-then) production rules and parameter 
settings that combine to produce latency and accuracy 
data. Through a combination of certain rules firing based 
on the values in its buffers and underlying parameter 
settings, the model implements the effects of the alerting, 
orienting and control networks on attention performance,
calculated by equations (1-4) and summarized below (for 
details refer to Hussain & Wood, 2009; 2009a).

Latency and Accuracy: The time between the 
appearance of a stimulus and the pressing of the 
key/mouse is the response time which accounts for 
latency in ms. Each processing step involved in 
performing the task involves a rule firing with a default 
timing of 40 ms. The model also reproduces errors seen in 
human studies. The number of errors made in each cue 
and flanker condition is recorded and the average 
percentage of incorrect responses is reported. The 
technique for modeling errorful performance  corresponds 
to evidence that errors occur either due to confusion and 
distraction caused by incongruency, that is commission 
errors (Mezzacappa, 2004) or simply due to imperfect 
behavior, just randomly making a mistake.

Alerting: The efficiency of alerting is the difference in 
latency when there is no cue preceding the stimulus and 
when there is a double cue that prepares the subject but 
does not cue spatially. The element of surprise leads to 
the firing of an extra production, notice-something-but-
not-a-cue [P1], to simulate the effect of alerting or 
preparing for the stimulus; this has a subsequent effect on 
the stimulus processing step by making it more costly (by 
40 ms for the extra rule fired).

Orienting: The effect of orienting is achieved in two 
ways: (1) In the case of cueing, the model is made to 
focus on the target location using the buffer stuffing 
mechanism in ACT-R (URL 01) by varying the spread of 
visual attention determining which object is available for 
selective attention. For example, if the cue is spatial, then 
a narrower spread of attention will lead to a higher chance 
of focusing on the target and ignoring distracters as 
opposed to other cue conditions whereby both the target 
and distracters stand an equal chance of being selected for 
processing. (2) Also, when a spatial cue is encountered, 
the focus of attention is moved to that location in advance 
of the target appearing, so when the target stimulus is 
encountered attention is already engaged at the location, 
speeding up its selection as opposed to other cue 
conditions where attention had to be shifted to the target 
taking an extra processing step. 

Executive Control: Executive control involves mental 
operations that are responsible for detecting and resolving 
conflicting situations. Here in the model, it is about 
simulating the flanker effect; showing that at times 
instead of the centre arrow (or fish) a flanker arrow 

located nearby may be selected due to distraction or even 
crowding of the scene (Pashler, 1998). The way the model 
handles this situation in the case where it encounters 
arrows in same direction (congruency condition), is by
recognising the direction of the arrow and responding by 
pressing a key. There is no conflict or confusion and the 
model simply encodes the location and responds based on
the direction of the arrow. The model responds through 
the rule go-ahead-responding-if-congruent [P2]. 
Incongruency is handled through competing productions 
whenever a flanker rather than the centre arrow is picked 
up (i) harvest-direct-directly-if-incongruent [P3] and  (ii) 
refocus-again-if-incongruent [P4]. The first strategy using 
production P3 means that despite selecting a flanker 
instead of the target, the model encodes and responds to 
the direction of the centre arrow (taking a default 85 ms to 
move attention). In contrast, the second strategy, using 
production P4 requires the model to first shift attention to 
the centre arrow location and then recognize the direction 
of the centre arrow. Shifting attention involves firing an 
additional production (taking an extra 40 ms) at a total 
cost of 125ms making this strategy more costly. Choosing 
between competing rules is handled by the sub-symbolic 
component of ACT-R: [P3] and [P4] have utility values of 
7 and 15 respectively corresponding to probabilities of 
0.07 and 0.93. The probabilities are calculated on the 
basis of the default ACT-R equation (5). In this way, if 
there are a number of productions competing with 
expected utility value Uj then the probability of choosing 
production i is described below:

Probability (i) =    eUi√2s                (5)
∑j eUj√2s

Here the summation is over all productions that are 
currently able to fire, ‘s’ is the expected gain noise.

Model Fitting and Justification
Generally there are two ways of modeling cognitive 
development: (1) either model adult behavior and then 
modify it to fit child behavior or (2) first model the child 
behavior (lower performance level) and progressively 
change to fit the adult behavior (higher performance 
level) (Jones, Ritter & Wood 2000). Using the former 
approach, the modeling work reported in this paper is 
implemented within the constraints of the ACT-R 
architecture. A cognitive architecture poses constraints on 
the implementation of a model and therefore influences 
design choices (ibid).

Researchers have shown that model behavior can be 
altered by making changes either to the knowledge 
retrieval capability of the model, the procedural rule 
based system or by making plausible changes to the sub-
symbolic components (Jones & Ritter & Wood, 2000; 
Serna, Pigot, & Rialle, 2007; Rijn, Someren, Maas 2000).  
In this paper, the adult model was incrementally modified 
to simulate children’s developmental trajectory. 
Theoretical interpretation of the human study findings
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suggested the basis for developmental differences in the 
various networks and their implementation, described 
further below. By modifying the adult model of ANT, 
five new models were created and run for 12 subjects 
each, to simulate the performance of each age group. In 
addition, an invalid cueing condition was introduced into 
the task and performance modeled to assess validity 
efficiency and the effect of disengaging from an 
incorrectly cued location. Various approaches with a 
sound theoretical basis were tried and the one giving the 
best statistical fit is presented here.

Latency: Response times improved progressively with 
age up to adulthood which was simulated by starting with 
an overall higher rule firing time for the model of 6 year 
olds then reducing this for each later age group to 
approach the adult rule firing time. Rule firing time is 
considered the basic information-processing step in ACT-
R. Adjusting rule firing time seems a natural choice to 
obtain uniformly increased latencies across the whole 
model. Two variations using different set of values both 
yielded very good correlations with human data, but the 
model that also showed lower RMSD with the human 
data were 110, 90, 75, 55 and 45 ms for ages 6-10 
respectively.

Accuracy: Errors can be induced in the system either 
through changing utility values of the error productions 
(Seran, Pigot, Rialle, 2007) or through inducing more 
noise in the system (Rehling, Lovett, Lebiere, Reder, 
Demiral, 2004; Ritter, Schoelles, Klein, Kase, 2007; 
Jones, Ritter & Wood, 2000). For inducing noise, the 
settings tried for the ACT-R gain noise parameter were in 
the range 3 to 6. Also, it is reported in the literature that 
children tend to make more errors due to distraction from 
flankers (Mezzacappa, 2004) and hence competing 
productions with varying utility values were used to 
model various likelihoods of giving either a correct 
answer, a random response without checking or purposely 
giving an incorrect answer. Both methods were applied 
with similar effects on correlations and RMSD implying 
that either noise or competing productions might 
contribute to erroneous behavior; both modifications are 
equally plausible, however, with good empirical evidence 
for the latter competing productions were used in the 
models to simulate errorful performance. The utility 
values for rules giving a correct, random or incorrect 
response are 20, 5 and 8 respectively in the adult model. 
For 6 year olds the random response value with the best 
fit is 8 and 6 for all other age groups. Incorrect response 
utilities decremented from 13 to 9 for ages 6-10 
respectively. Correct responses held the adult value.

Alerting Network Efficiency: Alerting efficiency is 
higher up to age 9 reducing around age 10 and further still
for adults. Although the overall longer rule firing time has 
the effect of increasing the latencies of all the networks, 
in order to fit the data the alerting network needs to be 

slowed down further in the younger age groups indicating 
there is poorer alerting efficiency at this age. This is 
modeled by increasing the rule firing time for the 
production P1 responsible for giving rise to the effect of 
surprise when a stimulus appears without an alerting 
signal. The specific firing time for P1 is set to 55 ms for 
age groups 6-9 compared to 40 ms in the 10 year olds and 
adult models.

Orienting Network Efficiency: The overall increase in 
rule activation time matched the orienting network score 
of the model with the human data; therefore no other 
change was required.  Also the production that gives the 
effect of delay in the centre cue condition is not increased 
and takes the same time as the adult model (notice-
stimulus-with-centercue-and-shift [P5]. This leads us to 
infer that not only is the orienting network well developed
in the age groups modeled but also there is no effect on 
the capacity of shifting attention from the neutrally cued
location.

Validity and Disengaging Effect: Researchers have 
suggested that it would be interesting to assess the effect 
of invalid cueing in children (Mezzacappa, 2004). Though 
this is not tested in the child study (Rueda et al, 2004 our 
adult model includes the invalid cueing extension to task 
(Hussain & Wood, 2009) and so by default do the child 
models; the invalid cueing condition was run for each age 
group and the effect of disengaging on validity efficiency 
calculated using equation 4. 

Executive Control Network Efficiency: In Reuda et al’s 
study, 6 year olds are uniquely poor compared to other 
age groups. This age difference was investigated by 
changing the utility values of the two conflicting 
productions [P3] and [P4] that handle incongruency to 
increase the likelihood of choosing the slower, less 
efficient P4 rule; however this did not achieve the desired 
result. An alternative approach is to set the rule [P4], 
which requires the model to refocus every time a flanker 
is encountered, with a longer firing time.   For the model 
of 6 year olds only, the rule firing time for production P4 
was increased to 60 ms reflecting a slightly slower 
capacity to refocus compared to all other productions.

Results and Evaluation
The latency data, accuracy data, efficiencies and the 
possible interactions of the networks are given in detail 
below. A series of models were run for 12 subjects each 
to simulate the ages 6, 7, 8, 9 and 10. Adult human for 
ANT-C (Rueda et al, 2004) and model data (Hussain & 
Wood, 2009) is also reported for baseline values (see 
figure 2). Results from running the same model for the 
invalid cueing condition are also reported.

Latency Data As observed by the human study, the 
model response times incrementally improve for each age 
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group. The statistics of correlation on the mean response 
times over all model runs shows good correlations and 
RMSDs, as reported in table 1. Figure 2 shows the mean 
reaction times (RT) for the human study in each age 
group along with the simulated results from the ACT-R 
models. 

Accuracy Data As observed in the human study, the 
model error rate incrementally improved for each age 
group. However, when the results for each individual age 
group from the human study were observed closely it was 
found that for ages 7 and 8 the errors were higher in the 
neutral and congruent conditions as compared to the 
incongruent condition (Rueda, et al, 2004) which was not 
the case in the model data and therefore for ages 7 and 8 
there were negative correlations with the human data. The 
models incrementally show improvement in accuracy and 
a higher chance of error in the case of the incongruent 
condition. The models could have been fitted to simulate 
this anomaly; however, it did not seem logical to do so. 
The model is in line with child development literature 
which shows that children make more errors in the case of 
incongruency (Ahktar & Enns, 1989; Mezzacappa, 2004).
Further support for the model comes from a third 
experiment by Rueda et al (2004) involving 7 year olds.
Table 1 reports child data from experiment 3 for age 7.

Age Latency data Accuracy data
r RMSD r RMSD

6 0.79 34.7 0.93 1.28
7 0.92 34.4 0.86 1.02
8 0.88 52.5 -0.11 1.24
9 0.93 38.3 0.58 1.15
10 0.93 35 0.72 0.68

Table 1: Correlations and RMSD are used to show 
statistical fit of the model to the human data for age 
groups 6-10 years.

Efficiencies of Attentional Networks The efficiencies of 
the networks for each age group were calculated using 
equations 1-4. The efficiency data further validates the 
models by simulating similar values. As reported in the 
child study, alerting is much higher in the models for age 
groups 6-9; orienting scores do not show any significant 
difference across various age models; whereas executive 
control shows a high value for the model for age 6. The 
added finding using invalid cueing is that the validity 
effect is higher up to age group 10 with this increase 
mainly accounted for by a poorer ability to disengage 
from an uncued location. Correlations of the efficiencies 
of the networks of alerting, orienting and executive 
control of the model and human study for age groups 6-10 
and adult data is 0.9, 0.8 and 0.9 respectively.

Interaction of Attentional Networks Once the models 
were shown to be veridical simulations of child

Figure 2: Mean RTs for all age groups for human data and 
simulation showing decreased mean reaction times.

performance the interactions of the networks on each 
other were explored. Rueda and colleagues (2004)
reported no interaction effects in their paper. However, 
studies exploring interactions of networks in adults
(Callejas et al, 2004; Fan et al, 2009) show the alerting 
network has an inhibitory effect on congruency (in line 
with Posner’s idea of “clearing of consciousness” (Posner, 
1994, p7401)); in contrast orienting may have a 
facilitating effect (Callejas et al, 2004; Fan et al, 2009). 
So applying the formulae in equation 6 and 7, the effect of 
alerting on congruency was also explored for the child 
models. Similar equations measured the affect of cueing 
on congruency.

Effect of alert on cong      = (alert-incong – alert-cong)(6)
Effect of un-alert on cong=(nocue-incong–nocue-cong)(7)

The simulation of children’s performance produced an
inhibitory effect of alerting on congruency although of 
variable magnitude. This suggests that although the 
networks of alerting and congruency have slower 
efficiencies in the child models the interactions are similar 
to those produced in adult human studies. 

General Discussion and Conclusion
The work reported in this paper is based on a 
reimplementation of Wang & Fan’s (2004) model of 
attentional networks (Hussain & Wood, 2009) to simulate 
child performance in a study by Rueda et al, (2004), 
measuring various age groups on a child-friendly version 
of ANT (ANT-C) and projecting the trajectory of 
development of various attentional networks. The 
sequence of models simulates the child study findings 
well. The model fitting process in the light of relevant 
child development literature helps explain some of the 
observed age differences: (1) the overall increased 
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latencies are accounted for by slowing down the rule 
firing times of all productions, which means that children 
take more time to process in general and tend to make 
more mistakes; children make more commission errors, 
the ones due to confusion and distraction (2) alerting 
network efficiency is slower than that found in healthy 
adult studies simulated by slowing down the firing time of 
the rule which induces an element of “surprise”, so the 
ability to get alerted in the absence of a signal is slower in 
children under 10; (3) both orienting network efficiency 
and the ability to shift from center cue and move to the 
target location are at adult levels; (4) however, by 
simulating child performance after introducing an invalid 
cueing condition, a higher validity effect was found, 
improving up to age 10. This high validity efficiency was 
accounted for mainly due to slow disengaging ability, a 
component of orienting; (5) poor conflict resolution 
ability in age group 6 is due to a non-optimal refocusing 
ability when a distractor is selected; and (7) from the 
model results we conclude there is an inhibiting effect of 
alerting and facilitating effect of cueing on congruency in 
children as in adults (Callejas, et al, 2004; Fan et al, 
2009).
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Abstract 

In the field of cognitive science, the primary means of judging 
a model’s viability is made on the basis of goodness-of-fit 
between model and human empirical data. Recent 
developments in model comparison reveal, however, that 
other criteria should be considered in evaluating the quality of 
a model. These criteria include model complexity, 
generalizability, predictive capability, and of course 
descriptive adequacy. The current investigation seeks to 
formally compare three variants of a mathematical model for 
performance prediction. The results raise the issue of how to 
go about selecting a model when formal comparison methods 
reveal equivalent values. A possibility briefly proposed at the 
end of the paper is that cognitive/neural plausibility is an 
appropriate tiebreaker among otherwise equivalent functional 
forms.  

Keywords: Mathematical Model, Performance Prediction, 
Model Selection, Model Comparison, Cognitive Plausibility 

Introduction 

As common practice in the field of cognitive modeling, 
most modelers judge the explanatory power and descriptive 
adequacy of their models on the basis of goodness-of-fit 
measures comparing model predictions to human empirical 
data in each highly specialized task environment for which 
those models had been developed. It is far less typical to 
assess the generalizability or predictive power of a single 
model across multiple sets of data, tasks, or domains. It is 
also atypical for modelers to investigate substantive 
variations in the implementation of a single model, where 
multiple mechanisms could potentially achieve equivalent 
values in goodness-of-fit. Thus, the common practice of 
basing model performance on the goodness-of-fit criterion 
alone may lead a modeler to erroneously conclude that true 
underlying process regularities have been captured (Roberts 
& Pashler, 2000), which could in turn lead to faulty 
theoretical claims.  

To minimize this probability and to effectively evolve 
cognitive theory, the modeling community must conduct 
more thorough investigations of model instantiations, 
whereby selection should be based on formal comparison 
criteria. The most widely used means of model comparison 
is quantitative in nature, and is referred to as goodness-of-
fit, or descriptive adequacy. Assessment in this criterion 
includes optimizing model parameters to first find the best 
fit, and then choosing the model that accounts for the most 
variance in the data (typically calculated as root mean 
square deviation (RMSD) or sample correlation (R

2
). This 

practice is a critical component of model selection, but 
simply selecting a model that achieves the best fit to a 
particular set of data is critically insufficient for determining 

which model truly captures underlying processes in the 
human system. In fact, basing model selection on this 
criterion alone will always result in the most complex model 
being chosen, whereby overfitting the data and generalizing 
poorly could be very real problems, and interpreting how 
implementation ties to underlying processes may be all but 
impossible (Myung, 2000).  

The inclusion of additional qualitative model selection 
criteria (i.e., weighing the necessity of added parameters) 
helps overcome these pitfalls and improves our chances of 
selecting models that offer more insight into how human 
memory functions. Because complex models are more likely 
to have the ability to capture a particular set of data well, 
including the possibility of capturing noise, it is necessary to 
embody the principle of Occam’s Razor (William of Occam, 
ca. 1290-1349) in model selection tools by balancing 
parsimony with goodness-of-fit. This translates into 
accounting for both the number of parameters included in a 
model, and the model’s functional form, defined as the 
interplay between model factors and their effect on model 
fit.  

Take for example the following models, which include 
the same number of parameters, but differ drastically in 
their functional form: 

 
Model 1:  y = ax + b 
 
Model 2:  y = ax

b 

 
Model 3:  y = sin(cos ax)

a 
e(-bx)/x

b 

 

In this scenario, Model 3 should incur a greater penalty than 
Models 1 or 2 because of its functional complexity. Further, 
in order to justify the addition of parameters or the 
additional complexity in functional form, it must be shown 
that the inclusion of added parameters is necessary to 
explain the data and add substance to the underlying 
theoretical rationale.  

Additional helpful criteria for model selection are 
generalizability and predictive capability. These concepts 
refer to the ability for a model to make valid and accurate 
predictions outside the task or domain for which it was 
originally developed, thereby tapping into some meaningful 
account of true underlying processes (e.g., Cutting, 2000). 
These criteria have been shown to have an inverse 
relationship to model complexity, where more complex 
models tend to generalize to new data sets poorly because 
parameters were optimized to fit one set of data, resulting in 
an overfit to the data and absorption of random error 
(Myung, 2000). Thus, simpler, more parsimonious models 
often perform better in generalization and predictive 
capability evaluations.  
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In the current investigation, we examine and evaluate 
three variations of a mathematical account of a Performance 
Prediction Model (Jastrzembski, Gluck, & Gunzelmann, 
2006). The model is an extension of the General 
Performance Equation (Anderson & Schunn, 2000), and 
accounts for learning stability by balancing true time passed 
with training opportunities amassed. Given that no one 
model comparison technique incorporates all of the 
quantitative and qualitative inclusion criteria previously 
mentioned, we compare our model instantiations using the 
(1) Bayesian Information Criterion, which is sensitive to the 
number of parameters but insensitive to functional form, (2) 
Minimum Description Length, which is sensitive to both the 
number of parameters and their functional form, and (3) 
Cross-Validation, which provides a good measure of a 
model’s ability to generalize but has no sensitivity to the 
number of parameters or functional form. We have 
previously compared one instantiation of this mathematical 
model of the spacing effect with a computational model of 
the spacing effect (Pavlik & Anderson, 2005) using these 
comparison techniques, and found that the more 
parsimonious mathematical account should be selected on 
the basis of all of these evaluation techniques (Jastrzembski, 
2008).  

This current work extends previous research to investigate 
manipulations to the mathematical model itself, to evaluate 
the necessity of parameters with different functional forms 
as they relate to goodness-of-fit measures, model 
complexity, and predictive power. We elucidate the issue of 
which model to choose when goodness-of-fit, model 
complexity, generalizability, and predictive capability of 
competing models are equivalent, and additionally bring to 
bear the issue of cognitive and neurological plausibility – a 
more abstract, currently unquantifiable construct in the 
model selection literature, but no less important than any of 
the criteria used in formal model comparisons. In sum, this 
work discusses the quantitative and qualitative differences 
across model instantiations, and argues that such thorough 
examinations are useful for evolving cognitive theory. 

 

Performance Prediction Model  

 

The model builds upon the strengths of the General 

Performance Equation (Anderson & Schunn, 2000), which 

handles effects of recency and frequency very well. 

However, we sought to extend the equation to capture 

effects of spacing, while also providing flexibility and the 

additional capability for predicting performance at later 

extrapolated points in time. This equation is expressed as: 

 

Performance = 𝑆 ∙  𝑆𝑡 ∙ 𝑁𝑐 ∙ 𝑇−𝑑 ; 
     

 (Equation 1a) 

 

where free parameters include S, a scalar to accommodate 

any variable of interest, c, the learning rate, and d, the decay 

rate. Fixed parameters include T, defined as the true time 

passed since training began, and N, defined as the discrete 

number of training events that have occurred over the 

training period. The term St, defined in Equation 1b below, 

is short for Stability Term and is responsible for capturing 

effects of spacing by calculating experience amassed as a 

function of temporal training distribution and true time 

passed.  

 

St = 

 
 𝑙𝑎𝑔

𝑃
∙
𝑃𝑖

𝑇𝑖
∙
  𝑙𝑎𝑔𝑚𝑎𝑥 𝑖,𝑗

− 𝑙𝑎𝑔𝑚𝑖𝑛 𝑖,𝑗
  

𝑗
𝑖

𝑁𝑖
 ; 

 

(Equation 1b) 

 

where lag is defined as the amount of true time passed 

between training events and P is defined as the true amount 

of time amassed in practice. In the equation’s current form, 

experience and training distribution attenuate performance 

by affecting knowledge and skill stability at the macro-level 

of analysis.  

In the upcoming model comparison it is the St term that 

will be moved to different places in the equations to change 

their functional forms, and perhaps their theoretical 

implications. Before we move to the comparison, however, 

it is first necessary to illustrate the model’s viability as it 

appears in Equation 1a. 

Descriptive Adequacy across Test Harness of Data  

We have validated the descriptive adequacy and predictive 

validity of this mathematical model across multiple types of 

previously published datasets from the 

cognitive/experimental psychology literature. This includes 

studies of knowledge acquisition, knowledge retention, skill 

acquisition, and skill retention. We also have validated the 

Performance Prediction Model with more recent applied 

data coming out of a team coordination Unmanned Air 

Systems (UAS) Predator reconnaissance task from the 

Cognitive Engineering Research Institute, and finally, with 

F-16 simulator air-to-air combat data coming from the 

highly complex Distributed Missions Operations testbed at 

the Air Force Research Laboratory’s Mesa Research Site. 

Figures 1-4 provide a subset of our test harness data sets 

with model goodness-of-fit measures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Task deals with the study of foreign language 

vocabulary and long-term retention. The model achieved an 

RMSD of 1.2% and R
2
 = 0.98. 
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Figure 2. Task deals with retention of typing skills over 

periods of non-practice. The model achieved an RMSD of 

1.34% and R
2
 = 0.99. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Task deals with monotonic and nonmonotonic 

effects across four retention intervals (2, 8, 32, or 64 days), 

and five levels of spacing (repetition every1, 4, 5, 20, or 40 

trials). The model achieved an RMSD of 1.55% and R
2
 = 

0.96. 

 

 

 
 
 
 

10-14 week delay 

 

 

 

Figure 4. Task deals with a team of three individuals 

coordinating to complete five missions on the first day of 

training, then return 10-14 weeks later to perform an 

additional three missions, with the goal of flying a UAS and 

attaining pictures of targets. The model achieved an RMSD 

of 12.7 and R
2
 = 0.94. 

 
                 Team Performance in F-16 Simulator Missions 

                                           DMO Testbed, Mesa 

 

 
 

         3 month delay 

 

 

 

 

 

Figure 5. Task deals with a team of four pilots flying F-16 

simulators who fly missions for a week of baseline training 

and return three months later for an additional two days of 

training. Objective measurements of the number of times 

they violated enemy airspace were taken. The model 

achieved an RMSD of 0.004 and R
2
 = 0.96. 

 

In sum, the current instantiation of the mathematical 

model achieved excellent goodness-of-fit across tasks. 

Given the placement of the stability term in this model’s 

functional form, experience and training distribution may 

arguably attenuate learning and decay at the macro-level of 

performance analysis. We will next turn our attention to the 

relative descriptive adequacy of competing model 

instantiations, by shifting the stability term to other, 

theoretically-motivated locations. 

 

Goodness-of-Fit Comparisons Across Model 

Variations 

Pavlik and Anderson (2005) developed a computational 

model of the spacing effect in the ACT-R architecture, 

wherein they argued for an activation-based decay 

mechanism to variably adjust decay rates as a function of 

the activation value at the time of the presentation. This 

limits long-term benefits from further practice at higher 

levels of activation, and produces effects of spacing in tasks 

that are declarative memory dependent.  

The second instantiation of the Performance Prediction 

Model is inspired by Pavlik and Anderson’s model, and 

inserts the stability term directly into the decay parameter to 

approximate the activation-based decay mechanism (see 

Equation 2). 

 

Performance =  𝑆 ∙  𝑁𝑐 ∙ 𝑇−𝑑∙𝑆𝑡 ; 

(Equation 2) 

 

The third instantiation of the Performance Prediction 

Model receives its inspiration from the neurobiological 

literature, in which the timing and frequency of learning 

input determine whether long-term potentiation (LTP) or 

long-term depression (LTD) of neurons will occur (Dudek 

& Bear, 1992), which translates into stable or unstable 

knowledge, respectively. To approximate this theoretical 

perspective in our model, we distribute the stability term 

into both the learning and decay rate, as shown in Equation 

3. 

 

Performance =  𝑆 ∙  𝑁𝑐∙𝑆𝑡 ∙ 𝑇−𝑑∙𝑆𝑡 ; 

(Equation 3) 

 

Interestingly, goodness-of-fit measures across all three 

models and data are equivalent across the empirical datasets 

shown in Figures 1-3 (average R
2
 for Equation 1a = 0.977, 

Equation 2 = 0.971, Equation 3 = 0.975).  Differences arose, 

however, when examining the cases of the UAS Predator 

task and the F-16 DMO mission simulation. In those 

contexts, model descriptive adequacy was considerably 
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worse for Equation 2 (activation-based decay instantiation), 

revealing a loss in explanatory power of 12% (see Figures 6 

and 7). The nature of the discrepancy is that the model 

produces more forgetting during the lag periods than was 

observed in the human subjects and the model produces a 

greater degree of subsequent re-learning than was observed 

in the human subjects. Goodness-of-fit measures in these 

contexts were statistically equivalent for Equations 1 and 3 

however (R
2
 for Equation 1a = 0.928, and Equation 3 = 

0.925).   

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Activation-based decay model instantiation fit to 

UAS Predator Simulation task. The model achieved an 

RMSD of 30.6 and R
2
 = 0.75. 

 

 
Figure 7. Activation-based decay model instantiation fit to 

F-16 team training in the DMO testbed. The model achieved 

an RMSD of 0.018 and R
2
 = 0.91. 

 

This exercise reveals a very interesting finding. Had the 

model instantiations only been compared across the first 

three sets of data, all model instantiations would have been 

deemed equivalent as far as descriptive adequacy goes. Only 

when the models were fit to the more applied data, entailing 

longer periods of delay, were weaknesses in Equation 2 

revealed. In the next section, we will take our model 

comparisons to the next level, and compare them using  

three formal methods commonly used in the mathematical 

psychology community. Given the unacceptable level of 

descriptive adequacy in applied and relevant domains for 

Equation 2, we will omit this model from evaluation with 

the following comparison techniques. 

Additional Qualitative Comparisons Across Model 

Variations 

 

Bayesian Information Criterion (BIC) The goal of this 

comparison technique is to estimate a model’s ability to 

predict all future data samples from the same underlying 

process by penalizing added parameters weighed against 

goodness-of-fit across all datasets of interest. The algorithm 

for evaluation with this criterion is provided in Equation 4: 

 

𝐵𝐼𝐶 = −2 ln 𝑓 𝑦 𝜃  + 𝑘ln(𝑛); 
(Equation 4) 

 

where the first term of the equation refers to the maximum 

likelihood function of the model given its optimized 

parameters, and the latter term of the equation refers to the 

number of free parameters included in the model (see Table 

1 for breakdown of model parameters). The model that 

results in the lower BIC value is deemed the more 

parsimonious model to be selected. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Breakdown of parameter information fed into 

formal comparison techniques. 

 

With this comparison technique, both Equation 1a and 

Equation 3 reveal statistically equivalent values (BICEquation1 

= 26.72, BICEquation3 = 26.15), due to statistically equivalent 

goodness-of-fit values and an equal composition of free 

parameters. Therefore BIC adds nothing to our ability to 

make an informed decision concerning model selection in 

this particular case.  

 

Cross-Validation (CV) The motivation behind this 

technique is to select a model on its ability to capture 

behavior of unseen or future observations from the same 

underlying process (Browne, 2000). The method for 

evaluating the predictive accuracy of the model is to divide 

the available data into two subsets. The first subset is used 

for parameter calibration and the second subset of data is 

used for predictive evaluation. To conduct this analysis, half 

of the data points in each data set of our test harness were 

eliminated, and the models were calibrated with the 

remaining points. The algorithm for evaluation with this 

criterion is given in Equation 5, and the summary of the CV 

comparison is shown in Table 2: 

 

𝐶𝑉 = − ln 𝑓  𝑦𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛  𝜃 (𝑦𝑐𝑎𝑙𝑖 𝑏𝑟𝑎𝑡𝑖𝑜𝑛  ; 
 

(Equation 5) 
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Table 2. Cross-validation RMSD and R
2
 values across model 

variants, data sets, and summary measures.  

 

As revealed in Table 2, both Equation 1a and Equation 3 

generalized quite well, predicting the unseen or future data 

to a high degree of precision and achieving statistically 

equivalent correlations to human data of 0.916 and 0.924, 

respectively.  Based on this criterion, the decision to select 

one model over the other is again unresolved. We now turn 

to the final formal model comparison technique to evaluate 

our competing models. 

 

Minimum Description Length (MDL) This measure of 

complexity evaluates a given model on the basis of the 

encoding length necessary to fit or predict observed data 

(Grünwald, 2000), and identifies the model that provides 

reasonable fits to data most parsimoniously. The algorithm 

for calculating this criterion is shown in Equation 6: 

 

𝑀𝐷𝐿 = − ln 𝑓 𝑦 𝜃  +
𝑘

2
ln

𝑛

2𝜋
+ ln  𝑑𝜃 𝑑𝑒𝑡 𝐼 𝜃  ; 

 

(Equation 6) 

 

where both number of free parameters and the model’s 

functional form are penalized. 

Using this evaluation technique, Equation 1a results in a 

value of 8.07 and Equation 3 results in a value of 9.52. This 

is because Equation 3 distributes the stability term through 

both the learning and decay rate, whereas Equation 1a only 

incorporates the stability term in one location. Though 

Equation 3 resulted in a slightly worse value due to the 

added length of the equation, there were no added free 

parameters penalizing the model, so the MDL equation 

results in only a slightly higher score than Equation 1a. 

Thus, once again, the question of which model is the best 

selection remains unresolved. 

Discussion 

We investigated model viability on the basis of goodness-

of-fit, model complexity, generalizability, and predictive 

capability. We argue that all of these criteria are essential in 

helping guide the decision-making process for selecting 

among competing models and objectively determining 

which model most succinctly captures true underlying 

cognitive processes.  

We also argued that comparing different instantiations of 

a single model against itself can elucidate whether proposed 

mechanisms are necessary or viable. In this exercise, we 

shifted one parameter (the stability term) to theoretically-

motivated locations in our mathematical model, and 

discussed the potential ramifications on cognitive 

plausibility that could be made as a function of that single 

change.  

We found that one model variation (activation-based 

decay instantiation) was deemed to be descriptively 

inadequate when tested in applied domains over long lag 

periods, and we additionally found that the remaining two 

model variations, though different in functional form, were 

equivalent using criteria of descriptive adequacy, predictive 

power, and generalizability across tasks and domains.  

The issues that are raised by these findings include how to 

select a model when formal comparison methods reveal 

equivalent values, and additionally, how to bring the 

unquantifiable construct of cognitive plausibility into the 

decision-making process when all else is equal.  

The ultimate goal of a cognitive modeler is to push the 

science and advance cognitive theory, but if two models are 

objectively equivalent, provide theoretically plausible 

explanations of underlying processes, and provide good 

approximations of human learning, then where should a 

modeler turn? 

This is precisely our conundrum with Equations 1 and 3. 

We believe strong theoretical claims can be made for each 

model variation, so our future work will include identifying 

one or more critical experiments, perhaps incorporating 

longer lags between training events or even multiple blocks 

of training across repeated, extended lags, to systematically 

discern whether one equation will prove to win out and 

provide greater descriptive adequacy for explaining a broaer 

range of empirical data.  

Finally, we mentioned earlier that a motivation for the 

implementation of Equation 3 is the neurobiological 

literature on long-term potentiation and long-term 

depression at the neural level. As cognitive science 

continues its inexorable march toward clearer elucidation of 

the mind/brain relationship, it may very well be that 

cognitive/neural plausibility will prove to be an appropriate 

tiebreaker among otherwise equivalent functional forms. 
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Experiment 

Number of Data Points 

(Calibration/Validation) 

 

Equation 1 

 

Equation 4 

RMSD  R
2
 RMSD  R

2
 

Bahrick (1993) 4/3 2.83 0.92 2.53 0.93 

Bean (1917) 4/3 3.16 0.94 3.09 0.94 

Glenberg (1976) 10/10 4.05 0.89 3.98 0.90 

CERI (2005) 8/8 18.7 0.91 17.46 0.92 

DMO Testbed 5/4 0.011 0.92 0.011 0.93 

Totals/Averages 31/28 5.75 0.916 5.414 0.924 
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Abstract 

This paper responds to MacDonald and Christiansen’s 
(2002) experience-based account of subject vs. object 
relative clause processing based on Simple Recurrent 
Network simulations. They found that object-extracted 
relative clauses exhibit performance penalties that are 
absent in subject relative clauses, and more so in less 
trained networks. Whereas MC argue that their finding 
reflects a differential amount of word order regularity in 
subject- vs. object-extractions, a detailed analysis of the 
word-by-word output-activation pattern suggests that it is 
caused by the network failing to distinguish verbs from 
the relative pronoun that during early training epochs. 
This interpretation is supported by other aspects of the 
activation pattern that indicate incomplete grammar 
acquisition. Nevertheless, the results point at a viable 
source of complexity in sentence processing. 

Introduction 

Relative Clauses and working memory 
The contrast between Subject-extracted (2) and 

Object-extracted relative clauses (1) is the poster child 
of working-memory oriented psycholinguistics. 

(1) The reporter who the senator attacked admitted 
the error (ORC) 

(2) The reporter who attacked the senator admitted 
the error (SRC) 

Subject-relative clauses (SRCs, 1) are generally 
easier to process than object-RCs (2), and more notably 
so for readers with a low reading span (King & Just, 
1991). Among the multitude of models, two 
fundamentally opposing frameworks have been most 
prominent: retrieval-based working memory models, 
(eg. Just & Carpenter, 1992, Gibson, 1998, Gordon et 
al., 2004, Vasishth & Lewis, 2005), and experience-
based models, such as probabilistic parsers (Hale 2001, 
Levy, 2005) and connectionist models, most notably 
that of MacDonald and Christiansen (2002). Their 
model is based on Simple Recurrent Networks (Elman, 
1990). SRNs acquire implicit grammatical knowledge 
when they are trained on linguistic corpora. Crucially, 

they lack a clear distinction between linguistic 
knowledge, processing, and a knowledge-free notion of 
a working memory and its capacity. In MCs’ SRN-
based approach, the complexity difference between 
Subject and Object-RCs can be attributed to the 
differential degree of word-order regularity exhibited 
by SRCs and ORCs. Subject-RCs match the 
predominant subject-verb-object (SVO) word order of 
simple main clauses. Object-RCs, on the other hand, 
show an irregular O-S-V order. Processing SRCs hence 
benefits from “regular” word order expectations being 
transferred from main clauses, whereas no such transfer 
is made for ORCs. Therefore, SRCs are easier to 
process than ORCs despite the relatively low frequency 
of relative clauses in general. These predictions were – 
in principle at least – confirmed by MC’s simulations 
with Simple Recurrent Networks. These networks were 
trained in three epochs of 10000 random sentences 
each. Because SRCs were easy even in the earliest 
training epoch, only ORCs benefited from more 
training. The resulting grammatical error pattern shows 
striking resemblance to the reading times of the 
different span groups of King and Just (1991). 
MacDonald and Christiansen (2002) hence attribute the 
differential performance of span-groups to their 
respective amount of linguistic experience rather than 
differences in working memory capacity. Basically, 
they reveal a – this time word-order-based – frequency 
(amount of training) x regularity (i.e. transfer from 
predominant order) interaction comparable to what has 
been demonstrated for other connectionist models in a 
variety of domains (e.g. Seidenberg & McClelland, 
1989). 

In this paper, we will show that MC’s critical results 
can be attributed to a fundamental part of speech 
classification error due to insufficient learning in early 
epochs. We will argue however that the underlying 
mechanism of interference by locally coherent 
predictions might very well be a valid predictor for 
processing complexity. 
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SRNs and sentence processing 
SRNs have successfully been demonstrated to be 
capable of implicitly acquiring limited recursive 
“grammars” (e.g. Elman, 1991; Christiansen & Chater, 
1999). They do so by learning to predict the next word 
when presented with sentences word-by-word at the 
input. In the SRN architecture, there is a hidden layer 
that receives combined activation from the input layer 
and the context layer, which holds the content of the 
hidden-layer at the previous cycle. Using the standard 
back-propagation algorithm, the prediction-error, 
reflecting the deviance of the predicted activation 
pattern from the actual next word pattern, is used to 
adjust connection weights throughout the network back 
to the input layer. Eventually, after thousands of 
learning cycles, the SRN performs reasonably well even 
on sentences that it has never seen before. At this point, 
SRNs can be demonstrated to have classified words into 
their syntactic categories and possibly even into more 
fine-grained semantic distinctions (Elman, 1990). SRNs 
have repeatedly been demonstrated to be able to acquire 
an implicit recursive grammar (Elman, 1991, 
Christiansen & Chater, 1999).  

As a measure of the grammatical viability of the 
network’s predictions, output vectors are compared to 
grammaticality vectors calculated from the underlying 
context free grammar used to generate the training set. 
Each unit corresponds to a lexicon entry (word) and 
carries its grammatical probability in the context of the 
previous words in the sentence. For instance, if there 
are two grammatical continuations, both equally likely, 
the corresponding units both have a probability of 0.5 
and should hence receive 50% of the output activation 
each.  

Deviation from this activity pattern increases the 
grammatical prediction error (GPE). The GPE is a 
global error measure (i.e. the specific errors on each 
output unit are collapsed into a single value) ranging 
from zero to one, with zero meaning a perfect 
prediction of all grammatical continuations, and one 
meaning that all activation is on ungrammatical units. 
To achieve this, the GPE is computed from hits 
(summed activation on correctly predicted, grammatical 
nodes), false alarms (summed activation on incorrectly 
predicted, ungrammatical nodes) plus misses (sum of 
differences of desired and actual activity on 
grammatical nodes, if positive, weighted by the amount 
of total output activation), as specified in (3). 

(3)   

A GPE decreasing over several training epochs 
reflects the network’s ongoing acquisition of implicit 
grammatical knowledge.  

MC used the GPE to predict on-line processing load, 
with GPEs being directly proportional to reading times. 

Unfortunately, they restricted their analyses to global 
error (GPE) patterns. However, the GPE as a global 
measure can reflect two independent properties of the 
networks: i. how well the networks have learnt the 
grammar underlying the training corpora, and ii. on-line 
processing difficulty. MC clearly focused on the second 
aspect, implicitly presuming that grammar acquisition 
even after the earliest training epoch has reached a 
mature enough stage to be compared to adult 
participants in reading studies. However, until more 
fine-grained analyses have been carried out, the source 
of the errors remains obscure.  

What’s in an error? 
False alarm activation can indicate a. the lack of 

adequate knowledge about word categories and the 
constructions they can appear in, or b. the interference 
induced by locally coherent continuations, ignoring the 
global context they appear in. We will show that strong 
but globally inconsistent local dependencies can distract 
from globally grammatical predictions, even in 
networks that have sufficiently learnt to classify words 
along syntactic categories. 

We present detailed analyses of a. the output 
activation patterns in our replication of MacDonald and 
Christiansen’s SRNs, and b. multi-dimensional scaling 
results of average hidden layer activations1.  

SRN simulation 
The SRNs were built from thirty-one units each in the 

input and the output layer, and sixty units each in the 
hidden and the context layer. Like MC (2002), we 
trained ten SRNs with ten different corpora. The 
corpora were generated from a 30 word vocabulary plus 
the end of sentence marker (EOS) fed into a 
probabilistic context free grammar. Ten percent of the 
NPs were modified by relative clauses2, regardless of 
their position in the sentence. Half of the RCs were 
SRCs (25% transitive and 25% intransitive) and the 
other half ORCs (transitive only). RCs were both 
center-embedded or right branching. One half of the 
verbs were in the present tense, the other half in the past 
tense. The present tensed verbs agreed in number 
(singular or plural) with their clausal subject, past 
tensed verbs fit with both singular and plural subjects. 

                                                             
1 We did not have access to MCs networks and data except for 
the summarized output activities. We therefore had to 
replicate their results before we could start analyzing hidden 
layer activities. 
2 The probabilities differ slightly from those published in the 
article, because we rather used the numbers of the actual 
original grammar generator that M. Christiansen has provided 
to us. Our test revealed the same basic activation patterns with 
either set of values. 
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Each training corpus contained 10,000 sentences, 
resulting in an epoch of about 55,000 sweeps (words) 
on average. The learning rate was set to .1, and there 
was no momentum. Cross-entropy was used to calculate 
the error used by the backpropagation learning 
algorithm. The test sentences were not included in the 
training corpus. 

Results 
There are two positions of interest with high GPEs: 

the embedded verb in ORCs and the matrix verb in both 
ORCs and SRCs. The most interesting spot in ORCs is 
the embedded verb, where the largest portion of 
experience-based variance was obtained in MC’s 
networks, motivating the frequency x regularity 
interpretation. 
Embedded verb in ORCs 

In ORCs, the embedded verb follows a “NP–that–
NP” sequence. After the first training epoch, the 
element most active here, quite surprisingly, is the end 
of sentence (EOS, see figure 1). This prediction is 
clearly ungrammatical, because neither the matrix 
clause nor the RC received a verb yet. In the second 
epoch, the prediction of an EOS has been strongly 
reduced, while the correct predictions of verbs with the 
right number marking were increased. This trend 
continues until the third epoch, where there is virtually 
no activity left for EOS. As for the verbs, it should be 
easy to establish the agreement between the NP and the 
verb, since both are adjacent in ORCs, as they are in 
main clauses. Surprisingly, it takes three epochs to learn 
this dependency to an adequate extent. 
 

  
Figure 1: Mean output activations and grammatical 

probabilities at the embedded verb in ORCs, for three 
training epochs. Whiskers indicate standard errors. 

Matrix verb 
The second position at which a sentence-type x 

experience interaction was established in MCs 
simulations is the matrix verb. Moreover, GPEs on the 
matrix verb were high for both SRCs and ORCs. The 
results seem to fit King and Just’s (1991) reading data 
in as much as reading times were also highest at this 
point in both SRCs and ORCs, with a slight advantage 
for SRCs. Nevertheless, while reading times at the 
matrix verb after ORCs showed the highest variability 
for readers of different span groups, the GPEs for ORCs 

in the network simulations varied not nearly as much at 
the matrix verb as on the embedded verb3.  

We examined the activation patterns at the matrix 
verb after both SRCs and ORCs, since both exhibit 
extremely high GPEs (between about .55 and .88). 

SRCs. The detailed output vector analysis revealed 
that the GPE is based on one major false alarm 
component. In SRCs (figure 2), after a verb-NP 
sequence, the high GPE was based on false activation 
of the EOS, which did not change substantially over 
epochs. 

 
Figure 2: Mean output activations and grammatical 

probabilities at the matrix verb after SRCs, for three 
training epochs. 

 
Figure 3: Mean output activations and grammatical 

probabilities at the matrix verb after ORCs, for three 
training epochs. 

 
ORCs. After ORCs, following a NP-verb sequence, the 
only grammatical continuation is the matrix verb. 
Activation on all other words is a false alarm. Note that 
in the first epoch, the sum of false alarms is about 80%. 
The activation pattern reveals that the high GPE was 
due to one of the following two major false alarm 
components:  

1. The false prediction of a determiner, indicating 
the prediction of another NP following the verb. 
This error dramatically decreased over the three 
epochs, but was still present even in the third 
epoch. 

2. The false activation of EOS, which even grew 
slightly in the third epochs. 

                                                             
3 However, the reading data on the matrix verb can be 
explained by a spill-over from the embedded verb, something 
that can quite regularly be observed in reading data. This 
dissimilarity between reading and simulation data should 
therefore not be taken too seriously. 
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Discussion  
Embedded verbs 

The activation patterns reveal that the high GPE at 
the embedded verb in ORCs during the first and the 
second epochs is mainly due to an ungrammatical 
prediction of an EOS. The remaining activation of the 
verbs shows that the networks have, at the same time, 
learned intra-RC number agreement, if not perfectly. 
How can this pattern of results be explained? 

The EOS prediction is also high after SRCs following 
the sequence NP-that-verb-NP. Note that about half of 
the sentences end after the RC, namely when the RC 
modifies the Object-NP in transitive main clauses. The 
high false EOS prediction might thus be due to locally 
predicting the sentence ending, despite the context of a 
Subject-NP modifying center-embedded sentence. 

Back to the embedded verb in ORCs. Here, NP-that-
NP, and …that-NP is certainly not a good sentence 
ending. Two simple hypotheses can be ruled out fairly 
quickly. First, since about half of the sentences end with 
an NP, it might be just the NP that makes a good EOS 
in early training. Secondly, the prediction of the EOS 
might just reflect that with each additional word, the 
likelihood of an EOS increases. 
 

 
Figure 4: Output activaton of EOS at each position in 

sentences with ORCs, for three training epochs. 
 

Figure 4 shows the activation of an EOS throughout 
the entire sentence. There is clearly little activation after 
the first NP, ruling out the first hypothesis. Moreover, 
there is a clear peak at the embedded verb, the matrix 
verb and the following determiner, whereas the 
subsequent noun shows almost zero EOS activation. An 
implicit counting mechanism that predicts increasing 
EOS activity with each step further downstream can 
hence be ruled out.  

We want to pursue a third hypothesis: The network 
has not yet classified the relPro that correctly after the 
first epoch and confuses it with verbs. Note that the 
sequence NP-that-NP shares some distributional 
properties with regular transitive main clauses. The 
training corpora contained both simple main clauses 

and sentences with one or more RCs, most of which 
were center-embedded, i.e. modifying the first NP. All 
sentences started with an NP. The next word could 
either be a verb, or the relative pronoun that. Both were 
often followed by another NP, as i. transitive verbs in 
main clauses are followed by the direct object, and ii. 
the relative pronoun is followed by the subject-NP in 
ORCs. Due to this distributional resemblance, it seems 
reasonable that in early epochs, the networks are bad in 
distinguishing NP-verb-NP sequences from NP-that-NP 
sequences, or, to put it more simply, they confuse the 
relative pronoun with transitive verbs, at least in the 
local context of one NP to the left and one NP to the 
right. Hence, at the acquired level of grammatical 
knowledge, the EOS appears to be a feasible 
continuation for NP-that-NP, since it appears to mark 
the end of a simple transitive SVO main clause4. 

With more training, the networks slowly adapt to the 
fact that the relPro and verbs are not distributionally 
equivalent when a wider context is taken into account. 

To substantiate this claim, we analyzed the hidden 
layer activities for all words in the corpus. There have 
been several proposals for analyzing distributed 
representations in neural networks, such as cluster 
analysis (Hinton, 1988), principle component & phrase 
state analysis (Elman, 1989), skeleton analysis (Mozer 
& Smolensky, 1989), contribution analysis (Sanger, 
1989), which make the networks’ representations and 
behavior more transparent. Since we are interested in 
how the SRNs have classified words, we analyzed 
hidden layer activities for each word averaged over test 
runs of one thousand random sentences. We present 
multi-dimensional scaling (MDS) data illustrating the 
internal grouping of words and indicating scaled 
euclidean distances between individual words (word 
groups). All stress values were below 0.1. 

If the confusion of relPros and verbs is responsible 
for false EOS prediction, the hidden layer activations of 
relPros and verbs should be more similar in the first 
epoch than in later epochs. 
Results 

As figures 5 and 6 illustrate, euclidean distances 
between the relPro that and transitive verbs change 
considerably between epochs. The relPro is thus much 
more similar to verbs, especially transitive verbs, after 
the first training epoch than it is after the third, where 
                                                             
4 There is even more distributional overlap between relpros 
and verbs: In SRCs, the relative pronoun that is immediately 
followed by a verb. However, even this local sequence is 
locally consistent with the verb classification of that, since in 
sentences with ORCs, the matrix verb immediately follows 
the embedded verb (it even follows a NP-verb sequence!). 
NP-that-verb-NP sequences are hence locally consistent with 
both the verb reading of that, since there is a NP-verb-verb-
NP sequence contained in sentences with ORCs, and with the 
correct relative pronoun reading of that. 
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that builds an outlier categorie of its own. The hidden 
layer activities support the confusion hypothesis: After 
the first epoch, average activities of relPros resemble 
those of verbs much more than after the second and the 
third epoch.  

 
Figure 5: MDS plot of average hidden layer 

activations after epoch 1 

In fact, relPros resemble transitive verbs more than 
intransitive verbs. These data clearly suggest that the 
biggest part of what is gained from training is the 
substantially better classification of the relPro. On the 
other hand it is also clear that relPros are not generally 
classified as verbs even in the first epoch. However, the 
hidden layer analyses reflect averaged hidden layer 
activities at the moment when the word is at the input, 
not after the entire NP-that-NP sequence.   
 

 
Figure 6. MDS plot of average hidden layer activations 

after epoch 3 

Discussion of matrix verb results 
The results on the matrix verbs strongly suggest that 

the GPE is mainly based on one or two false alarm 
components for SRCs and ORCs, respectively. In both 
sentences, the EOS is a major false alarm component. 

In SRCs, the EOS-prediction follows a …-
verbtransitive-NP sequence. Expecting an EOS here is 
locally legitimized by the word order in transitive main 
clauses, which end here in the majority of the cases. 
The false EOS prediction appears to be stable, and 
would probably survive even more training epochs, 
even though the activation of correct verbs is 
continuously growing throughout the epochs. These 
data suggest that the main reason for long reading times 
on matrix verbs in center embedded sentences is that 
readers, even the most experienced ones, expect the 
sentence to end here about as much as they expect a 
correct matrix verb. In the absence of further empirical 
data, we resort to questioning this empirical prediction 
on the grounds of plausibility. We are convinced that 
adult readers, even less experienced ones, would be 
quite surprised if the sentence ended after a simple 
center-embedded RC. 

In ORCs, both false alarm predictions of the 
determiner and the EOS prediction follow a …-NP- 
verbtransitive sequence. In this local context, the 
prediction of the determiner is legitimized by the word 
order in simple transitive main clauses, where verbs are 
followed by an NP. As in SRCs, this prediction 
indicates that, to a substantial degree, the networks 
ignore the fact that the RC is sub-ordinate. Contrary to 
the stable EOS prediction in SRCs however, the 
determiner prediction shrinks over time, indicating that 
the networks learned to widen their contextual window. 
The decreasing amount of false alarm activation is 
responsible for the global GPE reduction at the matrix 
verb. Although it appears odd that adult readers would 
run into this local trap, this result is modestly consistent 
with MCs frequency x regularity interpretation.  

The false prediction of an EOS at this position seems 
a bit puzzling at first glance. The embedded verbs used 
here are transitive, as they have to combine with an 
object-NP in the test sentences. Even if the networks 
pursue a main clause analysis, they should predict a NP, 
but rule out an EOS. However, half of the transitive 
verbs used (phones, phone, phoned, understands, 
understand, understood) were also used as intransitives. 
It seems likely that the averaged GPEs are based on 
false predictions due to these verbs. A more detailed 
analysis, distinguishing strictly transitive and optional 
transitive verbs could clarify this issue. Also note that 
the false prediction of an EOS increases with 
experience. So the most experienced networks, and 
hence high span readers, are predicted to not really be 
surprised if the sentence ends after a center-embedded 
ORC. Once again, we are skeptical about this 
hypothesis. 

In all cases, locally coherent continuations have 
distracted the network from the global necessity of a 
matrix verb at this position. More generally speaking, 
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locally consistent false alarms were identified as the 
main source of processing difficulty.  

Conclusion 
We have argued that when predictions derived from 

connectionist models are presented, global error 
measures must be accompanied with detailed analyses 
of the output activation vectors to understand the source 
of the errors in the networks. A detailed analysis of 
false alarm components can hint at substantial 
acquisition deficits at the current stage of learning and 
at simulation artifacts caused by the choice of the 
grammar that the training corpora are generated from. 
In the present case, MC’s networks were shown to 
make unrealistic continuation predictions based on 
classification errors (the relative pronoun that is 
considered a verb). However, identifying a flaw in a 
particular simulation hardly renders a general 
hypothesis invalid. Experience is a likely source of both 
construction specific complexity and inter-individual 
variation, and empirical support is beginning to 
materialize. For instance, Wells, Christiansen, Race, 
Acheson, and MacDonald (2009) showed that 
processing of relative clauses, and especially of ORCs, 
can be improved by training with RCs.  

The activation analyses also revealed that the main 
source of complexity is the distraction induced by 
locally coherent continuations. Are adult language 
processors distracted by such false alarm predictions? 
Again, empirical support is beginning to surface. Tabor, 
Galantucci and Richardson (2004) provided data 
indicating that locally coherent but globally incoherent 
fragments can distract attention from the globally valid 
analysis in ambiguities. Konieczny (2005) revealed that 
syntactic errors produced by adding locally coherent 
words to a sentence were harder to detect than errors 
induced by locally incoherent words. Konieczny, 
Müller, Hachmann, Schwarzkopf and Wolfer (2009) 
showed in visual-world eyetracking experiments that 
local coherences are being interpreted during speech 
processing. Despite their misleading results, MC’s 
approach helped identifying a fundamental processing 
phenomenon: interference by local coherences. 
Empirical data showing local coherence effects in real 
language processers provides support for the 
connectionist framework as a whole. 
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Abstract

A model that tackles the Multiple Object Manipulation task
computationally solves a higly complex cognitive task. It
needs to learn how to identify and predict the dynamics of
various physical objects in different contexts in order to ma-
nipulate them. MOSAIC is a model based on the modularity
hypothesis: it relies on multiple controllers, one for each ob-
ject. In this paper we question this modularity characteristic.
More precisely, we show that the MOSAIC convergence dur-
ing learning is quite sensitive to parameter values. To solve
this issue, we define another model (CARMA) which tackles
the manipulation problem with a single controller. We provide
experimental and theoretical evidence that tend to indicate that
non-modularity is the most natural hypothesis.

Keywords: motor control; MOSAIC; CARMA; modularity;
internal representation; neural network.

Introduction
There is, in the world, an infinity of objects with different
physical behaviors. Despite this variability, humans can ma-
nipulate them with ease, from light origamis to heavy cups.
For a given goal position, how do they select the correct force
to apply? How are they able to accurately predict the dis-
placements resulting from the applied forces? These two
questions are central in object manipulation: control and pre-
diction, respectively. If the physical characteristics of objects
and their identity are known, or if there is a single object,
this problem is easy to model and solve. Indeed, the dynam-
ics of physical bodies are well described by Newton’s equa-
tions. Given the starting position, and the applied forces, it is
straightforward to compute the resulting trajectory.

The problem becomes much more difficult if the objects
are numerous, and of unknown physical parameters. We call
this the Multiple Object Manipulation task (MOM).

It is thought that natural cognitive systems are able to solve
this problem because they are capable of good predictions in
uncertain and unstable environments. Modeling this ability
can provide insights and a better understanding of the possi-
ble brain structures involved in the process (Kawato, 2008).
This has lead Gomi and Kawato to propose the MOSAIC
model (MOdular Selection And Identification for Control)
(Gomi & Kawato, 1993). This model solves both problems of
object identification and object control simultaneously. The
key feature of MOSAIC is that it uses neural networks in a
modular way. In other words, the system has multiple distinct
neural controllers, one for each object. It is able to choose

which controller to use in order to manipulate an object, even
without knowing the object identity explicitly.

The structural matching between object and controller, in
MOSAIC, is a very strong hypothesis, that we question in
this paper. To do so, we developed another model, CARMA
(Centralized Architecture for Recognition and MAnipulation)
which solves the same problem as MOSAIC but in a non-
modular way. By comparing the properties of MOSAIC and
CARMA, we study the object–controller coupling in both
a theoretical and experimental manner. More precisely, we
show how object specialization in MOSAIC is actually quite
sensitive to the learning parameters, and how CARMA avoids
this issue.

The rest of the paper is organized as follows. We first de-
scribe the experimentation framework, as well as the MO-
SAIC and CARMA models. Our experiments begin with a
validation of the capacity of both models to solve the MOM
task. We then study the way it is solved in more detail, par-
ticularly regarding the controller specialization in MOSAIC.
We finally show how the notion of object is encoded as part
of the network activation structure in CARMA.

Experimental framework
We replicate the task defined by Gomi and Kawato (Gomi
& Kawato, 1993) and applied in their subsequent papers
(Wolpert & Kawato, 1998; Haruno, Wolpert, & Kawato,
2001), as closely as possible. It is the simulation of an arm
that moves an object on a one-dimensional axis. The task is
to move the object according to a given trajectory: the simu-
lation has to choose, at each time step, a force to apply to the
object.

The task becomes a MOM task when the object to be
moved is changed at a fixed frequency during the simulation,
and this change occurs in a single time-step. The amount
of information available to the system is quite limited: the
physical characteristics of the various objects, and the change
frequency are unknown. This turns a simple linear equation
system into a difficult cognitive task. Fig. 1 shows an example
of the task.

In the simulation, any physical object is treated as a
damped spring-mass system. Each object is thus defined by 3
parameters (M,B,K), with M the mass, B the viscous damp-
ing coefficient and K the spring constant.
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Figure 1: A sample desired trajectory to be followed (light)
and the actual trajectory (dark) plotted against time.

Figure 2: Global structure of MOSAIC with three controllers.

Time is treated as a discrete variable. We will use the fol-
lowing notations: for a given time index t, xt is the object po-
sition, x̂t the estimated object position, ẋt is the object speed,
Ot is the object identity, xdt is the desired position, ut is the
applied force, and ût is the estimated applied force.

A very simple plant model is used to compute, at each time
step, the actual movement of the presented object Ot under
the applied force ut :

xt+1 =
dt
M

(
ut +

(
M
dt
−B

)
ẋt −Kxt

)
. (1)

It is the only part of the simulation that actually knows the
characteristics (M,B,K) of the objects Ot .

The MOSAIC model
The main idea of the MOSAIC model is to use multiple par-
allel controllers, each one suited for each particular object.
Each controller is divided into three modules: the first en-
codes a Direct model, the second encodes an Inverse model
and the last is a Responsibility Predictor, and is used to take
into account visual information. Each of these modules is
implemented using artificial neural networks (ANN).

Multiple controllers
At the highest level, the MOSAIC architecture is illustrated
Fig. 2. Each controller is designed to predict the behavior of a
particular object, but the actual control is done by all of them.
At each time step, the responsibility of each controller is es-
timated. These responsibilities reflect the controllers’ abili-

ties to predict adequately the behavior of the current object.
They are used in 2 ways: first, they weigh the contribution
of each controller towards the final command (the controllers
that predict well have greater control over the object), and
second, they weigh the learning rate of each controller (the
best predictors learn more and learn faster).

The responsibility λi
t of the i-th controller is computed by

comparing the current position xt with the position x̂i
t esti-

mated by controller i, as follows (Wolpert & Kawato, 1998):

λ
i
t =

e−(xt−x̂i
t )

2/σ2

∑
n
j=1 e−(xt−x̂ j

t )2/σ2
, (2)

with σ a scaling parameter of this soft-max function.
Because the sum of all responsibilities is 1, they can be

interpreted as probabilities: λi
t is the probability that the i-th

controller is the best one to control the current object, accord-
ing to the prediction errors. The σ parameter then regulates
the competition between controllers.

Since the responsibilities gate both learning and forces,
they are the heart of MOSAIC. The controller which was the
best at predicting the object trajectory will have the highest
responsibility, will learn more about controlling this object,
which will help it predict more accurately, etc. Theoretically,
it is supposed to make every controller specialize and con-
verge to being the controller of a specific object.

Controller architecture
Each controller includes a Direct and Inverse model for a
given object. The Direct model F predicts the future posi-
tion given the current position, current speed and last applied
control, while the Inverse model G computes the command
to apply to go from a current position and speed to a desired
future position:

x̂t+1 = F(xt , ẋt ,ut) , (3)
ût = G(xt , ẋt ,xdt+1) . (4)

Each is implemented using linear ANNs (without hidden
layers), with 4 nodes each. Indeed, for a single object, they
approximate very simple equations with two unknown quan-
tities and three parameters (M,B,K). The task of the Back-
propagation algorithm is to adapt the weights of the network
to give an implicit approximation of these parameters.

Visual modality
So far, the responsibilities are only based on the controllers’
prediction error: it is feedback of a purely motor nature.

To more closely approximate the cognitive task of object
manipulation, a third module is added to each controller, the
Responsibility Predictor (RP), which simulates feedforward
visual information. A visual representation is added to each
object, in the form of a 3×3 matrix Mv of boolean pixels. The
role of the RP is, given this visual representation, to predict
the responsibility λ̂i

t of its controller before any motion is per-
formed. This feedforward responsibility estimation is merged
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Figure 3: Global structure of the CARMA model. The direct,
inverse and context predictor modules are four-layer MLPs.

with the motor feedback, and the responsibilities of Equation
(2) are replaced by:

λ
i
t =

λ̂i
t × e−(xt−x̂i

t )
2/σ2

∑
n
j=1 λ̂

j
t × e−(xt−x̂ j

t )2/σ2
. (5)

The CARMA model
The global CARMA model takes the same inputs as MO-
SAIC (xt , ẋt ,xt+1,ut ,Mv), and is essentially structured like a
single controller of MOSAIC (see Fig. 3): it is made of three
modules, which are a Direct model, an Inverse model and a
Contextual Predictor (CP). Each of these thus encodes knowl-
edge relevant to several objects: therefore, they are more
computationally complex than in MOSAIC. Whereas in MO-
SAIC, each module of a controller could be a linear ANN, in
CARMA, each module is a four-layer Multi-Layer Perceptron
(MLP), with an input layer, an output layer, and two hidden
layers (with 10 and 2 nodes for the Direct and Inverse models,
10 and 5 nodes for the RP; the full CARMA model we used
thus had 96 nodes).

Direct and Inverse models
The Direct and Inverse models have the same outputs as in
MOSAIC, and the same inputs, augmented with two 3×3 ma-
trices, which represent the actual visual input (real context)
and the estimated visual input (estimated context). The real
context input is the visual representation Mv of the manipu-
lated object. Given the same input position, speed and force,
this enables the Direct and Inverse models to output differ-
ent values for different objects, according to this contextual
input.

Context Predictor
The purpose of the CP is to identify the manipulated object,
based on its dynamics. It uses motor feedback information to
predict what should be the visual representation of the manip-
ulated object. This estimated context can then be compared

!

Figure 4: Solving the manipulation task with CARMA, be-
fore learning (left) and after learning (right). Three objects
are switched every 20 time steps.

with the actual visual context; this comparison and the result-
ing difference drives the learning phase of CARMA. After
convergence, this difference becomes very close to zero: the
estimated and real context are almost always equal to one an-
other.

In some experiments, we also used the difference between
the real and estimated contexts as a mechanism to handle il-
lusions, where the system was fed a visual input which cor-
responded to a different object than the one actually manipu-
lated. However, the details of these experiments are beyond
the scope of this paper.

Experiments
In this section we first show that both systems can handle and
solve the MOM task. We then analyze in more detail the way
MOSAIC solves it. In particular, we show that MOSAIC’s
controllers do not become specialized for specific objects, ex-
cept in special cases. We then study the mechanisms involved
in CARMA for solving the MOM task.

Solving the task: experimental validation
MOSAIC and CARMA can both solve the MOM task with-
out any problem. In Fig. 4 the results were recorded from
CARMA controlling a set of 3 different objects, before and
after the learning phase. Similar plots, obtained with MO-
SAIC, are not shown.

In order to prove that learning how to manipulate one ob-
ject is not sufficient to manipulate all of them, we trained both
systems on one given object, and, after convergence, gave
them a different object (test object). We observed very low
performance overall, as expected.

However, two cases could clearly be identified. If the sys-
tem was trained on a lighter object than the test object, it
would subsequently generate insufficient forces during test,
which would not displace sufficiently the test object: the gen-
eral trends of the trajectory would be followed, with large
errors, large delays and slow convergence to the trajectory
(Fig. 5, top). On the other hand, if the training object was
heavier than the test object, the system would subsequently
generate excessive forces, which would lead to overshoots
and oscillating behaviors(Fig. 5, bottom). This was observed
both in MOSAIC and CARMA.
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Figure 5: Using the learned controllers for an unknown, test
object (from time step 50 to 100) either leads to damped and
delayed control (top) when the test object is lighter, or oscil-
lations (bottom) when the test object is heavier.

MOM with multiple controllers: MOSAIC
We then studied the behavior of MOSAIC for a MOM task.

The MOSAIC model relies on the property that, after con-
vergence, each controller is specialized, in the sense that it
should be responsible for the control of one and only one ob-
ject. This property is well described (Haruno et al., 2001),
but, unfortunately, we were not able to replicate it reliably.
Indeed, according to our simulations, this specialization is not
systematic: most of the time, it does not occur.

In typical cases, we observed that one controller acquires
a large responsibility over all the objects, even if they have
widely different physical characteristics (M,B,K). For in-
stance, we presented the system with four objects (A to D),
with different dynamics, and trained a MOSAIC system with
four controllers (0 to 3). Despite the variability in the objects,
we usually observed that one of the controllers was mainly
responsible for most of the output commands, with marginal
specialization in the remaining controllers. One typical case
is shown Fig. 6.

Conditions for object specialization in MOSAIC
We discovered that object specialization in MOSAIC was
quite sensitive to the values of the learning algorithm’s pa-
rameters. We now detail them and explain their influence.

Learning rate The learning algorithm for the Inverse and
Direct modules of each controller is the Backpropagation al-
gorithm. If a controller is given a high responsibility for a
short time, it learns a lot more than the other controllers and
then already has an accurate control on all objects; we there-
fore used a low value (0.001).

Figure 6: Mean responsibilities along a typical trajectory
for a 4-controller MOSAIC (0 to 3) with 4 objects (A to
D): here, controller 1 (second block of bars) takes care of
most of the control for all objects, while controllers 2 and
3 are marginally specialized for objects C and D, respec-
tively. Object A: (M = 1,B = 2,K = 8), object B: (M =
1,B = 8,K = 1), object C: (M = 3,B = 1,K = .7), object
D: (M = 8,B = 2,K = 1).

Object switching frequency This frequency has a crucial
importance during the learning phase. If the frequency is too
low, the situation is similar to sequential training: large train-
ing on one object, then on another one. In this case one con-
troller becomes perfect for one object, and is also better for
the other objects than untrained controllers: this is the prop-
erty we illustrated previously (see Fig. 5). In our simulations
we switched objects frequently, every 20 time steps.

Controller competition parameter σ This parameter
seems to be key for controller specialization. Unfortunately,
the way it is defined in MOSAIC is unclear: it is only said to
be “tuned by hand over the course of the simulation ” (Haruno
et al., 2001, 2211). We therefore investigated three cases.

If σ is set to a low value, the competition is strong between
controllers: as soon as one controller specializes for one ob-
ject, as it is also better than untrained controllers on the other
objects (see Fig. 5), it wins control over all objects. More-
over, only one controller is active at a time: the system be-
comes similar to a mixture of experts system (Jacobs, Jordan,
Nowlan, & Hinton, 1991).

If σ is set to a high value, the cooperation is strong between
controllers: the responsibilities are so well distributed that al-
most no specialization appears. All controllers have nearly
the same responsibilities so they share the control of the ob-
jects. Despite this, the manipulation error remains small.

The last case is to have σ vary during training, and more
precisely, decrease over the training period. Indeed, with
an initial cooperation and shared control between controllers,
they all quickly learn the main characteristics of the motion
equation, and the main aspect of control: apply a positive
force when the object needs to go up, a negative force other-
wise. When this is trained into all controllers, then σ can be
slowly decreased so that controllers, in turn, pick more pre-
cise characteristics of the physical behaviors of the objects.
Finally, σ should decrease over time, but not in a linear way
since the convergence of the ANNs is not linear. When it is
correctly tuned, a specialization can be observed (Haruno et
al., 2001). Unfortunately, the function σ(t), according to our
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Figure 7: Dynamics for 3 objects (A to C) with different char-
acteristics (M,B,K). The axes are: speed ẋt , applied force ut
and next position xt+1. A fixed starting position is assumed.
Each plane corresponds to one object.

Figure 8: Responsibilities for 4 controllers in MOSAIC, plot-
ted against the desired position xdt .

simulations, also appears to be dependent of problem specific
factors, including the number of presented objects and their
characteristics (M,B,K); we do not foresee an easy way in
which σ(t) could be automatically defined in order to be suit-
able for a given instance of the MOM task.

What is learned by controllers in MOSAIC?
A close inspection of the physical manipulation problem
shows that some structural properties are the same for all ob-
jects: for instance, discrimination between the pulling cases
(negative force) and the pushing cases (positive force).

Further investigations also show that some objects with dif-
ferent physical characteristics become indistinguishable for
some trajectories. For instance, consider two objects with the
same mass M and spring constant K but with different damp-
ing factors B1 and B2: when the speed along the trajectory is
small, these two objects behave similarly, and a single con-
troller can easily control both. On the other hand, when the
speed is high, the forces to output are different, and two con-
trollers are needed. This is illustrated Fig. 7: we plotted the
motion equation (1) for three different objects. In order to
represent it on a 3D plot, we set a fixed starting position xt . In
this projection of the Space Of Dynamics (SOD), we can ob-
serve that objects are intersecting planes. At the intersections,
the objects are indistinguishable.

Because objects are indistinguishable for some trajectories,
we hypothesized that controllers in MOSAIC would not be-
come specialized for specific objects, but rather, for object–
trajectories combinations. We thus plotted the controller re-
sponsibilities after learning against the trajectory characteris-
tics. We show Fig. 8 the responsibilities for 4 controllers (0

! !

Figure 9: On the left, the CARMA Inverse module with an
additional two-node layer for investigating the structure of
the learned network. On the right, activity plot of the Inverse
module; the axes are the values in the 2D added layer (X and
Y) and the output value of the network (Z).

to 3) manipulating 3 objects (A to C) as a function of the de-
sired position xdt : we observe that when xdt < 0, controller
2 takes almost full control, that there is a shared control be-
tween controllers 2 and 3 for xdt ∈ [.1, .7], and that controller
3 is specialized for xdt ∈ [.7, .9], independently of the object
being manipulated. Therefore, it appears that MOSAIC con-
trollers indeed specialize for motion subspaces.

MOM with a single controller: CARMA

Since CARMA solves the MOM task with a single controller,
and because it does not encode objects in its structure, we
studied the way different objects were represented in the Di-
rect model and Inverse model ANNs after learning.

We first quickly describe a new method of plotting the acti-
vation of a MLP neural network, and then use it on CARMA
to investigate its internal representation of objects.

In a MLP, each layer is a transformation of the input space
that can have a different dimensionality. If we add a two-
node layer to the network, it is possible to extract a two-
dimensional transformation of the input space and plot it. To
generate the plotting data, we first train the network, then dis-
able learning, submit to the network a random input activity
on the nodes of interest, propagate it through the network,
and, finally, record the activity of the two-dimensional hidden
layer. This process is iterated until enough data is collected
to have a good representation of the input space.

We used this method on CARMA’s Inverse module (Fig. 9,
left). By logging the activity of the two-dimensional hidden
layer activity and the one-dimensional output layer we can
draw a 3D plot of the function approximated by the whole
module. In the case of a network trained on multiple ob-
jects, this representation gives information about the inter-
nal representations of objects. The most interesting result is
that the function is fragmented: multiple long shapes are par-
tially merged (Fig. 9, right). The number of shapes is equal
to the number of objects learned by the system. With this
method we get a clear representation of what an object is for
CARMA: the concept of object is no longer a structural prop-
erty of the model, it a contiguous set of activities in the set of
possible activations in the network.
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In the activity plot, the proximity of the shapes provides
useful information. Some of them are merged, meaning that
the objects are indistinguishable based on their dynamics.
Furthermore, only one factor modifies the shape positions
in the plot: the visual representation of the object. In other
words, CARMA produces different outputs for different vi-
sual representation. This means that CARMA learns the mo-
tion equation, and uses the visual representation of the object
as its parameters. Thus, the characteristics (M,B,K) are en-
coded in the internal visual representation. This encoding is
the key point of the Context Predictor module.

Recall that the Context Predictor inputs are from the space
of object dynamics, and its output is an estimated visual con-
text: the CP learns a mapping from object dynamics to the vi-
sual representation space. In other words, it associates phys-
ical behaviors of objects with their appearances. The module
never computes the (M,B,K) parameters explicitly, but en-
codes these in a visual space.

There is an interesting analogy with the way humans are
not able to exactly ascertain the mass of an object. It is easy
to know that one object is heavier than another, but very dif-
ficult to provide a precise estimation of a mass. Indeed, hu-
mans probably encode mass in a non-numeric space which
would be a mixture of volume, aspect, dynamic experienced
by motor experience, etc.

To further study this analogy, it would be fruitful to train
the system and verify whether and how similar visual repre-
sentations are associated with objects with similar dynamics;
in other words, study the metrics of the transformation be-
tween the visual space and the space of the (M,B,K) param-
eters. With manually designed visual representations (e.g. ob-
jects with very similar visual representations but very differ-
ent dynamics), it would be possible to test the predictions
made by the Contextual Predictor.

Discussion
We presented and tested two systems, MOSAIC and
CARMA, designed to solve the Multiple Object Manipula-
tion task. The main difference between them is the modular-
ity hypothesis: MOSAIC assumes that objects are encoded
in a spatial way, into the model structure; whereas CARMA
builds a function which handles all objects. Our experimen-
tal study has shown that, in MOSAIC, the controller–object
association is not systematic and mainly relies on a human
tuned parameter. Most of the time, controllers specialize on
complex mixtures of trajectory, motion and object, which we
have shown to be a central property of the CARMA model.

The non-modular approach was criticized by the authors
of MOSAIC. According to them, for instance, a single con-
troller would be too computationally complex. Actually, for
the same problem, CARMA uses less neurons than MOSAIC.
Indeed, in CARMA, the computational power comes from the
number of nodes in hidden layers, while in MOSAIC, com-
plete Direct and Inverse models are duplicated for each ad-
ditional object. For instance, our CARMA implementation,

with 10 hidden nodes in the Direct and Inverse models, and
a total of 96 nodes, solves the MOM task with 10 objects. In
MOSAIC, it would require 8*10 objects + 20 (for the RP) =
100 neurons. We believe that the difference would grow for
additional objects, as CARMA with a few more nodes would
treat a large number of additional objects (as we illustrated
experimentally but did not expose in detail here).

They also suspected a slow adaptation to context variation;
however, there is no delay in CARMA since the context is
what defines the output of the system. The last point is the
sensibility to catastrophic unlearning, which we did not study
in this paper, but which has been solved elsewhere on similar
single controllers, by a method that can easily be adapted to
CARMA (Ans & Rousset, 2000).

Studying MOSAIC has implications beyond the scope of
pure mathematical modeling. Indeed, the modularity hypoth-
esized in MOSAIC – one controller for one object, and there-
fore, a spatial, structural encoding of objects in the global
controller – is taken as a starting point of some recent brain
imagery studies (Imamizu et al., 2000; Imamizu, Kuroda,
Miyauchi, Yoshioka, & Kawato, 2003; Ito, 2000). Therefore,
equivalents of this structural object endoding are looked for
in the biological substrate; there is here the risk of an interpre-
tation bias, resulting from taking for granted a model which
is too specific.
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Abstract

We present a fully distributed connectionist architecture sup-
porting lateral inhibition / winner-takes all competition. All
items (individuals, relations, and structures) are represented by
high-dimensional distributed vectors, and (multi)sets of items
as the sum of such vectors. The architecture uses a neurally
plausible permutation circuit to support a multiset intersec-
tion operation without decomposing the summed vector into
its constituent items or requiring more hardware for more com-
plex representations. Iterating this operation produces a vector
in which an initially slightly favored item comes to dominate
the others. This result (1) challenges the view that lateral in-
hibition calls for localist representation; and (2) points toward
a neural implementation where more complex representations
do not require more complex hardware.
Keywords: Lateral inhibition; winner-takes-all; connection-
ism; distributed representation; Vector Symbolic Architecture

Introduction
Connectionist representations are typically classified as local-
ist, distributed, or some combination of both. In a localist rep-
resentation each node corresponds to a single item or concept.
In a distributed representation each node participates in the
representation of every concept, and each concept is “spread
out” (distributed) among every node. Proponents of local-
ist representation cite simplicity and transparency as benefits
of localist coding. Proponents of distributed representations
argue that the robustness of such representations in the pres-
ence of noise makes them more plausible and appealing, and
cite related impressive work on modeling neuropsychological
disorders using distributed connectionist representations. For
a review see Olson & Humphreys (1997). A comprehensive
argument for distributed representations is of course beyond
the scope of this article. We will focus here instead on a par-
ticular capability that appears to be exclusive to localist rep-
resentations, and will provide an alternative analysis using a
distributed representation.

In a 2000 target article in Behavioral and Brain Sciences,
Page (2000) argues for a “generalized localist model” with a
localist representation on one layer and general (distributed)
o representations on the others. Each node in the localist layer
is associated with a category, and a lateral inhibition (winner-
takes-all competition) function is used, allowing the localist
layer to act as a classifier for (distributed) patterns on an in-
coming layer. Indeed, the ability of localist representations
to support competitive classification seems to be the main ap-
peal of localism, as suggested by the remarks of the commen-
tators who supported Page’s position (e.g. Phaf & Wolters,

2000).
In this article we will argue that localist representations

are not necessary to support winner-takes-all competition or
lateral inhibition in general. We will present a fully dis-
tributed connectionist architecture supporting lateral inhibi-
tion / winner-takes all behavior, in which all items (indi-
viduals, relations, and structures) are represented by high-
dimensional distributed vectors, and (multi)sets of items as
the sum of such vectors. Unlike a localist representation, such
representations are based on a fixed neural architecture that
does not need to grow as new representational categories are
added.

Problems with Localism
The greatest challenge to connectionist accounts of cognition
continues to be the problem of compostionality, that is, the
problem of how to put simpler items like words and concepts
together to make more complex structures like sentences and
propositions (Fodor & Pylyshyn, 1988; Jackendoff, 2002).
Localist connectionism addresses this challenge by assigning
one neuron or pool of neurons to each item, and employing
additional (pools of) neurons as higher-order elements for or-
ganizing the simpler items via physical connections or tem-
poral synchrony. For example, the Neural Blackboard Archi-
tecture of van der Velde (2006) builds sentences out of words
via “structure assemblies” corresponding to traditional syn-
tactic categories like Noun Phrase and Verb Phrase. Hummel
and Holyoak’s LISA model of analogical mapping (Hummel
& Holyoak, 1997) uses higher-order assemblies to represent
the bindings of individuals to semantic roles like agent and
patient.

In a forthcoming article, Stewart and Eliasmith (Stewart
& Eliasmith, forthcoming) provide a detailed analysis of the
computational complexity entailed by localist accounts of
composition. This analysis suggests that the need to have
physical connections between all pairs of items causes lo-
calist representations lead to a combinatorial explosion when
applied to realistically-sized item inventories, such as the vo-
cabularies of natural languages. An alternative approach,
which dates back to the work of Pollack (1990) and others,
attempts to encode structures of arbitrary complexity on a
fixed-size connectionist architecture.1 Commenting on Pol-

1A serious limitation of Pollack’s Recursive Auto-Associative
(RAAM) network was the need to learn representations (via back-
propagation). The work presented here avoids the need for learning,
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lack’s results, Hammerton (1998) notes that it is important to
consider whether the representations produced by such archi-
tectures can be manipulated holistically, or whether they re-
quire “functional localism”, such as serial extraction of com-
ponents, in order to support useful computations. Even if it
is neurally plausible, which seems unlikely, functional local-
ism strikes us as essentially an implementation of classical
symbol processing (cf. Fodor & Pylyshyn, 1988), foregoing
much of the appeal of connectionism.

Another problem with localist implementation of lateral in-
hibition is that the system can only implement winner-takes-
all; that is, the result is the choice of 1 out of k alternatives.
For some problems, however, it would be more appropriate to
have a set of answers returned. It is not clear how this would
be achievable with localist winner-take-all implementation.
What is needed is a new type of network that exhibits the
attractor dynamics of localist winner-takes-all networks, but
which can converge simultaneously to a set of items, rather
than a single item.

The work presented here addresses these issues, providing
a holistic implementation of an operation previously thought
to require localist coding.

Vector Symbolic Architectures
Vector Symbolic Architecture is a name that we coined
to describe a class of connectionist models that use high-
dimensional vectors (with as few as 1000 dimensions, but
more typically around 10,000) of low-precision numbers to
encode structured information as distributed representations.
That is, VSAs can represent complex entities such as trees
and graphs; and every such entity, no matter how simple
or complex, is represented by a pattern of activation dis-
tributed over all the elements of the vector. This general
class of architectures traces its origins to the tensor prod-
uct work of Smolensky (1990), but avoids the exponential
growth in dimensionality of tensor products. The currently
available VSAs employ three types of operation on vectors: a
multiplication-like operator, an addition-like operator, and a
permutation-like operator. The multiplication-like operation
is used to associate or bind vectors. The addition-like oper-
ation is used to superpose vectors or add them to a set. The
permutation-like operation is used to quote or protect vectors
from the other operations.

The use of hyperdimensional vectors to represent sym-
bols and their combinations provides a number of mathe-
matically desirable and biologically realistic features. A hy-
perdimensional vector space can contain as many mutually
orthogonal vectors as there are dimensions, and exponen-
tially many almost-orthogonal vectors (Hecht-Nielsen, 1994),
thereby supporting the representation of astronomically large
numbers of distinct items. Such representations are also
highly robust to noise: a significant fraction of the values in
a vector can be randomly changed before it becomes more

by relying on fixed, constant-time mechanisms for associating and
composing vector representations.

similar to another vector than to its original form. To cite a
result from a forthcoming paper by Kanerva (in press): When
meaningful entities are represented by 10,000-[element] vec-
tors, many of the bits can be changed more than a third by
natural variation in stimulus and by random errors and noise,
and the resulting vector can still be identified with the correct
one, in that it is closer to the original “error-free” vector than
to any unrelated vector chosen so far, with near certainty. It
is also possible to implement such vectors in a spiking neu-
ron model (Eliasmith, 2005), lending them a further degree
of biological plausibility.

The main difference among types of VSAs is in the kind
of numbers used as vector elements and the related choice of
multiplication-like operation. Holographic Reduced Repre-
sentations (Plate, 2003) use real numbers and circular con-
volution. Binary Spatter Codes (Kanerva, 1994) use binary
(Boolean) values and elementwise exclusive-or. MAP (Mul-
tiply, Add, Permute) coding (Gayler, 1998) uses bipolar (-
1/+1) values and elementwise multiplication. A useful feature
of BSC and MAP is that every vector is its own multiplicative
inverse: multiplying a vector by itself elementwise yields the
multiplicative identity vector (A ∗A = 1 = B ∗B, where 1 is
the identity vector, but A + A = 2A). As in ordinary algebra,
multiplication and addition are associative and commutative,
and multiplication distributes over addition.

We used MAP in the work described here. In MAP, prop-
erties are accumulated through vector addition; hence, it is
trivial to have multiple, self-reinforcing copies of the same
property (vector) in a single representation. For example,
given a vector representation A of the property affluent and
a vector representation B of the property brave, the represen-
tation A+A+B = 2A+B could represent being very affluent
and somewhat brave. Second, the association of two rep-
resentations through elementwise multiplication produces a
third representation that is completely dissimilar from both
elements. If C represents an individual, say, Charlie, the
proposition that Charlie is brave could be represented as B∗C,
whose similarity (vector cosine) with both B and C is close to
zero. Together, these facts mean that a given entity can be
associated with a large number of properties (and vice versa):
C ∗ (2A+B), etc.

Without an additional mechanism, self-cancellation would
pose a challenge when copies of structures are embedded in
themselves recursively. For example, if D1 and D2 repre-
sented the semantic roles doubter and (thing) doubted, then
one possible way to represent the proposition Bill doubted
that Charlie doubted that Ed is affluent as

D1 ∗B+D2 ∗ (D1 ∗C +D2 ∗A∗E)

Without further modification, the two copies of D2 would
have the undesired affect of canceling each other out. As
mentioned above and discussed at length in (Levy, to appear),
the permutation operator of the MAP architecture provides a
neurally plausible mechanism for quoting or protecting vec-
tors in these situations.
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As an example of holistic computation in MAP, consider
the common task of retrieving a set of items associated with
a given property. We imagine three individuals: A and B
having property P and C having property Q. In a MAP en-
coding, each individual and property would be encoded in a
hyper-dimensional vector, and the association of properties
with individuals would be the vector sum of the elementwise
products between each individual and its property:

V = A∗P+B∗P+C ∗Q

To retrieve the set of individuals having property P, we
multiply the “knowledge-base” vector V by P. The self-
inverse property of MAP produces a representation of the in-
dividuals A and B, as well as a “noise” component not cor-
responding to any individual or property “known” to the sys-
tem:

P∗V =
P∗ (A∗P+B∗P+C ∗Q) =

A∗P∗P + B∗P∗P + C ∗Q∗P =
A + B + C ∗Q∗P =

A + B + noise

Comparing this resulting vector to the vectors for each of
the individuals will yield a high similarity (dot product, co-
sine) between the result vector and both A and B, but not C. In
other words, a single holistic computation on two vectors (P
and V ) has retrieved structurally sensitive information about
distinct individuals, without (1) the need for explicit phys-
ical connections among the individuals (and the concomi-
tant additional representational hardware) or (2) a function-
ally localist decomposition. This power comes at the cost of
of noise in the retrieved representation, which is not a deal-
breaker for this example. If noise becomes a problem (as it
can in recurrent circuits like the analogy-mapping circuit de-
scribed below, where noise accumulates), the noise can be
removed from the result vector by passing the vector through
a “cleanup memory” that stores only the meaningful items, or
vector directions: here, A, B, and C.

The issue of noise in VSA is rather subtle. In a localist
representation there are distinguished directions in the vec-
tor space that correspond to the individual units, because in-
dividual units represent individual concepts. In VSA there
are no inherently distinguished directions. For example, the
vector X might represent the concept A, but it could just as
well represent A+B or C ∗D+E, etc. The functional equiv-
alent of distinguished directions is provided by the contents
of the cleanup memory, which are initialized for a particu-
lar problem. Noise is then any pattern which is not stored
in cleanup memory. Unlike localist representations, which
require reconfiguring the “hardware” for each new problem,
VSA reuses the same fixed cleanup hardware (e.g. an autoas-
sociative Hofpield network) for every problem.

Lateral Inhibition as Self-Intersection
Consider a situation in which three categories A and B, and C
are competing with one another on a given neural layer L2, to

classify input patterns on an incoming layer L1. An example
localist implementation is shown in Figure 1. Each node in L2
has an inhibitory connection to every other node in that layer.
The connections from L1 to L2 can be interpreted as setting
the state of L2 to reflect the initial evidence for each of the
categories. The inhibitory connections within L2 implement
a recurrent process that increases the differences between the
most supported category and the other categories.

We can interpret the state of L2 as a multiset - a set of
weighted elements. Each category Xi (here, A, B, or C) is
weighted by a non-negative real-valued coefficient ki that re-
flects the importance of Xi in the multiset, with 0 ≤ ki ≤ 1.
Given this interpretation of the L2 state as a multiset we need
a multiset operation that increases the differences between
the most supported category and the other categories. We
do this with multiset intersection (multiplication of the corre-
sponding category weights) and normalization (constraining
the sum of the category weights to be constant).

To see what we mean by multiset intersection, con-
sider multisets X = {k1A,k2B,k3C},Y = {k4A,k5B,k6C}.
Intersecting X and Y would would yield a multiset
{k1k4A,k2k5B,k3k6C}. Intersecting X with itself would yield
(k1)2A + (k2)2B + (k3)2C, magnifying the differences be-
tween the ki. Normalization of the result forces the smaller
ki towards zero. The repeated application of self-intersection
with normalization yields a similar dynamic to lateral inhibi-
tion thereby implementing winner-takes-all competition.

A B C

L1

L2

Figure 1: Lateral inhibition in a localist network

In a localist network like the one in Figure 1, the multiset
coefficients ki correspond to the activations of the nodes in
the L2 layer. In VSA, a multiset is represented as a single
vector, for example, k1A + k2B + k3C where A, B, and C are
hyperdimensional vectors and k1, k2, and k3 are non-negative
scalars. Note that this network can only represent a choice
between A, B, and C. No other category can be considered
without modifying the physical structure of the network.

How are we to perform the multiset intersection of two
such vectors? Because of the self-cancellation property of
the MAP architecture, simple elementwise multiplication (the
standard MAP product operator) of the two vectors will not
implement this operation. We could extract the ki by iterating
through each of the vectors A, B, and C and dividing x and
y elementwise by each mapping, but this is the very kind of
functionally localist approach that we are trying to avoid.
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To implement this intersection operator in a holistic, dis-
tributed manner we exploit the third component of the MAP
architecture: permutation. For explanatory purposes we can
conceive of our solution as a simple register-based machine,
where (as in a traditional von Neumann architecture), each
register holds a temporary stage of the computation. (In our
version, of course, the register contents are hyperdimensional
vectors.). As depicted in Figure 2, our solution works as fol-
lows: 1: and 2: are registers loaded with the vectors repre-
senting the multisets to be intersected. P1() computes some
fixed permutation of the vector in 1:, and P2() computes a dif-
ferent fixed permutation of the vector in 2: (randomly chosen
permutations are sufficient). Register 3: contains the prod-
uct (via elementwise multiplication) of these permuted vec-
tors. Register 4: is another variety of “cleanup” memory (a
constant vector value) pre-loaded with each of the principal
vectors transformed by multiplying it with permutations of
itself; i.e., 4 := Σn

i=1Xi ∗P1(Xi)∗P2(Xi). In other words, reg-
ister 4: indicates the items of interest to the system and is
functionally analogous to the L2 units in the localist network;
however, the contents of the register can be changed at any
time without modifying the underlying hardware. Note so
that each of these registers contains a high-dimensional vec-
tor representing an arbitrarily complex multiset, and each ar-
row in Figure 2 represents the transfer of a high-dimensional
vector.

P2()

1:

2:

P1()
3:

4:

5:* *

Figure 2: A neural circuit for vector intersection.

In brief, the circuit in Figure 2 works by guaranteeing that
the permutations will cancel for only the subset of Xi present
in both input registers, with the other Xi being rendered as
random noise. In order to improve noise-reduction it is nec-
essary to take the sum over several such intersection circuits,
each based on different permutations. This sum over permu-
tations has a natural interpretation in the synaptic connections
between neural layers of sigma-pi units. Each unit (neuron) in
one layer calculates the sum over many products of a few in-
puts from units in the prior layer. The apparent complexity of
Figure 2 is a consequence of drawing it for explanatory clar-
ity rather than computational complexity. The intersection
network could be implemented in a single layer of sigma-pi
units.

To see how this circuit implements intersection, consider
again the simple case of a system with three meaningful vec-
tors A, B, and C where we want to compute the intersection
of x = k1A + k2B + k3C with y = k4A + k5B + k6C. The
vector x is loaded into register 1:, y is loaded into 2:, and the
sum

A∗P1(A)∗P2(A)+B∗P1(B)∗P2(B)+C ∗P1(C)∗P2(C)

is loaded into 4:. After passing the register contents through
their respective permutations and multiplying the results, reg-
ister 3: will contain

P1(k1A+ k2B+ k3C)∗P2(k4A+ k5B+ k6C) =

(k1P1(A)+k2P1(B)+k3P1(C))∗ (k4P2(A)+k5P2(B)+k6P2(C)) =

k1k4P1(A)∗P2(A)+ k2k5P1(B)∗P2(B)+ k3k6P1(C)∗P2(C)+
noise

where noise represents terms not corresponding to a mean-
ingful component of the intersection. Multiplying this sum
in register 3: by the contents of register 4: will then result in
the desired intersection (plus additional noise), via the self-
cancellation property:

[k1k4P1(A)∗P2(A)+ k2k5P1(B)∗P2(B)+ k3k6P1(C)∗P2(C)]∗
[A∗P1(A)∗P2(A)+B∗P1(B)∗P2(B)+C ∗P1(C)∗P2(C)] =

k1k4P1(A)∗P2(A)∗A∗P1(A)∗P2(A)+
k1k4P1(A)∗P2(A)∗B∗P1(B)∗P2(B)+
k1k4P1(A)∗P2(A)∗C ∗P1(C)∗P2(C)+
k2k5P1(B)∗P2(B)∗A∗P1(A)∗P2(A)+
k2k5P1(B)∗P2(B)∗B∗P1(B)∗P2(B)+
k2k5P1(B)∗P2(B)∗C ∗P1(C)∗P2(C)+
k3k6P1(C)∗P2(C)∗A∗P1(A)∗P2(A)+
k3k6P1(C)∗P2(C)∗B∗P1(B)∗P2(B)+
k3k6P1(C)∗P2(C)∗C ∗P1(C)∗P2(C) =

k1k4A+
k1k4P1(A)∗P2(A)∗B∗P1(B)∗P2(B)+
k1k4P1(A)∗P2(A)∗C ∗P1(C)∗P2(C)+
k2k5P1(B)∗P2(B)∗A∗P1(A)∗P2(A)+

k2k5B+
k2k5P1(B)∗P2(B)∗C ∗P1(C)∗P2(C)+
k3k6P1(C)∗P2(C)∗A∗P1(A)∗P2(A)+
k3k6P1(C)∗P2(C)∗B∗P1(B)∗P2(B)+

k3k6C =

k1k4A+ k2k5B+ k3k6C +noise

Note that this apparently complex calculation is actually
a single elementwise vector product operation. The circuit
does not “see” the complexity of the vectors it operates on.
The same holds true for the normalizing operator mentioned
above: normalization is implemented as a scalar multiplier
applied to the entire vector to keep the sum of the element
activations approximately constant.

Experimental Results
As a proof-of-concept for our distributed lateral inhibition
architecture, we ran several experimental trials using the
circuit from Figure 2. We started with an initial vector
x0 = 1/N ∑

N
i=1 kiXi, with k j = 1.02 for one arbitrarily cho-

sen j and ki = 1 for i 6= j. We then iterated the operation
xt+1 = normalize(xt ∧ xt), where ∧ is the intersection opera-
tor in Figure 2, and normalize(x) = x/maxl(|xl |). (The initial
conditions thus represent a temporary violation of the con-
straints given above for ki that are immediately rectified by
the normalizing operation.) We stopped iterating when the
Euclidean distance between xt and xt−1 fell below 0.01.

Figure 3 shows a typical result, for N = 3 a vector x of
2000 dimensions, and 100 permutations. The system quickly
converges to an x in which a single Xi dominates. We have
reproduced these results for larger values of N, using vectors
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Figure 3: Winner-takes all in VSA implementation

with more realistically large dimensions and more permuta-
tions (connectivity). It is important to emphasize that all rep-
resentations and operations in this and the next experiment
are fully distributed. The figure was produced by serial ex-
traction of the strengths of the three principal vectors of this
system, but this was done only for purposes of illustration.
There is nothing in the system that requires the intervention
of a localist “homunculus” at any stage.

Application to Analogical Mapping
Analogical mapping has long been a focus of efforts in cog-
nitive modeling. There are several successful connection-
ist cognitive models of analogy (Holyoak & Thagard, 1989;
Hummel & Holyoak, 1997; Eliasmith & Thagard, 2001).
These models vary in their theoretical emphases and the de-
tails of their connectionist implementations. However, they
all share a problem in the scalability of the amount of com-
putational resources or effort required to construct the con-
nectionist mapping network. We contend that this is a conse-
quence of using localist connectionist representations or us-
ing distributed representations in a localist manner.

To address this issue, we have recently developed a model
that treats analogical mapping as a special case of graph iso-
morphism; that is, the solution of finding an optimal map-
ping between two structures (graphs) consisting of individ-
uals (vertices) and their relations (edges). For example, in
the simple graphs in Figure 4, the maximal isomorphism is
{A=P, B=Q, C=R, D=S} or {A=P, B=Q, C=S, D=R}. Our
model builds on the work of Pelillo (1999), who uses repli-
cator dynamics (originally developed in evolutionary game
theory) to solve the problem with a localist representation. In
Pelillo’s solution, iterated multiplication of a localist edge-
consistency matrix w by a localist vertex-mapping vector x
produces a localist “payoff” vector π expressing the quality
of the solution. Elementwise multiplication of x with π pro-
duces an updated x representing an improved set of vertex
mappings. This elementwise multiplication can be construed
as a multiset intersection.

In our VSA implementation of this model, all entities
(vertices, edges, and w, x, and π) are represented as high-
dimensional MAP vectors. Vertex mappings in x are rep-
resented as the sums of the corresponding pairwise edge-
mapping products (A*P + A*Q + ... + C*S), and the winner-
takes-all intersection circuit of Figure 2 supports competi-
tion among mutually inconsistent mappings (C=R, D=S vs.
C=S, D=R), without decomposing x into its constituent edge
mappings. As shown in Figure 5, the VSA implementation
can exhibit dynamic convergence to a solution in a way that
is qualitatively similar to the localist implementation. Here,
each curve corresponds to the level of support for a specific
node mapping; e.g., AP represents the support for the corre-
spondence between nodes A and P. Notice that the compo-
nents corresponding to the correct node mappings compete
with and suppress the components corresponding to incorrect
node mappings. As in the previous experiment, the conver-
gence takes place without decomposition into localist compo-
nents, the figure being a localist presentation for illustration
only.

A B

C

D
P Q

S

R

Figure 4: A simple graph isomorphism problem

Conclusion

We have presented a fully distributed connectionist architec-
ture supporting lateral inhibition / winner-takes all competi-
tion. The architecture uses a neurally plausible permutation
circuit to support a multiset intersection operation without de-
composing the summed vector into its constituent items. This
approach compares favorably with a localist approach when
applied to the task of analogical mapping. Our results thus
challenge the commonly-accepted view that lateral inhibition
calls for localist representation. More profoundly, our model
points toward a neural implementation where more complex
representations do not require more complex or dynamically
rewired hardware, a long-standing goal of connectionist cog-
nitive modeling.
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Figure 5: Convergence of localist (top) and VSA (bottom)
implementations of graph isomorphism.
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Abstract

To date, spatial language models have tended to overlook
process-based accounts of building scene representations
and their role in generating flexible spatial language behav-
iors. To address this theoretical gap, we implemented a
model that combines spatial and color semantic terms with
neurally-grounded scene representations. Tests of this model
using real-world camera input support its viability as a theo-
retical framework for behaviorally flexible spatial language.

Keywords: dynamical systems; neural networks; spatial
cognition; spatial language.

Introduction
Spatial language is an incredibly flexible tool whose ca-
pabilities range from generating and comprehending direc-
tions (Tom & Denis, 2004) to facilitating coordinated ac-
tion (Bangerter, 2004). Yet, despite this broad behavioral
scope, implemented spatial language models which seek to
uncover processes underlying basic spatial communication
(e.g. object location description) have tended to focus on
a limited range of behaviors, namely relational judgment
tasks. These models have successfully accounted for a com-
plex array of empirical data including the influence of land-
mark shape (Regier & Carlson, 2001) and functional object
features (Coventry et al., 2005). The neural processing as-
pects underlying these accounts, however, remain underde-
veloped. Consequently, a number of critical questions that
bear directly on spatial language and its linkage to support-
ing sensory-motor processes have gone unaddressed. For
example, how does a neural scene representation evolve
on the basis of sensory information? How might complex
higher-level behaviors like spatial language emerge from
these lower-level dynamic processes? How are the time
courses of spatial language behaviors structured by their
roots in scene representations?

Behavioral flexibility in the spatial language system be-
comes a central issue once one addresses the neural pro-
cesses that link spatial language to the sensory-motor sys-
tem. Fundamentally, we do not yet understand how the
sensory-motor foundations of scene representations and
spatial language work to support the broad array of spa-
tial language behaviors. The absence of process-based ac-
counts for the generation of spatial scene representations
and the behaviors derived from these representations is a
significant barrier to developing a more comprehensive, in-
tegrative spatial language model.

As a step to overcoming this barrier, we were led to
consider three elements underlying behavioral flexibility in
spatial language. First, the spatial language system uses
both spatial and non-spatial characteristics. Second, it inte-
grates the graded sensory-motor representations with sym-
bolic, linguistic terms. Finally, the spatial language system
combines these numerous elements continuously in time ac-
cording to the specific behavioral context.

To develop a behaviorally flexible theoretical framework
for spatial language that satifies these constraints, one needs
a representational language that links to both the sensory-
motor and linguistic worlds. The Dynamic Field Theory
(Erlhagen & Schöner, 2002), a neuronally based theoret-
ical language emphasizing attractor states and their insta-
bilities, is one viable approach. Recent applications of the
DFT have extended beyond spatial working memory devel-
opment (Spencer, Simmering, Schutte, & Schöner, 2007)
to include a theoretically generative account of signature
landmark effects in spatial language (Lipinski, Spencer, &
Samuelson, in press). Critically, this latter work integrated
a connectionist-style localist spatial term network into the
model. This suggests that the DFT can provide the requi-
site, integrative representational language.

The present work incorporates this hybrid approach to
implement a new model integrating spatial language seman-
tics with real-world visual input. Our goal is to qualita-
tively test the model’s core functionality and, thus, its vi-
ability as an initial theoretical framework for flexible spa-
tial language behaviors. To rigorously test our model, we
implement it on a robotic platform continously linked to
real-world visual images of everyday items on a tabletop
workspace. Our model extracts the categorical, cognitive
information from the low-level sensory input through the
system dynamics, not through neurally ungrounded prepro-
cessing of the visual input. Models which do not directly
link cognitive behavior to lower-level perceptual dynamics
risk side-stepping this difficult issue. Our demonstrations
specifically combine visual space, a selected subset of basic
English spatial semantic terms, and color. These demon-
strations serve as an initial proof of concept that takes an
early step towards modeling more complex, natural spatial
language behaviors.
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Modeling neurons and dynamical neural fields
This section briefly reviews the mathematics of our model
(see also (Erlhagen & Schöner, 2002)).

Dynamical fields
The dynamical neural fields are mathematical models first
used to describe cortical and subcortical neural activation
dynamics (Amari, 1977). The dynamic field equation
Eq. (1) is a differential equation describing the evolution of
activation u defined over a neural variable(s) x. These neu-
ral variables represent continuous perceptual (e.g. color) or
behavioral (e.g. reaching amplitude) dimensions of interest
that can be naturally defined along a continuous metric.

τu̇(x, t) =−u(x, t)+h+
Z

f (u(x′, t))ω(∆x)dx′+

+ I(x, t)
(1)

Here, h < 0 is the resting level of the field; the sigmoid
non-linearity f (u) = 1/(1 + e−βu) determines the field’s
output at suprathreshold sites with f (u) > 0. The field is
quiescent at subthreshold sites with f (u) < 0. The homo-

geneous interaction kernel ω(∆x) = cexce
−(∆x)2

2σ2 − cinh de-
pends only on the distance between the interacting sites
∆x = x−x′. This interaction kernel is a Bell-shaped (Gaus-
sian), local excitation/global inhibition function. The short-
range excitation is of amplitude cexc and spread σ. The inhi-
bition is global, as we are not interested in multipeak solu-
tions here, and has an amplitude cinh. I(x, t) is the summed
external input to the field; τ is the time constant.

If a localized input activates the neural field at a cer-
tain location, the interaction pattern ω stabilizes a localized
”peak”, or ”bump” solution of the field’s dynamics. These
activation peaks represent the particular value of the neural
variable coded by the field and thus provide the representa-
tional units in the DFT (Spencer & Schöner, 2003).

In our model, all entities having ”field” in their name
evolve according to Eq. (1), where x is a vector representing
the two-dimensional visual space in Cartesian coordinates.
The links between the fields are realized via the input term
I(x, t), where only sites with f (u) > 0 propagate activation
to other fields or neurons.

Discrete nodes
The discrete (localist) neural nodes in the model represent-
ing spatial and color semantic terms can be flexibly used
for either user input or response output. Their activation
evolves according to the dynamic equation (2).

τd ḋ(t) =−d(t)+hd + f (d(t))+ I(t). (2)

Here, d is the activity level of a node; the sigmoidal non-
linearity term f (d) shapes the self-excitatory connection for

each discrete node and provides for self-stabilizing activa-
tion. The negative resting level is defined by hd . The I(t)
term represents the sum of all external inputs into the given
node. This summed input is determined by the input com-
ing from the connected neural field, the user interface spec-
ifying the language input, and the competitive, inhibitory
inputs from the other discrete nodes defined for that same
feature group (color or space); τ is the time constant of the
dynamics.

The spatial language framework

Spatial semantic
�elds

“to red”

“to green”

“to
 blue”

Spatial
templates

 B 
Color-space

�elds A 

E

 C
D

Reference
�eld

Figure 1: Overview of the architecture

This section outlines the overall structure (see Fig. 1)
of our integrative model and explains how it operates in
two scenarios fundamental to spatial language: describing
where an object is (Demonstration 1) and describing which
object is in a specified spatial relation (Demonstration 2).

Color-space fields
The color-space fields (Fig. 1A) are an array of several dy-
namical fields representing the visual scene. Each of the
fields is sensitive to a hue range which corresponds to a ba-
sic color. The resolution of color was low in the presented
examples because only a few colors were needed to rep-
resent the used objects. In principle, the color (hue) is a
continuous variable and can be resolved more finely. The
stack of color-space fields is therefore a three-dimensional
dynamic field that represents colors and locations on the
sensor surface. The camera provides visual input to the
color-space field, which is below the activation threshold



before the task is defined. The field is thus quiescent to this
point.

Once the language input specifying the color of the ob-
ject activates the respective color-term node, however, the
resting levels of all sites of the corresponding color-space
field are raised homogeneously. Because the color-space
fields receive localized camera input, this uniform activa-
tion increase is summed with that input to enable the devel-
opment of an instability and, ultimately, the formation of a
single-peak solution. This peak is centered over the position
of the object with that specified color.

The spatial language input also influences the color-
space field’s dynamics through the aligned spatial semantic
fields (see below).

Reference field
The reference field (Fig. 1B) is a spatially-tuned dynamic
field which also receives visual input (Fig 1B). When the
user specifies the reference object color, the correspond-
ing ”reference-color” node becomes active and specifies the
color in the camera image that provides input into the ref-
erence field. A peak of activation in the reference field
evolves at the location of the reference object. The refer-
ence field continuously tracks the position of the reference
object. Its dynamics also filters out irrelevant inputs and
camera noise and thus stabilizes the reference object repre-
sentation. Having a stable, but updatable reference object
representation allows the spatial semantics to be continu-
ously aligned with the visual scene.

Spatial semantic templates
The spatial semantic templates (Fig. 1C) are represented as
a set of synaptic weights that connect spatial terms to an ab-
stract, ”retinotopic” space. The particular functions defin-
ing ”left”, ”right”, ”below”, and ”above” here were two-
dimensional Gaussians in polar coordinates and are based
on a neurally-inspired approach to English spatial semantic
representation (O’Keefe, 2003). When viewed in Cartesian
coordinates, they take on a tear-drop shape for these terms.

Shift
The shift mechanism (Fig. 1D) aligns these retinotopically
defined spatial semantics with the current task space. The
shift is done by convolving the ”egocentric” weight matri-
ces with the outcome of the reference field. Because the sin-
gle reference object is represented as a localized activation
peak in the reference field, the convolution simply centers
the semantics over the reference object. The spatial terms
thus become defined relative to the specified reference ob-
ject location (for related method see (Pouget & Sejnowski,
1995)).

Aligned spatial semantic fields
The aligned spatial semantic fields (Fig. 1E) are arrays of
dynamical neurons with weak lateral interaction. They re-

ceive input from the spatial alignment or ”shift” mechanism
which maps the spatial semantics onto the current scene by
”shifting” the semantic representation of the spatial terms to
the reference object position. The aligned spatial semantic
fields integrate the spatial semantic input with the summed
outcome of the color-space fields and interact reciprocally
with the spatial-term nodes. Thus, a positive activation in
an aligned spatial semantic field increases the activation of
the associated spatial-term node and vice versa.

Demonstrations

We here detail two exemplar demonstrations (from a set of
thirty conducted) which address two behaviors fundamental
to spatial language. In the presented scenarios, three objects
were placed in front of the robot: a green stack of blocks,
a yellow plastic apple, and a blue tube of sunscreen. The
visual input was formed from the camera image and sent to
the reference and color-space fields. The color-space field
input was formed by extracting hue value (”color”) for each
pixel in the image and assigning that pixel’s intensity value
to the corresponding location in the matching color-space
field. The input for the reference field was formed in an
analogous fashion according to the user-specified reference
object color. When the objects are present in the camera
image, the reference and color-space fields receive localized
inputs, corresponding to the three objects in view (marked
with arrows, see Fig. 2 and Fig. 3). This was the state of the
system before the particular task was set.

In Demonstration 1 we ask ”Where is the yellow object
relative to the green one?” and the robot must select the
correct descriptive spatial term. In Demonstration 2 we
ask ”Which object is to the right of the yellow one?” and
the robot must select the color term that describes the tar-
get object. Both examples were performed with exactly the
same visual scene and parameter set. Thus, the only differ-
ence for the system was the user-specified task input. If our
model functions properly, the interactive dynamics should
select the correct spatial or color term according to the task
details.

Due to the graded representation of space and color in the
neural fields, being able to solve these two tasks means ac-
cessing hundreds of scenarios with multiple objects and ob-
ject positions in the image. More fundamentally, these dif-
ferent tasks both require the integration of visual and sym-
bolic input as well as the autonomous selection of a descrip-
tive spatial term. Such integration and decision processes
are a core capacity of the human spatial language system
and underlie the full range of real-world spatial language
behaviors. Accounting for these core processes in different
tasks in a single, neurally-grounded model provides a strong
foundation for scaling up to more complex spatial language
scenarios.
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Figure 2: Demonstration 1 activations just before answering ”Where”.

Demonstration 1: Describing ”Where”

Demonstration 1 asks ”Where is the yellow object relative
to the green one?” To respond correctly, the robot must
select ”Right”. Fig. 2 shows the neural fields’ activation
just before the answer is given. The task input first ac-
tivates two discrete neurons, one representing ”green” for
the user-specified reference object color and the other ”yel-
low” for the user-specified object color (see user inputs,
top Fig. 2). The reference object specification ”green”
leads to the propagation of the green camera input into the
reference field, creating an activation bump in the refer-
ence field at the location of the green item (see Reference
field, Fig. 2). The specification of the target color ”yel-
low” increases the activation for the ”yellow” node linked
to the ”yellow” color-space field (see yellow activation time
course line, top Fig. 4a), which raises the resting level of the
associated ”yellow” color-space field. This uniform activa-
tion boost coupled with the camera input from the yellow
object induces an activation peak in the field (see ”yellow”
Color-space field, Fig. 2).

This localized target object activation is then transfered

to the aligned semantic fields. In addition to receiving this
target-specific input, the aligned semantic fields also receive
input from spatial term semantic nodes. Critically, these se-
mantic profiles are shifted to align with the reference object
position. In the current case, the yellow target object acti-
vation therefore overlaps with the aligned ”right” semantic
field (see red arrow in the ”right” Aligned spatial semantic
field, Fig. 2). This overlap ultimately drives the activation
and selection of the ”right” node (see spatial-term neuron
activation time course, bottom Fig. 4a).

Demonstration 2: Describing ”Which”

Demonstration 2 asks ”Which object is to the right of the
yellow one?”. To respond correctly, the robot must select
”Blue”. As indicated in Fig. 3, the task input first activates
two discrete nodes, one representing the reference object
color ”yellow” and the other representing ”right”.

The reference object specification ”yellow” creates an ac-
tivation bump in the reference field location matching that
of the yellow item (see Reference field, Fig. 3). The spec-
ification of ”right”, in its turn, increases the activation for
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Figure 3: Demonstration 2 activations just before answering ”Which”.

that spatial-term node (see activation time course, bottom
Fig. 4b), creating a homogeneous activation boost to the
”right” semantic field. This activation boost creates a pos-
itive activation in the field to the right of the yellow ref-
erence object (see ”right” Aligned spatial semantic field,
Fig. 3). This spatially-specific activation is then input into
the color-space fields and subsequently raises activation at
all those color-space field locations to the right of the ref-
erence object (see lighter-blue Color-space fields’ regions,
Fig. 3). This region overlaps with the localized input of the
blue object in the ”blue” color-space field and an activa-
tion peak develops in that field (see red arrow in the ”blue”
Color-space field, Fig. 3). This increases the activation of
the associated ”blue” color-term node, triggering selection
of the correct answer, ”blue” (see color-term node’s activa-
tion profile, top Fig. 4b).

Discussion

Together, these demonstrations reveal the model’s ability to
localize the specified target object in the visual scene and
to extract the required spatial or non-spatial target infor-
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mation. These different behaviors emerged from the au-
tonomous dynamics integrating the low-level camera input
and the categorical user input and are thus truly context-
dependent. In assessing this framework it is also important
to note that precisely the same parameter setting was used in
all tasks; only the context input changed. Thus, the behav-
iors are autonomously structured simply by the symbolic
and visual input. Even with our initially limited range of
spatial and color terms, the framework can be immediately
applied to a broad range of real-world objects and locations
without modification. This novel system therefore provides
a contextually adaptive framework for the flexible applica-
tion of spatial semantics. More fundamentally, because of
its focus on integrative dynamic processes modelled in ac-
cordance with neural principles, it also provides a founda-
tion for modeling more complex human spatial language
behaviors.
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Abstract 
The promise of reuse is a motivator for, and benefit from, 
developing cognitive models. Another benefit is the 
integration of previously developed models into a single 
model capable of making predictions across different tasks 
than either of the contributing models could make alone. In 
the current paper, I explicate the development of a model 
through the integration of, and inspiration from, two 
previously published models. The composite was developed 
for a context different from the constituent models’ original 
contexts, and demonstrates a success of inspiration and 
integration.  

Keywords: model reuse, integration, synthetic teammate 

Introduction 
The promise of model reuse is a boon to, and motivator for, 
developing models. A related benefit is to integrate different 
models into a composite capable of making predictions in 
different contexts than the contributing models could make 
alone. To take advantage of these potential benefits, 
developers of large-scale, complex models must seek out 
published models for integration rather than reinventing the 
wheel. This paper provides an account of the integration of, 
and inspiration from, two previously reported models of 
distinct cognitive processes.  

The context for model inspiration and integration is the 
development of a synthetic teammate (Ball et al., 2009). The 
constituent models provided portions of the synthetic 
teammate component responsible for interacting with its 
task environment, the task behavior component.  

In the remaining sections of the introduction, I first 
provide background on the synthetic teammate project. 
Second, I describe the task and goals specific to the 
synthetic teammate’s task behavior component. Third, I 
provide results from a task analysis on the goals critical to 
the task behavior component.  

The Synthetic Teammate Project  
The Cognitive Engineering Research Institute and the 
Performance & Learning Models team at the Air Force 
Research Laboratory are collaborating to develop a 
synthetic agent capable of coordinating with human 
teammates to complete an unmanned aerial vehicle (UAV) 
reconnaissance task. The far-term goal of the project is to 
reduce the number of human operators in team trainers 
while maintaining training effectiveness. The near-term goal 
of this project is to develop a cognitively plausible synthetic 

teammate within the ACT-R 6 cognitive architecture 
(Anderson, 2007). Achieving the near-term goal will 
facilitate accomplishing far-term goals, through the 
identification of cognitive capacities necessary for operating 
as a teammate (e.g., memory, language, etc.), and 
demonstrate how to integrate relevant cognitive capacities. 

The synthetic teammate is being developed to operate 
within a UAV Synthetic Task Environment (UAV-STE; see 
Cooke & Shope, 2005) used to study teams for the better 
part of the past decade. In the UAV-STE, teammates 
coordinate to successfully complete a reconnaissance task. 
The synthetic teammate has been developed to operate as 
the UAV Air Vehicle Operator (AVO), and to interact with 
a photographer that takes pictures of ground targets, or 
waypoints, and a mission planner responsible for planning 
the UAV’s route. Communication among teammates occurs 
through a text-based instant messaging system. 

Four cognitive components have been identified as the 
basis of the synthetic teammate: 1) language 
comprehension, 2) language generation and dialog 
management, 3) situation assessment, and 4) task behavior. 
The current paper is focused on goals associated with the 
task behavior component (see Ball et al., 2009, for details on 
the other components).  

Task Goals for the Task Behavior Component 
To fly the UAV, the AVO must complete six goals: 1) set 
the airspeed, 2) altitude, 3) course, 4) waypoint, and 5) send 
and 6) receive text messages. Of these six, the solution for 
the first four is covered in the current paper. A typing model 
associated with the last two goals, sending and receiving 
messages, is currently being integrated (John, 1996).  

 
Figure 1. The left box is an example of the interface used to 
enter the airspeed, altitude, and course. The right box is used 

for setting waypoints. 
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The UAV-STE was designed to simulate a team task; 
consequently the user interface was not designed as a high 
fidelity representation of any existing UAV system in use 
by the military. To maneuver the UAV from one location to 
another, the AVO uses a point-and-click interface to enter 
settings (see Figure 1). To set the waypoint, the user toggles 
through a list of 109 alphabetically organized waypoints by 
pressing the setting adjustment buttons (see Figure 1). Each 
time an adjustment button is pressed, a new waypoint value 
is queued (e.g., BEP in Figure 1). The waypoint list operates 
as a continuous loop (i.e., A comes after Z). When the user 
has queued the next waypoint to visit, she presses the “New 
TO” button, changing “H-AREA” to “BEP” in Figure 1. 

There are three flight parameters (altitude, course, and 
airspeed). Each flight parameter has a separate user 
interface, though they are identical (see Figure 1). To set the 
flight parameters, the AVO adjusts the setting value by 
using the small (+ | –) and large (++ | – –) setting adjustment 
buttons. These buttons have different increments and 
decrements depending on the setting (see Table 1). Similar 
to the waypoint list, course values are a continuous loop, 
returning to 1° after 360°. The airspeed and altitude values 
are infinite number lines, beginning at 0 and ending at 
infinity. When the desired setting value is reached, the user 
presses the “Enter” button to complete the setting goal.  

Table 1. Setting adjustment buttons for each task setting 
goal. The waypoint buttons either increment to the next 

(+), or decrement (–) to the previous waypoint in an 
alphabetical list. The other button increments increase or 

decrease setting values, accordingly. 

Task Goals Large 
++ | – – 

Small 
+ | – 

Airspeed 20 | –20 2 | –2 

Altitude 1000 | –1000 100 | –100 

Course 10 | –10 1 | –1 

Waypoint Not applicable 1 | –1 

There are five differences between setting a waypoint and 
setting the flight parameters. First, the adjustment buttons 
for setting the flight parameters have small and large 
adjustments, whereas there are only small adjustments for 
setting the waypoint (see Figure 1 and Table 1). Second, 
there is an “Enter” button for setting the flight parameters 
and a “New TO” button for setting the waypoint. Although 
these buttons have different names, there functions are 
identical. Third, the values of flight parameters are integers, 
whereas waypoints are strings of numbers and letters (e.g., 
WP8, BEP). The fourth difference is the addition of the 
queued value for setting the waypoint, and the fifth and final 
difference is the spatial arrangements of the user interfaces. 

Although there are interface differences between setting 
flight parameters and waypoints, there is considerable 

overlap of methods for setting altitudes, courses, airspeeds, 
and waypoints. In the following section I provide results 
from a task analysis of the four goals.  

Task Analysis Results 
A hierarchical GOMS (i.e., goals, operators, methods, and 
selection rules) analysis was conducted on setting waypoints 
and flight parameters. The purpose of the analysis was to 
reveal commonalities and differences between the goals. 

The task analysis revealed a consistent three-step subgoal 
structure across each of the four goals, composed of 1) 
obtaining the desired setting value, 2) comparing the 
desired setting value against the current value, and 3) 
Changing the current setting value to the desired value. The 
following methods <m> and selection rules <sr> are 
identical across the four goals: 

Obtain subgoal <sr>:  
Either Retrieve the desired information from memory 
Or        Request the information from a teammate.  

Compare subgoal <m>: 
1. <m>Visually encode one of the adjustment buttons  
2. <m>Move mouse to, and click on, button  
[system-event]:= setting value appears  
3. <m> Visually encode setting value  
4. <sr> IF button adjustment values are unknown, 

THEN retrieve them from memory  
5. <sr> Given the current setting value, desired 

setting value, and adjustment button values, select 
adjustment button  

Change subgoal <m>: 
1. <sr> IF mouse is at the selected adjustment button, 

THEN goto <m> 4; ELSE continue 
2. <m> Visually encode button 
3. <m> Move mouse to button 
4. <m> Click mouse 
[system-event]:= setting value changes  
5. <sr> IF not attending to setting value, THEN 

visually encode setting value; ELSE continue 
6. <sr> IF the current setting equals the desired 

setting, THEN visually encode “Enter”/”New TO” 
button and goto change subgoal <m>7; ELSE IF 
large adjustment clicked, THEN goto compare 
subgoal, <sr>5; ELSE goto change subgoal, 
<m>4. 

7. <m> Click mouse–return with goal accomplished. 
[system-event]:= setting value disappears 

Although setting flight parameters and waypoints follow 
the same subgoal structure, methods for completing steps in 
the subgoal methods presented above diverge. The 
divergence results from different value types between flight 
parameters and waypoints and the absence of large setting 
adjustment buttons for setting waypoints. These differences 
specifically affect methods for completing <sr>5 of the 
compare subgoal. In the following section, candidate 
models for setting the flight parameters and waypoints are 
selected from the cognitive modeling literature.  
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Candidate Models 
As the science of developing quantitative process models of 
cognitive activities matures, many models become available 
with which to take whole cloth or draw inspiration from 
when tackling large, complex models that must be capable 
of completing many different tasks. Rather than possibly 
reinventing the wheel, published models were sought as 
candidates for integration into the task behavior component 
of the synthetic teammate. To be a candidate, models had to 
be compatible with the subgoal methods and selection rules 
detailed above. The current section covers a strategy 
selection model (Lovett, 1998) with implications for setting 
flight parameters, and a letter recall and comparison model 
(Klahr et al., 1983) with implications for setting waypoints.  

Strategy Selection 
Lovett (1998) demonstrated that ACT-R’s choice 
mechanism can account for changes in strategy selection 
with experience from the task environment. Lovett 
identified two strategies for obtaining a solution in a spatial 
problem-solving task (i.e., the building-sticks task): 
overshoot or undershoot. Generally, the overshoot strategy 
results in passing the desired state, and then backtracking to 
it. The undershoot strategy incrementally approaches the 
desired state without passing it. Strategy selection was 
based on a strategy’s likelihood of success within the 
environment, such as sets of problems where the overshoot 
strategy produced a solution a majority of the time and vice 
versa.   

In the building-sticks task, the choice of which strategy to 
use was not obvious, requiring experience to determine 
which strategy was most successful. Lovett’s model used 
the production utility mechanism in ACT-R 5 to learn which 
of the two strategies was best suited for different problem 
sets. With experience, the model learned to choose a 
strategy on a proportion of trials that was similar to humans. 

Lovett’s approach to strategy selection is perfectly suited 
for selecting between possible strategies for setting flight 
parameters for two reasons. First, Lovett’s model was 
originally developed in an earlier version of ACT-R. 
Second, her undershoot and overshoot strategies are similar 
to strategies that can be brought to bear on setting flight 
parameters. 

When setting a flight parameter, the AVO has four 
possible adjustment buttons to choose from. From the four 
options come two strategies: difference reduction and 
meandering. The difference reduction strategy involves 
moving from the current setting to the desired setting, 
reducing the difference between the two values at each step, 
and can be achieved efficiently or inefficiently.  

The efficient difference reduction strategy comes as close 
as possible to the desired setting using the large adjustment 
buttons, then switching to the small adjustment buttons to 
reach the desired setting. Indeed, Lovett’s overshoot and 
undershoot strategies are efficient difference reduction 
strategies.  

The inefficient difference reduction strategy involves only 
using the small adjustment buttons. This strategy will 
succeed, but in many cases take substantially longer to 
complete than the efficient difference reduction strategy.  

Finally, the meandering strategy is a mix of difference 
reduction and periodic interventions to randomly select and 
use a different adjustment button. This strategy will 
eventually select the desired setting value, but could take 
months. Hence, only the two difference reduction strategies 
are considered further. 

The efficient difference reduction strategy can be 
developed as independent undershoot and overshoot 
strategies, similar to those described by Lovett. Because the 
structure of the flight parameter setting environment does 
not contain any bias leading to differential success between 
an efficient undershoot difference reduction strategy or an 
efficient overshoot difference reduction strategy, there is 
little use in developing models of each strategy and letting 
ACT-R’s choice mechanism demonstrate equivalency. 
Furthermore, the inefficient difference reduction strategy is 
a “straw man” strategy–participants will arguably use the 
large increment buttons simply because of their availability. 

Letter Recall and Comparison 
When setting a waypoint, the AVO can either advance (+) 
or retreat (–) through the list of waypoints one waypoint at a 
time. I assumed that participants come to the task with 
extensive knowledge and experience in the English 
alphabet. I also assumed that the choice to advance or retreat 
through waypoints results from bringing the alphabet 
knowledge to bear on the waypoint setting goal, and looked 
to Klahr et al. (1983) as a candidate representation of the 
English alphabet for a model of letter comparison. 

 
Figure 2. Alphabet representation adapted from Klahr, 

Chase, and Lovelace (1983). Dashed lines and open arrows 
represent capabilities added to their model. 

In the Klahr et al. (1983) model of letter retrieval and 
comparison, letters were stored as hierarchical subgroups in 
a link-node structure (e.g., α to τ in Figure 2). Letters within 
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a node (e.g., D in node α) can only be reached through node 
entry points. Entry points for each node are the first letter of 
the node (e.g., A for α, H for β, etc., see Figure 2). Node 
contents are based on empirical evidence of entry point 
consistency with phrasing in “Twinkle, Twinkle Little Star,” 
used to teach the alphabet (Klahr et al., 1983).  

Klahr et al.’s letter retrieval model is a serial, self-
terminating search across and within alphabet nodes. Letters 
and nodes were linked only to their successors. Thus, to 
backtrack through nodes the previous node must be 
maintained in working memory.  

Klahr et al. validated their model with response time data 
collected from human participants that were shown letters of 
the alphabet and asked to respond with the name of the letter 
that either occurs before or after the probe letter. However, 
determining whether to advance or retreat through the 
waypoint list in the UAV-STE is quite different. Rather than 
responding with an adjacent letter, the model must 
determine whether the desired waypoint (e.g., BEO) occurs 
before or after the queued waypoint (BEP in Figure 1). This 
requires determining if a letter occurs before or after another 
letter in the alphabet, and these comparisons can occur 
between and within letter nodes. Even so, the Klahr et al. 
(1983) model is a good candidate for representing the 
English alphabet. In the following section I cover the 
development and integration of the candidate models within 
ACT-R. 

Development & Integration in ACT-R 
ACT-R is a computational cognitive architecture for 
developing cognitive models (Anderson, 2007). In ACT-R, 
cognition revolves around the interaction between a central 
production system and several modules. There are modules 
for vision, motor capabilities, memory, storing the model’s 
intentions for completing the task (i.e., the control state), 
information retrieved from memory, and a module for 
storing the mental representation of the task at hand (i.e., the 
problem state). Each module contains one or more buffers 
that can store one piece of information, or chunk, at a time. 
Modules are capable of massively parallel computation to 
obtain chunks. For example, the memory module can 
retrieve a single chunk from thousands of others and place 
the chunk into the module’s buffer. Module contents are 
used to guide processing in the central production system.  

The central production system is a set of state-action rules 
that are matched to buffer contents and act on the buffers by 
removing information from them or adding information to 
them. Only a single production rule can proceed at a time, 
and each production rule takes at least 50 ms to complete. 
The production system acts as a serial bottleneck, as all 
information passed between the buffers, and interactions 
with the environment, must go through it. 

Developing A Flight Parameter Setting Strategy 
The previous section covering Lovett’s model of strategy 
selection revealed that there is not a differential benefit 
between overshoot and undershoot strategies for setting 

flight parameters. Not only is there no differential benefit, 
there are few alternative strategies that would compete in 
setting flight parameters. Consequently, only the efficient 
undershoot strategy was developed for setting the flight 
parameters.  

In the ACT-R productions that instantiate <sr>5 of the 
compare subgoal, a function was called from a production’s 
action side that selects the appropriate adjustment button 
given button adjustments for the current flight parameter 
(e.g., altitude, airspeed, and course) and the current and 
desired setting values. Button selection was implemented in 
this fashion to avoid the need of integrating a representation 
of the number line, integrating models of addition and 
subtraction, and integrating a model of choosing the 
appropriate adjustment button based on the button 
increments and the difference between the desired and 
current setting values. Hence, the efficient undershoot 
strategy was perfectly executed by the model when setting 
the flight parameters. However, the model was not provided 
knowledge that course values looped back to 1° after 
passing 360°. 

Developing a Waypoint Setting Model 
The waypoint adjustment button selection process utilized 

Klahr et al.’s (1983) model of letter retrieval and 
comparison. The English alphabet was divided into six 
alpha-chunks that contained letters, instantiating Klahr et 
al.’s alphabet nodes (see Figure 2). Alpha-chunks were 
stored in ACT-R’s declarative memory, and were based on 
the Klahr et al. (1983) alphabet division. In addition to 
letters, the chunk’s name and the name of the subsequent 
alpha-chunk (i.e., the next-node-name slot) were also stored 
in alpha-chunks. Different from Klahr et al., chunk slots for 
the chunk name that comes prior to the current chunk in the 
alphabet (i.e., the previous-node-name slot) and the absolute 
position of the alphabet chunk in the alphabet (i.e., the 
position slot with values ranging from 1 to 6) were added to 
alpha-chunks. The values in the previous-node-name and 
the next-node-name slots were strings and thus have no 
effect on memory retrieval in ACT-R.  

A two-step process was developed to complete <sr>5 of 
the compare subgoal. The process began by comparing the 
first letter of each waypoint name. If they were equal, 
subsequent letters were compared until two were different 
(e.g., O and P from the desired waypoint BEO and the 
queued waypoint BEP). At this point the second step began.  

The second step began with retrieving alpha-chunks for 
each of the different letters for comparison (in our example 
letters O and P). When retrieving alpha-chunks, activation 
was spread from letters residing in the goal buffer. Thus, 
alpha-chunks were retrieved independently, without the 
need to serially traverse the alpha-chunks/nodes until the 
desired alpha-chunk was reached. This non-serial retrieval 
of alpha-chunks differs from the Klahr, et al. model, and 
allows traversing the alphabet nodes in either direction (see 
open and closed arrows between nodes in Figure 2). 
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When different alpha-chunks were retrieved, letter 
comparisons were made using a combination of the 
previous-node-name, next-node-name, and position slots. 
However, when retrievals returned the same alpha-chunk, 
the model had to serially search through the letter slots of 
the retrieved alpha-chunk until one of the letters was found. 
To instantiate serial search through slots in the alpha-
chunks, s x o productions were developed, where s is the 
greatest number of letter slots in the alpha-chunk containing 
the most letters minus one, and o is the number of possible 
outcomes based on comparing two letters. The value for s is 
reduced because if the penultimate slot is reached without 
finding either of the letters, than the wrong alphabet chunk 
has been retrieved, searching the last slot becomes useless, 
and a new retrieval is issued.  

The α  alpha-chunk had the greatest number of letter slots 
(i.e., 7), and there were three possible outcomes–the letter 
from the desired waypoint was reached first in an alpha-
chunk, a letter from the queued waypoint was reached first, 
or the currently checked slot did not contain either letter. 
Consequently, 6 x 3 = 18 productions were developed to 
serially search through letter slots of retrieved alphabet 
chunks. These productions mimicked procedural expertise 
of iterating through letters within an alpha-chunk. 
Furthermore, these productions were general enough to 
apply to any letter comparisons within any of the alpha-
chunks.  

For example, when the model determines which waypoint 
occurs alphabetically, BEP or BEO, it determines the first 
and second letters of the waypoints are identical. Next it 
determines that O and P are different, and retrieves the γ 
alpha-chunk. The model then iterates through γ’s letter slots, 
reaching O before P, providing information to the model 
that BEO comes before BEP in the waypoint list, and to 
retreat (–) rather than advance (+) through the list. 

Although the letter comparison procedure and the 
declarative structure of the alphabet were based on Klahr et 
al.’s model, the process differs slightly. For their model to 
obtain the chunk containing the letter O, it would require 
retrieving α and β chunks first, then retrieving the γ chunk. 
Once the γ chunk was retrieved, it would be serially 
searched for O. 

Integration: Sharing Production Rules Across 
Goals 
The methods comprising the subgoal methods and selection 
rules obtain, compare, and change gleaned from the task 
analysis suggest that there should be a high proportion of 
shared production rules to set flight parameters and 
waypoints when integrating the two models within ACT-R. 
The similarity in procedures for setting the flight parameters 
was high, and the only difference was the setting adjustment 
increments retrieved from declarative memory. Hence, each 
flight parameter (i.e., airspeed, altitude, and course) shared 
100% of its production rules with the other flight 
parameters. However, production sharing between the 
setting flight parameters and waypoints was not nearly as 

high, with a minimum of 32% and a maximum of 44.5%. 
The minimum value comes from the model not having to 
serially search through an alpha-chunk, and the maximum 
value comes from the model having to exhaustively search 
through the largest alpha-chunk, α. 

Both models were successfully integrated into a 
composite, with a relatively high degree of production rule 
sharing. In the following section I report the composite’s 
validity.   

Composite Model Validation 
Model and human participants set the airspeed, course, 
altitude, and waypoint to determine if the composite model 
provided valid predictions. Data were collected from three 
dependent variables: 1) interclick duration, which was 
operationally defined as the time between clicks beginning 
after method 2 of the compare subgoal, 2) the number of 
mouse clicks to complete the goals, and 3) the total time to 
complete the goal. Interclick duration represents temporal 
dynamics between clicking an adjustment button and 
determining if the new setting value is the desired setting 
value (from method 4 through method 6 of the change 
subgoal). The number of clicks and the setting duration 
reflect the accuracy of the task analysis presented above.  

Method 
Participants were instructed to set the airspeed, course, 
altitude, and waypoint 20 times each. There were five 
human and 10 model participants. Human and model 
participants interacted with the same environment. Although 
the model had no knowledge of the course value continuous 
loop, human participants were instructed that both the 
waypoint and course setting values were continuous loops. 

Base levels for alpha-chunks were set to a high initial 
value to account for early learning of the alphabet and a 
lifetime of use. All other ACT-R parameters were set to 
values necessary for other components of the synthetic 
teammate. These values were set prior to running the model 
and remained unchanged. Finally, production compilation 
and production utility learning were not active during model 
runs, and the model was reset after setting the flight 
parameters and waypoint 20 times each. 

Twenty randomly selected airspeeds, altitudes, courses 
and waypoints were randomized for each participant and 
model run. The model operated as if the desired setting was 
provided from another teammate through the 
communication system. Consequently, neither the model 
nor human participants performed the obtain selection rule 
from the task analysis, presented above.  

Results 
A comparison between human and model data revealed little 
deviation between model and human performance, across 
the dependent variables from each of the four goals (i.e., 
setting airspeed, course, altitude, and waypoint), RMSD = 
1.20; r2 = 0.98. 
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Figure 3. Results from model validation effort for the three 

dependent variables. Error bars are standard error. 

Results indicate a very good fit between the composite 
model and human data. Interestingly, and not surprisingly, 
the course flight parameter has the poorest fit to human data, 
and likely stems from not incorporating knowledge of the 
setting’s continuous loop of setting values.  

Discussion and Areas for Improvement 
This excellent model fit to human data resulted from 
performing a detailed task analysis, finding previously 
published models suitable to perform requisite tasks, and 
incorporating the models into a composite using a cognitive 
architecture. Although the model successfully predicts 
human data, there are clear areas for improvement. First, the 
selection of the flight parameter setting adjustment buttons 
is done using a function call external to ACT-R. 
Incorporating this decision process, while maintaining the 
model fit to human data is highly desirable. Second, it 
would be an improvement to enable the model to handle the 
continuously looping values of the course flight parameter. 

The Klahr et al. (1983) model of letter recall and 
comparison was successfully integrated with other aspects 
of the synthetic teammate task behavior component. 
Furthermore, changing Klahr et al.’s serial search across 
alphabet nodes to a parallel retrieval process using ACT-R’s 
spreading activation mechanism along with the close fit, 
points to an interesting possible extension to Klahr et al’s 
model. The Lovett (1998) model of choice was less 
integration–more inspiration. There was also complete 
sharing of production rules across procedures for setting the 
different flight parameters, and decent sharing across 
procedures for setting flight parameters and waypoints. This 
high degree of production rule reuse reflects success in 
model integration.  

When developing large-scale complex models, such as a 
synthetic teammate, the model must be capable of 
completing multiple disparate tasks. Model inspiration 
and/or integration of existing models provide the developer 
with the ability to model cognitive activities that may be 
outside their own area of expertise. The success of the 
composite model further demonstrates that the development 
of computational cognitive models has matured enough to 
draw inspiration from, or integrate, previously published 
models.  
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Abstract 

A commonly held idea is that people engaged in guessing 
tasks try to detect sequential dependencies between the 
occurring events and behave accordingly.  For instance, 
previous accounts of the popular Rock Paper Scissors game 
assume that people try to anticipate the move an opponent is 
likely to make and play a move capable of beating it. In the 
paper we propose that players modulate their behavior by 
reacting to the effects it produces on the environment, i.e., 
that they behave exactly as they do in non competitive 
situations. We present an experiment in which participants 
play against a computer controlled by different algorithms and 
develop a procedural model, based on the new ACT-R utility 
learning mechanism, that is able to replicate the participants' 
behavior in all the experimental conditions.  

Keywords: Rock-Paper-Scissors, reinforcement learning, 
procedural learning, ACT-R, neural nets. 

Introduction 

The capability of adapting to changes occurring in the 

environment and to anticipate future events constitutes a 

critical  factor for organisms' survival, and humans and 

animals have been tuned by natural selection to become 

receptive to subtle variations in the external contingencies. 

Adaptivity and proactivity are realized essentially through a  

process of  selection by consequences—named also law of 

effect (Thorndike, 1898), operant conditioning (Skinner, 

1938) or reinforcement learning (Sutton & Bartho, 1998)—

i.e., on the idea that organisms modulate their behavior by 

reacting to the effects it produces on the environment. 

 Some predictions organisms routinely make concern the 

behavior of other organisms. A particular situation in which 

such predictions are useful is given by competitive games. 

It's obvious that, if we knew in advance the move our 

opponent is going to make, our life would become easier.  In 

the paper we deal with Rock Paper Scissors (aka 

Roshambo), a competitive game that, while being extremely 

simple to describe and  play, presents a series of interesting 

features when considered from a cognitive point of view.     

The following section presents the essentials of the game 

and describes some strategies that have been suggested to 

play it effectively.  Next, we review previous studies which 

investigated the behavior of human players in this task and 

proposed some models to explain it.  As it will become 

apparent in the following, a common theme underlying this 

work is that people attempt to succeed at the game by trying 

to anticipate the move the opponent is likely to make and 

playing a move capable of beating it.  We advance, on the 

other hand, a simpler explanation for the players' 

performance which relies on the same principle of selection 

by consequences that explains most of the behavior in non 

competitive situations.  We present an experiment in which 

participants play against a computer controlled by different 

algorithms and develop a procedural model based on the 

new ACT-R utility learning mechanism that is able to 

replicate the participants' behavior in all the experimental 

conditions. 

Rock Paper Scissors 

Rock Paper Scissors (henceforth RPS) is a competitive two-

person game which is played through a series of turns in 

which players make their moves simultaneously. The 

outcome of each turn is determined as follows:  Rock beats 

Scissors, Scissors beats Paper, but Paper beats Rock.  If both 

players make the same move, the turn is considered as a tie. 

That’s all, as far as the game's rules are concerned.  

 In RPS no move—no “pure strategy”, in terms of Game 

Theory (Von Neumann & Morgenstern, 1944)—can be 

considered as the best to play.  Concepts like “better”, 

“bigger”, “stronger” and similar are possible only referring 

to sets for which a partial ordering could be established, and 

this requires the existence of a transitive relation among set 

members, an eventuality that cannot be realized in RPS 

where the relation “beats” originates a closed loop.  

 Considered from the point of view of the Game Theory, 

RPS is classified as a two-person zero-sum game. For all 

games of this kind there exists a solution, i.e., a rule or norm 

that prescribes how the game should be played. Assuming 

perfectly rational players, the solution coincides with the  

Nash equilibrium at which neither player could hope to 

achieve a better performance by modifying their strategy, In 

case of RPS, the Nash equilibrium is reached by choosing 

the three possible moves randomly with equal probability, 

i.e., by playing a mixed strategy through a stochastic 

combination of the pure strategies.  

 While game theorists could consider RPS as a trivial 

game, there are two facts that make it intriguing from a 

cognitive point of view. First of all, humans are notoriously 

bad at generating random moves (Rapoport & Budescu, 

1997; Wagenaar, 1972), so theorists could not easily 

practice what they preach. Being unable to play randomly, 

humans necessarily display sequential dependencies among 

the moves they make that could be exploited by a clever 

opponent. Second, the mixed strategy has the advantage that 

no strategy can beat it but it also has the disadvantage that 
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there is no strategy that it can beat.  In other words, it 

guarantees a break-even result in the long run, regardless of 

how strong (or how weak) the opponent is, but it does not 

allow a player to reach consistent wins. 

In fact, aficionados consider RPS a game of wit, not a 

game of chance.  Even a cursory look at the web site of the 

World RPS Society (www.worldrps.com) or a quick skim of 

The official rock paper scissors strategy guide (Walker & 

Walker, 2004) should convince that RPS experts use their 

insight to try to anticipate the opponent's move, possibly 

recurring to particular sequences of moves to try to induce 

predictable responses in the other player.  The problem is 

that, to exploit a weakness in the opponent's play, you need 

to make non-random moves, which makes you vulnerable.   

A clearer idea about which strategies could succeed at the 

game may be obtained by looking at the results of the First 

and Second International RoShamBo Programming 

Competition—held at the University of Alberta, Canada, in  

September 1999 and July 2000, respectively—two    

tournaments between computer programs playing RPS in 

which each program competed against all others. Because 

organizers enrolled in the competition some really weak 

programs that produced easily predictable move sequences, 

a program that played the optimal strategy without trying to 

exploit the competitors' deficiencies (running at the same 

time the risk to expose its owns) could reach only weak 

results.  It should be noted that all programs could store the 

complete sequence of moves played by themselves and by 

the opponent, a feature which human players, due to their 

memory limitations, cannot easily rely upon.  

The programs adopted essentially two high-level 

strategies to choose their moves.  The first one was based on 

pattern-matching and tried to exploit the statistical 

regularities occurring in the sequence of moves produced by 

the opponent. The second one relied on some kind of meta-

reasoning to determine how the opponent would choose its 

move. One of the most complicated strategies of this kind 

was represented by the so called Sicilian-reasoning 

according to which a program tried to figure out the 

competitor's move by assuming that it will think like itself, 

taking however than into account the fact that the 

competitor was likely to use Sicilian reasoning too, and 

giving thus raise to a “I know that you know that I know ...” 

recursive pattern. This approach was very effective and 

programs adopting it ranked among the best. 

While computer programs could shed light on how RPS 

should be played by perfectly rational agents with unlimited 

memory, we could ask how individual with bounded 

rationality, cognitive limits and emotions (i.e., normal 

people) really play the game.  

Previous work 

In the last decade Robert West, with Christian Lebiere and 

coworkers, produced a series of studies (West, 1999; 

Lebiere & West, 1999; West & Lebiere, 2001; Routledge-

Taylor & West, 2004,  2005; West, Stewart, Lebiere & 

Chandrasekharan 2005)  focused on the analysis of human 

behavior in the RPS and on the attempts to simulate it. 

These studies present several experiments whose results are 

explained through models that differ slightly from paper to 

paper. Through their comparative exam it is possible, 

however, to extract a unitary view and a coherent story that 

we are now going to tell.  

According to the authors,  people engaged in the RPS, and  

similar guessing tasks, try to detect regularities  in the 

occurring events—in our case in the sequence of moves 

made by the opponent—and use this information to 

modulate their behavior. If both players use the same 

strategy of sequence detection, they enter in a state of 

reciprocal causation in which each player tries to influence 

the opponent's behavior while being, simultaneously 

influenced by it.  The result is a dynamic, coupled system 

capable of generating patterns of interaction that could not 

be explained by looking at each system in isolation. 

The players' behavior could be explained and replicated 

by a model capable of storing a variable number of previous 

opponent's moves.  Differently from the computer programs 

playing the same game, the model has a reduced memory 

buffer whose capacity constitutes a critical factor in 

determining its behavior.  A model which stores only the 

previous opponent's move is said to be a Lag1 model, if it 

stores the previous two moves is said to be Lag2, and so on.  

The intuitive idea behind the models is that, if players 

could figure out what an opponent, having made the moves 

represented in the memory buffer, is going to do, they 

should make the move capable of beating it. This idea has 

been realized and implemented in different ways. 

West (1999), Lebiere & West (2001) and Rutledge-Taylor 

& West (2004) used a two layers neural net which received 

in input the opponent’s moves and  gave as output  the move 

made by the player. The input layer comprised a number of 

node triples  (each node representing Rock, Paper or 

Scissor, respectively) corresponding to the number of 

opponent's moves the model could store: one three-nodes 

group  for Lag1—storing only the last move—two groups 

for Lag2— storing the last and the last but one moves—etc.  

Each input node could have a value of 0 or 1. More 

particularly, for each input triple, the node corresponding to 

the move made by the opponent received an activation value 

of 1 while the remaining two nodes got a 0.  

 All the nodes of the input layer were linked to the three 

nodes, one for each move, constituting the output layer. The 

weights of the links connecting the input and output nodes 

were initialized to 0 (in West, 1999 and West & Lebiere 

2001) or were assigned a value randomly chosen from the 

set {-1, 0, +1} (in Rutledge-West, 2004).  The value of an 

output node was determined by summing the weights of the 

links coming from the activated input nodes, i.e., from those 

input nodes having their activation set to 1. The network 

returned the move associated with the highest-value output 

node, possibly making a random choice in case of multiple 

nodes with the same activation.  

After each choice, the link weights were adjusted 

according to the outcome. Two main policies were followed 
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for updating the links.  In the “passive” models,  wins were 

rewarded by adding 1 to the weights of the links coming 

from the activated nodes (i.e., input nodes with a value of 1) 

and leading to the output node corresponding to the chosen 

move,  losses were punished by subtracting 1, while ties 

kept all the links unvaried.  “Aggressive” models, on the 

other hand, treated ties like losses and subtracted 1 to the 

links connecting the activated input nodes with the non-

winning output node. 

West & Lebiere (2001) carried out a series of 

experiments in which human participants played against 

different versions of the model and compared these results 

with those obtained by having different models compete 

against each other.  In general, games in which identical 

versions of the models were pitted against each other ended 

in a tie. On the other hand, it was found that a broader 

memory span or a more aggressive attitude provided a 

competitive advantage:  Lag2 models were able to reliably 

defeat Lag1 models while aggressive versions were superior 

to passive ones.  Interestingly, the advantage provided by an 

extra lag or a more aggressive attitude were additive and 

approximately equal in magnitude.   

Coming to human players, they were able to win on the 

average 9.99 turns (after a 300 turns game) more than the 

Aggressive Lag1 and 11.14 turns (after 287) more than the 

Passive Lag2 when pitted against these algorithms. 

According to West & Lebiere (2001), humans perform like 

the Aggressive Lag2 that constitutes, according to the 

authors, the best model for their behavior.  Humans showed 

indeed a small but statistically significant trend to lose, 

instead of tie, against this model, but this effect was 

attributed to the fact that they were not able, due to lack of 

motivation and/or fatigue, to play in the same consistent 

manner as their computerized opponent. 

 These findings were congruent with those reported in 

those papers (West, 1999, Lebiere & West, 1999; Rutledge-

Taylor & West, 2005, West, Stewart, Lebiere, & 

Chandrasekharan, 2005) that utilized models based on the 

ACT-R (Anderson & Lebiere, 1998) cognitive architecture. 

The idea that RPS is played exploiting the last moves to try 

to anticipate the next one to is maintained in these models, 

but in this case the sequence of moves is stored and 

retrieved not through a neural net but by taking advantage of 

the ACT-R declarative mechanism, while the model's 

choices, instead of being driven by the nodes' activation 

values, are demanded to the ACT-R procedural system.   

The ACT-R declarative memory stores chunks containing 

the opponent's previous  patterns and a prediction for the 

next move. The most important procedure used by the 

models is the following (slightly adapted from Lebiere & 

West, 1999, p. 297, and of intuitive significance): 

Sequence Prediction 
IF no move has been played 

 and the opponent last played move(s) L2 (and L1) 

 and move(s) L2 (and L1) are  followed by move L 

 and move L is beaten by move M 

THEN play move M.  

For each turn, the model recalls the most active chunk 

matching the two (for Lag2 models) or the last (for Lag1 

models) opponent's move(s). The model notes the move 

predicted by the chunk and plays the move that beats it. 

After both players have made their choice, a new chunk 

containing the update moves and the corresponding 

prediction is formed, or a previously existing chunk already 

storing the same information is reinforced.  

Using this approach, Lebiere & West (1999) were capable 

of replicating the results of West (1999) while Rutledge-

Taylor & West (2005) constructed several models capable 

of replicating the results of West & Lebiere (2001). 

The Experiment 

Our interest for RPS arose after a series of  experiments 

(e.g., Fum & Stocco, 2003; Fum, Napoli, & Stocco, 2008,; 

Stocco, Fum, & Napoli, 2009) which found the participants' 

behavior heavily influenced by the principle of selection by 

consequences. These experiments, however, dealt with non 

competitive situations, i.e., situations that could be classified 

as “a one-person game, sometimes called a game against 

nature, wherein a single player makes a decision in the face 

of an environment assumed to be indifferent or neutral” 

(Zagare, 1984, p. 11). To investigate whether the same 

principle could hold in competitive situations like RPS, we 

established the following experiment.   

 Participants played three rounds of RPS against a 

computer controlled in each round by a different program. A 

first group of participants (in the “Classic” condition) 

interacted with the computer through an interface which 

adopted the usual symbols, i.e. clinched fist for Rock, flat 

hand for Paper, and closed hand with extended index and 

Scissors. Participants were instructed about the rules of the 

game and were told that the computer was following in each 

round a different strategy that could however be defeated, at 

least in some cases. Immediately after the participants'  

made their choice, the computer move was displayed 

together with the turn outcome. Wins allowed the 

participants to gain one point (+1), losses were punished by 

the same amount (-1), while ties left the score unaltered (0).    

A second group of participants was engaged in the same 

task arranged, however, as a game against nature.  In this 

“Nature” condition the computer was presented not as a 

competitor but as a neutral game device allowing 

participants gain or lose points. In fact the programs the 

computer used were exactly the same of the previous 

condition. Instead of the classic RPS symbols, however, 

participants saw on the screen three geometric figures 

representing a sphere, a cube and a pyramid. At the 

beginning of each round the computer randomly matched 

each figure with an RPS move and behaved accordingly. 

Participants were told that they could obtain in each turn a 

score of +1, 0 or -1.  It was also said that the criterion 

according to which the computer assigned scores to figures 

could not be easily guessed and that, in any case, it would 

change in each round. By relying on their “intuition” 
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participants had to try to obtain in each round as many 

points as possible.   

Another difference between these conditions, in addition 

to the setting and the use of different move images, was 

given by the fact that the computer, instead of the move it 

made in each turn, displayed the complete payoff matrix 

allowing participants to see both the score gained by their 

move and the scores they could have gained by making the 

alternative choices. Suppose a participant chose the sphere 

(matched for that round with Scissors) and the computer the 

cube (matched with Paper, while the pyramid was matched 

with Rock). The outcome was shown by displaying +1 in 

correspondence to the sphere (because Scissors beat Paper), 

0 near the cube (each move ties with  itself) and -1 near the 

pyramid (because Rock beats Scissors).  

In the experiment a third condition (named “Implicit”) 

was utilized that was presented against as a competitive 

situation in which participants had to choose  one of the new 

symbols (the sphere, the cube and the pyramid) displayed on 

the screen.  Participants were told that each figure could 

beat another figure, tie with itself, and lose against the third 

one but the payoff matrix was not revealed and had to be 

discovered by playing the game.   

In summary, participants played against the computer, 

controlled by the same algorithms, in a classic RPS game, in 

a situation disguised as a game against nature, and in a 

competitive framework with unknown payoffs. We wanted 

to establish how participants would perform in the three 

conditions and, in particular, whether their behavior should 

be explained by using models of a different kind. 

Method 

Participants and design.  Sixty students (37 males) 

enrolled at the University of Trieste, Italy, were recruited as 

participants. Their age varied between 18 and 32 years 

(M=21.4, SD=3.7).  Participants were randomly assigned to 

one of the three experimental conditions (Classic, Implicit, 

and Nature) in which they were engaged in three RPS 

rounds, each one against a different algorithm whose order 

was counterbalanced between rounds. The experiment 

followed therefore a 3x3 mixed design with Condition as 

between subjects and Algorithm as within subjects factors. 

 

Materials. Three algorithms were used in the experiment. 

The first one, Lag2, replicated the program described in the 

previous section.  In this case, however, we implemented a 

Passive Lag2 algorithm which updated the net weights by 

assigning +1 to wins, 0 to ties and -1 to losses.   The second 

algorithm, Random, played according to the optimal 

strategy by choosing its moves randomly from a uniform 

distribution.  The third one, Biased, made also random 

moves but it sampled from a distribution in which one of the 

moves had a 50% probability of being selected, a second 

one a 35% probability and the third one 15%. At the 

beginning of each task the computer assigned randomly one 

move to each probability class.   

 

Procedure.  The experimental sessions were held 

individually. Participants were instructed about the game 

rules and it was stressed that each round would be played 

against a different opponent (in the Classic and Implicit 

condition) or a different program (in the Nature condition) 

which followed its own criteria in choosing the moves. 

After reading the instructions, participants were involved in 

three 100-turn RPS rounds, each round played against a 

different algorithm. Participants made their choices by 

clicking on an image displayed at the vertex of an imaginary 

equilateral triangle. The images were randomly placed at the 

vertices for each participant.  After participants made their 

choice, the move played by the computer and the outcome 

score were shown in the Classic and Implicit conditions 

while in the Nature condition the scores that could have 

been obtained by choosing the alternative moves were also 

displayed. During the task participants were kept informed 

through a colored bar of their running total that was 

however reset after each round.  

Results 

We first ascertained whether the rounds, per se, could 

influence the participants' performance, i.e., whether the 

mere fact of having played 100, 200 or 300 RPS turns, 

independently of the condition and the algorithm, could 

represent a significant factor in determining their behavior.  

The scores obtained in the rounds were as follows: M=-0.17, 

SD=9.78 for Round1, M=1.64, SD=11.18 for Round2, and 

M=0.27, SD=10.40 for Round3, respectively. A repeated 

measures one-way ANOVA on the scores of each round did 

not revealed (p=.65) any significant effect.  No signs of 

learning (or fatigue) were thus evidenced that could hinder 

the interpretation of further results. 

 We then analyzed the factors manipulated in the 

experiment, i.e., the Condition to which participants were 

assigned and the Algorithm against which they played. 

Table 1 reports the means and the standard deviations of  

participants’ scores. 

 

Table 1: Means (and standard deviations) of the scores. 
 

 Lag2 Random Biased 

Classic -3.80   (9.61) -1.40 (9.84) 6.80   (7.14) 

Implicit -6.45 (10.17)    -1.20 (5.74)  5.95 (11.73) 

Nature -6.40   (9.29) 4.65 (8.76) 6.55   (9.60) 

 

A mixed design ANOVA revealed as significant the effect 

of the Algorithm only (F(2)=25.13 p<.000001), while 

Condition  (p=.44) and the interaction (p=.29) did not seem 

to play any role.  In other words, participants behave in the 

same way when they played the classic RPS game, knowing 

the relationship that existed between the moves, in the 

implicit RPS, when the payoff matrix was unknown, and in 

the non-competitive Nature condition. Two further 

ANOVAs restricted on the scores of the first 20 and 40 

turns, respectively, provided similar results—i.e. the only 
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significant effect was that of the Algorithm—suggesting that 

no payoff learning was needed to perform in the Implicit 

condition as in the Classic one, with the results of both 

conditions were similar to those obtained in the Nature one.  

 Figure 1 reports the results obtained by collapsing the 

three conditions.  As evidenced, participants lost against 

Passive Lag2, tied against Random and won against Biased. 

Two t tests confirmed that both in the case of Lag2 

(t(t(59)=-4.47, p < .0001) and of the Biased algorithms 

(t(59) = 5.24, p<.00001) the participants performance 

differed significantly from 0. 

 

Figure 1. Mean scores obtained against the different 

algorithms (collapsed conditions) with bars representing 

95% confidence intervals.  

Modeling the results 

Our results contrast with the commonly held assumption 

that players try to succeed at RPS by anticipating the 

opponent's move and by making a move capable of beating 

it.  This approach could possibly work in the Classic and 

Implicit conditions but cannot be applied in the Nature one 

where the idea of “opponent's move” does not simply make 

sense. To explain the experimental results we would 

therefore be obliged to assume that different strategies were 

applied in the competitive and non-competitive settings. 

Moreover, following the same assumption, we would expect 

to find a difference, at least in the first phases, between the 

Classic and the Implicit conditions. While participants in the 

former know immediately what to play to defeat an 

anticipated move, those in the latter have to learn what beats 

what; since the very first turns, however, the results 

obtained in these conditions are not discriminable and, 

again, are similar to those obtained in the third one.  Finally, 

because human participants, as reported by West & Lebiere 

(2001), had a tough time playing against the Aggressive 

Lag2 algorithm, we tried to facilitate their task by having 

them compete against a more manageable version. If 

Aggressive Lag2, which systematically beats the passive 

version, represents however the best incarnation of the 

above mentioned assumption, it is difficult to explain why 

participants systematically, and independently of any fatigue 

sign,  lost against the Passive Lag2 algorithm.  

A principle of economy suggests the possibility that, at 

least under the conditions examined in our study, 

participants do not follow different strategies and do not try 

to anticipate the opponent's move but they simply make 

those moves that are more likely to succeed, independently 

of the condition to which they have been assigned and the 

opponent they competed with.  

To test this hypothesis, we pitted against our algorithms 

three different models, representing possible participants' 

strategies in RPS.  The models were the Passive Lag2, 

Passive Lag1 and a procedural model which exploited the 

ACT-R's new utility learning mechanism (Anderson, 2007).  

The idea on which Procedural ACT-R is based is that an 

organism, facing the problem of choosing among different 

moves or actions, will select that which worked best in the 

past, i.e., the action that was most useful in the previous 

history of the organism. The model associates therefore to 

each option a utility measure that is updated after each move 

application according to the reward it receives from the 

environment, Starting at an initial value of 0 the utility Ui of 

each move i at time n is updated according to the formula 

(Anderson, 2007, p. 160):  

����� = ���� − 1�+∝ ������ + ���� − 1�
 
where α is a learning parameter and R is the outcome 

received in each turn (the usual +1 for a win, 0 for a tie, and 

-1 for a loss).  The choice of the move is however not 

deterministic but  subjected to noise. The probability Pi that 

a given move i will be selected among a set of j options 

(including i too) is given by:   

�� =
��� �⁄
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where s it the noise parameter. 

 The choices made by the model are thus regulated by α 

and s;  we set α to 0.2 and varied s to fit the experimental 

data. To allow a fair comparison, we implemented 

NoisyLag2 and NoisyLag1, the nondeterministic  versions 

of the respective models in which the  choices were made 

according to the same formula used in Procedural ACT-R. 

 A final problem had to be solved before running the 

simulations. While Procedural ACT-R could be employed 

in all the experimental conditions, it was not immediately 

clear how NoisyLag2 and NoisyLag1 could be used to 

simulate the participant's behavior in the game against 

Nature, in which the opponent's moves were not available to 

them. The only data the models had available were 

represented by the scores obtained by making the different 

moves. Discarding obviously the idea of storing the score 

associated with the move chosen by the player, we tried the 

other options obtaining a surprising result (at least for us): 

the behavior of the models was exactly the same 

independent of the fact they stored the best moves (i.e. the 

moves leading to a score of +1), the worst ones (-1) or those 

in-between (with a 0 score). In fact, after a moment's 

thought, we realized that the opponent's moves stored by the 

West & Lebiere’s (2001) lag models were exactly the 

moves a player should have made to tie in each turn!   
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 That said, we ran a series of simulations with each model 

starting with s=0.1 and progressively augmenting the 

parameter through increments of 0.1 up to a final value of 

14.0.  We simulated 1000 runs of the model for each 

parameter value against each algorithm, and considered that 

the model was fitting the data when the 95% confidence 

intervals of the models' results were completely included 

within the 95% confidence intervals of the participants’ 

data. The Procedural ACT-R model (with noise values 

ranging from 0.39 to 0.44) was the only model capable of 

replicating the participants' performance against all the 

different algorithms both in term of general performance 

(total means) and in terms of a temporal series of five 

successive 20-turns blocks.  Both NoisyLag1 and 

NoisyLag2 did not to fit the participants' data against Lag2 

because they were not able, for any s setting, to generate 

scores that were less than those obtained by the opponent.  

These models were in a sense too powerful to be considered 

as a good representation of the people's performance.  

Conclusions 

In the paper we presented the first results of a research 

project aimed at investigating the possibility of applying the 

principle of selection by consequence, traditionally adopted 

to explain human behavior in games against nature, to 

model the players’ performance in competitive games. We 

focused on RPS which was previously explained by 

adopting some form of belief models, i.e. models that “starts 

with the premise that players keep track of the history of 

previous play by other players and form some belief about 

what others will do in the future based on past observation. 

Then they tend to choose a best-response, a strategy that 

maximizes their expected payoffs given the beliefs they 

formed.” (Camerer & Ho, 1999, p.2) We found that two 

models of this kind (NoisyLag2 and NoisyLag1) were 

isomorphic with models that work by taking into account 

only the environmental rewards and we found that they 

were too powerful to be able to explain the human behavior.  

A purely procedural model based on the ACT-R new utility 

mechanism was able to fit the experimental data providing 

thus a simpler and more general explanation for the players’ 

behavior.    
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Abstract 

Multisyllabic word reading has received little attention in ex-
isting computational models, which are designed for English. 
The Greek language uses mainly multisyllabic words, while 
its orthography is feedforward consistent and includes a stress 
diacritic. We present here a computational model of reading 
aloud Greek words and nonwords, based on the connectionist 
“triangle” model, adapted to the Greek orthography, using a 
novel input representation. The network displays several ef-
fects from the word reading literature and successfully assigns 
stress. Further investigations are underway. 

Keywords: Multisyllabic words; stress assignment; triangle 
model; reading aloud; nonword reading; connectionist; Greek. 

Introduction 

Computational Models of Reading Aloud 

It has been 20 year since Seidenberg & McClleland (1989) 

presented the first “triangle” connectionist model of reading 

aloud. Since then, a variety of computational models have 

been presented, single-route (Plaut, McClelland, Seidenberg 

& Patterson, 1996; Harm & Seidenberg, 2001, 2004) or 

dual-route (DRC: Coltheart, Rastle, Perry, Langdon & 

Ziegler, 2001; CDP+: Perry, Ziegler, & Zorzi, 2007; Zorzi, 

Houghton, & Butterworth, 1998). These models differ in 

many respects, such as the existence of pre-defined grapho-

phonemic decoding rules versus learning procedures, and 

the localist or distributed nature of lexical representations. 

The triangle family of models has the advantage of dis-

covering, during a training phase, regularities in the rela-

tions between orthographic and phonological representa-

tions in a set of words. The regularities are then generalized 

to novel stimuli, such as nonwords. Three implementations 

of this approach have been reported (Seidenberg & McClle-

land, 1989, Plaut et al., 1996; Harm & Seidenberg, 2001, 

2004), using different representations, leading to differences 

in reading performance (Seidenberg & Plaut, 2006). 

Most existing models have focused on reading English 

monosyllabic words. Problems associated with multisyllabic 

words, such as syllabification and stress assignment, have 

led to their exclusion. Likewise, most available data on hu-

man reading concern monosyllable English words, facilitat-

ing comparative model assessment. To present monosyl-

labic words on a connectionist input layer, Harm & Seiden-

berg (2001, 2004) used slots corresponding to single letters 

separated into subsyllabic units. Onset and coda consonants 

were placed around the central vowel nucleus. This repre-

sentation aimed to minimize the dispersion problem (Plaut 

et al., 1996), while allowing the model to “capture the fact 

that phonemes in different positions sometimes differ pho-

netically” (Harm & Seidenberg, 1999, p. 493). 

Exclusive attention to monosyllables, and corresponding 

syllable-based representations, pose severe constraints to 

extension towards multisyllabic words. Specifically, to re-

tain the existing structure, words must be pre-syllabified 

before being presented to the model. However, this limits 

the applicability of this approach to situations in which or-

thographic syllabification is possible. 

The Greek Orthography 

The Greek orthography is feedforward consistent and 

predictable to a large extent (about 95%; Protopapas & Vla-

hou, in press). Most graphemes can be mapped unambigu-

ously to single phonemes when context is taken into ac-

count. The only substantial source of inconsistency concerns 

words containing the CiV pattern, that is, an unstressed 

grapheme normally mapping to /i/ when it follows a conso-

nant and precedes a vowel (Protopapas & Vlahou, in press). 

In such cases there are two possible pronunciations, one of 

which contains an /i/ and another which contains a palatal 

consonant. The correct pronunciation is lexically deter-

mined. In rare cases, this situation leads to homographs. For 

example, the Greek words for “permission” and “empty” are 

both written as άδεια. However, “permission” is the three-

syllable word /'a.ði.a/ with an [i] forming the nucleus of the 

second syllable, whereas “empty” is the two-syllable word 

/'a.ðʝa/ with the palatal consonant [ʝ]. Therefore, the CiV 

phenomenon affects not only graphophonemic consistency 

but also orthographic syllabification as well.  

In Greek, lexical stress always falls on one of the last 

three syllables and is affected by morphology (Revithiadou, 

1999). Stress is orthographically marked with a special dia-

critic on every word with two or more syllables (Petrounias, 

2002). This diacritic also disambiguates certain vowel di-

graphs, therefore it is necessary to include in orthographic 

representations, along with diaeresis. 

These characteristics make the vowel-centered syllabic 

slot representation unsuitable for Greek multisyllable words, 
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at least for the orthographic input layer. The CiV phenome-

non creates a major challenge because it precludes pre-

syllabification. Therefore, it is not possible to simply add 

more syllabic templates to existing input representations. 

In this paper we present a model of reading aloud Greek 

multisyllabic words and nonwords based on the triangle 

model, taking into account the special properties of Greek 

orthography. We report preliminary results showing that the 

model is successful in accounting for the Greek situation. 

The Model 

Our model is a modified version of the Harm and Seiden-

berg (1999, 2004) network (see also Zevin & Seidenberg, 

2006). Modifications (besides the number of nodes at each 

layer) concern mainly the input and output representations. 

The network was designed to read words with 2–5 syllables 

written with 4–10 letters. These limits were imposed to re-

duce demands on computational resources and training time. 

Design and Implementation 

The model has 449 orthographic input units, 500 hidden 

units, 630 phonological output units, and 400 cleanup units 

(Figure 1). Units in the phonological layer were connected 

to every phonological and cleanup unit, including them-

selves. Each cleanup unit was also connected to all phono-

logical units, turning the phonological-cleanup layers into a 

recurrent network, capable of creating attractors based on 

regularities discovered at the phonological output. These 

attractors aim to improve reading performance (especially 

for nonwords) by allowing the phonological output to settle 

into globally coherent states (Harm & Seidenberg, 1999). 

Model implementation was based on “MikeNet” (version 

8), as modified by Zevin and Seidenberg (2006), with addi-

tional changes to handle stress marking.  

Representations 

We considered a number of alternative approaches to the 

problem of presenting orthographic input without first syl-

labifying, keeping with the spirit of the preceding imple-

mentations and restrictions imposed by the available code. 

Simply presenting a (left-aligned) letter string to the net-

work, without any positional constraints, led to poor per-

formance. Therefore, we imposed grouping of successive 

consonant or vowel letters, without regard to syllabification. 

Analysis of consonant and vowel alternation in the entire 

training corpus indicated that this 40-slot template can hold 

every word with the sole restriction that adjacent consonants 

and adjacent vowels remain grouped: 

 
 CCCVVVVVCCCCCVVVVVVCCCCVVVVVCCCVVVVCCVVC 

 

To present a word to the network, each group of consecu-

tive consonant or vowel slots is filled with letters, in a left-

to-right direction. Shorter words leave the rightmost groups 

empty. All words fill at least one slot of the first two groups. 

To reduce the total number of connection weights, each slot 

was constrained to contain letters that appear in this position 

in the training corpus. Thus, the input layer consists in one 

binary vector for every slot with length depending on the 

number of letters that may appear in it. Presence of a letter 

is indicated by setting its corresponding unit to 1. In addi-

tion to the 40-slot letter template, a set of 22 slots made up 

the stress marking template. These correspond to 5 vowel 

groups of the letter representation, encoding position and 

identity of the vowel letter marked with the stress diacritic.  

For example, the orthographic representation of άδεια is: 

Letters: 

_ _ _ α _ _ _ _ δ _ _ _ _ ε ι α _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

CCCVVVVVCCCCCVVVVVVCCCCVVVVVCCCVVVVCCVVC 

Stress:  

         α _ _ _ _                _ _ _ _ _ _            _ _ _ _ _          _ _ _ _       _ _ 
 

The phonological output representation is not affected by 

the CiV pattern. Therefore, the English implementation was 

simply augmented with additional syllable slots of the ap-

propriate structure. There were 5 groups of 6 slots each, 

representing 5 syllables with up to 3 onset consonants and 

up to 2 coda consonants, making up a CCCVCC syllabic 

template. Each slot encodes 18 phonetic features, in corre-

sponding units, as an 18-bit binary vector. A phoneme is 

present in a slot when its corresponding feature units are 

given an activation value of 1. Five additional slots repre-

sented the vowel of the stressed syllable. Each contained the 

same 18-bit vector as the corresponding vowel phoneme 

slot. This somewhat redundant representation of stress was 

as simple as possible given the constraints of the code.  

Here is the phonological representation of the word 

/'a.ði.a/ (vertical lines indicate syllable boundaries): 

Phonological: 

_ _ _ a _ _| _ _ ð i _ _ | _ _ _ a _ _|_ _ _ _ _ _ |_ _ _ _ _ _  

CCCVCC|CCCVCC|CCCVCC|CCCVCC|CCCVCC 

Stress:  

         a                 _                 _                 _                _  

Figure 1. Model architecture. 
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Whereas the homograph /ɑa. ðʝa / is represented as 

Phonological: 

_ _ _ a _ _| _ ð  ʝ a _ _|_ _ _ _ _ _ |_ _ _ _ _ _|_ _ _ _ _ _  

CCCVCC|CCCVCC|CCCVCC|CCCVCC|CCCVCC 

Stress:  

         a                 _                 _                 _                _  

Training the *etwork 

The training corpus was a list of 120,745 word types with 

2–5 syllables, 4–10 letters long, from an online written text 

corpus of about 30 million words (Hellenic National Cor-

pus; hnc.ilsp.gr). The corresponding pronunciations were 

derived using a grapheme-to-phoneme transcription model 

developed for text-to-speech applications (Chalamandaris, 

Raptis, & Tsiakoulis, 2005). Words were presented to the 

model proportionally to their frequency of appearance in 

that corpus after logarithmic compression and conversion to 

relative probability, following Harm & Seidenberg (1999, 

Equation 1, p. 495), to allow low frequency words to appear 

during training. The relative probability of all words with 

less than .3 occurrences per million was set to 0.2.  

Beginning with random initial weights, 9,000,000 training 

trials were given. On each trial, a word was randomly cho-

sen from the training list and was presented to the model if a 

random number from a flat [0,1] distribution did not exceed 

its transformed frequency. The orthographic representation 

of the word was fixed on the input layer for 10 “ticks” (i.e., 

activation update cycles through the network). The phono-

logical output after 12 ticks was compared to the target out-

put. Connection weights were adjusted using continuous 

recurrent backpropagation, with a learning rate equal to 0.1. 

A subset (about 10%) of the training corpus (12,017 

words) was retained and used to track performance during 

training every 50,000 trials (plotted in Figure 2). Each word 

was presented to the network for 18 ticks. A response was 

considered correct if produced within that time. More ticks 

were allowed in testing than in training, because longer 

words might require longer times for the network to settle to 

the correct pronunciation. Pilot trials showed significant 

improvement using 18 ticks for testing, compared to 12 

ticks. Further increases (up to 45 ticks) did not improve per-

formance significantly. Only 12 ticks were used during 

training, because this led to faster training, presumably due 

to increased pressure for the network to learn.  

Post-training Tests 

To study the effects of the most important variables known 

to affect word reading times in human participants (Balota, 

Yap, & Cortese, 2006), a set of 150 words were selected to 

span a range of length, frequency, neighbourhood size, and 

bigram probability. The words were chosen so that the in-

tercorrelations between these basic variables were minimal 

(Spearman’s ρ<0.2) and not statistically significant, in order 

to isolate individual effects. A corresponding set of 150 

nonwords were constructed, based on these words, with 

similar properties and variable ranges, taking care to avoid 

resemblance of nonwords to specific words. Human reading 

performance data for these stimuli are currently being col-

lected, for future comparison with model performance. 

After training, these words and nonwords were presented 

to the model with and without a stress diacritic, to assess its 

performance on segmental pronunciation and on stress as-

signment. Response time was measured, for correct re-

sponses only, by the number of ticks it took the model to 

achieve a representation of the correct response. The ortho-

graphic input was presented to the input layer for 18 ticks. 

The variables onto which response time were regressed 

included: probability of appearance in training, as a measure 

of frequency (words only); length (in letters); number of 

syllables, number of orthographic neighbours (words only), 

cumulative bigram (letter) probability, mean orthographic 

syllable frequency, and orthographic transparency measured 

as minimum non-directional grapheme-phoneme type prob-

ability (least transparent sonograph; Spencer, 2007). Of 

these, only syllabic frequency differed significantly between 

words and nonwords (t(298) = 2.007, p = .01). 

Results 

Overall, 96.14% of words were read correctly after 9m tri-

als. Performance may increase with further training, as no 

asymptote is apparently reached (Figure 2). 2.37% of the 

errors were stress assignment errors, that is, stress produced 

on a vowel other than the one marked with the diacritic 

(e.g., /ði.i.'li.ze/ instead of /ði.'i.li.ze/). 4.53% were both 

segmental and stress assignment errors in that stress was 

erroneously produced on an incorrect vowel. The rest were 

segmental errors, that is, incorrect phonemes. When a 

stressed vowel was produced incorrectly, it was nevertheless 

stressed, showing that stress diacritic position was inter-

preted correctly (e.g., /ðʝa.vo.'lis/ instead of /ðʝa.vo.'lεs/). 

18.97% of the errors concerned stress assignment combined 

with a segment displacement, usually resulting from incor-

rect parsing of a CiV. In such cases, the stress diacritic was 

placed on the correct vowel at its new position, showing that 

Figure 2. Word reading accuracy during training (%). 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

354



the model can properly combine letter and diacritic informa-

tion (/fi.'ε.stes/ instead of /'fçε.stes/). 

To examine the effects of the aforementioned predictor 

variables, simple regressions were employed. This allows 

reliable detection of the most important effects, because the 

main variables were specifically uncorrelated in the test sets. 

Multiple regressions will be used once the critical variables 

are identified in the analysis of human data.  

Of the 150 test words, presented with a stress diacritic, 

98% were read correctly, with an average response time 

(RT) of 4.44 ticks. Linear regression, separately for each 

predictor, showed that number of letters accounted for 4.4% 

of RT variance (R
2 

= .044, standardized β = .084, p = .011), 

and bigram probability for 4.5% (β = −.028, p = .010). 

Of the 150 nonwords presented with a stress diacritic, 

92% were read correctly, at a mean RT of 4.54 ticks. Num-

ber of letters accounted for 5.6% of RT variance (β = .116, p 

= .005), number of syllables for 3.2% (β = .179, p = .035), 

and bigram probability for 7.5% (β = -.046, p = .001). 

These results are summarized in the following table. 

 

Table 1: Summary of simple regression results for items 

presented with a stress diacritic. Significant predictors are 

presented in order of variance proportion accounted for. 

 

Predictors Words Nonwords 

Significant Bigram prob. 

N Letters 

 

Bigram prob. 

N Letters  

N Syllables 

Not significant N Syllables 

Frequency 

Syllable frequency 

N Neighbors 

Transparency 

Syllable frequency 

Transparency 

 

 

The RT difference between correct readings of words and 

nonwords was not significant (t(283) = -1.457, p = .148). 

Of the 150 words presented without a stress diacritic, 

53.33% were read correctly with a mean RT of 5.11 ticks, 

significantly slower than when presented with a stress dia-

critic (t(80) = -3.267, p = .002). Sixty errors were segmen-

tally correct but incorrectly stressed words, including 6 re-

sponses with no stressed letter and 54 stressed at a different 

position. For the words produced correctly, the model as-

signed stress 27.5% on the final syllable, 42.5% on the pe-

nult, and 30% on the antepenult, a uniform distribution of 

stress (χ
2
(2) = 3.100, p = .212). Taking into account all 

words, stress assignment to the final, penult, and antepenult 

was 30.7%, 44.5%, and 24.8%, respectively  (significantly 

nonuniform, χ
2
(2) = 8.423, p = .015). The correct stress po-

sitions for all words in the testing set were 30.7% on the 

final, 40% on the penult, and 29.3% on the antepenult; and 

for words stressed incorrectly by the model, 35.1%, 47.4%, 

and 17.5%, respectively. The corresponding proportions for 

the entire corpus, considering multisyllabic words only, are 

30%, 44.9%, and 25%, respectively (Protopapas, 2006). 

Two words, which formed a CiV pattern when the stress 

diacritic was removed, were read by the model with the al-

ternate pronunciation of the CiV and were stressed appro-

priately considering the segment pattern produced. 

Of the 150 nonwords presented without a stress diacritic, 

42.67% were read correctly, with a mean RT of 5.3 ticks, 

significantly slower than when presented with a stress dia-

critic (t(63) = -2.019, p = .048). The model stressed non-

words 28.7% on the final syllable, 44.1% on the penult and 

27.2% on the antepenult, a nonuniform distribution (χ
2
(2) = 

7.162,  p = .028). 

Discussion 

This is a first attempt toward a computational model of 

reading aloud Greek words and nonwords. The number of 

monosyllables in Greek is very small: fewer than 500 types 

were reported by Protopapas & Vlahou (in press), most of 

which were unrepresentative of the language in being either 

function words or recent loans. Therefore extension of exist-

ing approaches to multisyllabic representations was neces-

sary in order to capture the major characteristics of this lan-

guage. The Greek orthography is highly consistent for read-

ing, with the exception of the CiV pattern. On the one hand, 

the high consistency makes the task of mapping letter se-

quences to phoneme sequences easier. On the other hand, 

the presence of the CiV phenomenon dictated a substantial 

change to the design of the model’s representations, because 

pre-syllabification is not possible. The new design has the 

additional benefit that the number of syllables is not limited, 

as long as computational resources can handle the training. 

The concomitant drawback is susceptibility to the dispersion 

problem, because the same graphophonemic mappings must 

be learned repeatedly in different input-output slot positions.  

Our novel orthographic representation bears some inter-

esting features. The lack of pre-syllabification forces the 

model to learn mappings that might otherwise be distin-

guished by their subsyllabic position. The model must learn 

to map the letter sequences at the input layer to the syllabi-

fied output at the phonological output layer. This is not triv-

ial, because letter positions are not fixed at the input, as they 

depend on word length and morphology. It is especially 

complex for successive vowel letters (up to 6 slots for single 

graphemes or digraphs) mapping to multiple syllables. 

However, even though the model is forced to learn the same 

mappings at several different slots, this does not seem to 

pose a serious problem for word reading performance or 

generalization to nonwords. This may be due to the rela-

tively simple grapheme-phoneme mappings of the Greek 

orthography. It remains to be investigated whether the 

model learns to read in the same way as Greek readers do. 

Figure 2 shows that early in training (100,000 trials) the 

model can already read correctly a considerable proportion 

of words (about 76%). The number of word types presented 

to the model (120,745), relative to the number of training 

trials (9 million), is huge, compared to the 3,123 words and 

1 million trials in Harm & Seidenberg (1999), 6,103 words 

and 1.5 million trials in Harm & Seidenberg (2004), 5,870 

words and 1 million trials in Zevin & Seidenberg (2006), 
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and 9,911 words and 1.2 million trials in Pagliuca & Mona-

ghan (in press). Despite the low ratio of tokens to types, the 

lack of syllabification, and the dispersion over slots, the 

model can read correctly more than 96% of the training cor-

pus. This may be due to high orthographic transparency. 

Due to the frequency-modulated random selection proce-

dure, many words that are read correctly were never pre-

sented to the model during training, so they must by read by 

grapheme-to-phoneme conversion, as nonwords. It is in-

structive to examine the model’s response to various letter 

strings containing the CiV pattern, because there is no rule 

for the CiV, either in terms of a statistical preponderance 

(Protopapas & Vlahou, in press) or in human participants’ 

reading behavior (Protopapas & Nomikou, 2009). The re-

sults of the training test show instances of words read with 

the incorrect alternative pronunciation (but not with unre-

lated phonological outputs). These cases concerned low-

frequency words that were never or little presented to the 

model during the training, so they are functional nonwords. 

Further tests, with controlled sets of words, are underway. 

Another novel feature of this model is stress marking in 

the orthographic representation, corresponding to the dia-

critic of Greek orthography. Although this is not the first 

attempt to model stress assignment in reading (e.g., Mona-

ghan, Arciuli & Seva, 2008; Rastle & Coltheart, 2000) or to 

include an orthographic representation of stress (Pagliuca & 

Monaghan, 2009, in press), it is probably the first attempt to 

consider a distinct orthographic representation for the stress 

diacritic itself while retaining vowel letter identity. The 

model seems to have learned the constraints on stressed 

syllables. No stress assignment error was observed on a syl-

lable earlier than the antepenultimate even though syllable 

positions were not fixed or right-aligned. Analysis of incor-

rectly stressed words showed that the model has a stress 

“preference” for the penultimate syllable, like humans, in 

both words and nonwords. There was no significant distor-

tion of stress assignment toward any syllable, indicating that 

the model does not assign stress randomly but follows the 

distribution of stress positions seen on Greek words. 

The network seems to have learned to make a connection 

between stressed vowels and the stress diacritic, even when 

the stressed vowel was incorrectly produced or placed in the 

wrong syllable. In such cases, stress followed the vowel, 

either by changing vowel or by changing position. Only 

0.1% of the total training corpus was read with the correct 

segmental pronunciation and incorrect stress. This means 

that the model has learned to use the stress diacritic. On the 

other hand, the model’s stress assignment performance dete-

riorated very substantially when the diacritic was not pre-

sented, indicating an excessive reliance on the diacritic. Al-

though this outcome is justifiable on the basis of the reliabil-

ity and validity of the stress diacritic, it stands in contrast to 

behavioral data showing that Greek readers are not affected 

by the lack of a stress diacritic (Protopapas, Gerakaki, & 

Alexandri, 2007; Protopapas & Gerakaki,  in press). Pre-

training the phonological layer might produce in improved 

fit to human performance by reinforcing stress vowel con-

nections in word representations. A connection from the 

orthographic directly to the phonological layer (Zorzi et al., 

1998) might also improve performance on unstressed words.  

In this preliminary investigation, two sublexical proper-

ties were found to affect reading times: word length (meas-

ured in letters or, for nonwords, in syllables) and bigram 

probability. In a review of factors affecting visual word rec-

ognition, Balota et al. (2006) reported significant effects of 

word length for low frequency words and nonwords. The 

effect on both words and nonwords in our results may be 

due to the relatively few repetitions of each word during 

training. This renders words effectively low-frequency, be-

cause they did not have many opportunities to affect the 

connection weights. An alternative or complementary ex-

planation may relate to a fine grain of graphophonemic rep-

resentation, which is expected for a language with high 

feedforward consistency. Reliance on a fine grain can lead 

to stronger length effects as more graphemic units must be 

individually mapped. As a reviewer pointed out, this might 

also explain the lack of frequency and lexicality effects. It 

remains to be investigated whether evidence for larger units 

of graphophonemic mapping may accumulate with higher 

ratios of trials to word types in the training procedure. 

Nevertheless, the significant word length effect seems to 

run counter to common expectations regarding connectionist 

models. According to Rastle & Coltheart (2006), word 

length effects should not be exhibited by single-route con-

nectionist models, because entire words are read in parallel 

and not serially, grapheme-by-grapheme, as in some dual-

route models. Our results, although preliminary, are incon-

sistent with this prediction, showing that word length effects 

are possible in parallel distributed processing models, even 

for the highly consistent mappings of the Greek orthogra-

phy. This finding may depend on a large range of word 

lengths, as imposed by the multisyllabic input and by the 

stimulation of more phonological attractors when more let-

ters appear at the input, in part due to dispersion. Thus, our 

model sheds light on a long-standing issue in modeling 

reading aloud, which was not possible to address with pre-

vious models dealing only with monosyllabic words. 

Word frequency is one of the most important variables af-

fecting word reading performance in English (Balota et al., 

2006). Our model was not affected by word or syllable fre-

quency in this preliminary investigation, which may be at-

tributed to the low token-to-type ratio that renders trained 

words effectively low frequency. Balota et al. noted that low 

frequency words exhibit larger effects of sublexical regular-

ity, such as bigram frequency, compared to high frequency 

words. This was borne out in our model and may be related 

to the dispersion necessitated by our input representation. 

Specifically, as the same letters appear at different positions, 

the model is exposed to input bigrams more consistently 

than to words with larger common parts.  

On the other hand, the absence of expected transparency 

(mapping consistency) effects warrants further investiga-

tion. Orthographic neighbors were also expected to affect 

reading performance, however the situation with neighbors 
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may differ substantially from English because most Greek 

words have few or no neighbors, (mean neighborhood size 

was 1.69), perhaps due to their overall greater length.  

In conclusion, this paper presents a computational model 

of reading aloud that can read Greek multisyllabic words 

and nonwords, using a novel orthographic input representa-

tion that includes stress marking. Critically, orthographic 

input was not pre-syllabified, whereas phonological output 

was. Preliminary tests indicate that the model reads words 

and nonwords with reasonably high accuracy, assigns stress 

correctly based on diacritic information, and produces ef-

fects of word length, previously thought incompatible with 

parallel processing, but no effects of frequency, which are 

large and robust in human data and other models. Further 

tests and elaboration will take place as comparable human 

data for Greek become available. 
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Abstract 

A model of prospective time estimation was tested in two 
experimental variations which examine the influence of load 
switch in task demands on time estimation. The model predicts 
these influences on time estimates by means of memory 
processes such as spreading activation. The approach was 
integrated into a cognitive architecture and has previously been 
tested successfully. In two experiments participants had to work 
on a counting task with different levels of working memory 
demands (High/Low). The participants had to stop each trial 
after a perceived duration of a previously presented sample of 
100 seconds (altered reproduction method) and received 
feedback. In the Low group most trials were performed in low 
load and one or two trials in high load (load switch), and vice 
versa for the High group. For the Low group the model predicts 
overestimations at load switches, but underestimations for the 
High group. We found that the model predictions in the first 
experiment only match the experimental results for the Low 
group, most probably due to the experimental design. In the 
second experiment, the design was therefore slightly changed 
and the timing task was embedded into a manual control task 
within a microworld environment. In this setting the model 
predictions match the time estimates for both groups. The series 
of experiments reported give strong evidence that the model is 
able to capture and to predict influences of task demands on 
time-estimates. The timing model may be used as a base for 
modeling subjective temporal reasoning and the timing of 
interaction with a dynamic system. 

 

Keywords: Time estimation, cognitive modeling, 
coordinative working memory, memory processes, spreading 
activation, feedback. 

Introduction 
People can be good at estimating time and they sometimes 
rely on their estimates even when they are part of a safety-
critical system. However, in stressful situations or in the 
course of demanding tasks, time estimates might be 
distorted to a large degree.  

Time perception is crucial for everyday purposes and 
especially in the area of human-machine-interaction. In the 
context of operator performance, supervision of processes is 
a time critical task that might be prone to human errors, if 
other task demands rise suddenly. 

The influence of task demand on time estimation has been 
examined thoroughly. A number of factors that are said to 
have an influence on time estimation are discussed in the 
literature. The most frequently mentioned factors are: 
attention (Block & Zakay, 1996; Zakay, 1993; Byrne, 
2006), memory load (Brown, 1997; Brown & West, 1990; 
Dutke, 2005), or simply forgetting to estimate time if the 
task gets more demanding (Taatgen et al., 2007).  

The most prominent model is the Attentional Gate Model 
(Block & Zakay, 1996). This assumes that a mental 
pacemaker regularly generates pulses to measure time. If a 
person directs attention to the course of time, a gate opens 
and the pulses are accumulated in a cognitive counter. When 
attention is distracted by a secondary task, the gate remains 
closed, pulses are not accumulated and the time-estimation 
is distorted. This way estimations turn out to be shorter 
whenever attentional ressources are captured by demanding 
secondary tasks. 

A serious shortcoming of the Attentional Gate (ATG) 
Model is that it does not differentiate between specific and 
overall task demands. The model proposes influence of 
general attention but does not capture differences of specific 
task properties. Dutke (2005) therefore designed a counting 
task experiment to investigate the influence of two different 
working memory demands (sequential and coordinative) on 
time estimation. According to the ATG Model both 
demands would equally influence time estimation because 
attention is needed in both cases. However, Dutke’s results 
show that both factors influence task-performance, but only 
high coordinative working memory demands distort time-
estimates. 

For the domain of human-machine-interaction, the 
susceptibility to workload induced distortions of time 
estimation is of high importance because operators do 
experience strong changes in workload (see e.g. Decortis 
and Cacciabue 1999). This might eventually lead to 
mishandling of the system due to a wrong timing of action. 
Furthermore, one can observe that most often time estimates 
need to be given under the very same general conditions as 
the reference time representations have been acquired 
before. Therefore we chose to set up a model that is 
designed for reproduction of time estimates (e.g. instead of 
giving time estimates verbally). 
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In the following we first sketch our computational 
implementation of a variant of the ATG Model which is 
prone to different task demands. We then introduce shortly 
the counting task and its specific task demands that may 
distort time estimation. Finally we show a series of two 
experiments that have been designed to challenge the 
models predictions. 

A Computational Model of Time Estimation 
Involving Memory Processes 
The idea behind the proposed model (Pape & Urbas, 2008) 
resembles some broadly accepted components of the ATG 
Model (Block & Zakay, 1996) with a pacemaker that 
generates pulses, an accumulator and an estimator, but 
without an associated gate. The main difference to the ATG 
model is a specific working memory account, which is 
realized by a mechanism to provide short-estimates between 
meaningful events (or “contextual changes” in the words of 
Block & Zakay, 1996) and an updating or construction 
process that integrates these short-estimates into a time 
estimate of the whole episode.  

Figure 1 sketches the basic idea of the model: The vertical 
dashed line represents the pulses generated by the 
pacemaker as time goes by. The accumulator collects these 
pulses until a meaningful event occurs (depicted by an ‘X’ 
on the dashed line). The count of collected pulses together 
with some contextual information is stored in a temporal 
chunk (the short-estimate) that may be understood as an 
element of episodic memory (Tulving, 2002). The updating 
process then constructs a new episode-estimate by retrieval 
of the latest episode-estimate from memory and adding of 
the short-estimate. For instance, at the second event in the 
example shown in Figure 1, the episode-estimate, which 
carries 5 pulses, is retrieved and the newly accumulated 6 
pulses in the short-estimate are summed up. A new episode-
estimate with 11 pulses is stored in memory while the 
former remains. With a perfect memory, this new episode-
estimate will be retrieved when the next event occurs, 
because it is the most recently generated chunk (with the 
highest activation). Additional memory activities might 
influence the activation level of two consecutive episode-
estimates in a way that the wrong episode is retrieved 
instead of the latest episode-estimate (see dash-dotted line in 
Figure 1). So in our example instead of a final time 
representation with 24 pulses, a representation with 20 
pulses is stored in memory. Therefore, demanding tasks 
cause time representations with fewer pulses than less 
demanding tasks. This mechanism generates shorter time 
representations only. Overestimations occur when the 
generated time representation is longer than a former time-
representation. Contrary to other timing-models, this model 
needs no additional elements for pacemaker and 
accumulator variance and no attentional gate. Distortions 
and distribution of time-representations emerge naturally by 
means of variance in memory processes. 

This approach was integrated into the cognitive 
architecture ACT-R (atomic components of thought – 

rational analysis; Anderson et al., 2004) and is called 
TaSTE (Task Sensitive Time Estimation) Module.  

We utilized the sub-symbolic declarative memory 
mechanisms proposed and implemented in ACT-R without 
changes. The activation level Ai of a chunk i is calculated by 
the base-level, a noise component ε (set to 0.1) and a 
context component which is not shown in equation 1. For 
base-level activation the number of presentations n for 
chunk i and the time since the jth presentation are taken into 
account. The decay of activation is calculated with d (set to 
0.4) 

ε+= ∑
=

−
)ln(

1

n

j

d

ji tA  

Equation 1: Calculating activation of chunk i. 
 

Activation spreading from the current goal towards the 
episode-estimates is enabled via the above-mentioned 
contextual information and helps to keep the episode-
estimates retrievable. The parameter association strength 
was modified to s = 6. 
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Figure 1: Construction process during an interval with 
several events. (Dotted arrow indicates the retrieval of an 

old instead of last time representation)

The Counting Task 
The integrated timing-model was tested within a counting 
task (Dutke, 2005) with varying demands (sequential and 
coordinative) to compare human data to the predictions of 
the model. Sequential complexity refers to task variations 
that affect the number of simple and independent processing 
components and is demanding general intentional resources. 
Coordinative complexity refers to tasks in which the 
information flow between interrelated processing 
components needs to be coordinated (Mayr et al., 1996) and 
demands working memory resources.  

In the counting task, the participants were asked to search 
lists of ten two digit numbers for either one or three targets 
(for low coordinative demand “16”; for high coordinative 
demand: “16”, “38”, and “67”). The sequential demand was 
varied with the overall number of targets contained in the 
lists (either 14 or 27 targets can be found within 40 lists). 
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The subjects have to count how often the different targets 
appear. On every third encounter of a target, the appropriate 
answer is given by pressing a specific key (e.g. labeled 
“18”), in all other cases the key marked with “No” should 
be pressed. After 400 sec., subjects were asked to reproduce 
the perceived duration by pressing a key to indicate the start 
and the end of the interval. Participants were randomly 
assigned to the four experimental conditions that result from 
the 2x2 between-subjects design (two levels of coordinative 
demands, two levels of sequential demands). Almost all 
participants underestimated the duration of the counting 
task. High coordinative demands produced larger 
reproduction errors and shorter estimates than low 
coordinative demands. For increased sequential demands 
the reproduction error was unaffected by the manipulation. 

The model estimates showed the same effects of these 
demands as the human data (Pape & Urbas, 2008), because 
in the high coordinative condition more additional 
information has to be maintained. Both, simulation results in 
task performance and time estimations reveal comparable 
variability to each condition to empirical data, because the 
task model and the time module rely on retrieval processes 
where slight changes in activation lead to differences in 
results. 

The load switch scenario 
To adequately test the validity of the timing module we 
could either change the task or the scenario around the task 
as well as the estimation method. But, because with a new 
task it could be argued that the model data is dependent on 
the way the task was modeled and does not necessarily 
mirror the estimation processes that are assumed, we 
changed the task scenario and estimation method. This way 
we were able to reuse the model of the counting task that 
showed comparable performance to empirical data before 
(Pape & Urbas, 2008).  

For the experiments reported here we also changed the 
interval duration to 100 seconds to check whether the model 
also holds for shorter intervals. Furthermore we modified 
the reproduction method. Instead of simply waiting, the 
participant had to work on the same task as in the encoding 
phase. We used repetitive timing to ensure that people were 
able to build up a good time representation before the load 
of the task switched (see Altman & Gray, 2008 for task 
switching scenarios) after several trials to either higher or 
lower coordinative demands. 

Model runs 
The model ran 22 times for each of two conditions 
representing the two groups used in the experiment for four 
different trials. To provide a reference the first trial was 
stopped after 100 seconds, the model thereafter used the 
built up representation as a reference to stop the next trial. 
In the case of the high condition group the first trial started 
with high coordinative demands which means the model had 
to cope in counting the occurrences of three targets and 
meanwhile building up a time representation. In case of the 

low condition group there was just one target to count. The 
time representation was used in the subsequent model run (a 
trial of equal load) for comparison to the new constantly 
updated representation. The task was stopped after an 
equivalent number of pulses had been collected. Because we 
assume that people build up a robust representation after a 
number of trials of equal load, we took the mean of the 
accumulated pulses for the interval and used it as time 
representation for the load-switch trial. In this trial the 
coordinative load changed compared to the previous which 
means low load in case of the high load group and vice 
versa. 

This way we ended up with reproductions either derived 
in inload trials (trials according to the group condition) or 
switch trials for both groups (High/Low) (see model data 
figure 3 and 5).  

No main effects in reproductions were found, but a 
significant interaction inload/switch*Group 
(F(1,42)=7.5;p<.01; η²=0.15) show the different switch 
effects for the two groups. The model reproductions in the 
High group were much shorter in the switch trial and in the 
High group much longer than in the normal inload trials. 

Experiment one 
Our hypotheses generated by the model predictions were (1) 
reproductions performed in the same condition as 
experienced in the sample will be distributed around 100 
seconds for both groups. (2) The load switch trial causes 
underestimations for the High group and overestimations for 
the Low group. 

Participants  
Forty-two participants (aged 21-48 years; Mean=26.05, 
SD=5.63) took part in the main experiment. The volunteers 
(25 male, 17 female) were paid 10 euros for participation.  

Apparatus and setting 
A standard keyboard was adapted as the entry device for the 
participants. Four keys on the number pad were covered 
with green tape that read 18, 34, 59, and also N and further 
apart another key marked Y. No sources of temporal 
information were available in the room. 

Procedure 
The participants were randomly assigned either to the High 
or Low group. Every experimental session began with the 
presentation of the sample duration. In every trial including 
the sample in the beginning, participants had to count the 
number of targets that appeared within the lists. Lists of 5 to 
12 items (two digit numbers) appeared one after another in 
the middle of the screen for a time according to the number 
of items (3 to 10 seconds). Between lists the monitor was 
blank for 2 seconds. After the duration of 100 seconds, 
which was unknown to the participants, the task stopped and 
an instruction appeared on screen that the participant had to 
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reproduce the experienced duration by starting and stopping 
the next trial by using the ‘Y’ button.  
 
Session structure 
The same instructions and training trials were given to all 
participants. After completing a demographic questionnaire 
the participants were informed about the counting task. 
After a training trial, the participants read another 
instruction about the experimental procedure and the 
reproduction procedure. Furthermore, they were informed 
that the length of lists, the number of lists, and the number 
of targets vary. Before a new trial started, the participants 
were informed look either for all three targets 18, 34, 39 or 
for just one target. No further targets were to appear than 
those mentioned. 

After the 1st, 6th and 8th (last) reproduction the 
participants had to fill out a NASA-TLX questionnaire (Hart 
& Staveland, 1988) that measures workload. 

Immediately following the experimental trials we 
conducted a structured interview to learn about the time 
estimation strategy, the difficulties of the tasks, and their 
strategy for the counting task the participants had applied.  

 
Testing 
After the sample-duration-trial (of 100 seconds), 
participants had to reproduce the duration 8 times with 
subsequent feedback about the quality of their reproduction 
(figure 2). A horizontal bar indicates the correspondence 
between sample duration and reproduced duration. If the 
horizontal bar is located below the middle area, the duration 
has been underestimated. 

No information about the assigned condition was given to 
the participants. Before every trial, participants were 
informed about the targets they had to count. When the trial 
was not stopped by the participant after 140 seconds, a 
message appeared on screen saying that no more lists are 
going to show up and the ‘Y’ button is to be pressed. 

Results and comparison of experiment one 
For the scores on the NASA TLX (1st and 2nd measures in 
load, the 3rd after the switch) a one-way repeated ANOVA 
revealed a significant interaction effect of NASA-TLX score 

and group (Low, High) (F(2,76)=13.8, p<.01; η²=0.267). 
Planned contrasts showed that the first two measures in the 
NASA-TLX changed significantly to the third (group Low: 
F(1,38)=15.6, p<.01; η²=0.291; group High: F(1,38)=24.1; 
p<.01; η²=0.388). Therefore, the load-switch in the last trial 
seemed to have had the expected effect.   

For the eight time-reproductions of the empirical data, the 
repeated ANOVA revealed a significant effect for 
reproductions (F(7,238)=8.86, p<.01, η=.46). There was a 
significant difference between inload reproductions to 
switch reproductions (F(2,43)=7.78;p<.05;η²=0.35). But the 
predicted interaction between group and trial condition did 
not reach significance. Planed contrasts reveal that for the 
low group most reproductions in the inload condition were 
significantly shorter than the final one. Therefore just the 
low group showed the predicted switch effect, as shown in 
figure 3. 

 

Figure 3: Model reproductions compared to empirical 
data in experiment one. above
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We had four possible explanations for the results. First, 
subjects in the High group reported in the interview that 
they were aware that their time perception would change 
after the switch to low load and therefore waited longer until 
they stopped the trial. Subjects in the Low group were too 
busy in the last high condition trial to reason about these 
things. 

Second, some authors (Sturmer, 1966; Wearden et al., 
1999) report that repetitive time estimations in a monotonic 
task with no background activity and no feedback reveal a 
lengthening effect, which means that estimates get longer 
the more estimates were made. We tried to avoid this by 
giving feedback but this might not have helped to totally 
prevent the effect. Third, the NASA TLX might have 
interfered with the estimates because after presenting the 
questionnaires participants showed a slightly longer 
reproduction. 

Figure 2: The feedback given after each reproduction 
(here the feedback indicates a strong underestimation). 

 

Forth, the single switch in load after 7 inload trials might 
have been unexpected, causing participants to overestimate 
although participants were trained in both conditions. 
Therefore we conducted a second experiment that avoids the 
assumed factors.  
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Experiment two 
For the second experiment subjects experienced four inload 
trials including the sample trial without reproduction. Then 
a first switch trial occurred. After that another four inload 
trials including the sample trial had to be completed before 
the second switch trial occurred. 

 
To add more background activity we used a microworld 

environment of an operator task in which the level of some 
liquid had to be maintained within a certain range and 
alarms had to be responded to (see figure 4). The operator 
has to handle certain important alarms which need to be 
counted, and ignore the remaining alarms. The alarm task 
resembled the counting task and for every new trial the 
participant in the role of the operator was informed about 
the important upcoming alarms just as in the previous 
experiment. 

We assumed that the high workload of this multitasking 
set effectively hinders the participants to post-hoc reason 
about their way of time perception and compensate. 
Furthermore, we hoped to reduce the lengthening effect by 
inducing the first switch earlier and 'start anew' with a 
second sample trial afterward. Finally we eliminated the 
NASA TLX to avoid additional interference effects. 

Participants second experiment 
Fifty-three participants (aged 21-40 years; M=26.43, 
SD=4.84) took part in the second experiment. The 
volunteers (28 male, 25 female) were paid 10 euros for 
participation.   

Procedure, structure and testing 
The second experiment resembled the first experiment with 
the above mentioned differences. The participants received 
extra training for the operator task and had to interact with 
the mouse in the microworld environment instead of with 
the keyboard. 

Results and comparison  
A main effect for reproductions was found (F(3,153)=4.382; 
p<.01; η²=.079). Furthermore for the second half of the 
experiment we found a significant interaction between 
reproductions and group (F(3,153)=2.6; p=.053; η²=0.049) 
and a linear trend in increasing estimates by means of a 
planned contrast (F(1,51)=10.7; p<.01; η²=.173). 

Figure 4: In the microworld scenario the dark blue liquid 
had to stay between the white triangles by opening the red
valve below. At the same time the blue alarms had to be
handled.   This time we find the predicted significant interaction for 

group*inload/switch as predicted by the model. Figure 5 
shows the differences between inload and switch 
reproductions for the second half of the experiment with the 

but also the measures for the distributions are comparable 
(see table 1). 

sig , 
p<. of 
experim much, 

nificant interaction inload/switch*group (F(1,51)=5.3
05; η²=.094). Furthermore, not only the means 

ent and simulation resemble each other pretty 

 

Model Participants Model Participants
inload 100.9 (14.2) 99.8 (11.3) 102.4 (15.9) 101.6 (13.3)
switch 106.5 (12.6) 110.2 (23.9) 91.2 (12.6) 98.8 (17.6)

Low High

 

Discussion 
The two experiments show that the TaSTE Module is able 
to predict human time estimates even under changing task 
demands not just in respect to the mean of the estimates but 
also in terms of distribution. Other current timing modules 
for ACT-R are not able to predict these task demand 
induced differences. The module presented by Taatgen et al. 
(2007) which has been designed for short term estimates 
assumes that distortions emerge from people “forgetting” to 
estimate time and restarting their timer. This would indeed 
result in shorter estimates. But the probability for restarting 
the timer has to be estimated for each task. Therefore it is 
only possible to replicate but not to predict distortions in 
time estimates. Byrne’s (2006) timing module assumes that 
attention factors cause distortions. In the case of the 

Figure 5: The comparison of the model predictions and 
the empirical reproductions of experiment two. 

Table 1: The means and standard deviation in brackets of 
time reproductions for model and experimental data. 
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counting task the same amount of time is available for 
attention to time under difficult and easy conditions. In the 
case of experiment two, hardly any time is given for 
attention to time, because of the supervision task for the 
level of the liquid and the alarms. Byrne’s timing module 
therefore predicts no difference for the load switch but a 
high difference for experiment one and two. 

Nevertheless our model still needs further work, because 
additional factors seem to influence time estimation. These 
are (1) the lengthening effect of repetitive estimates, (2) 
additional questionnaires that might also lengthen estimates 
such as the NASA TLX, and (3) people are aware of their 
time distortions and counteract if they have the resources to 
do so. 

At least for the lengthening effect there might be some 
explanation in the implemented model:  More temporal 
chunks will reduce the activation spread to the distinct 
chunks and more confusion will occur during the updating 
process of the time representation. 

Conclusion 
The results of the experiments show that variance and 
distortion of human time estimation may be modeled by 
basic memory mechanisms as implemented in ACT-R. In 
this sense the TaSTE module is an integrated model that 
builds upon principles that are found in other cognitive 
domains. This does not imply that time estimating processes 
have to work they way sketched here. But formalizing a 
quantitative model allows evaluating different mechanisms 
in different task setting. 

Next steps are to analyze the sensitivity of the model 
against different kind of tasks. The limits of the model 
predictions concerning the durations between events and the 
influence of the structure of short-estimates should be 
investigated further. 
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Abstract 

In this paper a neural network model of visual short-term 
memory (VSTM) is presented. The model aims at integrating 
a winners-take-all type of neural network (Usher & Cohen, 
1999) with Bundesen’s (1990) well-established mathematical 
theory of visual attention. We evaluate the model’s ability to 
fit experimental data from a classical whole and partial report 
study. Previous statistic models have successfully assessed 
the spatial distribution of visual attention; our neural network 
meets this standard and offers a neural interpretation of how 
objects are consolidated in VSTM at the same time. We hope 
that in the future, the model will be developed to fit 
temporally dependent phenomena like the attentional blink 
effect, lag-1 sparing, and attentional dwell-time. 
 

Keywords: visual attention, visual short-term memory, the 
magical number 4, winners-take-all network  

Introduction 

For everyday life, it is important for us to be able to 

perceive, comprehend, and react to events in our 

environment. Often, our rate of success is heavily dependent 

upon how efficient and how fast we can process, interpret 

and react to sensory stimuli, e.g. like when we are driving a 

car. 

In the following we shall refer to visual attention as the 

process that enables us to focus our processing resources to 

certain important objects in the visual scene. Following the 

theory of visual attention (TVA, Bundesen, 1990) we 

assume that features have already been extracted and objects 

successfully segregated on the basis of their individual 

feature spaces. Our model deals with the important question 

of how only a limited sub span of all objects are actually 

selected and further encoded into VSTM. 

Cattell already in the late 19
th

 century demonstrated a 

surprising limit in how many objects that can be perceived 

at the same time – a limit only about 4 objects which may 

be held in the VSTM at the same time (Cattell, 1886; 

Cowan, 2000). This finding is independent of the number of 

objects visually presented at the same time (Sperling, 1960). 

Evidence further exist that the “magical number” of 3-to-4 

objects is largely independent of how many features are 

encoded for each object, i.e. the complexity of the visual 

object, does not hold an influence on the memorial capacity 

of the VSTM; see (Luck & Vogel, 1997), but see also 

(Alvarez & Cavanagh, 2004).  

Modelling the function of the VSTM, it is essential that 

the inherent capacity limitation is properly mimicked, since 

it seems a fundamental limit of the system. Most likely the 

VSTM would be heavily overloaded, should the system lack 

the ability to represent only the most salient of the visually 

appearing objects 

The model 

The model that we are presenting in this paper can actually 

be understood as three consecutive processes (See Figure 1).  

The first process is simply extraction of visual features, 

we speak of this process as ‘object matching’, since we find 

it relevant to think that objects in the visual field are to some 

extent ‘matched’ against objects representations in Visual 

Long-Term Memory (VLTM). In this paper we do not 

consider the problem of which feature extraction techniques 

are biologically most plausible or perhaps technically most 

appropriate to use. 

The second process that we shall consider in more detail 

is ‘the attentional race’. According to Shibuya & Bundesen 

(1988), all objects in the visual scene take a place in what 

one could think of as a race to become encoded. In Shibuya 

& Bundesen’s race model, the ‘odds’ that a given object is 

selected as a winner in the race is directly related to the rate 

value with which the object participates. It is worth noting 

that the race is a stochastic, rather than a deterministic 

process, meaning that no one can beforehand predict readily 

which objects will win the race. 

The third and last process that we shall consider is that of 

‘storage’ of object representation in VSTM. Inspired by 

(Usher & Cohen, 1999) we propose a competitive neural 

network model of VSTM, directly linking with several 

important assumptions expressed in Bundesen’s Theory of 

Visual Attention (Bundesen, 1990). 
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Figure 1: The Model Scheme – a partial report example. The task is to report the targets, i.e. digits and ignore the 

distractors, i.e. letters. The model predicts how visual elements participate in a race, where the winners become selected to be 

encoded in visual-short-term memory. Generally targets are processed faster than distractors, however we also see that in the 

example homogeneity is not assured, i.e. the targets (and distractors) are not of equal size (could also be contrast, letter type 

etc.) and therefore in the example they are illustrated as being processed with slightly different rates.  

 

The neural theory of visual attention 

The theory of visual attention (TVA) proposed by Bundesen 

(1990) is a unified theory of visual recognition and 

attentional selection. TVA provides a mathematical 

framework describing how the visual system is able to 

select individual objects in the visual field S, based on the 

visual evidence, η and the setting of two different types of 

visual preference parameters (pertinence, π  and bias, β), 

representing the influence from higher cortical areas, 

including VLTM. 

The output of the TVA-model is a set of rate parameters v 

that are directly related to the probability that a given 

characterization, object x belongs to category i, is encoded 

into the VSTM. The rate parameters are given by: 
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∈

=
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(1) 

 

Where the attentional wx weight of object x is:  

 

 ( )∑
∈

=
Rj

jx jxw πη ,  (2) 

 

Here η(x,i) is defined as the strength of the sensory evidence 

that object x belongs to the visual category i. The pertinence 

of the visual category j is denoted by πj and setting of these 

values effectively implements the so-called filtering 

mechanism. The perceptual decision bias of a visual 

category i is denoted by βi and setting of these values 

conversely implements a complementary mechanism called 

pigeonholing.  

The filtering mechanism increases the likelihood that 

elements belonging to a target category are perceived, 

without biasing perception in favor of perceiving the 

elements as belonging to any particular category.  

Pigeonholing, conversely changes the probability that a 

particular category i is selected without affecting the 

conditional probability that element x is selected given that 

category i is selected. 

A neural interpretation of TVA is given in (NTVA, 

Bundesen, Habekost, & Kyllingsbæk, 2005). Basically here 

pigeonholing (selection of features) is considered an 

increase in the rate of firing of neurons while filtering 

(selection of objects) is considered an increased 

mobilization of neurons. 

Corresponding to the interpretation in NTVA the fraction 

wx/∑wz in equation (1), which is the relative attentional 

weight of object x compared to the weight of all objects z in 

the visual field S, can be directly interpreted as the relative 

fraction of neurons allocated to process a given object x, 
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compared to the total number of neurons processing just any   

object z belonging to the visual field S. 

Each and every encoding generally takes the form object 

x belongs to category i.  

Denoting the set of all features as R the total processing 

capacity, can be considered a constant C, which equals the 

sum of all encoding rates v; see (Bundesen, 1990). 

 

 ( )∑∑
∈∈

=
RiSx

ixvC ,  (3) 

 

Shibuya and Bundesen (1988) assume target as well as 

distractor homogeneity in their whole and partial report 

paradigm. This means that processing capacity is distributed 

equally among targets as well as among distracotors. When 

this is the case the rates of encoding for targets, vT and for 

distractors, vD can be calculated according to the formulas: 
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Where T and D denote the number of targets and 

distractors presented, respectively. The ratio of 

discrimination between distractors and targets is denoted α. 

The effective exposure duration τ is smaller than the 

actual exposure duration t by an amount t0 corresponding to 

the temporal threshold before conscious processing begins. 

However the effective exposure duration can not be 

negative so computationally it is set to: 

 

 

 ( )0,0max tt −=τ  (5) 

 

In the neural network model that we shall now describe 

we adopt the parameters C, α and t0 and further, following 

Bundesen, we make use of equation (4) and equation (5).  

 

The neural network model of VSTM 

In TVA object features are encoded independently, and 

further there is the assumption that only one feature needs to 

be encoded for the object to be stored in VSTM. On the 

other hand; and in agreement with (Luck & Vogel, 1997), 

several features of the same object can be in the encoded 

state, and still it will only count as if one object is stored in 

VSTM. For this reason, and because here we are concerned 

about objects rather than features encoded, we simply sum 

over the entire number of object features, and in this way we 

obtain the total encoding rate vx for object x: 

 

 ( )∑
∈

=
Ri

x ixvv ,  (6) 

 

An object x can enter VSTM once it receives external 

excitation, G taking the shape of Poisson distributed spike 

trains, arriving with the rate parameter vx. (See Figure 2).  

A neural assembly that has obtained a positive level of 

activation will automatically seek to re-excite itself, so that 

it can stay in VSTM, at the same time trying to inhibit 

activation in other neuron assemblies representing other 

objects, i.e. working to suppress other object from co-

temporally being stored in VSTM. 

The initial condition for the simulations is that all neuron 

assemblies start with an activation of zero, i.e. no objects 

are initially stored in VSTM. As a consequence neither re-

excitation nor lateral inhibition exists, before the assemblies 

are externally activated. 

 

 
 

Figure 2: The neural network model of VSTM. The total 

number of neuron assemblies is N and each assembly is 

represented by a level of activation A 

  

Implementation 

The activation Ax of neuron assembly x (representing object 

x) is given by the first order differential equation: 
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The above equation characterizes a leaky accumulator 

model. There is passive decay of the activation towards the 

rest level, with a time constant chosen as 1, reflecting the 

time scale that physiologically is observed with synaptic 

currents (Usher & Cohen, 1999). 

F is a squashing function that keeps the activation within 

bounds:  
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As a consequence of the squashing function F, the 

parameter α*
 is the limiting value of maximal self-excitation 

that assemblies can up-hold and the parameter β
*
 is the 

limiting maximal value of inhibition that can be sent from 

one assembly to another. 

Also the model assumes we can not have negative self-

excitation, i.e. self-inhibition and further the model does not 

implement any terms that could account for excitation 

laterally between the assemblies. The latter effect could for 

instance be included if one wanted to account for 

semantically related objects and their effect on the number 

of reported objects. 

The attentional significance that object i is present in the 

visual field R is represented by the encoding rate vi. In our 

model we follow the approach from (Bundesen, 1990) and 

interpret this rate as the firing rate of a Poisson spike 

generator G. Hence γ
*
 characterizes the amplitude of the 

Poisson distributed input spikes arriving to the neuron 

assembly x. 

The model was implemented in Matlab’s Simulink 

toolbox. At least in the operated parameter domain we judge 

the stiffness of the system to be negligible so for simplicity 

we numerically apply Euler integration
1
. 

 

Model performance 

The dataset 

The data covers the performance of a single subject, 

participating in an extensive series of whole and partial 

report experiments. The subject was instructed to report 

targets, i.e. digits while ignoring distractors, i.e. letters 

displayed on an imaginary circle around a small fixation 

cross at the center of the screen. In practice experimental 

trials covered twelve whole and partial report conditions. In 

these the number of targets, T was between 2 and 6 and the 

number of distractors, D was between 0 and 6. Further, 

exposure durations t were varied systematically at 10, 20, 

30, 40, 50, 70, 100, 150 and 200 ms. Each experimental 

condition was repeated 60 times but trials were mixed so 

that the subject had no a-priori knowledge of the 

experimental condition. Moreover trials were grouped into 

blocks to minimize the element of fatigue. Each presented 

character was immediately followed by a mask lasting for 

500 ms. Further information can be found in (Shibuya & 

Bundesen, 1988).  

                                                           
1 Assuming that only one spike should be allowed in each time 

step we must keep the integration step size sufficiently small. If the 

processing capacity C is 60 Hz, and the integration step size is kept 

at dt = 0.001, then the risk that two or more spikes will be present 

in a given time step is as low as 0.36 %. 

Performance of the neural network model 

Figure 3 shows accumulated score distributions. The score 

is defined as the number of targets reported correctly. The 

upper most curve represents the accumulated score of j = 1, 

i.e. the probability of reporting 1 or more targets correctly. 

Other curves represent accumulated probabilities for 

reporting at least 2, 3, 4 or even 5 targets.  

Shibuya and Bundesen (1988) proposed a mixture model, 

mixing probabilities obtained with using a statistical model 

that assumed memorial capacities of either K = 3 or K = 4 

respectively. 

There is a relatively close fit between the proposed 

mixture model and the empirical data. We see however that 

data points obtained with exposure duration around 50 ms 

are generally under-fitted and more noticeably the model 

does not account for cases where more than 4 targets are 

reported, as is actually the case in two out of three of the 

lower most plots. 

What we observe with the previous model can be 

considered a trade-off between two conflicting demands. 

The first demand is to fit the initial part of the curves, i.e. 

the larger the processing capacity C the steeper the curves 

will rise, on the other hand the second demand, which is to 

keep the score distribution reasonably low for long exposure 

durations, require that the processing capacity C is not set 

too high. Hence the setting of C is set subject to a 

compromise. 

Addressing the performance of our neural network model 

we think it clearly meets the standard of Shibuya and 

Bundesen’s model. The neural model does however seem to 

have some trouble predicting 4 recognized items in the 

situations where no distractors were presented. Possibly this 

misfit can be diminished by running a more exhaustive 

optimization of model parameters. The parameters used for 

producing the figure were: α*
 = 5, β* 

= 0.1, γ
*
 = 2, C = 61.5 

Hz, t0 = 23 ms and α = 0.367. Moreover, and in contrast to 

Shibuya and Bundesen’s model, our new model readily 

demonstrates its capability of predicting extreme cases, 

where more than 4 objects are reported. 
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Figure 3: Accumulated score distribution for subject MP in (Shibuya & Bundesen, 1988). Probability of correctly reporting 

at least 1 target (blue, open circles), 2 targets (green, open squares), 3 targets (red, closed squares), 4 targets (cyan, closed 

circles) and 5 targets (magenta, open triangles). Empirically found values are plotted with symbols as markers. The dotted 

lines represent the fit by Shibuya & Bundesen (1988). Solid lines represent the performance of our neural network model. T 

and D denote the number of targets and distractors presented, respectively. 

 

 

Discussion 

 

This work represents an attempt to integrate the Theory of 

Visual Attention (Bundesen, 1990) with a simple type of 

winners-take-all type of network (Usher & Cohen, 1999), in 

the sense that the later implements a limited storage 

capacity of VSTM. Our new dynamic model of visual 

attention and VSTM is able to account for the complete set 

of data from whole and partial report experiments. Where 

the previous account by Shibuya and Bundesen (1988) 

treated extreme scores as outliers, the new model 

encompasses these as natural consequences of the internal 

dynamics. Further, the model explains VSTM capacity and 

consolidation as the result of a dynamic process rather than  

as a static store, which capacity is independent of processing 

capacity and the attentional set of the subject.  

From daily life we know that humans are able to identify 

a very larger number of different objects. Therefore, we 

might think that we would have to include a neural 

assembly for each of these many objects candidates in our 

model of identification. However, what we shall argue is 

that our model’s predictions are not affected if irrelevant 

neural assemblies (representing non-stimuli type of objects) 

are not included in the model, a useful feature which we of 

course make use of when we simulate with the model. The 

reason for this is that in the model only activated neural 
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assemblies affect other assemblies, and so there is no lateral 

inhibition from inactive neural assemblies (which irrelevant 

assemblies tend to be) upon any other assembly. This means 

that adding more irrelevant assemblies generally does not 

affect our conclusions, except that computationally 

simulations become slower. 

The model described gives no account of identification of 

individual features of an object; however it would be 

possible to approach this situation by having one neural 

assembly in the network per object feature, rather than just 

one neural assembly per object. In this case assemblies 

representing features that belonged to the same object might 

be modeled as having little or no lateral inhibition, ensuring 

that several features of the same object can be encoded 

without taking up additional VSTM storage space (Luck & 

Vogel, 1997). 

Speaking of adding more neural assemblies, we ought to 

touch upon what it is that we think an assembly represents. 

Does the assembly manifest itself in one or more neurons, 

and how would this relate to efficient or distributed 

processing? The way we think about the model is that the 

assemblies conceptually represent different states of neural 

activation. As assumed, these states interact and as we have 

described we suppose that feedback mechanisms play an 

important role in keeping the activation of the assembly 

sustained, allowing for visual short-term memories. 

A possible confound of the model is that it does not 

consider internal noise, which is likely to play a key role in 

many neural systems. A way to deal with this would be to 

transform the input stage (the Poisson distributed spike 

trains, arriving with the rate parameter v) to a stochastic 

diffusion process with wiener noise process included. For 

this to make sense the activation threshold for consciousness 

would have to take a higher value than the level of initial 

activation. 

In future studies, we think it would be relevant to explore 

the implication of transforming the model into a stochastic 

differential equation as mentioned above. Because the 

model is temporally dependent it would also be interesting 

to know if it would be able to address the dynamic 

consolidation in VSTM found in temporally extended 

paradigms such as the attentional blink paradigm and 

studies of attentional dwell time; e.g. (Ward, Duncan, & 

Shapiro, 1996). Here, consolidation in VSTM is strongly 

dependent on competition between items already encoded 

into VSTM and visual items presented at a later point in 

time. Incorporation of such a competitive process follows 

naturally from the dynamic architecture of the present 

model.  
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Abstract 

We present a formal analysis of symbolic learning that 
predicts significant differences in symbolic learning 
depending on the sequencing of semantic features and 
labels. A computational simulation confirms the Feature-
Label-Ordering (FLO) effect in learning that our analysis 
predicts. Discrimination learning is facilitated when 
semantic features predict labels, but not when labels 
predict semantic features. A behavioral study confirms 
the predictions of the simulation. Our results and analysis 
suggest that the semantic categories people use to 
understand and communicate about the world might only 
be learnable when labels are predicted from objects.  

Introduction 
The ways in which symbolic knowledge is learned 

and represented in the mind are poorly understood. We 
present an analysis of symbolic learning—in particular, 
word learning—in terms of error-monitoring learning, 
and consider two possible ways in which symbols 
might be learned: learning to predict a label from the 
features of objects and events in the world; or learning 
to predict features from a label. This analysis predicts 
significant differences in symbolic learning depending 
on the sequencing of objects and labels, confirmed in 
computational simulations and an empirical study. 
Discrimination learning is facilitated when semantic 
features predict labels, but not when labels predict 
semantic features. We call this the Feature-Label-
Ordering (FLO) effect. Our results and analysis suggest 
that the semantic categories people use to understand 
and communicate about the world can only be learned if 
labels are predicted from objects. 

Learning 
Learning is best conceived of as the process of 

acquiring probabilistic information about the 
relationships between important regularities in the 
environment (such as objects or events) and the cues 
that enable their prediction (Rescorla & Wagner, 1972). 
The learning process is driven by discrepancies between 
what is expected given a cue, and what is actually 
observed in experience (error-driven learning). The 
predictive value of a cues are strengthened when events 
are under-predicted, and weakened when they are over-
predicted (Kamin, 1969; Rescorla & Wagner, 1972). As 
a result, cues compete for relevance, and the outcome of 
this competition is shaped both by positive evidence 

about co-occurrences between cues and predicted 
events, and negative evidence about non-occurrences of 
predicted events. This process produces patterns of 
learning that are very different from what would be 
expected if learning were shaped by positive evidence 
alone (a common portrayal of Pavlovian conditioning, 
Rescorla, 1988). 

Symbolic learning 
This view of learning can be applied to symbolic 

thought by thinking of symbols (i.e., words) as both 
potentially important cues (predictors) and outcomes 
(things to be predicted). For example, the word “chair” 
might be predicted by, or serve to predict, the features 
that are associated with the things we call chairs (both 
when chairs and “chair” are present as perceptual 
stimuli, or when they are being thought of in mind) 

Word learning can thus take two forms, in which 
either:  

(i) the cues are labels and the outcomes are features 
(ii) the cues are features and the outcomes are labels. 
In (i), which we term LF-learning, information 

allowing the prediction of a feature or set of features 
given a label is acquired, whereas in (ii), which we term 
FL-learning, information allowing the prediction of a 
label from a given feature or set of features is acquired. 
Since formal learning models are fundamentally 
relational (see e.g., Rescorla, 1988), LF- and FL-
learning describe the two possible ways that the 
relations between labels and “meanings” can be 
structured in symbolic learning. 

In FL learning, the set of cues being learned from is 
generally larger than the set of outcomes being learned 
about, whereas in FL learning, the set of outcomes is 
generally larger than the set of cues. As we will now 
show, these set-size differences in the number of cues 
and outcomes that are being learned about in each these 
two forms of word learning result in different levels of 
discrimination learning.  

The structure of labels and the world 
Symbolic labels are relatively discrete, and possess 

little cue-structure, whereas objects and events in the 
world are far less discrete, and possess much denser 
cue-structure. (By cue-structure we mean the number of 
salient and discriminable cues they simultaneously 
present.) Consider a situation in which say, a pan is 
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encountered in the environment. A pan presents to a 
learner many discriminable features; shape, color, size, 
etc. In contrast, consider the label ‘pan.’  A native 
English speaker can parse this word into a sequence of 
phonemes [ph an], but will otherwise be largely unable 
to discriminate many further features within these. 
While there are other discriminable aspects of speech 
(e.g., emphasis, volume, or pitch contour), ordinarily, 
the phonetic level dominates semantic categorization. 
Other features, such as pitch contour, do not compete 
with phonemes in the same way that color might vie for 
relevance with shape in an object. Further, because 
phonemes occur in a sequence rather than 
simultaneously, there can be little to no direct 
competition between them as cues. Labels thus provide 
learners with little competitive cue-structure.  

The difference in cue-structure in turn affects the 
formal properties of the two forms of learning we 
described above. In LF-learning, because labels serve as 
cues and since individual labels have little cue-
structure, learning involves predicting a set of features 
(the semantic features of objects and events) from a 
single cue (the label). Thus, essentially, LF-learning has 
a one-to-many form: one cue to many features.  

     In contrast, FL-learning involves predicting a 
single response (a label) from a larger set of cues (the 
features of an event or object). FL-learning has a many-
to-one form: from many semantic features to a label.  

Cue-competition in learning 
Where many cues are presented simultaneously, they 

can compete for relevance in the prediction of a 
particular event. If a cue successfully predicts an event 
over time (positive evidence), the associative strength 
between the cue and the event will increase. 
Conversely, when a cue unsuccessfully predicts a given 
event—i.e., the event does not follow the cue (negative 

evidence), the associative strength between the cue and 
the response will decrease.  

In one-to-many LF-learning, a single cue will be 
predictive of each of the many features encountered in 
an object or event. Because no other cues are available 
to compete for associative value, there can be no loss of 
potential associative value to other cues over the course 
of learning trials. By contrast, in many-to-one FL-
learning, because many cues are available to compete 
for relevance, learning will separate the highly salient 
cues from the less salient cues, favoring cues with a 
high degree of positive evidence and disfavoring those 
with a high degree of negative evidence. FL-learning 
and LF-learning thus differ significantly in terms of 
cue-competition; the dense cue-structure of FL-learning 
fosters cue-competition, while the sparse cue-structure 
of LF-learning inhibits it. 

Cue-structure and symbolic learning 
To see how these factors affect symbolic learning, 

consider a simplified environment in which there are 
two kinds of objects: wugs and nizes. These objects 
have two salient features: their shape and their color. 
Wugs are wug-shaped and can be either blue or red. 
Likewise, nizes are niz-shaped and can be either blue or 
red. Suppose now that one is learning what wugs and 
nizes are under FL-learning conditions. Figure 1 
represents FL-learning in this simplified environment:   

At (i), a learner encounters an object with two salient 
features, shape-1 and red, and then hears the label 
‘wug’. The learner acquires information about two 
equally predictive relations, shape-⇒‘wug’ and 
red⇒‘wug’. At (ii), the learner two new cues and a new 
label, and forms two new equally weighted predictive 
relations, shape-2⇒‘niz’ and blue⇒‘niz’. Then at (iii), 
the learner encounters two previously seen cues, shape-
1 and blue.  

 
 

Figure 1. Cue competition in learning. The top panels depict the temporal sequence of events:  an object is shown and then a 
word is heard over three trials.  The lower panels depict the relationship between the various cues and labels in word learning. 
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Figure 2. When labels predict features, the absence of cue competition results a situation where the outcome of learning is 
simply be a representation of the probability of the features given the label. 
 

Given what the learner already knows—i.e., shape-
1⇒‘wug’ and blue⇒‘niz’—she expects ‘wug’ and 
‘niz.’ Only ‘wug’ occurs. As a result: (1) given positive 
evidence of ‘wug’, the associative value of the relation 
shape-1⇒‘wug’ increases; but importantly (2) negative 
evidence about the non-occurrence of ‘niz’ causes 
blue⇒‘niz’ to lose associative value. Crucially, as the 
value of blue⇒‘niz’ decreases, it’s value relative to 
shape-2⇒ ‘niz’ changes. At (iv), a similar situation 
occurs. The learner encounters shape-2 and red and 
expects ‘niz’ and ‘wug’. Only ‘niz’ is heard, so the 
associative value of shape-2⇒‘niz’ increases, while 
red⇒‘wug’ loses associative value. 

FL-learning is competitive: as a cue loses associative 
value, its value relative to other cues may change. This 
can shift associative value from one cue to another.  

 Now consider LF-learning in a similar scenario 
(Figure 2). At (i), a learner encounters the label ‘wug’ 
and then an object with the two salient features, shape-1 
and red. She thus learns about two equally valuable 
predictive relations ‘wug’ ⇒shape-1 and ‘wug’⇒red. 
Similarly, at (ii), the learner acquires two further 
equally valued relations ‘niz’⇒shape-2 and 
‘niz’⇒blue. Now, at (iii), the learner hears ‘wug’ and 
expects red and shape-1. However, shape-1 occurs and 
blue occurs. This has three consequences: (1) an 
increase in the associative value of ‘wug’⇒shape-1; (2) 
‘wug’⇒blue becomes a new predictive relation; (3) 
negative evidence decreases the value of ‘wug’⇒red. 
However, since ‘wug’ is the only cue, this loss of 
associative value is not relative to any other cues 
(likewise at iv). LF-learning is thus non-competitive, 
and simply results in the learning of the probabilities of 
events occurring given cues. 

The Feature-Label-Order Hypothesis 
Both FL and LF-learning capture probabilistic 

information predictive relationships in the environment. 

However, there are fundamental differences between 
the two. In FL-learning predictive power, not frequency 
or simple probability, determines cue values; LF-
learning is probabilistic in far more simple terms. Given 
this, it seems that the sequencing of labels and features 
ought to have a marked affect on learning. We call this 
the Feature-Label-Order hypothesis. 

We formally tested the FLO hypothesis in 
simulations using a prominent error-driven learning 
model (Rescorla &Wagner, 1972; see also; Allen and 
Siegel, 1996). We should note that the analysis of 
symbolic learning described here could be implemented 
in a number of other models (e.g., Pearce & Hall, 1980; 
Rumelhart, Hinton & McClelland, 1986; Barlow, 2001) 
and applied to learning other environmental regularities.  

The Rescorla-Wagner model formally states how the 
associative values (V) of a set of cues i predicting an 
event j change as a result of learning in discrete training 
trials, where n indexes the current trial. 

Equation (1) is a discrepancy function that describes 
the amount of learning that will occur on a given trial; 
i.e., the change in associative strength between a set of 
cues i and some event j:1 

 

ΔVij
n

 =α i β j  (λj - VTOTAL)          (1)  

 
 

If there is a discrepancy between λj (the total possible 
associative value of an event) and VTOTAL (the sum of 
current cue values), the saliency of the set of cues α and 
the learning rate of the event β  will be multiplied 
against that discrepancy. The resulting amount will then 
be added or subtracted from the associative strength of 
any cues present on that trial.  

 The associative strength between a set of cues i and 
an event j will increase in a negatively accelerated 
fashion over time, as learning gradually reduces the 
discrepancy between what is predicted and what is 
                                                           
1 Vij is the change in associative strength on a learning trial n. 
α denotes the saliency of i, and β  the learning rate for j. 
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observed. Given an appropriate learning-rate, learning 
asymptotes at a level that minimizes the sum-of-squares 
prediction error for a set of observed cues to an event.  

 

 
Figure 3. The development of cue values in a simulation of 
the LF-learning scenario depicted in Figure 2.  
 

 
Figure 4. The development of cue values in a simulation of 

the FL-learning scenario depicted in Figure 1. 
  

 Discrimination and interference 
Two computational simulations (in the Rescorla & 

Wagner, 1972 model, described below)2 formally 
illustrate the differences in the representations of what 
gets learned in LF and FL-learning. As Figure 3 shows, 
LF-learning simply results in a representation of the 
probability of each feature given the label; e.g., the 
learned associative value of ‘wug’⇒red is about half of 
the associative strength of ‘wug’⇒wug-shaped, 
because ‘wug’ predicts red successfully only 50% of 
the times and wug-shaped successfully 100% of the 
time. In FL-learning (Figure 4), the representations 
learned reflect the value of cues: the associative 
relationship ‘wug’⇒wug-shaped is very reliable, and is 
highly valued relative to cues that generate prediction 
error. In this case the association ‘wug’⇒red is 
effectively unlearned. 

It is important to note that in LF-learning, the lack of 
discrimination produced by learning can lead to 
problems of interference in predicting events (or 
responses to them). LF-learning tends to produce 

                                                           
2 The simulations assume either a niz or a wug is encountered 
in each trial, that each species and color is equally frequent in 
the environment, and that color and shape are equally salient. 

representations in which a number of competing 
predictions are all highly probable.   

In our earlier wug / niz example there were equal 
numbers of wugs and nizzes: red cued “wug” 50% of 
the time and “niz” 50% of the time.  Thus if a child 
trained LF on the animals saw a red wug and was asked 
what it was called, there is 100% probability that wug-
shaped=wug and only 50% probability that red=niz. 
‘Wug,’ is the obvious answer.  Imagine, however, there 
were 20 times as many blue wugs as blue nizzes in the 
population, and 20 times as many red nizzes as red 
wugs. In this scenario, the color red will cue “wug” 
about 95% of the time and “niz” only about 5% of the 
time based on frequency of occurrence. For a child 
trying to name a red wug, there’s again a near 100% 
probability that wug-shaped=wug, but now there’s also 
a 95% probability that red=niz. There will be a large 
degree of uncertainty about the right answer. Tracking 
the frequencies of successful predictions will not pick 
out the cues that best discriminate one prediction from 
others, leading to response interference. While FL- and 
LF-learning can discriminate responses in an ideal 
world, LF-learning will fail to discriminate events (or 
responses) when frequencies vary (and in the actual 
world, frequencies will vary). 
 

Non discriminating 
features 

Discriminating  
features 

 

1 2 3 1 2 3 4 5 6 

75% 1 0 0 1 0 0 0 0 0 Category 
1 25% 0 1 0 0 1 0 0 0 0 

75% 0 1 0 0 0 1 0 0 0 Category 
2 25% 0 0 1 0 0 0 1 0 0 

75% 0 0 1 0 0 0 0 1 0 Category 
3 25% 1 0 0 0 0 0 0 0 1 

Figure 5: The abstract representations of the category 
structures used to train the Rescorla-Wagner models 
 
Simulating interference 

To illustrate the problem of response interference, we 
simulated category learning in the Rescorla-Wagner 
model using abstract representations of the category 
structures in Figure 5. The training set comprised 3 
category labels and 9 exemplar features (3 non-
discriminating features that were shared between 
exemplars belonging to different categories, and 6 
discriminating features that were not shared with 
members of another category). The frequency of the 
sub-categories was manipulated so that each labeled 
category drew 75% of its exemplars from one sub-
category and 25% of its exemplars from another 
subcategory. The two sub-categories that made up each 
labeled category did not share any features, such that 
learning to correctly classify one of the sub-categories 
paired with each label would provide no assistance with 
learning the other sub-category paired with that label. 
Finally, each low frequency sub-category shared its 
non-discriminating feature with the high frequency 
exemplars of a different labeled category. This 
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manipulation was designed to create a bias towards the 
misclassification of the low-frequency exemplars. 
Learning to correctly classify low frequency exemplars 
necessarily required learning to weigh the 
discriminating feature more than the non-discriminating 
feature, despite its lower overall input frequency. 

Two simulations were configured to created two 
networks of feature and label relationships. The first 
network learned associative weights from the 9 
exemplar features (serving as cues) to the 3 labels 
(serving as events; “FL training”), while in the second 
case the network learned from the 3 labels (serving as 
cues) to the 9 features (serving as events; LF training). 
Each category had a high frequency exemplar, 
presented on 75% of the training trials for that category, 
and a low frequency exemplar (occurring 25% of the 
time). On each training trial a label and appropriate 
exemplar pattern were selected randomly to train each 
of the two networks. Training comprised 5000 trials, 
which allowed learning to reach asymptote. The model 
has several parameters that affect learning. For 
simplicity, the simulations assumed equally salient cues 
and events (α=0.01 for all i; β=0.01 for all j) and equal 
maximum associative strengths (= 1.0). 

To test the FL-network, exemplar features were 
activated to determine the subsequent activation of the 
labels. Propagating these values across the weights 
learned by the network then determined the associative 
values that had been learned for each label given those 
features. Luce’s Choice Axiom (Luce, 1959) was used 
to derive choice probabilities for the 3 labels given 
these activations, revealing that the FL-trained network 
categorized and discriminated well (the probability of 
correct classification for the low and the high frequency 
exemplars was p=1).  

LF-network testing involved activating the labels in 
order to determine subsequent activation of the features. 
In turn, each label was given an input value of 1, and 
this then produced activation levels in the features, 
which were determined by the associative values 
learned in training. In order to assess the network’s 
performance, the Euclidean distance between the 
predicted activations and the actual feature activations 
of the appropriate exemplar were calculated. For each 
label there were two sets of feature activations: those 
corresponding to the high and low frequency 
exemplars. To test learning of both exemplar types, a 
category and a frequency (either high or low) were 
selected, and the difference between the feature 
activations predicted by the network and the correct 
values for the category exemplars was computed. These 
differences were then converted to z-scores, and from 
these the probabilities of selecting the correct exemplar 
given the category label were calculated as follows: 

 

P(x) = exp(-z(dist(x,t))   (2) 
 

where P(x) is the likelihood of the network selecting 
exemplar x, z(·) returns the z-score of its argument 
relative to its population, dist(·,·) is the Euclidean 
distance function, and t is the exemplar pattern 
generated by the network. The P(x) likelihoods were 
normalized using Luce’s Choice Axiom to yield 
normalized probability estimates. These revealed that 
the LF network performed poorly. At asymptote, it 
predicted the correct feature pattern with only p=.35 
confidence for low frequency exemplars (chance), and 
p=.75 confidence for high frequency exemplars. 

Testing the FLO Hypothesis 
Consistent with our hypothesis, a notable Feature-
Label-Order Effect was detectable in the simulations. 
The following experiment was designed to see whether 
human learning would show a similar effect. 
Participants  

32 Stanford Undergraduates participated for credit.  

 
Figure 6. The category structures Experiment 1. (The stimuli 
are fribbles created by Michael Tarr’s lab at Brown 
University.) The features that need to be weighted to 
successfully distinguish the sub-categories are circled on the 
low-frequency “dep” and high-frequency “tob” exemplars. 
 

Method and Materials 
Three experimental categories of “fribbles” were 

constructed, each comprising two sub-categories 
clustered around a non-discriminating feature and a set 
of discriminating features. The two sub-categories that 
made up each labeled category did not share features, 
and so learning to correctly classify one of the sub-
categories paired with each label provided no assistance 
with learning the other sub-category paired with that 
label. The sub-categories were again manipulated so 
that 75% of the exemplars of a category belonged to 
one sub-category, and 25% to another, and each non-
discriminating feature was shared by high frequency 
and low frequency exemplars that belonged to different 
categories. Thus learning to correctly classify low 
frequency exemplars necessarily required learning to 
weigh the discriminating feature more than the non-
discriminating feature. A control category served to 
check that there were no differences in learning 
between the two groups other than those we 
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hypothesized: all its exemplars shared just one, highly 
salient feature (all were blue). Because learning this 
category involved a binary pairing blue⇒bim, there 
was no “predictive structure” to discover. In the 
absence of competing exemplars, learning was 
predicted to be identical for FL and LF training. 

To enforce LF or FL relationships as our participants 
studied “species of aliens” we minimized their ability to 
strategize (world learning is rarely a conscious process. 
All four categories were trained simultaneously, 
exemplars of each category were presented in a non-
predictable sequence, and each exemplar was presented 
for only 175ms to inhibit participants’ ability to search 
for features. FL training trials comprised 1000ms 
presentation of a label (“this is a wug”), followed by a 
blank screen for 150 ms, followed by 175ms exposure 
to the exemplar. LF training trials comprised 175 ms 
exemplar, 150 ms blank screen and 1000ms label (“that 
was a wug”). A 1000ms blank screen separated all trials 
(see Figure 10). A training block comprised 20 different 
exemplars of each experimental category – 15 high-
frequency exemplars and 5 low-frequency exemplars – 
and 15 control category exemplars. Training comprised 
2 identical blocks, with a short rest between the blocks. 

Testing consisted of speeded 4 alternative forced-
choice tasks. Half the participants matched an exemplar 
to the 4 category labels, and half matched a label to 4 
previously exemplars drawn from each category. 
Participants were instructed to respond as quickly as 
they could (after 3500ms, a buzzer sounded and no 
response was recorded). Each sub-category (and the 
control) was tested 8 times, yielding 56 test trials. 

 
Figure 7: The predictions of the simulation plotted against the 
performance of participants in Experiment 1. 
 

Results and discussion 
The results of the experiment were remarkably 

consistent with our predictions; a 2 x 2 ANOVA 
revealed a significant interaction between exemplar- 
frequency and training (F(1,94)=20.187, p<0.001; 
Figure 6). The FL-trained participants classified high 

and low frequency items accurately (FL high p=.98; 
low p=.78), while the LF-trained participants only 
accurately classified high-frequency items (p=.86) and 
failed to classify the low frequency exemplars above 
chance levels (p=.36, t(47)=0.536, p>0.5). The control 
category was learned to ceiling in both conditions. 
Analyses of confusability (i.e., the rates at which 
exemplars were misclassified to the category with 
which they shared non-discriminating features) showed 
the same interaction between frequency and training 
(F(1,94)=8.335, p<0.005), with higher confusion rates 
after LF training (M=22.6%) than FL (M=6%; 
t(16)=5.23, p<0.0001). These differences were not due 
to a speed / accuracy trade-off; participants trained FL 
were faster as well as more accurate (LF M=2332ms, 
FL M=2181ms; t(190)=1.677, p<0.1).  

To the degree that learning relational, and driven by 
prediction error (and there is considerable evidence that 
it is), LF- and FL-learning describe the two possible 
ways the relations between labels and “meanings” can 
be structured in learning. The Feature-Label-Ordering 
effect may thus be an inevitable aspect of symbolic 
learning. We believe this has many implications for our 
understanding of language and cognition. 
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Abstract 

Humans rapidly learn complex structures in many domains. 
Some findings of above-chance performance of untrained 
control groups in artificial grammar learning studies raise the 
question to which extent learning can occur in an untrained, 
unsupervised testing situation with partially correct and 
incorrect structures. Computational modelling simulations 
explore whether an unsupervised online learning effect is 
theoretically plausible in artificial grammar learning. 
Symbolic n-gram models and simple recurrent network 
models were evaluated using a large free parameter space and 
applying a novel evaluation framework, which models the 
human experimental situation through alternating evaluation 
(in terms of forced binary grammaticality judgments) and 
subsequent learning of the same stimulus. Results indicate a 
strong online learning effect for n-gram models and a weaker 
effect for simple recurrent network models. Model 
performance improves slightly once the window of accessible 
past responses for the grammaticality decision process is 
limited. Results suggest that online learning is possible when 
ungrammatical structures share grammatical chunks to a large 
extent. Associative chunk strength for grammatical and 
ungrammatical sequences is found to predict both, chance and 
above-chance performance for human and computational 
data. 

Keywords: Unsupervised learning; online learning; 
computational modelling; artificial grammar learning; n-gram 
model; neural network; artificial grammar learning 

Introduction 

Humans are very efficient learners. In many cases we learn 

without intention and without awareness, and it has been 

suggested that implicit learning constitutes one powerful 

and fundamental root mechanism of learning (Reber, 1993). 

Humans are even further able to learn and to adapt to the 

environment, whilst being in the midst of things: we pick up 

individual characteristics, or melodic features in a piece of 

music while we are listening or dancing to it, sportsmen are 

able to adapt to characteristics of their opponents or the 

environment while playing, or musicians adapt to 

characteristic musical patterns of other musicians while 

improvising together.  

Humans acquire implicit knowledge about regular 

structures very quickly. Serial reaction time experiments 

have found humans to be able to acquire rule-based 

structures extremely rapidly (Reber, 1993). Similarly, under 

the artificial grammar learning paradigm (AGL) participants 

acquire rule-based structures rapidly after short 

familiarisation periods (Pothos, 2007). One question that 

arises in this context concerns how efficient humans may 

learn regular structures even during a test, or under more 

complex conditions involving a combination of both, 

regular and irregular structures. For instance, Dulany et al. 

(1984) found that untrained controls performed above 

chance, which might suggest that they  have picked up some 

regularity in the structures during the testing. Redington & 

Chater (1996) discuss the possibility of such a learning 

process, whereas Reber & Perruchet (2003) argue that above 

chance performance of a control group would not stem from 

a learning effect but from confounding structural biases that 

may be easy to detect. However, two recent musical 

grammar learning experiments found a high performance of 

about 60%  in untrained controls (Loui et al, 2008; 

Rohrmeier et al., submitted) which may reopen the question 

about a potential rapid online-learning effect.  

This study addresses how online-learning on the fly could 

be theoretically possible based on computational modelling 

methods. It proposes a framework to model both the 

simultaneous learning of structures while being tested and 

the generation of binary grammaticality judgments, in a way 

that parallels the human situation. It aims to demonstrate 

that two standard computer models of learning reproduce an 

effect of unsupervised online learning under certain 

conditions regarding the stimulus structures. Further it 

explores why it turns out that grammatical structures, but 

not ungrammatical ones, are preferred as familiar even 

though the learning process happens under unsupervised 

conditions. These theoretical and computational 

observations raise several hypotheses regarding an efficient 

online-learning effect for future psychological research.  

Experimental hints & evidence 

In a musical AGL experiment, Rohrmeier et al. (submitted) 

found that untrained control participants were able to 

distinguish rule-consistent grammatical stimulus structures 

from ungrammatical structures throughout the course of a 

testing phase, even though they had no prior training. Once 

the performance of this group is plotted over time 

(throughout the course of the testing phase, in which the 

stimulus order was randomized), one finds a curve of the 

shape of a saturation curve (figure 1). The fact that the 

performance curve begins at a chance level of 0.5 (and not 

above) and steadily raises to a level of 0.62, suggests that 

participants gradually pick up some knowledge that enables 

them to distinguish the structures, with little prior bias. The 

study found the group performance to be significantly above 

chance after 11 steps into the testing phase. 

This unusual result is surprising and rare in the context of 

other AGL studies. However there are not many cases of 

studies with untrained control groups. Dulany et al. (1984), 

Redington & Chater (1994), Dienes (reported in Redington 
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& Chater, 1996), and Loui et al. (2008) found above chance 

performance of untrained controls; whereas Altmann et al. 

(1995), Meulemans & Van der Linden (1997) and Reber & 

Perruchet (2003) did not. If well this set of experimental 

evidence is not decisive and further empirical work is 

required, computational modelling work may shed light on 

the question of whether an effect of rapid online-learning 

under complex conditions of partially grammatical and 

ungrammatical structures is theoretically plausible at all. In 

addition it may raise particular hypotheses regarding human 

learning performance based on theoretical considerations. 

 
Figure 1: Performance of an untrained participant group during 

the testing phase. 

 

Based on these considerations, this study aims to simulate 

a potential effect of online-learning from the angle of two 

different cognitively motivated models: a connectionist 

model with reference to connectionist theories of AGL 

(Pothos, 2007) and a symbolic n-gram model with reference 

to fragment or chunking based theories of human learning 

(Servan-Schreiber & Anderson, 1990; Perruchet & Pacteau, 

1990).  

Method 

First, the modelling framework intends to model the 

simultaneity of learning and responding during testing. This 

departs from traditional machine learning or computational 

modelling methods (Mitchell, 1997; Bishop, 2006) as the 

typical separation between model training and model 

evaluation is suspended. In this framework the models are 

first evaluated for each given stimulus and then 

subsequently trained on the same stimulus. This method 

keeps the modular operations of training and evaluating the 

model with single strings (as learning during the processing 

of the stimulus would require significant changes in the 

mechanism of the model, in particular, the SRN).  

Secondly, the modelling framework intends to capture the 

human testing situation, which involves having to decide 

about stimulus grammaticality immediately during the 

testing. Often computational models are simply evaluated 

by comparing the overall sequence familiarity for 

grammatical and ungrammatical sequences after the whole 

test evaluation (e.g. Kuhn & Dienes, 2008) but are not 

required like the human to give decisive binary 

grammaticality (G/UG) responses after each single stimulus 

without full information about the remaining test set. 

Consequently, the model responses would not be directly 

comparable to the human responses. Therefore, the present 

modelling framework applies a threshold decision technique 

to generate binary grammaticality judgments from the 

model’s familiarity responses directly for each single 

stimulus (see below).  

We use cross-entropy based on sequence predictability 

(Mitchell, 1997; Bishop, 2006; Pearce & Wiggins, 2004) as 

an estimate of the familiarity that a model assigns to a 

stimulus.  

Models 

N-gram model. Fragment based n-gram models are 

symbolic models which have been successfully used in 

computational linguistics and in music modelling (Manning 

& Schuetze, 1999; Pearce & Wiggins, 2004, 2006). This 

study employs a simple n-gram model after Pearce & 

Wiggins (2004) which stores fragments of the lengths 1 to n 

symbols from its input sequences, and creates predictions 

for the symbol sequence of a given test sequence by 

combining predictions from differently sized fragments 

using Moffat’s (1990) method, which has been found to 

perform best in comparison to other smoothing and 

combining methods (Pearce & Wiggins, 2004). The model 

produces a familiarity response for a whole test sequence 

based on its information content, i.e. the mean cross-entropy 

of the prediction for each symbol of the sequence.  

 

Simple Recurrent Network. The simple recurrent network 

model was implemented following Elman (1990). A 

familiarity response for a single test sequence is generated 

through the information content, i.e. cross-entropy based on 

the prediction of each symbol.  

Deciding grammaticality judgements 

Both models return familiarity values based on cross-

entropy, which have to be classified on the fly into binary 

grammaticality responses. As the range and distribution of 

the familiarity values are unknown prior to the test and vary 

over time, the decision cannot be based on a static threshold 

value. The current familiarity value is instead classified as 

grammatical or ungrammatical when it is greater or smaller 

than the median of the available past familiarity values. The 

decision is made random for the first sequence as there is no 

reference value available.  

Procedure 

First the model is initialised and the sequence order is 

randomised. Then, for each stimulus of the testing set, the 

model computes, as outlined, a familiarity response based 

on cross entropy, which is compared to the median of the 

past responses and subsequently transformed into a 
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grammaticality judgment. After each sequence evaluation, 

the model is trained with the stimulus.  

Choice of free parameter space 

Cleeremans & Dienes (2008) discuss the problem that 

regarding the choice of free model parameters there are few 

ways of determining cognitively meaningful parameter 

choices. The present simulations adopt the method by Kuhn 

& Dienes (2008) to define a grid over the range of possible 

meaningful parameters and to run a fixed number of 

simulations for each point in the parameter space. A 

parameter space of learning rate and momentum each of 

{0.1, 0.3, 0.5, 0.7, 0.9}, 2 learning epochs, and {10, 15, 25, 

50, 80, 120} hidden units was used for the SRN models, 

resulting in a space of 150 parameter combinations. The n-

gram models were evaluated using a parameter space of a 

maximal n-gram length of {2,3,4,5,6,∞}, where ∞ signifies 

that there was no upper limit for the fragment size and that 

fragments up to the whole string were stored.  

Materials 

Test sequences from the studies above which featured an 

untrained control group were used, if the stimuli were 

available. In addition, the stimuli by Brooks & Vokey 

(1991) as used by Tunney & Shanks (2003) were included 

in order to feature another well-known finite-state grammar.  

Simulation 1 

The purpose of simulation 1 was to investigate to which 

extent online learning could be simulated for the studies 

listed above. For each of the 7 grammars listed above, 80 

instances of each the n-gram model and the SRN were run 

for each configuration in the parameter space above. In 

addition, the same number of control models were run, 

which featured no sequence training after stimulus 

presentations. 

Table 1 displays the results. All n-gram models exhibit a 

significant and strong effect of online-learning for all 

parameters (all p<0.0005). In many cases mere bigram 

learning proves sufficient for a performance level which is 

barely topped by larger contexts, a finding that is consistent 

with evaluations by Pearce & Wiggins (2004). Further, 

many n-gram models outperform human results. SRN 

models also show significant above chance performance, 

typically for 50 or more hidden units and a learning rate of 

0.5 or higher. All control models performed not different  

from chance (all df=79, p>0.05) for all stimulus sets, 

suggesting that there was no model induced bias. In general, 

the SRN models tend to have a less strong effect of online-

learning and often perform slightly lower than humans. 

However, unlike many n-gram models, SRN models exhibit 

around chance performance for the stimulus set by Reber & 

Perruchet (2003), just like in the human results. The 

structures by Meulemans & Van der Linden, exp. 2a were 

not learned by either models or humans, whereas in their 

exp 2b, interestingly, models and humans preferred 

ungrammatical structures as familiar.  

Simulation 2 

The purpose of simulation 2 was to investigate to which 

extent the window of available past familiarity judgments 

influences the online-learning efficiency. Therefore, one 

small change was introduced to the process of the 

grammaticality judgement decision: whereas the 

grammaticality response compared the current familiarity 

value to all previous familiarity values, now it was only 

compared to the last 5, 10, 20, or 30 values, using a sliding 

window technique. The cognitive motivation for this change 

was to incorporate some of the effect of human memory 

limitations in the modelling.  

The same models and the same parameter space as in 

simulation 1 have been evaluated for the different memory 

windows above. Results revealed that performance for both 

model types slightly improved overall when less (window 

size of 10 or 20) but not too little context (window size of 5) 

of familiarity judgments is taken into account. The mean 

model performance improved for .003, .010, .013, .007 (n-

gram models), and 0.012, 0.016, 0.014, 0.009 (SRN models) 

percent points for memory windows of 5, 10, 20, 30 

respectively, compared to an unlimited memory window
1
. 

This small improvement may be explained through the fact 

that familiarity values tend to increase and to converge 

throughout the test. When the familiarity window excluded 

older values in which the models were in a prior, less stable 

state, the performance improves, having an even greater 

effect for high-performing models
1
. 

Why do the right structures get picked? 

The behavioural and computational findings beg the main 

question of how it is possible that grammatical structures 

may potentially be learned gradually and in an unsupervised 

manner, within an environment that contains 50% 

ungrammatical structures, i.e. a fair amount of misleading 

and wrong information. The model simulations give rise to a 

potential explanation and a hypothesis for human behaviour 

extending Redington & Chater’s (1996) argument:  stimulus 

structures, both grammatical and ungrammatical structures, 

share a large set of fragments or chunks, and those are 

acquired with every testing of grammatical and 

ungrammatical stimulus. If one assumes that the learning of 

chunks or fragments constitutes one major part in artificial 

grammar learning (Servan-Schreiber & Anderson, 1990; 

Perruchet & Pacteau, 1990; Pothos, 2007), the chunk 

distribution of stimuli would supposedly play a major role 

in the learning. Whereas grammatical chunks appear 

relatively frequently, ungrammatical chunks, however, arise 

from violations in the structure and are thus expected to 

appear less frequently. Once a learner detects differences 

between chunk frequency in stimuli, a distinction between 

grammatical and ungrammatical chunks might be possible 

on that base. Therefore, the reason why responses converge 

toward grammatical structures may rely on the fact that 

grammatical sequences tend to have higher chunk 

                                                           
1 Detailed results had to be omitted out due to space limitations. 
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frequencies on average than ungrammatical sequences.  

Accordingly, one might hypothesise that if grammatical 

and ungrammatical chunks were to appear comparably 

frequently in the whole test set, the learner could not 

distinguish between them. Secondly, it would be expected 

that the learner picks the structures with the larger share of 

frequent fragments as grammatical; and hence the selection 

would converge toward either grammatical or 

ungrammatical structures depending on which one 

encompasses the more frequent chunks. Using the 

associative chunk strength (ACS) measure (Meulemans & 

Van der Linden, 1997), we would predict that the set of 

stimuli with the greater mean ACS with respect to the whole 

set of testing structures will be preferred and that the 

performance would be around chance if both mean ACS 

values were very similar. 

Accordingly, the proportion of mean grammatical ACS to 

ungrammatical ACS was calculated for the different 

stimulus sets used above. The ACS proportion values were 

roughly about 1 for Meulemans & van der Linden, exp 2A, 

Reber & Perruchet; greater than 1 for Dulany et al., Loui et 

al., Rohrmeier et al., and Tunney & Shanks, and smaller 

than 1 for Meulemans & van der Linden, exp 2B. Mean 

ACS values for grammatical and ungrammatical structures 

were significantly different for Dulany et al, Rohrmeier et 

al., Tunney & Shanks Meulemans & van der Linden, exp 

2B (all p<0.02). Both human performance and model 

performance match the pattern of the ACS proportions in 

terms of both direction and extent of performance: Human 

performance for the first (balanced) studies is at chance, and 

models perform not as well or at chance. Human and 

machine performance for the second set of studies is above 

chance. In the third case, human performance is below 

chance (Meulemans & van der Linden (1997) do not report 

if it is significant) and this is matched by significant below 

chance performance of the computational models.  The 

correlation between ACS proportions and human as well as 

model performance were high: 0.71 (human performance), 

0.98 (2-gram & 3-gram models), greater than 0.90 (other n-

gram models), greater than 0.84 (SRN models with 80 or 

120 hidden layers and learning rates greater than 0.7), and 

0.89 (best SRN model).  Finally, it is interesting to note that 

n-gram models show that some above chance online 

learning was possible for the structures by Reber & 

Perruchet, and Loui et al., even though the mean ACS 

values for their grammatical und ungrammatical structures 

were not significantly different (both p>0.4). 

The learning curve 

Another related question concerns the shape of the 

learning curve. Assuming that the performance curve of the 

online learning effect mainly depends on the gradual 

acquisition of information (about the distribution of the 

stimulus features or chunks) throughout the testing phase, a 

very simple estimate of the learning and its growth can be 

formulated based on common considerations. Assuming that 

new information gained about the sequences decreases as 

more sequences are known, a decreasing function of 

information intake may be expressed: 

( ) +− ∈⋅= R b a,forxbtf a
  (1) 

Accordingly, the total knowledge about the structures at a 

certain time step is the amount of the information acquired 

up to that time: 

( )∫= dttftK )(     (2) 

Further, assuming that the performance in term of the 

likelihood of a correct response is proportional to the total 

knowledge about the sequences at a time, simple 

performance curve estimates can be derived: 
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This consideration yields a logarithm or power function 

prediction, based on two or three free parameters, for the 

performance curve of the online learning effect. These 

curves relate to well-known power laws of human learning 

(Newell & Rosenbloom, 1981; Anderson, 1995) and fit the 

human data well, which was available for the study by 

Rohrmeier et al. (Fig. 1). They also match the computational 

learning curves (Fig. 2) well (all R
2
>0.94; further details 

were omitted due to space limitations). 

Discussion and Conclusion 

The findings above suggest that there are some theoretical 

and empirical grounds to assume an online learning effect. 

The results from the first and second simulation show that 

the online-learning effect can be reproduced by cognitively 

motivated symbolic and connectionist models and that a 

limited memory window improves the performance.  

The learning effect is possible when ungrammatical 

structures contain grammatical fragments to a large extent. 

The considerations and simulations suggest that online 

learning occurs because responses tend to converge towards 

sequences with high ACS values, independently of them 

being grammatical or ungrammatical. This yields a 

hypothesis for future experimental work: behavioural 

experiments may reveal whether participants indeed would 

tend to choose structures with high ACS independently of 

whether they are rule based or not in an online learning 

situation. Future work may further assess to what extent 

ACS of grammatical and ungrammatical sequences predicts 

the direction and extent of human performance well.  

Theories of AGL (Pothos, 2007) propose that there are 

several theoretically plausible forms of the acquired 

knowledge, such as chunk knowledge, anchor positions, rule 

knowledge, or, microrules. This research was based on 

chunk knowledge and showed that it could predict an 

online-learning to a certain extent. It remains open which 

effect the other features or factors may have with regards to 

the online learning effect.  
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Although the models in this study show an effect of 

online learning, the results do not fully account for human 

results: the fragment-based n-gram models tended to learn 

‘too efficient’ and to outperform the human results whereas 

the SRN models tended to perform worse than human 

results. From this perspective, strongly n-gram based 

accounts of human learning (Perruchet & Pacteau, 1992) 

would require to incorporate explanations of lower human 

performance compared to the efficiency of models based on 

n-gram representations, whereas connectionist accounts 

would need to account for the better human performance. 

One remaining question concerns why this effect has not 

been commonly found in other studies. The reason why 

Reber & Perruchet (2003) have found no online learning 

effect of untrained controls in their experiments, appears to 

stem from the fact that their grammatical and 

ungrammatical structures are highly balanced in terms of 

their ACS. Other studies, in which ACS was unbalanced 

towards grammatical structures or ungrammatical structures 

found performance in favour of potential online learning.  

Yet more experimental evidence is needed.  

Another potential explanation for the little present 

evidence of the effect may be that unambiguously clear 

control group instructions are difficult to generate and that 

stimulus appearance might influence learnability in the 

context of online learning where very quick memorisation is 

required. Most AGL studies use abstract letter sequences 

such as VNRX which have little overlap with everyday 

structures, language, or sounds. In this respect it is striking 

that two studies which used melodies of simple sequential 

structure (Rohrmeier et al., submitted; Loui et al., 2008) 

found very high performance of untrained controls about 

60%. Similarly, Reber & Perruchet’s (2003) study found 

higher performance when using consonants common in 

French language. Whether there is an effect of stimulus 

domain and appearance for online learning remains to be 

further explored. These findings have an impact for the 

AGL research paradigm in as much as some learning effect 

during testing has to be assumed, even though its additional 

impact after a learning phase might be small.  
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Evaluation Parameters Dulany 
et al, 
1984 

Reber & 
Perruchet, 
2003 

Loui et 
al, 
2008 

Rohrmeier 
et al, 
submitted 

Meulemans & Van der 
Linden, 1997 
Exp 2a           Exp 2b 

Tunney & 
Shanks, 
2003 

ACS proportion bi- and trigrams 1.372 1.009 1.026 1.223 0.975 0.833 1.101 
 

Human results 
(untrained controls) 

  0.560 
 

0.445 
0.513 
0.490 

0.60 0.616 0.490 0.450 – 

  max n        

n-gram model  2 0.764* 0.538* 0.587* 0.688* 0.486 0.406* 0.579* 

      mw = ∞  3 0.769* 0.540* 0.592* 0.686* 0.488 0.397* 0.585* 

  4 0.758* 0.566* 0.583* 0.726* 0.485 0.411* 0.569* 

  5 0.757* 0.573* 0.579* 0.773* 0.502 0.421* 0.575* 

  6 0.760* 0.552* 0.597* 0.798* 0.503 0.431* 0.582* 

  ∞ 0.758* 0.574* 0.587* 0.819* 0.491 0.432* 0.576* 

n-gram control   0.500 0.500 0.500 0.500 0.500 0.500 0.500 

 hid lr        

SRN models 10 0.1 0.491 0.503 0.505 0.506 0.498 0.491 0.503 

 0.3. 0.5 0.511 0.503 0.507 0.517 0.490 0.490 0.511      m = {0.1,0.3, 
        0.5,0.7,0.9}  0.7. 0.9 0.518 0.500 0.512 0.530* 0.493 0.476 0.515 

     mw = ∞ 15 0.1 0.499 0.502 0.505 0.511 0.490 0.494 0.505 

     for all models  0.3. 0.5 0.517 0.499 0.508 0.528* 0.488 0.482 0.519 

       0.7. 0.9 0.531* 0.502 0.520 0.529* 0.487 0.471 0.516 

 25 0.1 0.500 0.497 0.498 0.515 0.489 0.488 0.511 

  0.3. 0.5 0.520 0.500 0.516 0.531* 0.488 0.470 0.519 

  0.7. 0.9 0.538* 0.498 0.519 0.536* 0.486 0.463* 0.527* 

 50 0.1 0.512 0.494 0.511 0.516 0.493 0.487 0.514 

  0.3. 0.5 0.533* 0.501 0.517 0.534* 0.483 0.465* 0.529* 

  0.7. 0.9 0.550* 0.500 0.526* 0.542* 0.474 0.449* 0.536* 

 80 0.1 0.513 0.502 0.511 0.514 0.488 0.479 0.520 

  0.3. 0.5 0.536* 0.497 0.520 0.534* 0.483 0.462* 0.538* 

  0.7. 0.9 0.558* 0.497 0.537* 0.544* 0.473 0.446* 0.539* 

 120 0.1 0.520 0.501 0.514 0.530 0.478 0.476 0.524 

  0.3. 0.5 0.542* 0.495 0.527* 0.538* 0.470 0.452* 0.538* 

  0.7. 0.9 0.566* 0.498 0.543* 0.549* 0.474 0.439* 0.538* 

SRN control   0.492 0.499 0.501 0.501 0.490 0.496 0.497 

Best scoring SRN          
mw = 20. m=0.1 120 0.7 0.579* 0.493 0.552* 0.577* 0.481 0.444* 0.538* 

Table 1. Associative chunk strength proportions for bi- and trigrams 

and mean performance (SD was omitted due to space limitations) for n-

gram models and SRN models with no restrictions on the memory 

window. SRN results were collapsed over all momentum values. All 

marked (*) mean values are significantly different from chance (all 

df=79, p<.0001). Displayed parameters are maximal fragment length for 

n-gram models (max n), number of hidden layer units (hid), learning rate 

(lr), momentum (m) for SRN models, and memory window size (mw, in 

number of past stimuli). 

 

Figure 2. Comparing online learning curves for the sequences by 

Rohrmeier et al. (submitted) for (from top to bottom) n-gram models 

(coloured) for n=6,5,4,3,2, human performance (thick line) and two high 

scoring SRN models (dashed, hid=120/80, lr=0.7, mw=20/10, m=0.1/0.7 

respectively). Power functions fit all learning curves well (all R2>0.94), 

yet plots or details were omitted here due to space limitations. 
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Abstract 

User input to recommendation systems such as Netflix 
provide an excellent opportunity to study human choice and 
preferences.  We present a probabilistic model that captures 
two processes that underlie human input to recommendation 
systems; the process by which individuals choose items to 
rate, and the process by which they select a rating for those 
items.  Using movie rating data collected by Netflix, we 
demonstrate that this model can generate accurate predictions 
about missing movie ratings.  Furthermore, we show that the 
implicit information that users reveal through their choice 
processes can be used to improve prediction accuracy even in 
the total absence of explicit ratings. 

Keywords: Choice, Decision Making, Recommendation 
Systems, Topic Models, LDA, Machine learning 

Introduction 
Recommendation systems are becoming increasingly 

important in industry and academia. While the field of 
recommender systems is heavily researched in the area of 
machine learning and data-mining (see Adomavicius & 
Tuzhilin, 2005 for an overview), it has been largely ignored 
by the cognitive science community. This is somewhat 
surprising, because an accurate model of human preferences 
requires understanding the basic psychological processes 
underlying choice and judgment. In addition, the goal of any 
recommendation engine is ultimately to provide a good 
prediction of what a particular individual will like. This 
requires an understanding of individual differences as they 
relate to preference judgments and choice behavior. 

Consider the process by which you produce a movie 
rating.  Typically, you first choose a movie to watch, then 
watch the movie and form an opinion of it, and finally 
translate this opinion into a discrete rating.  This full 
sequence of events is important in determining what ratings 
are actually observed by a commercial recommendation 
system such as Netflix.  And at each point in this process, 
choice plays a key role.  We choose movies to watch based 
both on our preferences and on the situation—what mood 
we are in, what type of movie we feel like that night, and 
who we are with.  And our opinion of a movie can be 
significantly influenced by the conditions in which we saw 
it (for example, you might love horror movies, but have a 
bad opinion of The Shining because it gave your child 
nightmares for a month).  Even the process of picking a 
discrete rating based on an internal representation of 
preference involves choice.   

In addition to determining which ratings are observed, 
choices reveal information about peoples’ preferences; 
without knowing someone’s actual movie ratings, we can 

get a sense of their movie tastes from which movies they 
see.  Hofmann (2004) described the two complementary 
sources of information about user preference as implicit data 
(which movies users watch or otherwise show interest in), 
and explicit data (the ratings users assign to movies).  The 
notion of implicit vs. explicit data presents an interesting 
question—how much, exactly, can we learn about an 
individual’s preferences through their choices alone? 
Suppose that all we know about a user is that they have 
watched Full Metal Jacket, The Godfather, and Goodfellas. 
How accurately can we predict ratings that this user will 
give to other movies based solely on this information?  And 
more to the point, how well can we make recommendations 
for them?  Now suppose that we are told that they gave 
ratings of 3, 5 and 4 to these movies respectively (on a scale 
of 1-5).  How much additional knowledge do we now have 
about this user?  How much better can we make predictions 
(and recommendations) for this user?  

In this paper, we attempt to answer these questions by 
developing a model of human ratings that describes the 
process by which individuals choose movies and then 
produce a rating for them. We develop a probabilistic 
framework for understanding individual differences in 
preference, and specify a generative  model that describes 
how users choose movies to watch and choose ratings for 
these movies. After demonstrating that this model can 
produce interpretable dimensions of movie preferences, we 
compare how well this model can make predictions given 
different amounts of both implicit and explicit user data. We 
apply this model to a subset of the Netflix dataset that was 
released as part of a competition for researchers to develop 
the next generation of recommender systems (Bennett and 
Lanning, 2007). 

The Current State of Recommendation Systems 
The majority of recommendation systems currently use 
collaborative-filtering based techniques such as a k-Nearest-
Neighbors algorithm (kNN) (Schafer et. al,  2007).  
Collaborative-filtering approaches typically generate 
recommendations for a user by finding items that have been 
given high ratings by similar users (where “similarity” is 
measured using a metric such as the Pearson correlation 
coefficient between the users observed ratings).  While this 
often produces accurate predictions, the psychological 
underpinnings of this model are unclear;  these approaches 
do not model latent psychological features, nor do they 
account for individual differences in choices.  Furthermore, 
while collaborative filtering produces clusters which can 
illuminate groups of similar items, they do not produce 
dimensions that are readily interpretable; although 
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knowledge that two movies have positive covariance can be 
useful for predictions, it does not tell us why these two 
movies are similar. 

Another common technique for analyzing user-ratings is 
singular-value decomposition (SVD), in which a matrix of 
ratings for a set of users is decomposed into spaces where 
users as well as movies are modeled as points in a high-
dimensional space (Sarwar et al., 2000). This technique 
captures the notion that individuals can be characterized by 
a set of latent features. However, it is difficult to extend the 
SVD representation to allow for variations in the ways users 
and items are represented; because there are no separable 
dimensions, users and items cannot be similar in some 
respects but dissimilar in others.  Furthermore, this 
technique does not capture the processes by which items are 
chosen or ratings are generated.  

 
Modeling User Choice  When considering rating data that 
are volunteered by a user, there are two separate processes 
that have significant impact on which items are rated.  The 
first process involves movie choice—why does a particular 
user choose to watch a particular set of movies but not 
others?  The second process guides rating choice—given 
that a user has watched some movie, what determines 
whether they will actually provide a rating for it, and if they 
do provide a rating, how do they choose a rating that reflects 
their opinion of the movie?   

Marlin et al. (2007) showed that users are more likely to 
rate items for which they have a strong opinion (particularly 
when the opinion is favorable).   These authors go on to 
demonstrate the significance of missing-data models for 
producing unbiased predictions for user-ratings.  This is an 
important result, but for the purposes of this paper we do not 
account for this missing-data mechanism.  Rather, we focus 
on the largely ignored questions of how users choose 
movies to watch, and choose ratings to represent their 
opinions of the movie.   

The Ratings Topic Model 
This paper presents the Ratings Topic Model, a probabilistic 
model of movie ratings (Figure 1).  The model attempts to 
capture two related processes: the process of choosing a 
movie to watch, and the process of choosing a rating for the 
movie. Our model combines features of Latent Dirichlet 
Allocation (LDA) and the ordered-logit model to explain 
both processes.  LDA is an established probabilistic 
framework for extracting latent dimensions from data, 
particularly in the field of corpus analysis (Blei et al., 2003). 
The ordered-logit model is an econometric model for Likert 
rating scales (Train, 2003), and is related to the polytomous 
Rasch model studied in  psychometrics (Andrich, 1978).  
Our model is related to a model proposed by Hofmann 
(2004).  However, Hofmann (2004) focuses on a 
formulation of this model in which user choice processes are 
not explicitly considered and do not influence users’ ratings.  
Furthermore, his model  lacks a generative process by which 
users convert their preferences into discrete  ratings.  

The Ratings Topic Model addresses some of the 
weaknesses inherent to both collaborative filtering and 
SVD-based approaches to modeling ratings.  In addition to 
describing the role that choice processes play in determining 
what data is observed, LDA produces a set of separable 
latent dimensions of human preference.  Without modeling 
separable dimensions, it is difficult to explain the 
underlying reasons why sets of items are rated similarly.  
This is particularly true with something as complex as 
human preferences, since items can be liked or disliked for 
different reasons by different users.  Additionally, items or 
people can be highly similar with respect to one feature (e.g. 
a particular genre), while being dissimilar with respect to a 
different feature.  For example,  which of these would you 
consider more similar to the television series The Sopranos:  
Casino, or Sex and The City?  It is likely that people would 
disagree on this answer, because although  the genre of The 
Sopranos is closer to that of Casino, Sex and the City is 
similar to The Sopranos in that it they are both critically 
acclaimed television series produced by H.B.O.   

Our probabilistic approach employs LDA to model  user 
movie choices and preference, and an ordered-logit model to 
capture the process by which preferences are converted into 
an observed rating.  We assume that users can be modeled 
as mixtures of topics, and that each topic represents a 
probability distribution over movies and preferences.  In this 
process, once a user has selected a topic, some movies are 
more likely than others to be watched, and some movies are 
more likely than others to be enjoyed.  Intuitively, we can 
think of a topic as any feature that might guide what people 
choose to watch or how they rate it (e.g. genre, release date).  
Once a movie has been selected, the user’s rating for the 
movie is a function of the topic used to choose it.  

The Ratings Topic Model is a generative model in that it 
defines a process to generate the distribution of preferences 
and choice probabilities for each topic, and the process by 
which users produce a set of ratings on the basis of these 
topics.  For all topics ݖ ൌ 1…ܶ, we pick a multinomial 
probability distribution over movies φ, which determines the 

 
 
Figure 1: Graphical Model for the Ratings Topic Model 
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probability ݌ሺ݉௜|ݖ௜ ൌ ݆ሻ of choosing each movie, ݉ ൌ
 given a topic, z.  For each topic, movies are ,ܯ…1
independently assigned a preference parameter ψ ௠,௧ which 
determines how much a user will enjoy the movie given the 
topic used to choose it.   

For each user, we first sample a multinomial mixture of 
topics (ߠ) from a Dirichlet prior α.  This mixture determines 
the probability ݌ሺݖ௜|ݑሻ that the user’s choice and rating will 
come from topic z.  Each time we produce a rating for a 
user, we first select a topic according ݌ሺݖ௜|ݑሻ, and then 
select a movie from that topic according to ݌ሺ݉௜|ݖ௜ ൌ ݆ሻ.  
The probability that the user will choose movie i is given 
by: 

ሺ݉௜ሻ݌ ൌ෍ ௜ݖ|ሺ݉௜݌ ൌ ݆ሻܲሺݖ௜ ൌ ݆ሻ
்

௝ୀଵ
 

Once a movie has been selected, a numerical rating for that 
movie is generated according to the probabilities specified 
by the ordered-logit component of the model. 

The ordered-logit model treats ratings as a function of 
utility (U ), which we define as the sum of the preference 
parameter and a bias parameter: ܷ௨,௠ ൌ  ߰௧,௠ ൅ ߜ௨ ൅  The  .ߝ
bias parameter δu is specific to each user and determines the 
general tendency of a user to give favorable ratings.  The 
probability of observing rating ݎ௜ is defined as probability 
that ܷ falls between the rating thresholds ܿ௜and ܿ௜ାଵ.  Noise 
is modeled using a logistic function, such that: 

 

ܲ൫ݎ ൌ ,௨,௠| ߰௧,௠ݎ ,௨ߜ ܿ൯ ൌ ܲ൫ܿ௜ ൏ ܷ௨,௠ ൏ ܿ௜ାଵ൯ 

ൌ 
1

1 ൅ ݁ ట೟,೘ାఋೠష௖೔శభ
െ

1
1 ൅ ݁ ట೟,೘ାఋೠష௖೔

 
 

The rating-thresholds ܿ determine which values of U 
correspond to each of the possible observed ratings (1...5) 
and are set globally – all users are assumed to have to same 
set of rating thresholds (but different biases).  Figure 2 
Illustrates how relative rating probabilities change as a 
function of U. 

Model parameters were learned through Markov-Chain 
Monte Carlo methods, using a hybrid of Gibbs sampling and 
Metropolis-Hastings steps.  Details of inference procedure 
are provided in supplementary material.1 

 
Dataset The Ratings Topic Model was evaluated on a 
subset of the Netflix dataset. This dataset is comprised of 
over 100 million anonymized user ratings on movies and 
television shows collected between 1998 and 2005.  For 
model evaluation we selected a relatively dense subset of 
500 movies and 10,000 users, containing approximately 
950,000 ratings (about 20% of elements were thus filled, in 
contrast to 1% for the full Netflix dataset).  The model was 
run using T = 1, 10, 20, 25 and 50 Topics.   

Topic Examples 
For every topic, a number of informative features can be 
visualized: (1) a ranking based on ݌ሺ݉௜|ݖሻ that shows the 
movies most likely to be chosen given that a user has 

                                                           
1 http://www.socsci.uci.edu/~trubin/ 

selected the topic, (2) a ranking based on ψm,t, showing the 
movies which have the highest and lowest expected ratings 
given the topic, and (3) a ranking based on ݌ሺݎ,݉௜|ݖሻ 
illustrating the movies with the highest joint probability of 
being chosen and being assigned rating of either a 1 or 5. 
Figure 3 illustrates these features using three topics taken 
taken from a single Gibbs sample using T=25.  
 
Probability of Movies Given a Topic  A Topic’s 
probability distributions over movies models the processes 
guiding movie choice.  Since movie choice is an overt 
process, it is not surprising that this feature typically 
discriminates topics in an intuitive manner.  The movies that 
are most likely to be chosen given some topic usually have 
obvious thematic similarities.  Looking the examples given 
in Figure 3 we can see that the movies most likely to be 
chosen under each topic are from similar genres.  For 
example, the movies most likely to be chosen under Topic 4 
are all horror films, with an emphasis on “classic horror” 
films.  The movies most likely to be chosen under Topic 20 
are fairly recent romantic comedies, while  those in Topic 
23 are mostly recent crime dramas.  
 
Expected Movie Ratings Given a Topic  While the choice 
dimension of a topic is highly interpretable, it does not 
always reflect user preferences; just because people are 
likely to watch a movie doesn’t mean that they are likely to 
enjoy it. To interpret the topic along the dimenion of 
preference, we can look at which movies have the highest 
and lowest expected ratings given some topic (this is a 
function of parameter ψm,t).   

For example, consider a person that often chooses movies 
according the distribution in Topic 20 (i.e., he is very likely 
to watch romantic comedies), and suppose that he is 
browsing for this type of movie one night.  The model 
predicts that he is likely to enjoy movies with high values of 
ψm,t=20.  Thus, even though he is more likely to choose 10 
Things I Hate About You than season 5 of Sex and the City, 
the model predicts that he will be more likely to enjoy Sex 
and the City.  On the other hand, a person that is in the 
mood for a crime drama and therefore chooses a movie from 
Topic 23 is expected to strongly dislike Sex and the City.  

  
 
Figure 2: Left panel illustrates the logistic distribution for 
U=0, with rating thresholds depicted by dashed vertical 
lines.  The shaded bars show probabilities of each rating.  
The right panel illustrates how rating probabilities change 
when U shifts from 0 to 1.5.  When U=0 the most likely 
rating is a “3”; when U=1.5, the most likely rating is a “4”. 
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This does not mean that everyone who watches a lot of The 
Sopranos is expected to dislike Sex and the City; it just 
means that if they choose Sex and the City from this topic 
they they are unlikely to enjoy it.  In fact, a user choosing 
from Topic 5 (not shown) has a high probability of giving  
both The Sopranos and Sex and the City high ratings. 

 
Joint Probabilities of Ratings and Choices  While the 
predicted rating for a movie under a topic can be highly 
informative, it often does not tell the whole story.  Since 
these predictions are conditional on users actually choosing 
the movie under the topic, the probability of observing high 
or low ratings from movies that have the highest and lowest 
expected values may be relatively small.  On the other hand, 
if we consider the movies that are most likely to be both 
chosen and given a high or low rating, we are often able to 
find the most liked or disliked movies that are topic-
relevant.  For example, The English Patient has a very low 
expected rating under Topic 4, but if also has a low 
probability of being chosen.  However, looking now at the 
movies that are most likely to be given a  rating of 1 under 
the topic, we see mostly topically relevant movies that tend 
to be disliked, such as The Ring Two and The Grudge.  
Since these movies are often chosen and subsequently 
disliked, we label these movies as those that are “most likely 
to dissapoint” users.  Conversely, movies that have a 
probability of being chosen and then liked we label as “most 
likely to please”.  

Sometimes the fact that there is a very high preference for 
a movie can overcome the fact that it isn’t among the most 
likely movies to be chosen, as with Sex and The City in 
Topic 23; although none of the seasons of this show are 
among the top 15 most likely to be chosen, they compose all 
seven of the top “most likely to please” spots, because they 
have such a high expected rating.  

 In some cases, the connection between the preference and 
the choice dimension is not totally intuitive.  For example, 
both Labyrinth and The Neverending Story are expected to 
be well-liked by users picking from Topic 4, even though 
they don’t have a high probability of being chosen.  These 
sorts of “unlikely favorites” are particularly interesting 
when we consider the domain of recommendation systems.  
While it might generally be a smart approach to recommend 
movies with high probabilities of being chosen and also 
being liked, these recommendations may not always be 
particularly useful since the user is likely to choose them 
anyway.  The most interesting and useful recommendations 
might be those movies that are unlikely choices but that 
nevertheless are likely to be enjoyed.   

Predicting User Ratings and Choices 
A standard approach for model assessment is to see how 
well a model can predict unobserved data.  For this purpose, 
we removed five ratings from each user in our Netflix 
subset. These items were used as a test set, while all 
remaining ratings were used to train the model using T = 1, 
10, 20, 25 and 50 topics.  Several performance measures 

 
 
Figure 3: Topic features from a single Gibbs Sample, T = 25

Joint Probability
p(r, m|t )

.
p Most Likely Choices E(r ) Highest Rated Most Likely To Please

.031 Poltergeist 4.4 Labyrinth The Exorcist

.030 Carrie 4.2 The Exorcist Poltergeist

.029 A Nightmare on Elm Street 4.2 The NeverEnding Story Misery

.027 Halloween 4.2 Aliens Halloween

.025 Misery 4.1 Alien A Nightmare on Elm Street

.024 Scream 4.0 Primal Fear Carrie

.023 Saw 4.0 Superman: The Movie The Lost Boys

.022 The Exorcist 4.0 Misery Scream

.022 The Grudge 4.0 Poltergeist Saw

.021 The Lost Boys 4.0 South Park: Bigger, Long… Alien

.021 Friday the 13th 4.0 Lean on Me Bram Stoker's Dracula

.020 Final Destination 2 4.0 The Life of David Gale Aliens

.020 Stir of Echoes 3.9 Bram Stoker's Dracula Stir of Echoes

.020 Sleepy Hollow 3.9 Thelma & Louise Frailty

.019 Frailty 3.9 Halloween Dawn of the Dead

.017 From Hell 3.9 The Lost Boys Labyrinth

.017 I Know What You Did La… 3.9 Sleepers Fatal Attraction

.016 The Haunting 3.9 Hostage The NeverEnding Story

.016 Rosemary's Baby

.016 Hide and Seek E(r ) Lowest Rated Most Likely To Dissapoint

.016 Bram Stoker's Dracula 2.3 Where the Heart Is Dreamcatcher

.016 Dreamcatcher 2.3 Dr. Dolittle 2 The Ring Two

.015 Stigmata 2.2 Sneakers White Noise

.015 Resident Evil 2.2 Team America: World Pol… The Haunting

.014 The Ring Two 2.1 The English Patient Catwoman

.014 The Gift 2.1 Black Sheep The Grudge

.014 Fatal Attraction 2.0 Catwoman Hide and Seek

.013 Alien 1.9 8 Mile Scary Movie 2
.

p Most Likely Choices E(r ) Highest Rated Most Likely To Please
.019 Ever After: A Cinderella St…4.9 Sex & the City: Season 6-1 Sex & the City: Season 3
.018 10 Things I Hate About You 4.9 Sex & the City: Season 4 Sex & the City: Season 2
.015 Kate & Leopold 4.9 Sex & the City: Season 3 Sex & the City: Season 6-1
.015 Save the Last Dance 4.8 Sex & the City: Season 6-2 Sex & the City: Season 1
.015 Pretty in Pink 4.8 Sex & the City: Season 1 Sex & the City: Season 4
.014 Clueless 4.8 Sex & the City: Season 2 Sex & the City: Season 5
.013 She's All That 4.8 Sex & the City: Season 5 Sex & the City: Season 6-2
.013 The Prince and Me 4.7 Friends: Season 1 Friends: Season 2
.013 Say Anything 4.7 Friends: Season 2 Friends: Season 1
.013 Practical Magic 4.4 Sleeping Beauty Say Anything
.012 America's Sweethearts 4.4 The Parent Trap 10 Things I Hate About You
.012 Bridget Jones: The Edge… 4.4 Singin' in the Rain Clueless
.012 Win a Date with Tad Ham… 4.2 Sense and Sensibility Pretty in Pink
.012 Cruel Intentions 4.2 Life as a House Ever After: A Cinderella St…
.011 What a Girl Wants 4.2 Primal Fear Sliding Doors
.011 Chasing Amy 4.2 The Phantom of the Opera Breakfast at Tiffany's
.011 My Girl 4.2 Beauty and the Beast The Parent Trap
.011 Sex & the City: Season 2 4.1 Say Anything Little Women
.011 Down With Love
.011 40 Days and 40 Nights E(r ) Lowest Rated Most Likely To Dissapoint
.011 Bring It On 2.3 Waiting for Guffman Little Black Book
.011 Sliding Doors 2.3 Saving Silverman Kate & Leopold
.011 Return to Me 2.2 Team America: World Police Alfie
.011 Where the Heart Is 2.2 The Naked Gun Intolerable Cruelty
.011 Sex & the City: Season 3 2.1 Eyes Wide Shut Eyes Wide Shut
.010 Uptown Girls 2.1 Half Baked I Heart Huckabees
.010 Sex & the City: Season 1 2.1 The Cell America's Sweethearts
.010 Hope Floats 1.9 Little Nicky Win a Date with Tad Ham…

.
p Most Likely Choices E(r ) Highest Rated Most Likely To Please

.032 The Sopranos: Season 1 4.8 24: Season 1 The Sopranos: Season 1

.032 The Sopranos: Season 2 4.8 Band of Brothers The Sopranos: Season 2

.031 The Sopranos: Season 3 4.8 The Sopranos: Season 1 The Sopranos: Season 3

.030 The Sopranos: Season 4 4.7 The Sopranos: Season 2 The Sopranos: Season 4

.024 Heat 4.7 The Sopranos: Season 3 Casino

.023 Casino 4.7 The Sopranos: Season 4 Heat

.020 Donnie Brasco 4.5 Casino Band of Brothers

.017 Rounders 4.3 Glory 24: Season 1

.014 Swingers 4.3 Swingers Swingers

.014 The Untouchables 4.3 Hoosiers Rounders

.014 Sleepers 4.3 The Last of the Mohicans Donnie Brasco

.014 The Score 4.3 Friday Glory

.013 Primal Fear 4.3 Heat Lock, Stock and Two Smo…

.012 Lock, Stock and Two Smo… 4.2 Apocalypse Now Redux The Untouchables

.012 The Godfather, Part III 4.2 City of God Primal Fear

.012 True Romance 4.2 Lock, Stock and Two Smo… Apocalypse Now Redux

.012 The Professional 4.1 The Good, the Bad and the …True Romance

.012 The Insider 4.1 Primal Fear Sleepers

.011 Boyz N the Hood

.011 Glory E(r ) Lowest Rated Most Likely To Dissapoint

.011 The Game 2.0 I Heart Huckabees White Chicks

.011 Spy Game 2.0 The Transporter The Transporter

.011 Apocalypse Now Redux 2.0 Beauty and the Beast Sex & the City: Season 3

.010 Band of Brothers 2.0 Sex & the City: Season 4 Sex & the City: Season 6-1

.010 25th Hour 1.9 Sex & the City: Season 6-2 Alexander: Director's Cut

.010 The Hurricane 1.9 Sex & the City: Season 6-1 The Cell

.010 24: Season 1 1.9 Sex & the City: Season 3 Eyes Wide Shut

.010 Raging Bull 1.4 White Chicks Sex & the City: Season 4

Topic 23

Choice Dimension Preference Dimension
p (m |t ) E(r|m, t )

Topic 4

Topic 20
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were computed to evaluate how accurately the model could 
predict test data using different numbers of topics.  
Performance was compared across different values for T, 
and against several baseline predictors. 

To evaluate the accuracy of rating predictions we 
computed both the percent of correct predictions (using a 
single maximum a posteriori prediction for each rating), and 
the perplexity of the posterior predictive distribution.  
Perplexity is a standard measure of performance in the field 
of information-retrieval, and is  computed as ݁ቂି୪୭୥ 

భ
೙
∑௣ሺ௥೔ሻቃ.  

Perfect performance (i.e. assigning all probability to the true 
rating) yields a perplexity of one, while a completely 
uninformative prediction (assigning uniform probability to 
all ratings) yields a maximum perplexity of 5.  The three 
baseline predictions for ratings we used were (1) the full 
marginal distribution of ratings across all users and movies 
in the training set, (2) the marginal distribution of ratings for 
the movie being rated, and (3) the optimal blend of the 
movie’s marginal distribution with the user’s marginal 
distribution of ratings.  As shown in Figure 4, the Ratings 
Topic Model outperformed the baseline predictions when 
the number of topics was greater than one.  The model made 
the most accurate predictions when 25 topics were used.   

In addition to making predictions about ratings, the 
Ratings Topic Model makes predictions about user choices; 
for each user and movie, it assigns a ݌൫݉௜|ݑ௝൯, where 
 ∑ ௝൯୧ݑ|൫݉௜݌ ൌ 1.  Predictions are made after training items 
have been removed, such that the prediction goal is to assign 
as much probability to the five test items as possible.  The 
accuracy of these predictions was measured using 
perplexity.  In this case, an uninformative prediction (which 
assigns uniform probability to all movies) yields a 
perplexity equal to the number of movies remaining after 
training items are removed. For the purposes of comparison, 
perplexity was also computed for the following two baseline 
predictions: (1) assigning uniform probability to all movies 
being chosen, and (2) assigning each movie its marginal 
probability of being chosen across all training data. Results 

are shown in Figure 4. The Ratings Topic Model 
outperformed the baseline predictions when ܶ ൐ 1, and 
achieved best performance with T=25. 

Implicit vs. Explicit Data 
The results described in the previous section demonstrate 
that the Ratings Topic Model makes reasonably accurate 
predictions about both user choices and user ratings.  For 
these purposes, the model uses both implicit and explicit 
preference data (user choices and ratings, respectively).  
However, it is still unclear whether the choice data itself can 
be used to improve rating predictions (and accordingly, 
whether it can improve user recommendations).  In other 
words, is implicit data useful only for the purpose of 
understanding user choices, or does it capture information 
about user preferences, which are only explicitly observed 
through the ratings themselves? 

To address this question, we systematically varied the 
amount of explicit information (i.e., the number of movie 
ratings) and implicit information (i.e., the number of movie 
choices) that was observed for each user and measured how 
this affects prediction accuracy for missing ratings. For this 
simulation, we removed a subset of 1,000 test-users from 
our 10,000 user subset.  Complete data for the 9,000 
remaining users was used to train the model on 25 topics.  
Topic parameters ψt,m and φ were then fixed,  so that it was 
only necessary to fit parameters θ and δ for each test-user.   

For model evaluation, all but 50 ratings for each test-user 
were removed, such that we had a 1,000 user x 500 movie 
matrix, with 50 ratings observed in each row.  This matrix 
was then randomly split into a training set and validation set 
containing 40 and 10 ratings per user respectively.  The 
model was trained under 45 different conditions in which 
the number of observed ratings and choices was 
manipulated. (Note that since it is impossible to observe a 
rating without a choice, the number of choices observed 
here refers to the number of choices that were observed in 
addition to the observed ratings).  For each condition, 
posterior estimates of parameters were averaged over N 
chains to generate predictions for validation data.  Measures 
of performance under each condition were obtained using 
five-fold cross validation, such that all ratings in the test-set 
were used once in the validation set.   

 
Measuring Performance  User bias accounts for a large 
amount of variance in Netflix user ratings.  Since bias can 
only be observed from users’ explicit ratings, prediction 
accuracy does not provide a good measure to determine how 
much we can learn about preferences from implicit vs. 
explicit data.  Furthermore, while it is important to account 
for bias when trying to accurately predict missing ratings, it 
is unimportant when we are interested in understanding user 
preferences or when making recommendations. More 
relevant for these purposes is the ability to predict the 
relative enjoyment of different movies.  Therefore, we 
evaluated model performance by measuring how well it 
could predict which movies were rated higher than others. 

 
Figure 4: Accuracy of model and baseline measures for
rating predictions (left) and choice predictions (right) 
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For each user, all pairs of unequal ratings in the validation 
set provide a single comparison about relative movie 
preference; for each of these comparisons, we computed the 
posterior predicted probability that user u will give movie j 
a higher rating than movie k: 
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We computed two measures of the accuracy of this 
prediction across all paired-comparisons for all users.  First, 
we computed the perplexity of the estimate (where the 
baseline value of perplexity for this prediction is 2, which is 
obtained by assigning a .5 probability that movie j will be 
rated higher than movie k).  In addition, we generated a 
binary prediction using the maximum a posteriori estimate 
of which rating would be higher, and computed the percent 
of these predictions that were correct.  Baseline for this 
binary measure is 50%, since it is the expected result if we 
were to make random guesses.  The condition with zero 
ratings and choices presented in the table below provides a 
second baseline for these measures; without any ratings or 
choices, predictions for all users are generated using the 
prior values for parameters φ and δ.  

Figure 5 shows the perplexity and percent correct for all 
paired-comparisons, averaged across the five validation sets 
using five-fold cross validation.  Looking within each row 
from right to left, we can see that given a fixed number of 
training ratings, the model is able to improve its predictions 
using additional knowledge about user choices.  For 
example, for a user with 5 ratings, knowledge about 20 
additional choices improves performance about as much as 
10 additional ratings.  Even without any ratings, knowledge 
about choice can significantly improve performance; the 

model achieves similar performance when trained with 40 
choices as it does when trained with 15 ratings.  

Conclusion 
The Ratings Topic Model provides a general framework 

for understanding the processes that underlie individual’s 
rating behaviors in recommendation systems.  The model 
can make accurate predictions about both unobserved 
ratings and choices, while generating interpretable 
dimensions that guide these processes.  Furthermore, we 
have shown that the model can use implicit choice data in to 
improve predictions about a user’s explicit ratings, even in 
the complete absence of ratings data.  In addition to this 
being of psychological interest, it is a useful feature for real-
world recommendation systems since such systems have 
access to a large amount of implicit preference data.    
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Figure 5: Prediction perplexity and percent correct for
paired-comparisons, when model is trained with different
amounts of choice and ratings data 
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Abstract

Cognitive architectures constitute a generally preferable ap-
proach to create computational accounts of human cognition.
Yet, cognitive architectures are also hard to assess. Following
up on and extending the work of Cooper (2007), we further
assess the popular cognitive architecture ACT-R in this paper.
It turns out that ACT-R fares worse than one may expect both
regarding the scope of empirical effects it has been shown to
account for and regarding its explanatory power.

Keywords: cognitive architectures; Lakatos; Turing ma-
chines; counter machines; ACT-R.

Cognitive Architectures and Their Assessment
One approach to building computational models is to develop
the model as part of a cognitive architecture. Cognitive archi-
tectures can be characterized as implemented theories of the
fixed mechanisms and structures that underlie human cogni-
tion. As such cognitive architectures strive to offer a frame-
work in which all of human cognition can be modeled. Build-
ing on the common mechanisms provided by the architecture,
computational models for particular domains or tasks can be
created by adding task and domain specific information to
the architecture (cf. Lehman, Laird, & Rosenbloom, 1998).
Thus, a cognitive model developed in the scope of a cognitive
architecture can be viewed as consisting both of the architec-
tural mechanisms and the task / domain specific information
(i.e., content) added to the architecture.

Employing cognitive architectures for modeling human
cognition has the advantage that otherwise isolated and frag-
mentary accounts of human cognition can be integrated to ul-
timately (hopefully) yield an account of human cognition as a
whole (Newell, 1990). In this sense, building models in cog-
nitive architectures is preferable to building isolated models.
Obviously, this advantage of cognitive architecture will only
hold, if the employed architecture is a good approximation of
the general mechanisms and structures that underlie human
cognition. To not jeopardize the aim of arriving at a veridical
account of all human cognition, the quality of the cognitive
architecture needs to be assessed and possibly improved by
changing the architecture.

As Cooper (2007) points out, assessing cognitive architec-
tures is less straightforward than assessing isolated models.
Whereas isolated models lend themselves naturally to Pop-
perian falsification, cognitive architectures do not. Against
this background, already Newell (1990) argued that the de-
velopment of cognitive architectures should be guided not by
Popperian falsification but by criteria as arising from the the-
ory put forth by Lakatos (1970). Following this suggestion
and further supporting it, Cooper (2007) employs Lakatosian

criteria to assess the two architectures Soar (Newell, 1990)
and ACT-R (Anderson, 2007).

In this paper we bring to the foreground further criteria for
assessing the merit of cognitive architectures. Moreover, we
combine these additional criteria with the Lakatosian crite-
ria described in Cooper (2007) to continue the assessment of
the cognitive architecture ACT-R. To do this, we first briefly
describe the notions and criteria relevant for the assessment.
Subsequently, we assess ACT-R regarding these criteria. This
comprises (a) describing those aspects of ACT-R which are
most relevant for the presented assessment and (b) conduct-
ing formal and literature analyses to assess ACT-R’s standing
with respect to the considered criteria. Finally, we close with
some implications the assessment’s results have for (the fu-
ture development of) ACT-R.

Assessment Criteria
Lakatosian Criteria
According to Lakatos (1970) scientific development occurs in
the scope of so called research programs. Roughly speaking,
each such research program comprises both a hard core and
a protective belt. The hard core consists of all those assump-
tions which are central to the program, that is, giving them
up would mean to give up the research program. In contrast,
the protective belt is made up of assumptions and hypotheses
of a more peripheral nature, that is, assumptions which may
help to further specify aspects of the research program, but to
which the research program is not irrevocably committed.

Research programs generally develop by (empirically) test-
ing predictions derived from the hard core and the protective
belt. If the predictions are confirmed, this supports the re-
search program. If the predictions are refuted, this may lead
to a change of the protective belt (i.e., some peripheral as-
sumptions) of the research program. Depending on the con-
sequences of the change of the protective belt, Lakatos (1970)
calls a research program theoretically progressive or not. A
research program is theoretically progressive if and only if
the change of the assumptions increases the empirical con-
tent of the research program, that is, allows the research pro-
gram to account for more empirical phenomena than before
the change. Importantly, research programs which are not
theoretically progressive are not scientific but only pseudo-
scientific. Lakatos (1970) further categorizes research pro-
grams as to whether they are empirically progressive or not.
If and only if a research program’s predictions are empirically
confirmed, it is empirically progressive.

Sticking to Lakatos’ terminology, cognitive architectures
are research programs. Accordingly, one can use the notions
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of theoretical and empirical progressiveness to assess cogni-
tive architectures. Consequently, following up on and adding
to the work of Cooper (2007), we more closely consider ACT-
R’s theoretical progressiveness in this contribution.

To Can and Cannot

The above outlined Lakatosian criteria stress the ability of
a cognitive architecture to account for empirical findings1.
What a cognitive architecture can account for is, however,
only one part of an architecture’s quality. As Roberts and
Pashler (2000) remark, it is equally important to decide on
the quality of a given architecture to know what the architec-
ture cannot account for. Neglecting the “cannot” aspect is a
serious problem, because a cognitive architecture is intended
to provide the basis to explain human behavior and not arbi-
trary behavior.

To illustrate the problem, consider a certain architecture
S which allows to model a certain empirically found effect f .
Let us assume that f is a reaction time difference between two
experimental conditions A and B such that reaction times are
longer in A. Assume further that f̄ is the hypothetical (i.e., not
observed) effect that reaction times are longer in condition B.
An interesting question now is whether S also allows to model
f̄ . If S allows modeling f̄ , S accounts for both the empirically
found effect and its opposite.

Given such a situation, the explanatory value of S is called
into question. S is a cognitive architecture and should, thus,
realize the mechanisms and structure underlying human cog-
nition. S’s ability to account for both f and f̄ undermines its
assumed cognitive plausibility, because humans do only be-
have according to f but not according to f̄ . If the structure
and mechanisms of the human mind constrains human cogni-
tion and behavior to f , a cognitive architecture which allows
modeling f̄ is erring with respect to at least some part of the
structure and mechanisms underlying human cognition.

Thus, to fully judge the quality of a cognitive architecture,
it is equally important to know what the architecture cannot
account for as it is to know what the architecture can account
for. Ideally, the architectural mechanisms and structure con-
stitute a framework which constrains the content that can be
added to it such that the set of all models possible in the archi-
tecture accounts for and only for all phenomena empirically
observable in human cognition and behavior (cf. also Taat-
gen, 2003).

In line with its importance and in addition to theoretical
progressiveness, the question what can and cannot be mod-
eled in ACT-R is one major point of inquiry in the subsequent
assessment of ACT-R.

1Strictly speaking, cognitive architectures per se do not account
directly for any empirical findings. Only the models which can
be build in an architecture can account for empirical phenomena.
However, to ease the subsequent exposition we will talk of architec-
tures that account for findings instead of using the more cumbersome
wording of architectures that allow building models which account
for empirical findings.

ACT-R
ACT-R (see Anderson, 2007; Anderson et al., 2004) consists
of several components which are called modules. One of
these modules, called the production module, stores and ex-
ecutes a set of productions. Each production specifies under
which conditions it is applicable. If the current state of the
ACT-R system satisfies a production’s conditions, the pro-
duction can be executed which will lead to a change of the
state of the system. Additional modules of ACT-R include
the declarative module (storing declarative knowledge in the
form of proposition-like pieces of knowledge called chunks),
the goal module (managing the current goal), and several per-
ceptual motor modules (realizing ACT-R’s interaction with
the environment). Each of these modules is interfaced to
the overall system by a buffer. The working of the procedu-
ral module draws heavily on these buffers. Production con-
ditions and effects are specified nearly exclusively in terms
of buffer content. The productions conditions are checked
against the buffers’ content and production application will
normally change the content of one or more buffers.

Regarding the Lakatosian criteria of architecture assess-
ment mentioned above it is interesting to what extent one can
distinguish the hard core and the protective belt realized by
ACT-R. As Cooper (2007) remarks, although the developers
of ACT-R have never explicitly used Lakatosian terminology
to draw such a distinction, such a distinction suggests itself
from the descriptions of the notions underlying ACT-R’s de-
velopment. For example, Anderson (1976, pp. 114) proposes
several “preconceived notions” which constitute the skele-
ton of ACT-R. These preconceived notions, such as to distin-
guish between and to employ both procedural and declarative
knowledge, constitute the hard core of ACT-R and have re-
mained unchanged since their proposal in 1976. All aspects
of ACT-R other than the preconceived notions can be viewed
as constituting the protective belt. For instance, the formulas
and mechanisms used to select one of several productions or
one of several pieces of declarative knowledge are part of the
peripheral assumptions.

This protective belt of ACT-R is largely parametrizable.
Using the parameters the architecture provides one can de-
termine both which of the peripheral assumptions to employ
(e.g., whether to use certain formulas to determine which pro-
duction to select) and how the selected peripheral assump-
tions behave. Since ACT-R has been first proposed by An-
derson (1976), its protective belt has changed considerably.
In its current version (6.0 [r723], see Bothell, 2009) which
we consider here, ACT-R has about 50 parameters. Only for
few of them general recommendations of how to set them ex-
ist (Anderson et al., 2004).

The Cannot in ACT-R
As a cognitive architecture, ACT-R constitutes a computa-
tional framework for building cognitive models. Due to this
computational nature one manifest starting point to investi-
gate what ACT-R cannot do is to ask which subset of the set
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of all computable functions cannot be realized in ACT-R. As
it turns out, there are no functions which can be computed, in
principle, but not in ACT-R. In the following, we prove this
constructively by presenting two particular ACT-R models2.

Universal Turing Machine A Turing machine is a com-
puting machine which was introduced by Turing (1936). A
Turing machine consists of an infinite tape partitioned into
cells and a control unit moving over the tape. Each cell con-
tains a single symbol and each machine can deal only with a
finite, predefined set of symbols. The control unit can read
and write on the tape one cell at a time and can move from
one cell to one of the two neighboring cell. At every point in
time the Turing machine is in one of a finite number of states.
Depending on the machine’s current state and what is read
from the cell currently in focus, the machine will write to the
cell in focus and / or move to an adjacent cell.

Although quite simple in their setup, Turing machines have
been found to be able to compute a wide range of functions
(see Minsky, 1967, for an in-depth treatment of Turing ma-
chines and several example machines). More precisely, it is
generally assumed—though unproven—that the set of func-
tions which can be computed by Turing machines is identical
to the set of all computable functions. What is more, certain
Turing machines, called universal Turing machines, are able
to emulate the working of any other Turing machine, that is,
universal Turing machines can compute anything that Turing
machines in general can compute. Put differently, universal
Turing machines are computing machines which can compute
all computable functions. In the remainder of this section we
describe an ACT-R model which emulates a universal Turing
machine. The chosen machine is a machine with 4 states and
6 symbols which has been proposed by Rogozhin (1996).

To emulate the chosen machine, the tape of the machine is
realized as the content of the declarative module. Each cell
on the tape is represented by a chunk in declarative memory.
Such a chunk c essentially stores (a) the symbol contained in
the cell c represents, (b) the chunk which represents the cell
which would be to the right of the cell represented by c on the
tape, and (c) the chunk which represents the cell which would
be to the left of the cell represented by c on the tape.

The goal buffer contains the chunk representing the cell
that is currently in focus. In addition to the cell information
the goal buffer also stores the current state of the machine.

The reading and writing of information onto the tape as
well as the movement of the control unit is realized by pro-
ductions. Basically, four types of productions are employed
to realize the operations of the control unit:

• update: Depending on the current state of the machine and
the symbol in the current cell (i.e., the corresponding sym-
bol stored in the goal buffer), this type of production writes
a symbol into the current cell (i.e., updates the correspond-
ing slot in the goal buffer).

2Model code is available from http://www.cosy.informatik.uni-
bremen.de/staff/schultheis/ICCM09-models/

• prepare transition: As described above, the combination of
a state and symbol also affords a move of the control unit.
This type of production prepares such a move. By draw-
ing on the information about the neighboring cells given in
the currently focused-on cell, the production requests the
retrieval of the appropriate chunk (i.e., the chunk repre-
senting the cell to move to).

• get next: The “get next” type of production is applicable
whenever a chunk representing a cell on the tape is avail-
able in the retrieval buffer. The main purpose of this pro-
duction type is to modify the cell representation in the re-
trieval buffer such that it can serve as the representation of
the current cell in the goal buffer. This preparation com-
prises basically two things. First, the machine’s state as re-
sulting from the previously encountered state-symbol com-
bination is stored in the appropriate slot of the chunk in the
retrieval buffer. Second, the chunk currently in the goal
buffer is stored as either the right or left neighbor of the
cell represented by the chunk in the retrieval buffer. If the
control unit has “moved” to the left, the chunk in the goal
buffer is stored as the right neighbor and vice versa.

• do transition: This type of production replaces the chunk
currently in the goal buffer with the chunk currently in the
retrieval buffer.

These four types of productions when being executed in
the sequence in which they were described constitute one el-
ementary operation of a Turing machine: Read a symbol and
then, based on the combination of current state and the read
symbol, write a symbol, update the state and move to the next
cell. Since the movement direction, the state to change to,
and the symbol to be written depend on the previous state and
the read symbol, for each possible state-symbol combination
these four productions have to be slightly different. Conse-
quently, to emulate the universal Turing machine in question,
our model employs a variation of this 4-tupel of productions
for each of the 24 possible state-symbol combinations.

Representing the tape by declarative memory and the
working of the control unit by productions as described, al-
lows to emulate the universal Turing machine by running the
model in ACT-R. The only thing one has to do to emulate the
machine computing a certain function is to provide the ini-
tial tape configuration as chunks in declarative memory and
to set the initial focus to the appropriate cell of the initial tape
configuration. We have successfully emulated several Turing
machines using this approach. For these model runs we en-
abled sub-symbolic processing in ACT-R and set the latency
factor parameter to 0.1. All other parameters of ACT-R were
left at their default values as described in Bothell (2009).

Consequently, as the presented model runs completely in
ACT-R, ACT-R allows to emulate a universal Turing ma-
chine. This shows that there is no computable function which
cannot be computed in ACT-R. Moreover, the model we de-
scribe next demonstrates that this is not the only way to real-
ize universal computation in ACT-R.
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Universal Counter Machine A second class of comput-
ing machines is called counter machines. A counter machine
comprises a finite number of registers and can interpret a fi-
nite set of instructions. The registers store integer values and
can be tested and manipulated by the instructions which are
part of the instruction set of the machine. To compute some
function f , a counter machine has to be equipped with an
initial set of values in its registers and a program, that is, a
sequence of instructions from the machine’s instruction set.
The machine will execute the program and once the end of
the program is reached, the result of the computation will be
available in one (or more) of the registers.

Minsky (1967, pp. 255) has proven that a counter machine
employing only three instructions and two registers can com-
pute any computable function. The required instructions are
INC(ri) (add 1 to register ri and go to the next instruction),
JZDEC(ri, n) (if ri = 0 go to instruction n, otherwise subtract
1 from ri and go to the next instruction), and GO(n) (go to
instruction n). Since this counter machine is universal, for
any computable function f there exists a program (i.e., a se-
quence of instructions) and an initial value for both registers
such that the counter machine computes f .

As in the case of Turing machines, it is possible to emu-
late computation using counter machines by devising appro-
priate ACT-R models. To show this, it suffices to explain
how an ACT-R model can realize (a) the two registers, (b)
the three instructions, and (c) the sequence of instructions. In
our model, the two registers are realized as slots in a chunk,
where this chunk remains in the goal buffer for the complete
model run. The instructions are realized as productions. To
control the sequence of instructions a third slot in the chunk
in the goal buffer stores a label. This label is tested in the
condition of the productions such that only the production
corresponding to the current label is applicable. Against this
background the three types of instructions outlined above can
then be transcribed by productions as follows:

• INC(ri): This instruction is realized by reading the current
value of ri from the goal chunk, adding 1 to that value by
using the !bind! statement of ACT-R, and storing the re-
sulting value again in the goal chunk.

• GO(n): To effect such a GO statement, a production needs
only to change the label in the goal chunk such that it cor-
responds to instruction n.

• JZDEC(ri, n): Two productions are necessary to transcribe
this instruction. Both productions test the content of ri us-
ing the !eval! statement of ACT-R. The first production
is only applicable if ri = 0 holds and essentially works as
the production mimicking the GO instruction. The second
production is only applicable if ri > 0 holds and subtracts
1 from ri analogous to the workings of the INC instruction.

Importantly, these methods for transcribing a program of
the universal counter machine as an ACT-R model, are not
program specific. Put differently, any program formulated for

the universal counter machine can be transcribed as an ACT-
R model. Consequently, the universal counter machine can be
completely emulated in ACT-R. To illustrate the emulation of
the counter machine, we implemented a model which com-
putes the sum of two numbers. The parameter settings for
this model are identical to those used in the Turing machine
model. By appropriately initializing the first register, running
the model computes the sum of the two numbers and encodes
the result as a number in the first register.

The possibility to emulate a universal counter machine in
ACT-R provides additional evidence that there is no com-
putable function that cannot be realized in ACT-R. Although
this second evidence may seem unessential, as explained in
the next section, the fact that universal computation can be
realized in ACT-R in more than one way is of relevance for
assessing the architecture.

Summary and Discussion Both models presented above
paint a clear picture of which functions cannot be realized
in ACT-R: There is simply no computable function that can-
not be computed using ACT-R. That is, ACT-R does not seem
to fulfill the requirement to constrain the models that can be
built in it too well. Consequently, at least regarding the “can-
not” criterion ACT-R fares poorly.

One may be inclined to object to this conclusion or the way
it was brought about. Therefore, we list and discuss several
possible objections in the remainder of this section.

First, one may argue that the fact that ACT-R is Turing-
complete is neither new nor problematic. Regarding original-
ity, Anderson (1976, pp. 140) already presented the sketch of
a proof of ACT-R’s Turing completeness. However, the proof
presented in Anderson (1976) refers to the initial version of
the cognitive architecture. Over the past 30 years the overall
setup of the architecture has changed considerably. In par-
ticular, certain changes (see e.g., Anderson & Lebiere, 1998,
p. 440) were explicitly implemented to reduce the compu-
tational power of ACT-R. Thus, the Turing completeness of
ACT-R in its current version could not be derived from the
1976 proof, but had to be newly established.

Yet, Turing completeness of ACT-R (or any cognitive ar-
chitecture) may not be considered a problem. In propos-
ing the physical symbol system hypothesis Newell (1980) ar-
gued that any system able to realize human-level intelligence
necessarily needs to be Turing-complete. Against this back-
ground, it may not be immediately obvious why the above de-
scribed models constitute problems for ACT-R. The problem
is that it is unclear and dubitable that the presented models
realize Turing completeness appropriately. As the two mod-
els indicate, Turing completeness can be realized in several
ways. When using universal computing machines to achieve
results in computation theory it may not be crucial which
of all possible realizations of universal computation one em-
ploys. For a cognitive architecture such as ACT-R, however,
the way universal computation is achieved is essential. Striv-
ing to constitute a theory of human cognition as a whole,
ACT-R must realize Turing completeness in the same way
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as Turing completeness is achieved in the human cognitive
system. Among other things, this requires that the timing
behavior of the architecture and of human cognition match
closely. Thus, computing any function f in ACT-R should
take about the same time as human cognition requires to com-
pute f . Put differently, to live up to its aim of being a sat-
isfactory cognitive architecture, ACT-R should not allow to
compute f considerably faster or slower than the human cog-
nitive system computes f . This is not the case, since, as the
two models show, ACT-R can be made to compute any f in
a wide range of times. Different universal machines diverge
considerably with respect to the time they need to compute
any f (e.g., Woods & Neary, 2009). The two models prove
that there is a wide range of universal machines which can
be realized in ACT-R. Not only does ACT-R allow imple-
menting different types of universal computing devices (i.e.,
Turing machines and counter machines), but also for each of
these types numerous instances can be realized. For example,
one could implement a universal Turing machine with dif-
ferent states, symbols, and transition rules (Rogozhin, 1996).
Likewise, universal counter machines with different instruc-
tion sets and / or more registers (Minsky, 1967) can be built
in ACT-R analogously to the second model described above.
Thus, ACT-R allows to realize any function with a wide range
of times. In the worst case, it may even be possible that any
function can be realized in arbitrary time in ACT-R. Regard-
less whether this is the case, it seems clear that their is too few
which ACT-R cannot do, to consider ACT-R as satisfactorily
constraining what can be implemented in it.

A second objection that may be raised concerns the com-
pliancy of the models, that is, the extent to which the models
are formulated in keeping with the spirit of the architecture
(Young, 2003). Perhaps one may want to argue that some
of the model’s components are violating one or more theo-
retical stances implicitly being part of the architecture. One
difficulty with such an argument is that there is no clear and
explicit definition of what type of model components do and
which type of model components do not keep with the spirit
of ACT-R. In addition, for constituting a satisfactory account
of the fixed mechanisms and structures underlying human
cognition, it should be the architecture itself and not some
code of how to use the architecture that constrains what mod-
els one can build in the architecture. Thus, an objection in
terms of compliancy fails to address the core issue brought
up by the above presented models and considerations.

In summary, the presented analyses indicates that what
cannot be done in ACT-R is considerably less than desirable.
Multiple realizability of universal computation on several dif-
ferent time scales leaves too much room for implementing be-
havior which ACT-R should not allow to be implemented. As
a result, ACT-R’s ability to meet the “cannot” criterion is, to
say the least, debatable.

The Can in ACT-R
After having considered what ACT-R cannot do, we now turn
to the question what ACT-R can do. A first answer to this

question directly derives from the models presented above:
ACT-R allows to compute every computable function. How-
ever, this is, as also mentioned above, only a partially satis-
factory answer. To fully judge ACT-R’s “can” ability, it is
important to more closely consider whether ACT-R allows to
compute these functions as the human cognitive system com-
putes them (e.g., regarding timing). Essentially this amounts
to examine for which tasks and domains of cognition ACT-R
models can be built that closely mimic human behavior and
cognition. In Lakatosian terms, it is necessary to examine the
empirical content of ACT-R.

Judging from the plethora of publications on ACT-R (mod-
els) listed on the ACT-R web site one would expect that
ACT-R does well with respect to this empirical content cri-
terion. To verify this impression of ACT-R’s empirical con-
tent, we reviewed all papers presenting ACT-R models which
were listed on the ACT-R site as being published either 2007
or 2008. These two years were chosen because they presum-
ably represent the current state of the art in ACT-R modeling.

Overall 35 papers presenting models accounting for vari-
ous aspects of human cognition are available. This is an im-
pressive number which seems to indicate the large empirical
content encompassed by ACT-R. On closer inspection, how-
ever, it turns out that the empirical content of the current ACT-
R version is (a) unclear and (b) probably less than suggested
by the number of presented models. The reason for this is
the way the ACT-R community proceeds with the change of
parts of the protective belt of ACT-R—both across and within
different ACT-R versions.

Each change in version is accompanied by a change of at
least some of the peripheral assumptions in ACT-R. For ex-
ample, from ACT-R 4 to ACT-R 5 the goal stack was replaced
by the goal buffer and from ACT-R 5 to ACT-R 6 the for-
mula for computing production utility was considerably mod-
ified. Although there is, of course, nothing wrong with such
changes per se, for each of these changes it is mostly unclear
whether they are theoretically progressive, that is, whether
they increase the empirical content of ACT-R. To show that
the current ACT-R version’s content is increased compared
to its predecessors would require to prove (by reimplemen-
tation in the current version) that empirical phenomena ac-
counted for by older ACT-R versions can still be accounted
for by the current version. Such reimplementation is rarely
done. On the contrary, even 2008 published modeling work
is partly conducted in ACT-R 4 (e.g., Altmann & Gray, 2008)
and ACT-R 5 (e.g., Gunzelmann & Gluck, 2008).

Furthermore, even for single ACT-R versions, the empiri-
cal content is unclear. There are mainly two reasons for that:
First, by appropriately setting particular parameters several
peripheral assumptions can be and are switched on or off at
will. For instance, some models employ base-level learning
or production learning while others do employ neither. Sec-
ond, it is not unusual for ACT-R modeling work to modify
or extend the protective belt. Of the 35 modeling paper re-
viewed, 17 considerably changed the protective belt, for ex-
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ample, by changing existing modules (e.g., Maanen & Rijn,
2007) or adding new modules (e.g., Juvina & Taatgen, 2007).

This frequent change of the protective belt across and
within ACT-R versions renders it difficult to judge the empir-
ical content of the current version of ACT-R. Whether all the
modeling work employing differing protective belts is recon-
cilable is an open question. Due to this problem, it is not clear
whether ACT-R is theoretically progressive. But even if it is,
ACT-R’s empirical content remains to be determined.

Conclusion
In this paper we picked up on and extended the methodology
proposed by Cooper (2007) to assess the merit of cognitive ar-
chitectures. We applied the methodology to one of the most
commonly employed cognitive architectures, ACT-R. In this
assessment, ACT-R fares worse than one may have expected.
For one, ACT-R’s ability to account for human cognition is
less evident than suggested by the available host of model-
ing papers employing ACT-R. It remains to be investigated
to what extent different modeling work can be integrated into
ACT-R without varying its peripheral assumptions. Even if
ACT-R’s ability to account for empirical data turns out to be
substantial, the explanatory value of this is called into ques-
tion by ACT-R’s computational power. Since ACT-R in its
current version must be assumed to allow computing func-
tions in a lot of ways different from human cognition, it is
unclear to what extent ACT-R mirrors and, thus, explains the
mechanisms and structure underlying human cognition.

Overall, ACT-R has served and still serves an important
function in providing a platform for modeling human cogni-
tion. Interesting accounts of various aspects of human cog-
nition have been formalized in ACT-R. Yet, to substantiate
ACT-R’s status as a cognitive architecture constituting a uni-
fied theory of cognition, it is necessary (a) to more closely de-
termine its actual empirical content and (b) to more strongly
constrain what ACT-R allows to be implemented.
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Abstract 

This paper proposes a way in which cognitive models can be 
exploited in practical applications in the context of Ambient 
Intelligence. A computational model is introduced in which a 
cognitive model that addresses some aspects of human 
functioning is taken as a point of departure. From this 
cognitive model relationships between cognitive states and 
behavioural aspects affected by these states are determined. 
Moreover, representation relations for cognitive states are 
derived, relating them to external events such as stimuli that 
can be monitored. Furthermore, by automatic verification of 
the representation relations on monitoring information the 
occurrence of cognitive states affecting the human behaviour 
is determined. In this way the computational model is able to 
analyse causes of behaviour. 

Introduction 
One of the interesting areas in which cognitive models can 
be applied in a practically useful manner is the area of 
Ambient Intelligence, addressing technology to contribute 
to personal care for safety, health and wellbeing; e.g., 
(Aarts, Harwig, and Schuurmans, 2001). Such applications 
make use of sensor devices to acquire sensor information 
about humans and their functioning, and of intelligent 
devices exploiting knowledge for analysis of such 
information. Based on this, appropriate actions can be 
undertaken that improve the human’s safety, health, and 
behaviour. Commonly, decisions about such actions are 
made by these intelligent devices only based on observed 
behavioural features of the human and her context (cf. 
Brdiczka, Langet, Maisonnasse, and Crowley, 2009). A risk 
of such an approach is that the human is guided only at the 
level of her behaviour and not at the level of the underlying 
cognitive states causing the behaviour. Such a situation 
might lead to suggesting the human to suppress behaviour 
that is entailed by her internal cognitive states, without 
taking into account these cognitive states (and their causes) 
themselves.  

As an alternative route, the approach put forward in this 
paper incorporates a cognitive analysis of the internal 
cognitive states underlying certain behavioural aspects. To 
this end, a computational model is described, in which a 
given cognitive model of the human’s functioning is 
exploited. A cognitive model is formalised using the 
Temporal Trace Language (TTL) (Bosse, Jonker, Meij, 
Sharpanskykh, and Treur, 2009). In contrast to many 
existing cognitive modelling approaches based on some 

form of production rule systems, TTL allows explicit 
representation of time and complex temporal relations. In 
particular, using TTL one can specify references to multiple 
time points, temporal intervals and histories of states, such 
as, for example, is needed when modelling delayed response 
behaviour from an external perspective.  

By performing cognitive analysis the computational 
model is able to determine automatically which cognitive 
states relate to considered behavioural (or performance) 
aspects of the human, which external events (e.g., stimuli) 
are required to be monitored to identify these cognitive 
states (monitoring foci), and how to derive conclusions 
about the occurrence of cognitive states from such acquired 
monitoring information. More specifically, monitoring foci 
are determined by deriving representation relations for the 
human’s cognitive states that play a role in the cognitive 
model considered. Within Philosophy of Mind a 
representation relation relates the occurrence of an internal 
cognitive state property of a human at some time point to 
the occurrence of other (e.g., external) state properties at the 
same or at different time points (Kim, 1996). For example, 
the desire to go outside may be related to an earlier good 
weather observation. As temporal relations play an 
important role here, in the computational model these 
representation relations are expressed as temporal predicate 
logical specifications. In general, other temporal languages 
may be used as well. From these temporal expressions 
externally observable events are derived that are to be 
monitored. From the monitoring information on these events 
the computational model verifies the representation 
expressions, and thus concludes whether or not the human is 
in such a state. Furthermore, in case an internal state has 
been identified that may affect the behaviour or 
performance of the human in a certain way, appropriate 
actions may be proposed. 

The paper is organised as follows. First, the modelling 
approach is introduced. Then, an example used throughout 
the paper to illustrate the approach is described. After that 
an overview of the computational model is provided. More 
details on this model are described in the following sections: 
First, a procedure for identifying cognitive states relevant 
for considered behavioural aspects is described. Then, a 
procedure for generating representation relations for the 
relevant cognitive states is described. After that the process 
of monitoring is considered. Finally, the paper is concluded 
with a discussion and summary. 
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Modelling approach 
To model the dynamics of cognitive processes with an 
indication of time, a suitable temporal language is required. 
In the current paper, to specify temporal relations the 
Temporal Trace Language (TTL) is used. This reified 
temporal predicate logical language supports formal 
specification and analysis of dynamic properties, covering 
both qualitative and quantitative aspects. Dynamics are 
represented in TTL as an evolution of states over time. A 
state is characterized by a set of state properties expressed 
over (state) ontology Ont that hold. In TTL state properties 
are used as terms (denoting objects). To this end the state 
language is imported in TTL. Sort STATPROP contains 
names for all state formulae. The set of function symbols of 
TTL includes ∧, ∨, →, ↔: STATPROP x STATPROP → 
STATPROP; not: STATPROP → STATPROP, and ∀∀∀∀, ∃∃∃∃: SVARS x 
STATPROP → STATPROP, of which the counterparts in the 
state language are Boolean propositional connectives and 
quantifiers. To represent dynamics of a system sort TIME (a 
set of time points) and the ordering relation > : TIME x TIME 
are introduced in TTL. To indicate that some state property 
holds at some time point the relation at: STATPROP x TIME is 
introduced. The terms of TTL are constructed by induction 
in a standard way from variables, constants and function 
symbols typed with all before-mentioned sorts. The 
language TTL has the semantics of many-sorted predicate 
logic. A special software environment has been developed 
for TTL, featuring a Property Editor for building TTL 
properties and a Checking Tool that enables automated 
formal verification of such properties against a set of traces.  

The modelling approach presented in this paper adopts a 
rather general specification format for cognitive models that 
comprises past-present relationships between cognitive 
states and between cognitive states and sensor and effector 
states, formalised by temporal statements expressible within 
TTL. In this format, for a cognitive state a temporal pattern 
of past states can be specified, which causes the generation 
of this state; see also (Jonker and Treur, 2003). A past-
present statement (abbreviated as a pp-statement) is a 
statement ϕ of the form B ⇔ H, where the formula H, called 
the head and denoted by head(ϕ), is a statement of the form 
at(p, t) for some time point t and state property p, and B, 
called the body and denoted by body(ϕ), is a past statement 
for t. A past statement for a time point t over state ontology 
Ont is a temporal statement in TTL, such that each time 
variable s different from t is restricted to the time interval 
before t: for every time quantifier for a time variable s a 
restriction of the form t > s is required within the statement. 
Sometimes B is called the definition of H.  

Many types of cognitive models can be expressed in such 
a past-present format, such as causal models, dynamical 
system and connectionist models, rule-based models, and 
models in which memory of past events is used, such as 
case-based models. In the next section an example of a 
cognitive model specified in past-present format is given. 

Case Study 
To illustrate the proposed model a simplified example to 
support an elderly person in food and medicine intake is 
used. The following setting is considered. In normal 
circumstances the interval between two subsequent food 
intakes by the human during the day is known to be between 
2 and 5 hours. When the human is hungry, she goes to the 
refrigerator and gets and consumes the food she prefers. 
Sometimes the human feels internal discomfort, which can 
be soothed by taking medicine X. The box with the 
medicine lies in a cupboard. There is no food consumption 
for 2 hours after taking medicine. To maintain a satisfactory 
health condition of the human, intelligent support is 
employed, which functionality is described by the 
computational model presented throughout the paper. 
 

 
 

Figure 1. Cognitive model for food and medicine intake 
 

The behaviour of the human for this example is 
considered as goal-directed and is modelled using the BDI 
(Belief-Desire-Intention) architecture (Rao and Georgeff, 
1991). The graphical representation of the cognitive model 
that produces the human behaviour is given in Figure 1. In 
this model the beliefs are based on the observations. For 
example based on the observation that food is taken, the 
belief b1 that food is taken is created. The desire and 
intention to have food are denoted by d1 and i1 
correspondingly in the model. The desire and intention to 
take medicine are denoted by d2 and i2 correspondingly. 
The cognitive model from the example was formalised by 
the following properties in past-present format: 

IP1(c): General belief generation property 
At any point in time a (persistent) belief state b about c holds iff  
at some time point in the past the human observed c. Formally:  
 ∃t2 [ t1 > t2 & at(observed(c), t2) ]  ⇔ at(b, t1) 

IP2: Desire d1 generation 
At any point in time the internal state property d1 holds iff 
at some time point in the past b1 held. Formally:  
 ∃t4 [ t3 > t4 & at(b1, t4) ]  ⇔ at(d1, t3) 

IP3: Intention i1 generation 
At any point in time the internal state property i1 holds iff 
at some time point in the past b2 and d1 held. Formally:  
 ∃t6 [ t5 > t6 & at(d1, t6) & at(b2, t6)]  ⇔ at(i1, t5) 

IP4: Action eat food generation 
At any point in time the action eat food is performed iff 
at some time point in the past both b3 and i1 held. Formally:  
 ∃t8 [ t7 > t8 & at(i1, t8) & at(b3, t8)]   
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                                                       ⇔ at(performed(eat food), t7) 

IP5: Desire d2 generation 
At any point in time the internal state property d2 holds iff 
at some time point in the past b4 held. Formally:  
 ∃t10 [ t9 > t10 & at(b4, t10) ]  ⇔ at(d2, t9) 

IP6: Intention i2 generation 
At any point in time the internal state property i2 holds iff 
at some time point in the past b5 and d2 held. Formally:  
 ∃t12 [ t11 > t12 & at(d2, t12) & at(b5, t12)]  ⇔ at(i2, t11) 

IP7: Action medicine intake generation 
At any point in time the action medicine intake is performed iff 
at some time point in the past both b6 and i2 held. Formally:  

 ∃t14 [ t13 > t14 & at(i2, t14) & at(b6, t14)]  ⇔  
                                                   at(performed(medicine intake), t13) 

 

Cognitive Analysis: Overview 
First, a set of goals is defined on the human’s states and 
behaviour. These goals may concern, for example, the 
human’s well-being or the quality of performance in task 
execution. The goal for the case study is to maintain a 
satisfactory health condition of the human. Each goal is 
refined into more specific criteria that should hold for the 
human’s functioning. In particular, for the case study the 
goal is refined into three criteria:  
(1) food is consumed every 5 hours (at latest) during the day;  
(2) after the medicine is taken, no food consumption during the 

following 2 hours occurs;  
(3) after 3 hours from the last food intake no medicine intake 

occurs.  
Based on the criteria expressions, a set of output states 

(called an output focus) and a set of internal (cognitive) 
states (called an internal focus) of the human are 
determined, which are used for establishing the satisfaction 
of the criteria. For the case study the output focus consists 
of the states performed(eat food) and performed(medicine intake).  

A cognitive model of the human defines relations between 
an output state and internal states which cause the 
generation of the output state. The latter provide a more in 
depth understanding of why certain behaviours (may) occur. 
In general, using a cognitive model one can determine a 
minimal specification that comprises temporal relations to 
internal states, which provides necessary and sufficient 
conditions on internal states to ensure the generation of an 
output state. An automated procedure to generate such 
specifications is considered in the next section. Such a 
specification is a useful means for prediction of behaviour. 
That is, if an essential part of a specification becomes 
satisfied (e.g., when some important internal state(s) 
hold(s)), the possibility that the corresponding output state 
will be generated increases significantly. If such an output is 
not desired, actions can be proposed in a knowledgeable 
manner, based on an in depth understanding of the internal 
states causing the behaviour. Thus, the essential internal 
states (called predictors for an output) from specifications 
for the states in the output focus should be added to the 
internal focus.  

Normally states in an internal focus cannot be observed 
directly. Therefore, representation relations are to be 
established between these states and externally observable 
states of the human (i.e., the representational content should 
be defined for each internal state in focus). Representation 
relations are derived from the cognitive model 
representation as shown in a section below and usually have 
the form of more complex temporal expressions over 
externally observable states. To detect occurrence of an 
internal state, the corresponding representational content 
should be monitored constantly, which is considered in a 
section later in this paper.  

Generating Predictors for Output States 
One of the tasks is the identification of (internal) predictors 
for outputs. A predictor(s) for a particular output can be 
identified based on a specification of human’s internal 
dynamics that ensures the generation of the output. In 
general, more than one specification can be identified, 
which is minimal (in terms of numbers of internal states and 
relations between them), however sufficient for the 
generation of a particular output. Below an automated 
procedure for the identification of all possible minimal 
specifications for an output state based on a cognitive model 
is given. The rough idea underlying the procedure is the 
following. Suppose for a certain output state property p the 
pp-statement B ⇔ at(p, t) is available. Moreover, suppose that 
in B only two atoms of the form at(p1, t1) and at(p2, t2) with 
internal states p1 and p2 occur, whereas as part of the 
cognitive model also specifications B1 ⇔ at(p1, t1) and B2 ⇔ 
at(p2, t2) are available. Then, within B the atoms can be 
replaced (by substitution) by the formula B1 and B2. Thus, 
at(p, t) may be related by equivalence to four specifications: 

B ⇔ at(p, t)             B[B2/at(p2, t2)] ⇔ at(p, t) 
B[B1/at(p1, t1)] ⇔ at(p, t)    B[B1/at(p1, t1), B2/at(p2, t2)] ⇔ at(p, t) 

Here for any formula C the expression C[x/y] denotes the 
formula C transformed by substituting x for y.  

Algorithm: GENERATE-MINIMAL-SPECS-FOR-
OUTPUT 
Input: Cognitive model X; output state in focus specified by  
           at(s, t)  
Output: All possible minimal specifications for at(s, t) in list  
               L 
1 Let L be a list containing at(s, t), and let δp, δ be empty 

substitution lists. 
2 For each formula ϕI ∈ L: at(ai, t) ↔ ψip(at1,…, atm) identify δi = 

{ atk/body(ϕk) such that ϕk ∈ X and head(ϕk)=atk}. Then  δ is 
obtained as a union of δi for all formulae from L.  

3  δ = δ \ δp 
4  if δ is empty, finish. 
5  For each formula ϕI ∈ L obtain a set of formulae by all possible 

combinations of substitution elements from δ applied to ϕI. 
Add all identified sets to L. 

6  δp = δp ∪ δ, proceed to step 2. 
 

For each generated specification the following measures 
can be calculated: 
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(1) The measure of undesirability indicating how 
undesirable is the human’s state, described by the 
generated specification. It also reflects the confidence 
degree of producing an undesirable output from the 
generated specification. 

(2) The minimum and maximum time before the generation 
of the output state. This measure is critical for timely 
intervention in human’s activities. 

These measures serve as heuristics for choosing one of 
the generated specifications. To facilitate the choice, 
constrains on the measures may be defined, which ensure 
that an intervention occurs only when a considerable 
undesirability degree is determined, but also the minimum 
time before the undesirable output is above some acceptable 
threshold. To calculate the measure (1), the degree of 
undesirability is associated with each output state of the 
cognitive model (i.e., a number from the interval [0, 1] that 
expresses how undesirable is the state). Then, it is 
determined which output states from the cognitive 
specification can be potentially generated, given that the 
bodies of the formulae from the generated specification are 
evaluated to TRUE. This is done by executing the cognitive 
specification with body(ϕi) = TRUE for all ϕi from the 
generated specification. Then, the measure of undesirability 
is calculated as the average over the degrees of 
undesirability of the identified output states, which can be 
potentially generated. The measures (2) can be calculated 
when numerical timing relations are defined in the 
properties of a cognitive specification.  

For the case study from the automatically generated 
specifications that ensure the creation of the state 
performed(eat food) the one expressed by property IP4 is 
chosen. This specification has the highest confidence degree 
of producing the output (equal to the undesirability measure 
of the state performed(eat food)), when it is undesirable. It is 
assumed that the time interval t7-t8 in IP4 is sufficient for an 
intervention. The predictor state from the chosen 
specification is i1, as in the most cases it is generated earlier 
than the state b3. Thus, i1 is included in the internal focus. 
By a similar line of reasoning, the specification expressed 
by property IP7 is chosen, in which i2 is the predictor state 
included into the internal focus. Thus, the internal focus for 
the cognitive model is the set {i1, i2}. 

Representation Relations 
A next step is the identification of representation relations 
for cognitive states from a cognitive model for the human. 
A representation relation for an internal state property p 
relates the occurrence of p to a specification Φ that 
comprises a set of state properties and temporal (or causal) 
relations between them. In such a case it is said that p 
represents Φ, or Φ describes representational content of p. 
In this section an automated approach to identify 
representation relations for cognitive states from a cognitive 
model is described. 

The representational content considered backward in time 
is specified by a history (i.e., a specification that comprises 

temporal (or causal) relations on past states) that relates to 
the creation of some cognitive state. In the literature on 
Philosophy of Mind different approaches to defining 
representation relations have been put forward (cf. Kim, 
1996). For example, according to the classical 
causal/correlation approach, the representational content of 
an internal state property is given by a one-to-one mapping 
to an external state property. The application of this 
approach is limited to simple types of behaviour (e.g., 
purely reactive behaviour). In cases when an internal 
property represents a more complex temporal combination 
of state properties, other approaches have to be used.  For 
example, the temporal-interactivist approach (cf. Jonker and 
Treur, 2003) allows defining representation relations by 
referring to multiple (partially) temporally ordered 
interaction state properties; i.e., input (sensor) and output 
(effector) state properties over time.  

To automate the process of representation relation 
identification based on this idea, a procedure has been 
developed. To apply this procedure, cognitive specification 
is required to be stratified. This means that there is a 
partition of the specification Π = Π1 ∪ … ∪ Πn into disjoint 
subsets such that the following condition holds: for i > 1: if a 
subformula at(ϕ, t) occurs in a body of a statement in Πi, then 
it has a definition within ∪j  <i Πj. 

 

Algorithm: GENERATE-REPRESENTATION-
RELATION 
Input: Cognitive specification X; cognitive state specified by 
at(s, t), for which the representation relation is to be identified 
Output: Representation relation for at(s, t) 
1 Stratify X: 
1.1 Define the set of formulae of the first stratum (h=1) as  
{ϕi: at(ai, t) ↔  ψip(at1,…, atm) ∈ X | ∀k m ≥k ≥1 atk is expressed using 
InputOnt}; proceed with h=2. 

1.2 The set of formulae for stratum h is identified as  
{ϕi: at(ai, t) ↔ ψip(at1,…, atm) ∈ X | ∀k m ≥k ≥1 ∃l l < h ∃ψ ∈ STRATUM(X, 
l) AND head(ψ) = atk AND ∃j m ≥j ≥1 ∃ξ ∈ STRATUM(X, h-1) AND 
head(ξ)=atj }; proceed with h=h+1. 
1.3 Until a formula of X exists not allocated to a stratum,  
perform 1.2. 

2 Create the stratified specification X’ by selecting from X only the 
formulae of the strata with the number i < k, where k is the 
number of the stratum, in which at(s, t) is defined. Add the 
definition of at(s, t) from X to X’. 

3 Replace each formula of the highest stratum n of X’ ϕi:  

at(ai, t) ↔  ψip(at1,…, atm) by ϕI δ with renaming of temporal 
variables if required, where δ = { atk\ body(ϕk) such that ϕk ∈ X’ and 
head(ϕk)=atk}. Further, remove all formulae  
{ ϕ ∈ STRATUM(X’, n-1) | ∃ψ ∈ STRATUM(X’, n) AND head(ϕ) is a 
subformula of the body(ψ)}) 

4 Append the formulae of the stratum n to the stratum n-1, 
    which now becomes the highest stratum (i.e, n=n-1). 
5 Until n>1, perform steps 3 and 4. The obtained   
   specification with one stratum (n=1) is the representation  
   relation specification for at(s, t) 

In Step 3 subformulae of each formula of the highest 
stratum n of X’ are replaced by their definitions, provided in 
lower strata. Then, the formulae of n-1 stratum used for the 
replacement are eliminated from X’. As result of such a 
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replacement and elimination, X’ contains n-1 strata (Step 4). 
Steps 3 and 4 are performed until X’ contains one stratum 
only. In this case X’ consists of a formula ϕ defining the 
representational content for at(s, t), i.e., head(ϕ) is at(s, t) and 
body(ϕ) is a formula expressed over interaction states and 
(temporal) relations between them.  

In the following it is shown how this algorithm is applied 
for identifying the representational content for state i1 from 
the internal focus from the case study. By performing Step 1 
the specification of the cognitive model given above is 
automatically stratified as follows: stratum 1: { IP1((own_ 
position_refrigerator), IP1(food_not_eaten_more_than_2h), 
IP1(own_position_cupboard), IP1(medicine_box_taken)} ; 
stratum 2: { IP2, IP5} ; stratum 3: { IP3, IP6} ; stratum 4: 
{ IP4, IP7} .  

By Step 2 the properties IP4, IP5, IP6, IP7 are eliminated 
as unnecessary for determining the representational content 
of i1. Further, in Step 3 we proceed with the property IP3 of 
the highest stratum (3) that defines the internal state i1. 

∃t6 [ t5 > t6 & at(d1, t6) & at(b2, t6)]  ⇔ at(i1, t5) 

In Step 3 the property IP8 is obtained by replacing d1 and 
b2 state properties in IP3 by their definitions with renaming 
of temporal variables: 

∃t6 [ t5 > t6 & ∃t4 [ t6 > t4 & at(b1, t4) ] & ∃t2 [ t6 > t2 & 
at(observed(own_position_refrigerator), t2) ]  ]   
⇔ at(i1, t5) 

Further, the properties IP3, IP2 and IP1(own_position_ 
refrigerator) are removed from the specification and the 
property IP8 is added to the stratum 2. Then, IP9 is obtained 
by replacing b1 in IP8 by its definition: 

∃t6 [ t5 > t6 & ∃t4 [ t6 > t4 & ∃t15 [ t4 > t15 & 
at(observed(food_not_eaten_more_than_2h), t15) ] ] & ∃t2 [ t6 > 
t2 & at(observed(own_position_refrigerator), t2) ]  ]   
⇔ at(i1, t5) 

After that the properties IP8 and IP1(food_not_eaten_ 
more_than_2h) are removed from the specification and IP9 
becomes the only property of the stratum 1. Thus, IP9 
defines the representational content for the state i1 that 
occurs at any time point t5.  

Similarly, the representational content for the other state 
from the internal focus i2 is identified as: 

∃t12 [ t11 > t12 & ∃t16 [ t12 > t16 &  
at(observed(own_position_cupboard), t16) ] ]  ⇔ at(i2, t11) 

The algorithm has been implemented in Java. The overall 
time complexity of the algorithm for the worst case is O(|X|2), 
where |X| is the length of a cognitive specification X. 

Behavioural Monitoring  
To support the monitoring process, it is useful to decompose 
a representational content expression into atomic 
subformulae that describe particular interaction and world 
events. The subformulae are determined in a top-down 
manner, following the nested structure of the overall 
formula:  

monitor_focus(F)  →  in_focus(F) 

in_focus(E) ∧  
is_composed_of(E,C,E1,E2)  →  in_focus(E1)  ∧  in_focus(E2)                                

Here is_composed_of(E,C,E1,E2) indicates that E is an 
expression obtained from subexpressions E1 and E2 by a 
logical operator C (i.e., and, or, implies, not, forall, exists). At 
each decomposition step subexpressions representing events 
are added to the list of foci that are used for monitoring. 
This list augmented by the foci on the states from the output 
focus is used for monitoring. For the case study from the 
identified representation content for i1 and i2 the following 
atomic monitoring foci were derived:  
 observed(food_not_eaten_more_than_2h) 
 observed(own_position_refrigerator) 
 observed(own_position_cupboard) 

Furthermore, the information on the states in the output 
and internal foci, on the chosen predictors for the output 
states, and on the identified representation relations is used 
to constantly monitor. As soon as a an event from the 
atomic monitoring foci occurs, the component initiates 
automated verification of the corresponding representational 
content property on the history of the events in focus 
occurred so far. The automatic verification is performed 
using the TTL Checker tool (for the details on the 
verification algorithm see (Bosse et al, 2009)). For the case 
study such a history (or a trace) was created using the 
LEADSTO simulation tool (Bosse et al, 2007).  

Another task is to ensure that the goal criteria hold. The 
satisfaction of the criteria is checked using the TTL Checker 
tool. Furthermore, to prevent the violation of a criterion 
promptly, information related to the prediction of behaviour 
(i.e., predictors for outputs) can be used. More specifically, 
if the internal states-predictors for a set of output states O 
hold, and some behaviour or performance criterion is 
violated under O, then an intervention in human activities is 
required. The type of intervention may be defined separately 
for each criterion. In particular, for the case study as soon as 
the occurrence of the prediction states i1 and i2 is 
established, the violation of the criteria identified previously 
is determined under the condition that the predicted outputs 
hold. To prevent the violation of the criteria, the following 
intervention rules are specified: 
(1) If the human did not consume food during last 5 hours, 

then inform the human about the necessary food intake. 
Formally: 
∀t1 current_time(t1) & ¬∃t2 t1-300 ≤ t2 < t1 
belief(holds_at(performed(eat food), t2), pos) 
�  to_be_communicated_to(‘Meal time’, pos, Human) 

(2) If the human took medicine X less than 2 hours ago 
(time point t2 in minutes) and the existence of the 
predictor i1 is established, then inform the human that 
she still needs to wait (120- t2) minutes for taking 
medicine. Formally: 
∀t1 current_time(t1) & ∃t2 t1-120 < t2 
belief(holds_at(performed(medicine intake), t2), pos) & at(i1, t1) 
� to_be_communicated_to(‘Please wait 120-t2 minutes more’, 
pos, Human) 
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(3) If the human did not consume food during last 3 hours 
and the existence of the predictor i2 is established, 
inform the human that she better eats first. Formally: 
∀t1 current_time(t1) & ¬∃t2 t1-180 ≤ t2 < t1 
belief(holds_at(performed(eat food), t2), pos) & at(i2, t1) 
� to_be_communicated_to(‘Please eat first’, pos, Human) 

 

Discussion and Conclusions 
In this paper a computational model was presented 
incorporating a more in depth analysis based on a cognitive 
model of a human’s functioning. Having such a cognitive 
model allows relating certain behavioural or performance 
aspects that are considered, to underlying cognitive states 
causing these aspects. Often cognitive models are used 
either by performing simulation, or by temporal reasoning 
methods; e.g. (Port and van Gelder, 1995). In this paper a 
third way of using such models is introduced, namely by 
deriving more indirect relations from these models. Such an 
approach can be viewed as a form of knowledge 
compilation (Cadoli and Donini, 1997) in a pre-processing 
phase, so that the main processing phase is less intensive 
from the computational point of view. Such a form of 
automated knowledge compilation occurs in two ways: first, 
to derive the relationships between considered behaviour or 
performance aspects to the relevant internal cognitive states, 
and next to relate such cognitive states to observable events 
(monitoring foci). These monitoring foci are determined 
from the cognitive model by automatically deriving 
representation relations for cognitive states in the form of 
temporal specifications. From these temporal expressions 
the events are derived that are to be monitored, and from the 
monitoring information on these events the representation 
expressions are verified automatically.  

A wide range of existing ambient intelligence applications 
is formalised using production rules (cf. Christensen, 2002) 
and if-then statements. Two important advantages of such 
rules are modelling simplicity and executability. However, 
such formalism is not suitable for expressing more 
sophisticated forms of temporal relations, which can be 
specified using the TTL language. In particular, references 
to multiple time points possible in TTL are necessary for 
modelling forms of behaviour more complex than stimulus-
response (e.g., to refer to memory states in delayed-response 
behavioural specifications). Furthermore, TTL allows 
representing temporal intervals as in the following property: 
‘ if the human was sleeping for x hours and x > 4h and s/he 
did not take the medicine A during 2 hours after being 
awake, then support will be provided to the human’ . 
Moreover, using TTL one can refer to histories of states, for 
example to express that a medicine improves the health 
condition of a patient; in this case the health conditions in 
traces with and without the medicine intake are compared.  

Another popular approach to formalise recognition and 
prediction of human behaviour is by using Hidden Markov 
Models (HMM) (e.g., Sanchez et al., 2007). In HMM-based 
approaches known to the authors, recognition of human 
activities is based on contextual information of the activity 
execution only; no cognitive or (gradual) preparation states 

that precede actual execution of activities are considered. As 
indicated in (Sanchez et al., 2007) a choice of relevant 
contextual variables for HMMs is not simple and every 
additional variable causes a significant increase in the 
complexity of the recognition algorithm. Knowledge of 
cognitive dynamics that causes particular behaviour would 
provide more justification and support for the choice of 
variables relevant for this behaviour. Furthermore, as 
pointed in (Brdiczka et al., 2009) for high quality behaviour 
recognition a large corpus of training data is needed. The 
computational costs of the pre-processing (knowledge 
compilation) phase of the approach proposed in this paper 
are much lower (polynomial in the size of the specification). 
Also, no model training is required. However, the proposed 
approach relies heavily on the validity of cognitive models. 

In the future, cases will be elaborated, in which cognitive 
models based on diverse cognitive frameworks and 
architectures will be used. 
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Abstract

The procedure by which humans identify checks in check posi-
tions is not well understood. We report here our experience in
modelling this process with CHREST, a general-purpose cog-
nitive model that has previously successfully captured a vari-
ety of attention- and perception-related phenomena. We have
attempted to reproduce the results of an experiment investigat-
ing the ability of humans to determine checks in simple chess
positions. We propose a specific model of how humans per-
form this experiment, and show that, given certain reasonable
assumptions, CHREST can follow this model to create a good
reproduction of the data.
Keywords: CHREST; cognitive model; cognitive architec-
ture; chess; check detection

Motivation
In studying the general phenomenon of human perception,
we have looked at the specific task of perceiving checks in
the game of chess. This task involves a player being presented
with a chess position with a requirement to determine whether
or not the player’s king is being threatened by another piece.

Experiments on human subjects have provided data about
how well they perform this task, but we have no good model
of how the underlying psychological processes work in this
situation. Identifying threats in games is a complex task
which explores the process of visual attention when guided
by interpretation of higher goals. Understanding these pro-
cesses may help shed light on a variety of aspects of attention
and perception.

Although understanding these processes is a desirable goal
in itself, we are also interested in modelling this process as
part of a larger project to produce a cognitive model which,
whilst operating under human constraints, plays chess in a
human-like way. Successfully modelling the check percep-
tion process would be a step towards this aim, as well as a
verification of the parameters of the model itself.

Background
Saariluoma conducted a series of experiments (Saariluoma,
1984) relating to the perception abilities of humans through
the medium of chess. We are concerned with one experiment
in particular: this was to measure how quickly players could
determine, given a chess position consisting of a white king

and one other black piece, whether or not the king was in
check. The subjects of the experiment included chess players
with a mix of skill levels: two complete beginners, three un-
rated amateurs, two experts (ELO rating around 2,000 points)
and a high-class international Grand Master.

Analysis of the results of this experiment showed a very
significant (p < 0.001) correlation of reaction speed with
chess ability: the Grand Master took around a third of the
time to return a decision compared to the mean of the reac-
tion times of the beginners.

Saariluoma noted that experienced players must perform at
least some of the operations involved in the task more quickly
than less experienced players, but did not predict which ones.
It is known that a few of these processes are improved with
practice, such as recognition of pieces (Saariluoma, 1984),
speed of making moves in the mind’s eye (Church & Church,
1977; Milojkovic, 1982); these have been addressed in our
model (see below).

Whilst it is plausible that other cognitive processes in-
volved may be improved through practice, we hypothesise
that the greater relevant knowledge acquired by more experi-
enced players should account for the main part of the remain-
ing difference.

It is difficult to test this hypothesis on human subjects due
to the obvious challenges of controlling for the amount of
domain knowledge acquired and isolating the relevant pro-
cesses. In order to investigate this hypothesis, the use of a
cognitive model would be helpful in order to manipulate these
factors directly.

A successful model should be able to demonstrate the su-
periority of experts over novices in the check detection task,
and explain why.

CHREST
CHREST (Chunk Hierarchy and REtrieval STructures)
(Gobet et al., 2001) is a general-purpose cognitive architec-
ture designed to simulate certain aspects of the human mind1,
including, to the extent that these have been measured or can

1For information on CHREST beyond what is presented here,
the interested reader is referred to the CHREST website at
http://chrest.info
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Figure 1: An overview of the main components of the
CHREST cognitive architecture.

be estimated, its limitations (an important requirement of a
model that aspires to simulate human cognition is that it not
make use of any abilities in excess of that of a human (Simon,
1969)).

CHREST has previously been shown to be a successful
model of the mind in domains as diverse as physics represen-
tation (Lane, Cheng, & Gobet, 2000), language acquisition
(Jones, Gobet, & Pine, 2005; Freudenthal, Pine, Aguado-
Orea, & Gobet, 2007), and ageing (Smith, Gobet, & Lane,
2007); however, the simulation of perception and memory in
chess (de Groot & Gobet, 1996; Gobet & Simon, 2000; Gobet
& Waters, 2003) has been CHREST’s most studied applica-
tion.

Figure 1 shows a top-level overview of the CHREST archi-
tecture. It simulates the main divisions of memory in humans
as is generally agreed upon (Baddeley, 1990): a short-term
memory (STM) store, and a long-term memory (LTM) store.
In addition, it has an advanced perception/attention system.

CHREST’s memory system is based on chunking theory
(Chase & Simon, 1973), which holds that information in the
human mind is stored as chunks. Chunks are discrete col-
lections of features that have some meaning when grouped
together. In the domain of chess, the features that make up

chunks in CHREST are man-on-square combinations such as
“White king on square g1”. A chunk containing this feature,
and representing a standard castled white king could be rep-
resented as the set: {Kg1, Rf1, Pf2, Pg2, Ph2}, where the first
letter is the first letter of the piece’s name.

CHREST’s LTM is made up of a hierarchical network of
these chunks. Its organisation is primarily tree-based, though
the presence of semantic links adds a graph-like flavour.
Knowledge is added to LTM through two main learning pro-
cesses. When a new pattern is encountered, it is compared
to previously-learnt chunks: if it does not match any known
chunk, then a new chunk is created containing some of the
new information (discrimination); if it does match a known
chunk, then some of the information in the pattern is added to
that chunk (familiarisation).

CHREST’s STM has a capacity of up to four chunks. There
is good evidence that this is the approximate STM capacity
of young adult humans (Luck & Vogel, 1997; Cowan, 2001).
These chunks are references to chunks held in LTM (again,
as indicated by recent research (Gobet et al., 2001)).

Attention in CHREST is represented through simulated eye
movements (this is a slight simplification of the human atten-
tion system, but this approach is relatively easy to simulate
and its output can be verified against recorded human data).

CHREST’s attention is directed through information previ-
ously learnt and added to LTM, and a set of heuristics. The
basic heuristics, such as “look at the centre of the board”,
“look at objects grouped together”, and “follow a potential
move from an observed piece” guide the perception of basic
patterns, which are incorporated into LTM as chunks.

As more information-rich chunks are acquired, this learnt
information is used to guide the focus of attention. When an
observed pattern is recognised as a previously-learnt chunk,
a reference to the chunk is placed in STM, and this selected
information may be used to provide a new focus. If a chunk
referenced in STM is linked to another chunk in LTM, then
CHREST’s attention is directed towards locations contain-
ing objects in the linked chunk that are disjoint from the ob-
jects recorded in the recognised chunk. This process allows
CHREST to focus on the distinguishing features of a scene.

Patterns, then, are perceived on the board according to
previously-learnt chunks, and chunks are built up out of per-
ceived patterns; this interplay between the learning cycle and
the perception system results in complex emergent behaviour.
In previous work (de Groot & Gobet, 1996), the eye move-
ments generated by CHREST during a simulated presenta-
tion of a chess position have been shown to be comparable to
those of Masters.

See (Lane, Gobet, & Smith, 2008) for more details of the
attention system.

CHREST Configuration
The version of CHREST used for these experiments was the
3.0 beta version. The code base of this version has been
mostly rewritten from the 2.x version. It represents a sub-
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stantial evolution of the model and a major step forward to-
wards a full release of a complete CHREST 3. As well as
being more flexible and better able to make use of modern
computing technology, this version of CHREST has a num-
ber of new features: notably, it understands chess at a deeper
level, includes a customised experiment framework which au-
tomatically performs and reports on sets of experiments, and
has the ability to perceive and learn from full games rather
than selected positions.

In order to simulate the variety of individuals employed in
the human experiments, a series of CHREST subjects2 with
varying LTM sizes was produced: 20 each with a network
size of one of 100, 1,000, 10,000, 100,000 nodes. (These
different network sizes represented players of different skill
level).

Most of the training of these subjects was carried out using
a set of 10,000 games played during 2008 between players
with ELO ratings of above 2000. Each subject was allowed
to learn from the state of the game board at random inter-
vals during simulated play-throughs of the games until the
required network size was reached.

In addition, each subject was specifically trained on boards
with a king and one other piece (all possible configurations
of this type were produced to make up a training set). A total
of 10% of each subject’s LTM network was generated in this
way, reflecting the fact that checking positions are very com-
mon in rapid and speed chess games, which most chess play-
ers use as a form of practice (Gobet & Campitelli, 2007). This
figure is necessarily only an estimate of real-life behaviour
due to a lack of empirical data at this time, but it was esti-
mated in advance and not fitted to the model’s result.

As in the Saariluoma experiment, 60 chess positions were
generated for testing. A white king was placed on the board,
along with a black queen, rook, bishop, or knight. For each
position, the locations of the pieces were randomised, with
the constraint that the king was placed on a square in which
it was in check in half of the positions.

Timings played an important part in the experiments; time
was one limiting factor for CHREST’s perceptual cycle, and
the time taken for CHREST to decide if a position contained
a check was the main dependent variable in the experiments.

CHREST uses an internal clock which accumulates the
processing times of simulated operations. These times are
(where possible) taken from human experiments, or other-
wise (where experimentation has not yet been possible), taken
from sensible estimates (see (de Groot & Gobet, 1996) for de-
tails).

Unless otherwise noted, timings used were the standard
timings which have evolved in CHREST:

• A constant 200 ms was added to all trials to simulate ini-
tial reaction to the stimulus, motor preparation, and motor
response (i.e. pressing the button). Visual reaction times

2We use the term subject here to distinguish the computational
instantiation of a model (complete with data) from the theoretical
model

have been recorded as in the region 180 to 200 ms for
university-age students (Brebner & Welford, 1980), though
increasing with age (Welford, 1977).

• Saariluoma found, in a previous experiment (Saariluoma,
1984), that novices were slower than experts in recognising
chessmen. The mean difference between the two groups
was 57.1 ms; this value was added to the clock as time
taken to recognise each piece for the 100 and 1,000-node
network (this division was slightly arbitrary as it might be
expected that the delay would be a gradient rather than bi-
nary, but we have no better data).

• From their analysis of experimental results, de Groot and
Gobet (1996) proposed definite parameters for the time re-
quired to move pieces in the mind’s eye. These parameters
consisted of a base time, the time taken to begin making
a move, and a square time, the time taken per square to
move a piece. The first was estimated as 100 ms, and the
second as 50 ms for experts, and 100 ms for novices. We
have used these same values.

Modelling Check Perception
We have described the domain of interest, that of the hu-
man process of perceiving and determining checks, and the
general-purpose cognitive architecture that we are using to
investigate it. Now we consider how to specifically adapt the
model to the domain.

It has already been shown that the memorisation of chess
positions under human constraints — see (de Groot, 1978) —
can be improved through prior knowledge of chess positions.
We propose that the process of determining whether a king
is in check from another piece, given that the location and
types of both pieces have been established, benefits from the
presence in memory of previously encoded chunks of chess
positions.

Our hypothesis for the superiority of experts over novices
in detecting checks lies in chunking theory (Chase & Simon,
1973). Following previous work (Gobet & Jansen, 1994), we
hypothesise that links are formed between the learnt visuo-
spatial chunks and more abstract knowledge; for example,
moves associated with the chunk, the goodness of the chunk
in positional terms, and, of interest with respect to our partic-
ular domain, whether the chunk contains a check or not.

Our model, set up as above, simulates the experiment as
follows. The simulated subjects were presented with a test
position and allowed to perceive it until they had observed
two pieces. Once this was achieved, they attempted to decide
whether the king was being attacked by the other piece.

If the two pieces were recognised as a chunk already stored
in their LTM, then the subject was assumed to be able to
quickly (we have assumed 10 ms — the standard time taken
to traverse an LTM link) identify whether the position was a
check or not. Essentially, the subject would have exhibited
automaticity (Shiffrin & Schneider, 1977).
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If no such chunk was recognised, then a simulated attempt
to determine check was carried out, by ’moving’ the non-king
piece towards the king with simulated eye movements (pre-
vious work has demonstrated this proportionality to distance
effect (Church & Church, 1977)), and checking this by ’mov-
ing’ the king towards the other piece in a similar fashion. We
assume that double verification of the check relation occurs
here, but not when a chunk has been identified, as mentally
moving pieces in the mind’s eye is more likely to generate
errors than when a pattern has been recognized (for a dis-
cussion of the difficulty of generating moves in the mind’s
eye and playing blindfold chess, see (Saariluoma, 1984), and
(Campitelli & Gobet, 2005)).

Experiment 1: Standard Perceptual Strategies
For the first experiment, our initial model made use of stan-
dard strategies to guide perception when studying each po-
sition: i.e. the use of LTM guidance, and fall-back general-
purpose heuristics as described above and used in the training
of the networks. These results are shown in table 1 and figure
2. The human data collected in (Saariluoma, 1984) are shown
for comparison3.

The results demonstrate some success of the approach in
modelling the data (r2 = 0.92): specifically, they show the
required qualitative interaction of LTM size (acquired knowl-
edge) with time, and are within around 200 ms of the times
of the novice players. However, the results diverge from the
human data considerably when considering performance of
expert-level and above.

These strategies have previously been shown to be an ac-
curate model of expert eye movements in perceiving scenes,
but they clearly do not fully capture behaviour in this domain.

Table 1: Time taken to make a check perception decision as
simulated by CHREST for players of different skill levels us-
ing standard perceptual strategies (Experiment 1).

LTM Network Size (nodes) Time Taken (ms)
100 1,705
1,000 1,403
10,000 1,301
100,000 1,068

Experiment 2: Simplified Perceptual Strategy
Following the results of the first experiment, we hypothesised
that players are using their meta-knowledge about the prob-
lem to re-orient their perceptual strategies. As the model con-
sistently overestimated the time taken, we suspected that the
perceptual strategies used by CHREST were too involved and
that humans used a simpler strategy.

Our revised model was that the subject would automati-
cally perceive a man on the board using far peripheral vision

3The exact human data were not available and so have been read
from the graph supplied in (Saariluoma, 1984)

Figure 2: Time taken to make a check perception decision
as simulated by CHREST for players of different skill lev-
els using standard perceptual strategies (Experiment 1). The
human data are shown for comparison.

and direct their attention towards it. The subject would then
make use of their near peripheral vision (set at ±2 squares
from the focal point) to recognise another piece if one was in
range. If no piece was in range, the player would detect the
other piece using their far peripheral vision, and refocus on
that point following a saccade (thus, making one, or a max-
imum of two, eye fixations; in the previous experiment, the
focus could be directed towards empty squares).

The results of re-running the experiment using this strat-
egy are shown in table 2 and figure 3. This time the results
are a significantly better fit to the human data (r2 = 0.94),
again showing the qualitative interaction, but matching the
data quantitatively to within 200 ms at worst. In this experi-
ment, however, the results better match the data for advanced
players rather than novices.

Table 2: Time taken to make a check perception decision as
simulated by CHREST for players of different skill levels us-
ing standard perceptual strategies (Experiment 2).

LTM Network Size (nodes) Time Taken (ms)
100 1,320
1,000 1,010
10,000 883
100,000 606

Discussion of Results
Before discussing the results, we note that there are some lim-
itations to the study and suggest some other reasons for cau-
tion in interpreting the results.

We have assumed above that our choices of four net-
work sizes — {100, 1,000, 10,000, 100,000} — correspond
to Saariluoma’s categorisation of his subjects — {Fourth
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Figure 3: Time taken to make a check perception decision
as simulated by CHREST for players of different skill lev-
els using standard perceptual strategies (Experiment 2). The
human data are shown for comparison.

Class, Second, Class, Experts, Grand Masters} — but this
is not clear. For obvious reasons it is not possible to directly
measure the number of chunks learnt by a human subject,
so we used a logarithmic progression as an approximation.
100 chunks is probably too many for a beginner who is still
learning how the pieces move (though it makes no difference
to the result as no chunks were recognised by the 100-node
networks) and estimates of the number of chunks learnt by
a Grand Master differ, from 100,000 (Simon & Gilmartin,
1973) to 300,000 (Gobet & Simon, 2000) (but this may not
be an issue as we argue below that larger networks will prob-
ably not show much relative improvement).

The estimate that 10% of a subject’s training is on endgame
positions is difficult to verify. However, as noted earlier, it is
known that players play a large number of speed chess games,
where check situations are frequent, and the proportion was
estimated in advance of the experiment, so we believe that the
figure is reasonable pending other evidence.

A small number of errors were produced by the human sub-
jects: a mean of 3.0%, with a maximum of 4.1% by the ex-
perts. CHREST is theoretically able to produce errors (for
example, by over-generalising learnt information), but none
were produced in these simulations. This may be considered
a weakness of the model, but given the proportion of errors
made by humans, and that a number of these may have been
due to errors of attention (e.g. pressing the wrong key due to
fatigue), we do not think this is a serious drawback.

Despite these considerations, we find the results good evi-
dence for our hypothesis. We have proposed a model of how
humans carry out simple check detection and found that, with
a revision and accepting certain assumptions, it explains the
human data well, both quantitatively and qualitatively.

Our revised model shows poorer performance in modelling
the perception of weaker players. This may be natural vari-

ability, given Saariluoma’s small sample size, but we also
consider other possible reasons:

Our first model may have been partly right, and though
stronger players do use the more efficient, simplified, per-
ceptual strategy described in our revised model, weaker play-
ers use (a subset of) the unnecessarily complicated strategies
used for perceiving a regular game position.

Alternatively (or in addition), there is some evidence
(Reingold, Charness, Pomplun, & Stampe, 2001) that
stronger players make better use of their peripheral vision to
detect pieces, suggesting that we may have allowed weaker
players too much ability in our revised model.

Also, weaker players may spend more time checking their
decisions. We have assumed that a “double check” is carried
out (checking the relationship between the position of both
perceived pieces), but weaker players may find it necessary
to make additional checks. It would be expected that stronger
players would not feel the need to do this due to their im-
proved confidence in their own ability.

Finally, there may be additional mental processes involved
with weaker players which we have not considered. For ex-
ample, absolute beginners may spend some time trying to re-
member how each piece moves.

Looking forward, our theory makes predictions that can
be tested. Most obviously, players’ eye movements could be
recorded whilst carrying out this task to determine if our the-
ory of how attention is directed (i.e. very simply and directly)
is correct.

Our theory, that chunks are linked to further knowledge, in-
cluding information about whether a chunk includes a check
or not, also leads to some predictions.

First, there should be increased intra-subject variability
across different positions compared to the “general exercise”
hypothesis of several different mental processes being im-
proved as expertise is acquired: general-purpose processes
should not be affected by the specifics of an individual posi-
tion.

Second, there should be a ceiling to performance on the
task. The largest network we tested was 100,000 nodes, but
there are only 16,128 separate possible positions containing
only a king and one of {queen, rook, bishop, knight} of the
opposite colour. Our imposed end game-specific practice of
10% (estimated, but seeming to produce a good match of the
human data) of a 100,000 node network covers the majority of
these positions. If our theory is correct, performance on this
task should rapidly tail off above Grand Master level since
there will be fewer additional novel chunks to acquire.

Conclusions and Future Work
We have proposed a hypothesis of how humans perceive and
make decisions on checks in simple check positions and from
this produced a model that successfully reproduces the exper-
imental human data.

This theory may have wider implications in terms of
chunking theory. We have suggested that chunks are linked
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to extended information — specifically, information about
whether the king is in check or not. This theory (if correct)
raises a number of questions about the extent and types of in-
formation that may be linked to visuo-spatial chunks. Chunks
could, for example, be linked to additional semantic infor-
mation about their strategic value, their relationship to other
chunks, or a verbal description. Based on earlier work (Gobet
& Jansen, 1994), we are currently attempting to expand this
theory by investigating how move sequences in chess may be
learnt and attached to visual chunks in a similar manner.

Another, more direct, way to build on this work is to con-
sider checks involving multiple pieces, for example in mid
game chess positions. More complicated perceptual strate-
gies would undoubtedly be involved.

Finally, in order to successfully model the human data, we
have had to modify the perceptual strategies used, following
the assumption that this behaviour would be controlled by
conscious processes. Whilst this is a reasonable assumption
backed by evidence, it required human intervention; ideally,
the model would be able to alter its own behaviour in this
way, controlling what information entered STM and directing
its own perceptual strategies.
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Abstract

Computational  models   are  presented  that   attempt   to  mimic 
how humans select keywords to describe documents. These 
semantic models are based on data mining techniques applied 
to large corpora of human writing. A methodology to test the 
merit of these models is developed; performance at matching 
author­chosen   keywords   is   the   basis   of   this   test.   Results 
indicate   topic   models   and   their   derivatives   outperform 
traditional semantic models.  Finally,   it   is  shown how these 
models might be incorporated into a system that automatically 
selects keywords for an academic publication.

Keywords:  machine   learning;  natural   language  processing; 
Latent   Semantic   Analysis;     Latent   Dirichlet   Allocation; 
Correlated Topic Models; VGEM 

Background
After   reading  a   text,  humans are  able   to  provide a  quick 
summary of its contents. The smallest summary possible is 
simply a list of topics. These topics, or 'keywords,' represent 
the highest  levels of human abstraction: they dramatically 
reduce an entire document to a few words while retaining 
key   information.   A   computational   model   of   keyword 
generation   would   allow   researchers   to   better   understand 
how knowledge is extracted, abstracted, and generalized in 
the mind. 

In this paper we compare the ability of four computational 
models to pick out author­selected keywords from a larger 
set of possible keywords. The models are contrasted based 
on theoretical and technical differences. Finally we propose 
future   research   to   better   understand   the   underlying 
mechanics   of   these   models   and   show   how   they   may   be 
useful as normative tools for automatic keyword generation. 
The tests of the four models (fit to data) serve as a proof of 
concept of such a system.

Measures of Semantic Relatedness
Measures  of   semantic   relatedness   (MSRs)   are   techniques 
that quantify the semantic relationships between two words 
or documents. They derive a numeric ranking of relatedness 

from   a   fitted   semantic   model.   For   example,   after   being 
trained on a large corpus of English  text,  an MSR might 
determine   that   'cat'   and   'dog'   are   highly   related.   The 
calculation of this ranking depends on each MSR, but the 
interpretation is the same.

All of the selected MSRs (and the models they are based 
on)  depend  on   the   'bag  of  words'   assumption   (Landauer, 
Laham, et al., 1997). This means that word order or context 
does   not   factor   into   the   relatedness   computation.   As 
keywords merely describe the topics of the text (instead of 
the   content),   this   assumption   should   not   hinder   the 
predictive power of the models.

Although all MSRs are capable of calculating relatedness 
between words, only a few of the measures are capable of 
determining   relatedness   between   multi­word   terms   (e.g. 
documents, paragraphs).   The four MSRs selected for this 
analysis are able to do this.

Our assumption is that keywords may be selected for a 
given document from a larger ontology based on document­
keyword   relatedness   values.   In   other   words,   for   a   given 
MSR, m, a document,  D, a set of appropriate keywords for 
this document,  k1..n,  and a set of less appropriate keywords 
for   this   document   (distractors),  d1..n,   we   assume   that 
m(D,kx)>m(D,dx).

Semantic Models

LSA
Latent   Semantic   Analysis   was   first   proposed   in   the   late 
1980s as a way to extract meaningful relationships between 
text (Landauer & Dumais, 1997). It has become the basis of 
numerous applications including educational testing, search 
engines,   and   optical   character   recognition   (Zhuang,   Bao, 
Zhu,   Wang,   Naoi,   2004).   LSA   uses   the   singular   value 
decomposition   (SVD)   to   identify   the   strongest   linear 
relationships   within   text   corpora.   The   matrices   resulting 
from this analysis can be used to calculate word­to­word, 
word­to­document, or document­to­document similarity.
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Constructing the LSA model
A word­document  matrix is  constructed from a corpus of 
natural   language.  Each element  in the matrix  is   the  tf­idf 
ranking   (term   frequency–inverse   document   frequency; 
Salton and McGill, 1983) of the corresponding word in the 
corresponding   document.   Using   tf­idf   allows   LSA   to 
discount   frequent   words   that   have   low   semantic   content 
('the,' 'what'). The calculation for tf­idf is:

,
where  f(x|w)   is   the  number  of   times   that   some   word,  x, 
appears in a given document,  d,  length(d) is the number of 
words in d, m is the total number of documents in a corpus, 
and  f(x) is the total number of times that  x  appears in the 
corpus.

Once the word­document matrix is populated, the singular 
value decomposition is run. This produces a representation 
of   the   original   word­document   space   but   realigned   to 
capture   important   relationships.   Restricting   the   new 
semantic space to the N most important dimensions provides 
a set of vectors  associated to each word in the corpus an 
each document in the corpus. For this paper, N was set to 50 
to  provide a  large enough number of  dimensions without 
impeding the usefulness of the SVD.
Calculating a relatedness value
Two methods are available to compare words to documents: 
appending the document's word count to the original word­
document matrix as the start of training, or summing each 
word's   topic   vector   over   the   entire   document.   Since   the 
former  requires  an expensive SVD computation for  every 
test, we choose the latter to evaluate semantic relatedness.

For every keyword/document pair, a semantic relatedness 
measure can be calculated as follows:

1. For every keyword/document,  look up each word 
in   the   reduced  LSA semantic   space   (see  above). 
This produces a vector of length N for every word.

2. Sum   these   vectors   over   the   entire 
keyword/document.

3. Take the summed keyword vector and the summed 
document vector and determine the cosine between 
the two vectors. This cosine­similarity is the final 
score   provided   by   LSA   (Landauer   &   Dumais, 
1997).

Implementation
LSA was implemented for this paper in custom software. A 
word­by­document  matrix  was   constructed   and  populated 
with corresponding tf­idf values. This matrix was passed to 
a   Matlab   SVD   routine   which   computed   the   reduced 
semantic model. This model correlates words to the reduced 
semantic   space.  A vector   for  each  document  or  keyword 
phrase   was   calculated   by   summing   the   individual   word 
vectors, and the final relatedness value is the cosine between 
the document and keyword vectors.

LDA
In   attempting   to   rework   LSA   with   a   strong   probability 
model, Latent Dirichlet Allocation was developed (Blei, Ng, 
Jordan, 2003). This technique models each document as a 
probability distribution of topics; each topic is modeled as a 
distribution   of   words.   By   inferring   what   topic   and   word 
distributions exist in a corpus,  LDA is able to provide an 
intuitive notion of topic – and keyword – extraction. LDA 
and   similarly   derived   methods   are     called   'topic   models' 
because, unlike methods such as LSA, topics are an explicit 
component in the model.
Constructing the LDA model
Latent Dirichlet Allocation builds a generative model of text 
by   fitting   a   proposed   model   against   known   data. 
Specifically, LDA constructs a hierarchical Bayesian model 
based   on   Dirichlet   priors.   Thus,   documents   comprise   a 
Dirichlet distribution of N “topics,” while topics comprise a 
multinomial   distribution   of   words.   Two   corpus­wide 
parameters govern the model: the Dirichlet prior for topics 
are controlled by a scalar parameter α and the multinomial 
distribution for words in topics is controlled by the N­vector 
β. By estimating α and β for a corpus, a document's topical 
content may be computed and compared.  As with LSA,  N 
was chosen to be 50 for this paper.

1. Initialize a placeholder set of topic probabilities (γ) 
and   a   placeholder   set   of   probabilities   that   each 
word was derived from each topic (Φ).

2. Using   the   expectation­maximization   algorithm 
(Dempster,  Laird,  & Rubin,  1977) determine   the 
best   Dirichlet   parameters   to   predict   the   word­
document matrix (as calculated for LSA).
1. For each word and using the current estimate 

of  γ,  α,  and  β,  estimate the probabilities of 
which topic each word was derived from (Φ).

2. Normalize Φ so it sums to 1.
3. For   each   document   and   using   the   updated 

estimate of Φ, α, and β, calculate the new per­
document topic probabilities γ.

3. Once  Φ  and  γ  are calculated,  estimate  α,  and  β. 
Repeat steps 2 and 3 until convergence.

Calculating the relatedness value
Using   Bayesian   inference   (with   the   Dirichlet   priors 
calculated above), a probability for each topic in a document 
can be calculated. This vector is a topical “fingerprint” of 
the document, and is similar to the vector created by LSA. 
Another   topic  vector   is  created   for   the  keyword,  and  the 
cosine   similarity  between document  and  keyword  vectors 
provides a similarity score.
Implementation
For this paper, the LDA­C software package was used. This 
takes a list of word counts for each document and outputs a 
fitted LDA model  in terms of  topic,  document,  and word 
probabilities. It also infers the topic probabilities of a new 
document   (when   given   a   fitted   model).   The   similarity 
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between a document and keyword phrase can be determined 
by first inferring the topic probabilities of each. These can 
be   treated   as   a   vector,   and   the   cosine   represents   their 
relatedness.

CTM
Correlated Topic Models extend LDA by allowing topics to 
be correlated with each other (Blei & Lafferty, 2006). LDA 
requires topics to be statistically independent, but this may 
not  be   true   in  practice.  For  example,  a  document  with a 
topic related to biology is more likely to contain chemistry 
related topics than topics concerning the French Revolution. 
CTM   allows   for   this   correlation   by   using   a   logistic 
distribution instead of the Dirichlet.
Constructing the CTM model
Correlated   Topic   Models   are   constructed   in   a   similar 
manner   to   Latent   Dirichlet   Allocation   models,   the   main 
difference is the choice of the logistic norm instead of the 
Dirichlet   prior.   The   logistic   norm   allows   topics   to   be 
correlated   with   each   other   –   specified   by   a   correlation 
matrix.   Inference  of   these  new parameters   are  performed 
similarly as in LDA.
Calculating the relatedness value
The results  from CTM are computed exactly the same as 
with  LDA –   the  distribution  over   topics   is     treated   as  a 
vector  and  the cosine  similarity   is  computed between  the 
keyword and document. The cross­topic correlation values 
are ignored.
Implementation
As   with   LDA,   CTM   was   computed   using   a   software 
package. CTM­C takes similar inputs and provides similar 
outputs as LDA­C. Since the cross­topic correlation values 
are   ignored   for   this   paper,   the   calculation   of   relatedness 
values in CTM is the same as in LDA.

VGEM
VGEM   (Vector   Generation   from   Explicitly­defined 
Multidimensional   semantic   space;   Veksler,   Govostes,   & 
Gray, 2008) was recently proposed as an alternative to the 
more   computationally­intensive   MSRs   introduced   above. 
Like   LSA,   VGEM   represents   terms   as   vectors   in   a 
multidimensional   semantic   space,   and   calculates   term 
relatedness  as  the cosine between their  vectors.  However, 
VGEM   does   not   require   construction   or   computational 
reduction  of a  document­by­word matrix  (which  becomes 
extremely expensive for sufficiently large corpora). Instead, 
VGEM requires a set of words to be explicitly chosen as the 
dimensions   of   the   semantic   space,   and   calculates   term 
vectors dynamically based on term frequencies and term co­
occurrences   with   each   of   the   dimension­words.   Various 
frequency/co­occurrence   formulas   may   be   used,   e.g. 
Pointwise   Mutual   Information   (Turney,   2001),   or 
Normalized Google Distance, (Cilibrasi & Vitanyi, 2007). 

For the purposes of this paper, VGEM dimensions were 
taken to be the topics derived from LDA, and frequency/co­
occurrence  formula used for  calculating  term vectors  was 
Normalized Similarity Score (NSS),  which is a variant  of 
Normalized Google Distance. To be more precise, the value 
of each word, x, on dimension, y, is derived as follows:

NSS(x, y) = 1 – NGD(x, y) ,
where  NGD is  a   formula  derived  by  Cilibrasi  & Vitanyi 
(2007):

ƒ(x)   is   the   frequency  with  which  x  may be  found  in   the 
corpus, ƒ(x,y) is the frequency with which both x and y may 
be found in the corpus, and M is the total number of texts in 
the corpus. 
Constructing the VGEM model

1. After  training an LDA model(N  = 50),  select  the 
two highest probability words from each topic in 
the corpus. This provides the dimension words for 
VGEM and only needs to be performed once per 
corpus.   Note   that   VGEM   may   have   up   to   100 
dimensions, but may have fewer due to redundant 
words in the LDA­derived dimensions.

Calculating relatedness value
1. For each word in the document, calculate the NSS 

between the word and each dimension word.
2. Over  each document,  sum up all  word similarity 

vectors
3. To compare both documents, calculate the cosine 

similarity between the two summed vectors.
Implementation
VGEM was implemented in custom software for this paper. 
After   the   set   of   word­document   counts   were   computed, 
LDA   was   trained   on   the   corpus   to   provide   VGEM 
dimension  words.  The   two most  probable  word   for   each 
topic were chosen for VGEM dimensions (duplicate words 
were  only represented  once).  NSS value between a given 
word and each dimension word generate a VGEM vector. 
Negative   NSS   values   were   clamped   to   zero.   For   each 
document or keyword phrase, VGEM vectors for each word 
were summed, providing a vector for the entire document or 
keyword phrase. The similarity between the two is simply 
the cosine, as for all the measures presented in this paper.

Methodology

Corpus Selection
Our  testing and  training corpus   is   the proceedings  of   the 
Annual   Meeting   of   the   Cognitive   Science   Society   from 
2004   to   2008.   100   papers   from   2008   were   removed   to 
provide test cases, while the rest of the papers were used to 
train   the   models   as   described   above.   All   stopwords   as 
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defined in the Python Natural Language Toolkit (Loper & 
Bird,  2002) were  discarded,   in  addition  to  all  words  less 
than 3 characters long and all words occurring in less than 3 
documents.

Segmentation
Each document was processed in two separate modes: by 
­document   and   by­paragraph.   In   paragraph   mode,   each 
document   was   split   by   software   into   50­word   non­
overlapping segments (the final segment, even if less than 
50 words, is kept). Sentence and true paragraph boundaries 
are   ignored   (to   preserve   the   'bag   of   words'   assumption). 
Document mode leaves  the document intact.  Thus,  in by­
paragraph mode, a word­by­paragraph matrix is constructed 
for LSA, LDA, and CTM instead of the word­by­document 
matrix mentioned above (splitting up corpora into smaller 
segments   is   standard   practice,   e.g.   Landauer   &   Dumais, 
1997).

Segmenting documents by paragraph allows insight into 
what   information   these   models   incorporate.   In   paragraph 
mode, each model is only given a small window to process 
text.   This   emphasizes   locality   in   word­word   association. 
However,  because the windows do not overlap, paragraph 
mode   may   break   word­word   associations   that   lie   across 
'paragraph'   boundaries.  This  would   lead   to   an   artificially 
inflated  number  of   topics  as   there  would be   less  second­
order word­word correlations. Future research will examine 
the use of a sliding window to solve this problem.

Testing Method
Test Cases
In order to evaluate the predictive power of these models, 
we determine how well each model can select author­chosen 
keywords.  Each test  case consisted of a  cue,  targets,  and 
distractors. The cue was one of the 100 selected documents 
from   Cognitive  Science  2008  conference  proceedings,   as 
mentioned in the Corpus Selection section. The targets were 
the author­picked keywords from the cue document, and the 
distractors  were random keywords from other documents. 
The number of distractors was twice the number of targets, 
a random guess would be correct 33% of the time. It should 
be  noted  that  each   'keyword'  may actually  be  a  keyword 
phrase  (e.g.,   'natural   language processing').  This  does  not 
pose a problem as each MSR is able to process multi­word 
terms.
For each MSR, the targets+distractors  list was ranked and 
sorted in accordance with MSR's relatedness values between 
the cue and each of the keywords. Finally, the score for each 
MSR   on   each  cue­targets­distractors  test   case   was 
calculated as follows:

Scorecase =
Number of targets in top n words

n
where n is the number of targets, and "top n words" refers to 
the top third of the sorted targets­distractors list. Thus, if all 

target  keywords  are  more   related   to  cue  than  any  of   the 
distractor keywords, the score for that test case is 100%. If 
none of the target words are picked by the MSR to be more 
related to the cue than any of the distractor words, the score 
is 0. The overall score for a given MSR is the average of all 
100 test case scores.

Results
The  mean performance,  measured  as   the  ability   to   select 
author   generated   keywords   from   among   distractors,   is 
shown in  (Figure  1).  We compared   the  best   results   from 
each measure (by­document mode for LSA and LDA; by­
paragraph   mode   for   CTM   and   VGEM)   by   means   of   a 
repeated   measures   ANOVA.   The   analysis   revealed   a 
significant   main   effect   of   Measure,   F(3,   395)=13.011, 
p<.01.   Posthoc   Tukey   HSD   comparisons   revealed 
significant differences between LSA (M=.53, SE=.02) and 
LDA (M=.69,  SE=.02),  LSA and CTM (M=.63, SE=.02), 
and   LSA   and   VGEM   (M=.68,   .02).   No   significant 
differences were found between LDA, CTM, and VGEM.

Table 1. Mean and standard error values for the 
performances of four MSRs on selecting author­generated 
keywords among distractor keywords, using by­document 

and by­paragraph modes of training. Chance­level 
performance is .33.

Mode Document Paragraph

Mean Std. Err Mean Std. Err

LSA 0.53 0.020 0.38 0.021

LDA 0.68 0.021 0.65 0.019

CTM 0.59 0.022 0.63 0.018

VGEM 0.42 0.021 0.68 0.019

Figure 1. Best mean performances of four MSRs on 
selecting author­generated keywords among distractor 
keywords. Chance­level performance is .33. Error bars 

represent standard error.
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Analysis
It   is  not  surprising  that   topic models   (LDA and CTM) 

consistently   perform   well   in   this   task.   Keywords   are 
nothing more   than descriptions  of   topics;  while  LSA and 
VGEM can be interpreted to use topics, they do not model 
them as explicitly as LDA and CTM.

In   paragraph   mode,   LSA   barely   outperforms   random 
guessing (0.33). This implies that LSA heavily depends on 
second and even higher order word correlations, which has 
been   confirmed   in   several   contexts   (Kontostathis   & 
Pottenger, 2002). However, the exact opposite has occurred 
with   VGEM –   non­overlapping   segmentation   of   text  has 
significantly increased its score. VGEM's underlying MSR – 
NSS – explicitly uses first order co­occurrence in its model, 
but nothing else.

LDA and CTM were not statistically different from each 
other.  This is striking because CTM was developed as an 
improvement upon LDA. Perhaps the utility of CTM is not 
realized without very disparate topics, the narrow scope of 
cognitive science papers might render the topic correlation 
of CTM ineffective.

VGEM is statistically equivalent to LDA and CTM. This 
is interesting as it is a much simpler measure. Of course, in 
this   paper   VGEM   used   LDA­derived   dimensions;   this 
means a full LDA training step must be performed to obtain 
these   results.  However,   that   only   needs   to  be   performed 
once per corpus. With dimensions, VGEM only depends on 
two   tabulations:   how   many   documents   contain   a   given 
word, and how many documents contain two given words. 
These can be performed quickly on large or even streaming 
databases. Additionally, the VGEM approach is adaptable to 
new   vocabulary:   as   long   as   the   new   word   appears   in   a 
document with a dimension word, a VGEM score can be 
computed   for   it.   The   other   three   models   would   require 
computationally expensive retraining.

Future Development
Sliding Window
As mentioned in analysis, the paragraph model emphasizes 
locality,  but   interferes  with higher­order  word correlation. 
Preprocessing the text  as a  sliding window will  eliminate 
artificial barriers by overlapping the selected text. This has 
the unfortunate side­effect of greatly increasing computation 
time, which is why it was left out of this analysis. The size 
of the window (either sliding or non­overlapping) could be 
modulated to find parameters   that  best  suit   the data.  This 
analysis might not benefit LDA (which performs worse on 
paragraphs)   but   might   boost   VGEM   performance   even 
higher.
General Corpus

In this analysis, the MSRs were trained on a corpus with a 
narrow   technical   focus   –   cognitive   science   articles. 
Although a substantial number of documents were used, the 
limited breadth of this corpus might be an issue, especially 

when   specialized   vocabulary   is   considered.   Lindsey, 
Veksler,   Grintsvayg,   &   Gray   (2007)   explore   the 
performance   of   MSRs   when   used   on   different   types   of 
corpora,   a   similar   analysis   could   be   performed   on   the 
keyword­matching test.
Larger Parameter Search

In  addition  to   the  corpus  used  and   the  text  windowing 
chosen, there are several variables that affect the outcome of 
the   results.   The   number   of   topics/dimensions   used,   the 
selection of topics for VGEM, and the choice of MSR all 
might   interact   in   complicated   ways   that   can   only   be 
determined   by   a   more   rigorous   examination   of   the 
parameter space.
Automated Keyword Generation

This work lays the foundation for an automated keyword 
selection   system.   Editors  of   scholarly  publications   solicit 
keywords for each submission, mainly to assist in assigning 
reviewers with relevant interest. However, these keywords 
can describe topics too narrow or too broad and are rarely 
consistent   across   authors   (Furnas,   Landauer,   Gomez,   & 
Dumais, 1987). This is not fully alleviated by a fixed set of 
keywords: authors may pick too few or too many keywords, 
and   the   keyword   set   may   be   redundant   or   omit   crucial 
topics.

A   system   built   upon   the   keyword­matching   test   could 
provide a solution to these two problems. For the first, any 
of   the MSRs described can rank the relationship between 
each   paper   and   an   ontology   of   keywords.   A   relatedness 
threshold can determine which keywords to retain for  the 
document and which to discard. As for the second problem, 
the ontology of keywords itself can be generated by topic 
models   such   as   LDA   and   CTM,   much   like   the   VGEM 
dimensions   extracted   from   LDA   as   described   above. 
Theoretically,   these   would   represent   the   'true'   topic 
distribution.

To   test   such   a   system,   more   human   data   would   be 
required. Reviewers of each submission are most qualified 
to   judge   which   keywords   are   most   representative   of   the 
document. When reviewing a paper, they could be sent two 
sets of keywords – author developed and MSR generated – 
and select  which set  they feel  better  suits  the paper.  This 
could   be   expanded   to   provide   keywords   from   multiple 
MSRs

Of course, with such sophisticated ranking systems, one 
questions the usefulness of keywords at all – could we not 
move straight to an automated matching of submissions to 
reviewers?

Summary
We   describe   several   MSRs   of   various   theoretical 
underpinnings and introduce a test that measures the ability 
of MSRs to match human document keyword selection. We 
then   evaluate   each   MSR's   performance   on   this   test.   The 
results demonstrate that topic models perform well and are 
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robust under text segmentation. Additionally, VGEM (with 
LDA­derived dimensions) performs as well as topic models 
with the added benefit of adaptability and speed.   Finally, 
we show how this test is a proof of concept of an automatic 
keyword generation system.
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Abstract 
Computational modeling has rarely been used to study 
questions in animal cognition, despite its apparent benefits. In 
this paper, we aim to demonstrate the value of this approach 
by focusing on work with Clark’s nutcrackers. Like all 
corvids, these birds cache and recover food, by burying it 
under ground and returning to it later. With our computational 
model, we successfully replicate three laboratory experiments 
investigating this behavior. In the process, we provide the 
first integrated computational account of several behavioral 
effects of memory observed in corvid caching and recovery, 
in addition to a new explanation for a known empirical result. 

Keywords: Computational model; animal cognition; corvid; 
Clark’s nutcracker; Nucifraga columbiana; caching; memory. 

Introduction 
Computational models are a favored instrument in the 
cognitive science toolbox (Sun, 2008). Yet, there is an area 
of cognitive science where they are rarely used: That of 
animal cognition research (Penn, Holyoak, & Povinelli, 
2008). Although many computational models are built to 
study other animals (Grimm & Railsback, 2005), the focus 
tends to be on ecological questions, such as ‘what causes 
dominance hierarchies to form?’ or ‘how do individuals 
decide when to migrate?’. In contrast, cognitive questions, 
that concern animal memory, learning, or problem solving, 
are seldomly subjected to this approach. This despite the 
fact that computational models of animal cognition issues 
can be very useful (Penn et al., 2008). 

What we are interested in, is the cognition underlying the 
caching and recovery behavior of corvids. This family of 
birds, which includes crows, jays, and nutcrackers, hides 
food under ground, saving it for later. Recovery can occur 
after hours, days, or months have passed, and depends on 
memory for individual cache sites. This behavior has been 
extensively researched in the laboratory, with a strong focus 
on its cognitive aspects (de Kort, Tebbich, Dally, Emery, & 
Clayton, 2006). All these cache and recovery experiments 
use the same basic paradigm: The birds are offered a bowl 
of food, a discrete set of sites to cache in, and the presence 
or absence of a conspecific, and very little else. 
Nevertheless, the questions asked and the data gathered are 
diverse, and may concern topics ranging from basic memory 
mechanisms to higher-level skills, such as future planning 
and social cognition (de Kort et al., 2006). 

From a computational modeling perspective, this is 
excellent: It means that a single computational architecture 
of corvid cache and recovery cognition can be used to 
investigate a wide variety of cognitive phenomena.  

In this paper, we present a step in that direction by 
focusing on three experiments with Clark’s nutcrackers. 
These North American corvids are completely dependent on 
stored food in the winter months, and a single bird may bury 
up to 33,000 pine seeds a year, spread over thousands of 
different sites. Observational studies suggest that Clark’s 
nutcrackers may recover their caches up to eleven months 
after making them, with a recovery accuracy of over 80%. 
One of the earliest laboratory experiments with these birds 
demonstrated the role of memory in this process: Like all 
corvids, a Clark’s nutcracker cannot relocate caches by 
scent or by search, but only by remembering their location 
(see Kamil & Balda, 1985, for a review). 

Since then, other laboratory experiments, in particular by 
Alan Kamil and Russell Balda, have investigated many 
more features of the Clark’s nutcracker memory system, and 
it is three of these experiments that we replicate with our 
computational model (Balda, Kamil, & Grim, 1986; Kamil 
& Balda, 1990). All three have the same basic setup: The 
birds are tested in an experimental room, with 180 holes in 
the floor. These are spaced in a rectangular grid, 12 x 15 in 
size. Every hole can contain either a sand-filled cup, suitable 
for caching in, or a wooden plug, rendering it inaccessible. 
All subjects are always tested individually, and all sand-
filled cups are smoothed over between sessions. Every 
experiment consists of a sequence of caching and recovery 
sessions. On caching sessions, the birds are offered a bowl 
of seeds to cache; on recovery sessions, the birds are 
hungry, and can only eat by recovering the seeds they have 
previously hidden in the experimental room.  

From these three experiments, four patterns are apparent: 
A decrease in accuracy as recovery progresses, occasional 
return to already emptied sites, a lack of correlation between 
caching and recovery order, and a slight preference for re-
caching in previously used cups. In this paper, we describe a 
computational model that successfully reproduces all four of 
these patterns. Its core component is memory, for cache and 
recovery events. To store these, we draw inspiration from 
the ACT-R (Anderson, 2007) cognitive architecture, and in 
particular, from its account of rational memory (Anderson & 
Schooler, 1991). What we use, is ACT-R’s concept of 
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chunks: A chunk is a small piece of information, with an 
activation that depends on its own history of use, as well as 
that of related chunks. Essentially, what our model does, is 
to encode a bird’s options for caching and recovery as 
chunks, and to compute their total activation based on the 
bird’s memory of where it has cached and recovered before. 
With noise in the activation values of chunks, this 
mechanism is enough to replicate the outcomes of all three 
Clark’s nutcracker experiments under consideration. In this 
way, we provide the first integrated computational account 
of different behavioral effects of memory in corvid caching 
and recovery, and a new explanation for the experimental 
finding that the recovery accuracy of Clark’s nutcrackers 
declines across sessions. What further strengthens the 
validity of our model, is that we have extended it to 
replicate a second set of patterns, concerning cache site 
choice in the scrub jay, another corvid species (van der 
Vaart, Hemelrijk, & Verbrugge, to appear). Thus, the idea 
of constructing a single computational architecture of corvid 
cache and recovery cognition appears to be a fruitful one. 

Model 
Our implementation of the Clark’s nutcracker experiments 
consists of two main components: A simulator and a 
cognitive model. The simulator runs the experiments, while 
the cognitive model is a computational theory of the 
cognitive processes under concern. Motivational processes 
that govern whether the birds want to cache or recover at all, 
are not considered; we simply assume that the birds want to 
cache in caching sessions and recover in recovery sessions. 

The Basics of Chunks 
Our model features two types of chunks: Option chunks and 
memory chunks. Option chunks represent the locations that 
are available for the bird to cache or recover in; memory 
chunks represent the actual cache or recovery events that 
the bird has experienced. Every chunk has two features: An 
identifier and an activation. A chunk’s identifier specifies 
which cup it represents within the experimental room, as 
determined by its x and y location. A chunk’s activation Ai 
consists of three parts: Base-level activation Bi, spreading 
activation Si, and noise; see Equation 1. 
 A chunk’s base-level activation Bi is computed according 
to Equation 2, following ACT-R’s equation for base-level 
learning (Anderson, 2007). Here, tj represents the elapsed 
time t since use j of chunk i, while d is a decay parameter. 
The weighing factor wi is determined by chunk i’s type, and 
is considered in detail further on. The effect is that a 
chunk’s base-level activation depends on its frequency and 
recency of use, and the kind of event it codes for. A chunk’s 
spreading activation Si depends on the activation of other 
chunks, and is discussed later. A chunk’s noise value is re-
computed every time it is evaluated, according to Equation 
3, taken from ACT-R, where n is a parameter that we tune, 
and r is a random value between 0 and 1. 
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For the purpose of computing the activations of chunks, 
time is measured in steps. Every cache or recovery event 
counts as one step, and every non-experimental day counts 
as t steps, where t is a parameter that we tune. This simulates 
the flow of time outside of the experimental sessions.  

The Structure of Caching and Recovery Sessions 
At the beginning of every caching session, the simulator 
informs the cognitive model which cups are available to 
cache in. This is our equivalent of a Clark’s nutcracker 
sitting on its perch, overseeing the room and registering its 
options. Then, every time the cognitive model starts to 
cache, it computes the activation of all its cache option 
chunks, according to Equation 1, and selects the most active 
one. This counts as a use of that chunk, and represents a 
bird’s decision to cache in a particular cup. Once the 
cognitive model has selected its cache site, it caches there, 
and the corresponding cache memory chunk is given a use. 
Caching continues until the simulator asks the cognitive 
model to stop; this is determined by the number of caches 
made by the real birds in the original experiment. 
 A recovery session works in exactly the same way, except 
that it revolves around recovery option chunks and recovery 
memory chunks. The simulator ends a recovery session 
when the cognitive model has successfully retrieved as 
many caches as the real nutcrackers in the corresponding 
experiment are allowed to do. 

The Memorability of Events 
For the purpose of calculating a chunk’s base-level 
activation B, according to Equation 2, cache memory 
chunks are given a weight wcm of 5, while recovery memory 
chunks are given a weight wrm of 2. This is inspired by the 
fact that Clark’s nutcrackers probe a cup with their beaks 
about five times when making a cache, but only about twice 
when attempting to recover (Kamil, Balda, & Good, 1999). 
Option chunks, regardless of type, always carry a weight wo  
of 1, representing the idea that deciding to cache or recover 
is less memorable than actually caching or recovering. 

Inhibition of Return 
To prevent the model birds from returning to recently 
visited sites, every memory chunk spreads negative 
activation, or inhibition, to the corresponding option chunk. 
See Equation 4 for cache chunks, and Equation 5 for 
recovery chunks. To work out the case of Equation 4:      
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The higher the base-level activation B of the cache memory 
chunk cmi, the lower the spreading activation S of the cache 
option chunk coi, and the smaller the odds that the model 
bird will return to that cache site. 

Knowing Where to Recover 
What allows the cognitive model to relocate its caches, is 
the fact that every cache memory chunk spreads positive 
activation to the recovery option chunk that codes for the 
same location; this is included in Equation 5. This has the 
effect that the cognitive model is more likely to try and 
recover in cups where it has actually cached items.  

Experiments 
To validate our cognitive model, we test it against three 
experiments with Clark’s nutcrackers: Experiment 1 from 
Kamil et al. (1986), and Experiments 1 and 2 from Balda & 
Kamil (1990). Here, we describe both the nutcracker 
experiments and our model’s replications of them. Model 
results are the average of 1000 runs, using the parameters of 
Table 1; see the Model section for an explanation of each. 
 

Table 1: Parameter values used in the experiments.  
 

d n f wcm wrm wo 
0.1 2 10 5 2 1 

 
Experiment 1 (Experiment 1 in Kamil et al. (1986))  
In this experiment, the authors measure two aspects of the 
recovery behavior of Clark’s nutcrackers: Their decreasing 
accuracy as recovery continues, and their tendency to revisit 
already emptied sites. To this end, four birds are allowed to 
cache in the experimental room, until they store seeds in 
about twenty cups. Approximately ten days later, three 
recovery sessions are held, on alternate days. In each of these 
sessions, every bird may recover about a third of its caches. 
 
Empirical Results, Kamil et al. (1986) To calculate results, 
recovery accuracy is defined as the total number of caches 
recovered divided by the total number of cups visited. As 
Figure 1A shows, the birds’ average accuracy declines 
significantly across recovery sessions, starting at about 55% 
in session 1 and ending at about 15% in session 3. 

 
Figure 1: Results of Experiment 1, real birds, Kamil et al. 
(1986) and computational model; 1A: Average recovery 

accuracy, 1B: Average revisits to previously emptied sites, 
with standard errors. 

Discussion  In this experiment, the focus is on the repeat 
visits to previously emptied sites. Kamil et al. (1986) 
present two possible explanations for this: Either the birds 
remember their cache sites but not their recovery attempts, 
or they remember both, but continue to make revisits for 
some reason. For our model birds, the answer lies 
somewhere in the middle. When deciding where to recover, 
they follow the recovery option chunk that is currently most 
active. When determining the activation of a recovery 
option chunk, a corresponding cache memory chunk raises 
its activation, while a corresponding recovery memory 
chunk lowers it; see Equation 5. In this calculation, the uses 
of cache memory chunks are weighted five times, while the 
uses of recovery memory chunks are only weighted twice 
(Equation 2, Table 1). As stated previously, this is based on 
empirical observations of caching and recovery events 
(Kamil et al., 1999). As a consequence of this, recovery 
option chunks representing already visited cache sites tend 
to be less active than recovery option chunks representing 
not yet visited cache sites, but they also tend to be more 
active than recovery option chunks representing sites where 
the model bird never cached at all. This is what causes the 
model birds to make revisits. 
 
Experiment 2 (Experiment 1 in Kamil & Balda (1990))  
Here, Kamil & Balda (1990) investigate why Clark’s 
nutcrackers become less accurate across recovery sessions. 
Given that these birds successfully locate their caches up to 
eleven months after making them, it seems unlikely that the 
two-day delay between recovery sessions is causing their 
accuracy to decline. Instead, the authors argue, what may be 
happening is that the birds remember some cache sites better 
than others, for whatever reason. Then, if they retrieve these 
‘best remembered’ cache sites first, this explains why 
recovery accuracy drops. To test this idea, ten Clark’s 
nutcrackers are exposed to two experimental conditions: 
The quarters and the free condition. 
 In the quarters condition, the birds are forced to recover 
their caches by room quarter, while in the free condition, 
they can recover at will. Each condition consists of one 
caching session, followed by four recovery sessions. In both 
conditions, during the caching session, only 32 cups are 
available for caching, eight in every quarter of the room. 
The birds may store seeds until they have created at least 
three caches in every quarter. A week later, recovery 
sessions begin, conducted on successive days. This is where 
the conditions vary: In the quarters condition, only one 
quarter of the room is available for recovery during each 
session, while in the free condition, all cups are always 
open. In the quarters condition, the birds may continue to 
recover until they have retrieved all caches created in the 
available quarter; in the free condition, they are chased out 
of the experimental room after they have recovered 25% of 
their caches. Now the reasoning is that if the birds 
remember some cache sites better than others, their recovery 
accuracy should stay the same across recovery sessions in 
the quarters condition, but decline in the free condition. 
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Figure 2: Results of Experiment 2, average recovery 
accuracy, real birds, Kamil et al. (1990) and computational 

model; 2A: Control condition, 2B: Quarters condition. 
 
Empirical Results, Balda & Kamil (1990) As can be seen 
in Figure 2, the results are as expected: Recovery accuracy 
stays the same across recovery sessions in the quarters 
condition, but declines significantly in the free condition, 
and more quickly than would be expected by chance. In this 
experiment revisits to sites already emptied in previous 
recovery sessions are not counted as errors, because they 
can only occur in the free condition; instead, these revisits 
are ignored when calculating accuracy. In further analysis, 
Balda & Kamil (1990) look for a general relationship 
between caching and recovery order by calculating 
Spearman’s rank order correlations for the 10 birds. Three 
of these are significant, but two are positive and one is 
negative, suggesting that no general relationship exists. 
 
Model Results As can be see in Figure 2, the behavior of 
our model birds is similar to that of the Clark’s nutcrackers: 
Accuracy does not decrease in the quarters condition, but 
does decrease in the free condition. Like the real birds, our 
model birds also show no systematic relationship between 
caching and recovery order in the free condition; of the 
1000 correlations, only 3 are significant. 
 
Discussion From these results, Kamil & Balda (1990) 
conclude that, in fact, Clark’s nutcrackers remember some 
cache sites better than others. For our model birds, however, 
the explanation is different. In principle, they remember all 
cache sites equally, with the exception that the activation of 
cache memory chunks created earlier will have decayed 
more than the activation of cache memory chunks created 
later. However, if this were the explanation for the model 
birds’ decline in recovery accuracy, we would expect to see 
no difference between conditions in this experiment. So 
what explains the model birds’ constant performance in the 
quarters condition, but not the free condition? 

The answer lies in the fact that, in the quarters condition, 
the number of caches that can be recovered remains the 
same across sessions, while in the free condition, it declines. 
When the cognitive model is deciding where to recover, it 
calculates the activations of all its recovery option chunks. 
On average, recovery option chunks representing cache sites 
are more active than recovery option chunks not 
representing cache sites, due to the spreading activation 

coming from cache memory chunks. This is what allows the 
cognitive model to make accurate recovery attempts, most 
of the time. However, noise may cause an ‘incorrect’ 
recovery option chunk to temporarily be more active than all 
‘correct’ recovery option chunks. The lower the ratio of 
‘correct’ to ‘incorrect’ recovery option chunks, the higher 
the odds of this occurring. In the quarters condition, the 
ratio of ‘correct’ to ‘incorrect’ chunks remains the same 
across sessions, because a fresh quarter of cups is available 
every time. In the free condition, by contrast, the ratio of 
‘correct’ to ‘incorrect’ chunks decreases across sessions, 
because the birds continue to recover from the same set of 
cups. This is what explains our model’s performance. 
 
Experiment 3 (Experiment 2 in Balda & Kamil (1990))  
In this experiment, Balda & Kamil (1990) further explore 
the idea of differential memory for different cache sites. 
They hypothesize that perhaps certain cache sites have 
physical attributes that make them particularly memorable,  
such as their placement near certain kinds of landmarks. If 
this is true, the authors argue, it predicts that if the birds are 
forced to repeatedly cache in the same sites, they should 
always cache and recover from them in the same order. 
After all, if specific sites have physical attributes that make 
them particularly attractive, they should always be preferred.  

To test this theory, seven nutcrackers are exposed to an 
experiment with three stages. Each stage consists of a 
caching and  a recovery session, with a week between the 
two, and a week between stages. In stage 1, the birds may 
freely make 15 to 18 caches. In stage 2, for every subject, 
only the cups used as cache sites in stage 1 of the 
experiment are available for caching. In stage 3, this set of 
cups is again available, together with a second set of cups, 
that is randomly selected and of equal size. In both stages 2 
and 3, the birds are allowed to cache in about nine cups. In 
all three recovery sessions, the birds can freely recover. 
Now, the main question is  whether or not the birds will 
demonstrate site preferences by always caching and recover 
in the same order, thus indicating site preferences. 
 
Empirical Results, Balda & Kamil (1990) To analyze 
whether or not  the birds prefer specific cache sites, Balda & 
Kamil (1990) calculate four Spearman’s rank order 
correlations: Between caching and recovery in stage 1, 
between caching and recovery in stage 2, between caching 
in stage 1 and in stage 2, and between recovery in stage 1 
and in stage 2. If a physical attribute is making some sites 
more memorable or more preferable, the birds should 
consistently choose to cache and recover in those sites first, 
producing significant correlations. Instead, the authors find 
no general relationships between caching and recovery 
orders; for all measures, they find a few significant 
correlations for some birds, but they go in both directions. 

Another measure of interest is recovery accuracy within 
sessions. If some sites are more memorable than others, 
recovery accuracy within sessions should decrease, as the 
better remembered sites are recovered first.  
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Figure 3: Results of Experiment 3, real birds, Kamil et al. 
(1990) and computational model; 3A: Average recovery 

accuracy, 3B: Average reuse of cache sites in stage 3, with 
standard errors, birds on the right, model on the left. 

 
For each stage of the experiment, Kamil & Balda (1990) 
calculate the mean accuracy of the first three caches 
recovered, the middle three caches recovered, and the final 
three caches recovered. They find no significant differences 
between the three stages, but they do find a significant 
decrease in accuracy within the three stages; therefore, 
Figure 3A plots pooled accuracy results. 

A final measure of cache site preference is the proportion 
of cache sites re-used in stage 3 of the experiment. If the 
birds choose to cache in particularly preferable sites in stage 
1, we might expect them to still strongly prefer those sites in 
stage 3. Yet, this is not the case: As can be seen in Figure 
3B, when offered their chosen set of sites from stage 1, and 
an equally sized set of new cups to cache in, they choose to 
cache in old cups only about sixty percent of the time. 
 
Model Results Like the real Clark’s nutcrackers, our model 
birds produce no significant correlations between cache and 
recovery orders on any of the measures tested by Kamil & 
Balda (1990). Furthermore, we also find a decrease in 
accuracy within recovery sessions, in all three stages of the 
experiment. Pooled accuracy results are plotted in Figure 
3A. Finally, as can be seen in Figure 3B, in stage 3, our 
model birds re-use cache sites at approximately the same 
levels as the real nutcrackers: They choose to place about 
60% of their caches in old sites, and 40% in new sites.  
 
Discussion From this experiment, Kamil & Balda (1990) 
conclude that Clark’s nutcrackers clearly do not have strong 
site preferences as dependent on physical attributes, or they 
would have consistently preferred to cache and recover from 
the same sites first. Our model birds show qualitatively the 
same patterns. The slight preference for old cache sites in 
stage 3 of the experiment can be explained by the fact that 
the cache option chunks corresponding to the cups that had 
already been chosen in stage 1 of the experiment already 
had two uses by this point, while the ‘new’ cups had none. 
As cache memory chunks only spread negative activation to 
cache option chunks within sessions, this means that the 
average activation of already-used cache option chunks is 
slightly higher than that of not-yet-used cache option 
chunks, explaining the model birds’ behavior. 

General Discussion 
Our computational model raises three main questions: First, 
what does it tell us about Clark’s nutcrackers? Second, how 
robust are its results? And third, how plausible is its design? 

Implications of the Model for Clark’s Nutcrackers 
One of the attractive aspects of our model is that it uses one 
main mechanism, but fits four different patterns. We assume 
that both a birds’ options and its choices are stored as 
chunks in memory, and that spreading activation between 
different chunk types takes care of the rest. This produces 
all four patterns apparent in the empirical data: A decline in 
accuracy both within and between recovery sessions, 
occasional return to already emptied sites, a lack of 
correlation between caching and recovery order, and a slight 
preference for re-caching in previously used cups.  

In addition, we provide a new explanation for an observed 
result: The decline in accuracy as recovery proceeds. In a 
number of different papers, Kamil & Balda (1986; 1990) 
conclude that this is the result of differential memory for 
different cache sites, but in our cognitive model, the same 
effect arises as the result of chance. This seems to be a 
useful alternative theory, because the attempt to discover 
what might make certain sites more memorable than others 
has so far not been successful: As demonstrated by Kamil & 
Balda (1990) in the original version of our Experiment 3, 
Clark’s nutcrackers do not consistently prefer some sites, 
suggesting that physical characteristics of particular 
locations cannot be responsible for different memorability. 
The birds’ familiarity with particular cache sites is also an 
unlikely explanation, as Kamil, Balda & Good (1999) fail to 
find any predictors of recovery accuracy in the amount of 
time the birds spend making each cache. 

However, several aspects of the model still need further 
work. One feature that seems particularly over-simplified is 
that all the cognitive model’s errors are “true errors” – 
failures to retrieve a correct cache site location. However, 
for the real Clark’s nutcrackers, it is probable that many 
errors are in facts acts of exploration. For instance, when the 
costs of making a recovery attempt are increased, the 
number of errors made drops significantly (Bednekoff & 
Balda, 1997). This is clearly an aspect of Clark’s nutcracker 
behavior that we should explicitly consider in future. 

Robustness of the Model’s Results 
When a computational model features free parameters, it is 
important to understand how strongly it predicts certain 
outcomes, and if there are any plausible alternatives that it 
cannot reproduce (Roberts & Pashler, 2000). For our 
cognitive model, this is certainly the case: As soon as noise 
is set higher than 0, in this type of experiment, it cannot fit 
anything but a decline in accuracy as recovery progresses 
(Experiment 2); constant performance is impossible, even if 
decay is set to 0. That constant performance is a plausible 
alternative, is demonstrated by Kamil & Balda’s (1985) 
original theory that this was true of Clark’s nutcrackers. 
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Plausibility of the Model’s Implementation 
Many of our model’s core aspects are derived from  the 
declarative memory module of the ACT-R (Anderson, 
2007) cognitive architecture, lending it some initial validity. 
Of course, ACT-R was explicitly designed to model 
humans, so one might wonder whether our use of it for birds 
is appropriate. However, we do not think that is a problem 
in this case; as ACT-R’s originator John Anderson himself 
notes (2007; page 18) many of the adaptive analyses on 
which ACT-R is based are not specifies-specific. There are 
many indications that, at a functional level, corvid memory 
may not be so different from ours; several experiments with 
scrub jays show that they are capable of flexibly integrating 
their memories, and have episodic-like “what, where, when” 
recall of past events (see de Kort et al., 2006, for a review.)  

Our adaptations of the architecture itself might be more 
problematic. While ACT-R allows for spreading activation, 
it is a fixed amount, and it spreads only from ‘goal chunks’ 
to ‘target chunks’, depending on the strength of the 
association between them. In our cognitive model, it is a 
chunk’s own activation that spreads, and this activation can 
even be negative, inhibiting a chunk’s retrieval. The main 
function of this mechanism is to prevent the model birds 
from repeatedly caching or recovering in the same location. 
One might wonder if such a mechanism is necessary at all; 
if, instead, the real birds might be using a behavioral 
strategy to avoid revisits, such as ‘recover a cache, look 
away, attempt to recover a cache in the field of view now 
visible’. This, however, does not appear to be a likely 
explanation; after successfully retrieving seeds, Clark’s 
nutcrackers fly back to a central perch to eat them (Kamil & 
Balda, 1985). This means that, when they are deciding 
where to recover next, a very large portion of the 
experimental room is visible to them. This makes it very 
difficult to think of a behavioral strategy that avoids revisits 
to the extent that the real Clark’s nutcrackers do. 

Of course, this does not imply that our technique of 
spreading negative activation is necessarily the best way of 
implementing an inhibition of return mechanism. It is 
possible that the same effect could be achieved by instead 
increasing the activations of all other chunks, but we 
believe our solution is computationally easier, and 
intuitively plausible. Interestingly, other recent ACT-R 
adaptations also make similar changes to the architecture: 
Van Maanen & van Rijn (2007) let activation spread 
between chunks of different types, and Juvina & Taatgen 
(2009) attach negative activations to chunks. Although the 
context and justification is different, this negative activation 
mechanism serves the same function as ours – suppression 
of repetition – and operates in a similar fashion, with 
inhibitory activation that decays over time. 

Conclusions 
In this paper, we have shown that our computational model 
of corvid cache and recovery cognition can successfully 
reproduce the outcomes of three experiments with Clark’s 
nutcrackers, fitting four different patterns. 

In addition, our computational model has provided a new 
explanation for the fact that Clark’s nutcrackers become less 
accurate as recovery progresses. 
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Abstract 
Second Life™ is a 3D virtual world with unlimited potential 
as a tool for cognitive modeling. This paper discusses the 
many advantages of using Second Life versus other 
simulation environments, the aspects of cognitive modeling 
that this simulation environment may be appropriate for, the 
interface setup, and various technical issues. Two simulations 
are provided as examples of interfacing Second Life with 
cognitive models, including an example where the high-
fidelity complexity and constraints of Second Life may help 
to distinguish between models and/or parameter values that 
produce varying performance in different task environments. 

Keywords: cognitive modeling, Second Life, 3D virtual 
worlds, embodiment, ACT-R, task environment, cognitive 
architectures. 

Introduction 
The 3D virtual world Second Life™ offers a potential 
environment for training and testing cognitive models. 
Second Life is populated by hundreds of thousands of 
online users, and perhaps millions of virtual objects. This 
technology may be of interest to the cognitive modeling 
community for a variety of reasons, including scalability 
and scope testing, skill transfer simulations and long-term 
model development, emerging behavioral and social 
simulations, etc. Second Life provides a very rich, dynamic, 

and interesting world, (compared with the simple simulation 
environments that are typical in cognitive modeling), that is 
well-supported and easy to use and to redesign as needed 
(compared with robotics), with unlimited tasks, and the 
opportunity for life-long (rather than simulation-long) 
learning for a cognitive agent. Some Cognitive Science 
researchers have already begun to explore Second Life for 
demo and simulation purposes (e.g. Burden; Merrick & 
Maher, 2009; Rensselaer Polytechnic Institute, 2008), but 
more work with this environment is needed to take full 
advantage of its features.  

The rest of this paper discusses the advantages of Second 
Life over alternative simulation environments for cognitive 
modeling, the types of simulations that Second Life may be 
appropriate for, and some key technical issues for modeling 
in this environment. Finally, two simulations are provided 
as examples of how cognitive models may be interfaced 
with Second Life, and how the high-fidelity complexity and 
constraints provided by the virtual world may be useful in 
distinguishing between models and/or parameter values that 
produce varying performance in different task 
environments. 

Why Second Life? 
The attraction of Second Life is the same as that of robotics 

Figure 1. Cognitive Agent exploring a park in New York. ACT-R model controlling the agent. 
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– embodiment (minus the many hassles of robotics, 
discussed below). A large portion of human cognitive 
abilities is the result of the complexities and consistencies of 
our environment. Thus, a dynamic, rich world, with physical 
laws and consistent object properties may provide for more 
fidelity than simpler simulation environments, and thus, 
more useful models of cognition. 

Second Life’s complexity and constraints may help to 
avoid some ‘false positives’, as well as ‘misses’ in cognitive 
modeling. A false positive may occur when a cognitive 
model accounts for human data in a simplified task 
environment, but cannot scale in the real world. A miss may 
occur when a cognitive model cannot fit human data without 
the added complexity and constraints of the real world; thus, 
the use of a simplistic simulation environment may cause 
for the model to be incorrectly dismissed. 

Second Life vs Robotics 
If real-world fidelity is so important, why not just use the 
real world? There are many limitations to working with 
robots in the physical environment, versus simulated agents 
in virtual reality. In addition to the financial expenses, one 
major problem is that robotics work involves 
disproportionally more work on the ‘body’ as opposed to 
the ‘mind’. In the end, a slight change to the task 
environment (e.g. taking a driving robot off-road) may 
require changes in both sensory and motor mechanisms.  

While biological agents are endowed with appropriate 
sensory-motor systems for their world, and virtual agents 
for theirs, robotic agents are in no way equipped to handle 
the dynamics of the real world. For example, the number of 
sensors on today’s robots, compared to the amount of 
sensors that a biological cognitive agent might have, is 
simply laughable. Virtual worlds like Second Life provide 
for environmental complexity and fidelity, as well as 
proportionally suitable sensory-motor abilities of virtual 
agents. Said simply, by using Second Life as opposed to a 
robot platform, researchers may be able to focus on 
cognitive research, and avoid unnecessary investments of 
time and finances.  

Other Simulation Environments 
Many other virtual simulation environments exist, and may 
be used for cognitive modeling. Some of the alternatives 
have better graphics, which can be very useful for demo 
purposes, some have a faster interface for brain-body 
communication, etc. However, due to the sheer size of the 
Second Life user community, due to its steadily increasing 
popularity, it makes for a much richer, ever-growing world. 
Additionally, the commercial value of Second Life is 
reflected in greater expansion of its technical capability and 
technical support. Using Second Life over a less popular 
simulation environment may be equated to using the World 
Wide Web over a Bulletin Board System. 

What in the world of Cognitive Modeling is Second 
Life good (and not good) for? 
Second Life may NOT be employed for modeling 
millisecond response times, nor is it appropriate for large-
scale parameter exploration. Rather, Second Life is best 
used for modeling performance, and learning curves. 
Specifically, Second Life is best employed for (1) testing 
the scope of models’ learning/decision-making mechanisms 
in complex and dynamic, distractor-full environment, (2) 
modeling adaptation and skill transfer, and (3) social 
modeling. 
Complexity and Constraints 

Spatial navigation is a prime example of a task that 
requires the complexity and constraints of Second Life for 
cognitive modeling. When modeling navigation, researchers 
often unrealistically represent the environment as a flat grid 
of adjacent spaces (e.g. Braga & Araujo, 2003; Voicu & 
Schmajuk, 2002). Some alternatives may be to include two-
way or one-way wormholes. Different models may thrive in 
different environments, and so the choice of task-
environment is not trivial. Second Life may be employed to 
provide realistic uncertainties and constraints. Although 
Second Life bears many geographic properties (e.g. if space 
A can be reached from space B, usually this means that 
space B can be reached from space A), it also provides 
many realistic uncertainties (e.g. object B may be in view 
when approaching object A from the East, but not from the 
North; object C may be dynamic, sometimes to be found in 
proximity with A, and sometimes in proximity with B, etc.). 
The use of a high-fidelity environment may help to deduce 
high-fidelity cognitive models and parameter sets. 
Task Variety and Skill Transfer 

Second Life may be used for simulations of a variety of 
tasks, from playing with building blocks, to maze-running, 
to soccer, etc. Most tasks are very easy to set up, require no 
programming or 3D modeling background, and are reusable 
by other researchers. Of great importance is the fact that an 
agent may ‘live’ and develop in this rich world, learning 
new skills along the way. The multitude of tasks can also 
help in modeling skill-transfer – an important qualification 
of human intelligence. A cognitive agent may adopt their 
soccer skills to hockey, walking skills to driving, and block-
building skills to tower of Hanoi, Tetris, and sculpting.  

Technical Setup and Complications 
The Second Life programming language, LSL, is required 
for interfacing Second Life objects with cognitive models. 
Although the basic algorithm is relatively simple (capture 
and send sensory information to model; perform any actions 
returned by the model), some complications are bound to 
arise.  
Land Ownership 

There are many parts of the Second Life world where new 
objects cannot be created because the landowner does not 
allow this. There are parts of the world, called sandboxes, 
where users are encouraged to build and script their objects; 
however, objects usually cannot remain in most sandboxes 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

419



for longer than a few hours. Thus, sandboxes may be fine 
for building models and running short simulations, but not 
for longer lifespans or more controlled simulations. One 
alternative is to buy land. Another may be to connect an 
object to an avatar (see a lengthier discussion of this in the 
Region Restrictions section below). 

One last alternative is to use land that may be offered for 
research purposes by a university or a private research 
institution. For example, the Second Life AI Laboratory 
(SLAIL) provides booth size spaces for free to anyone 
undertaking research in AI (cognitive modeling included), 
and particularly AI in virtual worlds, providing a permanent 
exhibition, meeting and collaboration space for the 
community. The space may be found on Daden Cays in 
Second Life – (http://slurl.com/secondlife/Daden%20Cays/152/44/22; 
for more details visit http://knoodl.com/ui/groups/ 
ArtificialIntelligenceGroup/wiki/SLAIL). 
Region Restrictions 

Scripted objects in Second Life are restricted from 
entering certain regions. If a modeling simulation requires 
travel beyond known open regions, it may be necessary to 
use an avatar (an avatar is a representation of a human user 
in Second Life, and only exists as long as the user is logged 
on). One simple way to resolve this issue is to attach the 
object interfaced with a cognitive model to an avatar. For 
example, the neon-blue sphere floating above the avatar’s 
head in Figure 1 is an object scripted to interact with a 
cognitive model. For demo purposes the scripted object can 
be made see-through, tiny, or made to look like an article of 
clothing (e.g. a hat). 
Firewall Issues 

When a computer running a cognitive model is using 
DHCP, or if it is behind a firewall, a dedicated web server is 
necessary for interfacing the model with the Second Life 
world (Figure 2). Alternatively, LSL scripts can answer 
HTTP requests from the cognitive agent directly through 
their XML-RPC service (XML-RPC is a standard for XML 
structure for sending function calls to remote systems). This 
latter route is sometimes unreliable and may be deprecated 
("Category:LSL XML-RPC - Second Life Wiki," 2009), but 
may be faster than the setup shown in Figure 2, depending 
on the speed of the researcher-owned web servers. 
Asynchronous HTTP Calls 

A question may arise when a cognitive model sends a 
command to its Second Life ‘body’ (e.g. “move toward the 
fountain”, “raise left arm .2m”, “push the block object”), 
and receives information back about the state of the world, 
as to the time of the state. The model may require 
information as to whether its last action has been performed, 
and whether the HTTP responses are in order. This is easily 
resolved by sending a timestamp along with the last 
performed action from the body script to the model. 

 

 
Figure 2. Second Life setup for models on DHCP or behind 

a firewall. Simulation shown at bottom has 3 models 
exploring a maze with cheese and water. 

 
Memory Issues 

Second Life scripts are relatively restricted in memory 
(16KB total for Byte-code, Stack, Free Memory, and Heap). 
This may be a serious restriction for collecting data about 
the state of the agent and keeping a copy of the prior state 
(prior state information may be necessary to avoid sending 
unchanged information to the model, saving both speed and 
bandwidth). This is not an issue when world-state contains 
only the last taken action plus the names of a few 
surrounding objects, but becomes an issue when collecting 
all possible information (object id, name, description, 
position, direction, velocity, dimensions, etc.) for a large 
number of objects.  
Scanning 

Other complications may arise in the way that a model in 
Second Life may be allowed to scan around for nearby 
objects. The scan is performed as a sphere, rather than a 
cylinder. This may take unnecessarily long for a large 
radius. A smaller radius may be scanned for a simulated 
sense of smell, but for long-distance vision, scanning must 
be restricted from a sphere to a smaller cone.  
Speed 

The greatest complication is that the perception-action 
protocol can take a relatively long time. This, of course, 
depends on the setup of scanning and HTTP requests. The 
greater bottleneck seems to be the maximum rate of HTTP 
requests (capped at 25 requests in 20 seconds). The 
assumption in modern cognitive architectures (e.g. 
Anderson & Lebiere, 1998) is that visual information is 
used at most 10 times per second (50ms for attention shift, 
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and 50ms for attending the information). Thus, it seems that 
Second Life vision is about 10 times slower than may be 
desired for real-time cognitive models. This is not a major 
problem for interacting with static objects or other (similarly 
retarded) models, but it is a problem nonetheless. However, 
the technical support enjoyed by the Second Life 
community carries the promise of near-future solutions for 
these issues. 

Specifics of Sample Simulations 

Simulation 1 
The first simulation was attempted to examine how a 
cognitive architecture may be interfaced with Second Life. 
The ACT-R cognitive architecture (Anderson & Lebiere, 
1998) was connected with a Second Life script through an 
intermediary web server, as displayed in Figure 2. A 
scripted object was created in Second Life that would scan 
the world every few seconds, and send the state of the world 
via an HTTP call to the intermediary web server. On the 
ACT-R side, a cognitive model, in a perceive-think-act loop, 
would request an updated world-state from the intermediary 
web server, decide upon an action, and send motor 
commands back to the server.  
Second Life Setup 

The Second Life scripted object was attached to an avatar 
for greater exploratory capabilities (without an avatar 
scripted objects are restricted from many lands). The script 
performed a regular scan of nearby objects with a radius of 
2m. If less than 5 objects were detected, the radius was 
increased, and another scan was re-initiated, until at least 5 
objects were detected. Much more information was 
collected and transferred to the ACT-R model than was 
necessary for this simulation (e.g. object position, velocity, 
size, etc.), as this helped to examine the technical limitations 
of the setup. In addition, information sent to ACT-R 
included a timestamp, and the latest received motor 
command. 
ACT-R Interface and Model 

ACT-R visual and motor components were interfaced for 
Second Life in the following manner. Lisp functions were 
added to send out motor commands to the intermediary web 
server, and to retrieve world-state from the server. The 
ACT-R visual information (visicon) was filled with Button 
objects, each Button containing the name of its 
corresponding Second Life object found in the world-state 
list from the server. Upon clicking one of the button objects, 
a command would be issued, via a call to the web server, to 
move toward the corresponding object.  

The ACT-R model employed to examine this interface 
was the Goal-Proximity Decision model (Veksler, Gray, & 
Schoelles, 2009). The details of the model are not provided 
here, as this is tangential to the focus of this paper. The 
general idea of the model is that it attends all objects in the 
visicon, and clicks the object with the greatest strength of 
association to the current goal (plus or minus noise). The 

strength of association between objects, in turn, is updated 
based on experienced temporal proximity of those objects. 
Simulation Results 

The Second Life script was first limited to find only the 
objects that belonged to its owner, which comprised sixteen 
randomly distributed boxes that served as navigational 
landmark (Figure 3). The model was presented with each of 
the sixteen objects as its goal, one at a time, until it 
successfully found each object.  

 

 
Figure 3. Second Life simulation. Controlled environment, 

with researcher-owned objects. 
 
Upon the successful completion of this exercise, the 

scanning restrictions were removed, allowing the model to 
‘see’ all objects within its scanning radius. The model was 
moved to an object-rich region, Washington Square Park in 
Manhattan (Figure 1), and manually given various objects as 
its goals (e.g. fountain, bench, store). Although the model 
was able to successfully navigate most of the region, some 
distant objects were unreachable due to the chosen scanning 
procedure. Thus long-distance vision, as discussed in the 
Scanning section above, may be necessary for most 
exploratory agents.  

Simulation 2 
The purpose of the second simulation was to examine 
whether Second Life can be set up to help distinguish 
between sets of model parameters for a Reinforcement 
Learning model. Reinforcement Learning (Sutton & Barto, 
1998) is a widely implemented model of trial-and-error 
behavior. The specific form of Reinforcement Learning that 
was implemented in this model was a closed-form version 
of the ACT-R decision/utility-learning mechanism. The 
model chose which object to approach based on the utility 
of that object, given the specific goal (plus or minus noise). 
Upon reaching its goal, the model updated the utility of all 
encountered objects for reaching that goal based on the 
ACT-R utility-learning equation (Bothell, 2008).  
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The details of the model are relatively tangential to the 
focus of this work. What is important, however, is that there 
are several free parameters in this model (e.g. exploratory 
noise, learning rate, etc.), and that the same parameter 
values may cause different behavior for different task 
environments. Thus a high-fidelity task environment, like 
Second Life, may be necessary to distinguish between 
different parameter sets. 
Different Task Environments 

Parameter searches were performed with the model using 
three different maze structures. Each maze contained sixteen 
available spaces for the model to explore. The mazes were 
rated according to the average difficulty of finding each 
possible maze location from each possible starting point, by 
means of a random walk. The easy, medium, and difficult 
mazes required on average 181.39, 369.83, and 793.79 
steps, respectively. The easy and medium difficulty mazes 
were set up in a grid-like fashion, with bidirectional 
movement allowed between any two neighboring locations. 
The easy maze, shown in Figure 4A, allows movement in all 
eight directions to its neighboring cells (N, NE, E, SE, S, 
SW, W, and NW). The medium difficulty maze, shown in 
Figure 4B, allows movement in four directions (N, E, S, W). 
The difficult maze, shown in Figure 4C, was set up with 
unidirectional and bidirectional connections, without regard 
for grid consistency.  

 

 
Figure 4. Sample navigation task environments. Numbered 

boxes signify locations, arrows signify the directions in 
which an agent may travel. 

 
Different Parameter Sets 

The model ran through each of the three tasks 60 times 
for each parameter set (noise was varied between .01 and 
30, learning rate was .001 and .2). Each model run consisted 
of five bins, where the model had to reach sixteen goal in 

each bin (every possible location was set as a goal, in 
random order). The best performance (as measured by the 
average number of steps taken by the model to reach a goal 
in bin 5) for each maze was achieved with a different set of 
values for the free parameters in the model. The best 
parameters for the easy maze (paramsEasy) was achieved 
when the noise parameter was set to 5 and the learning rate 
was .1, for the medium difficulty maze (paramsMed) when 
the noise parameter was 25 and the learning rate was .1, and 
for the difficult maze (paramsHard) when the noise 
parameter was 15 and the learning rate was .01. A 3x3 two-
way ANOVA revealed a significant interaction effect of 
ParameterSet × MazeDifficulty, F(4, 531) = 115.42, p < 
.001, a significant effect of ParameterSet, F(2, 531) = 
167.60, p < .001, and a significant effect of MazeDifficulty, 
F(2, 531) = 346.52, p < .001. Post-hoc Tukey HSD 
comparisons revealed significant differences between the 
performance of all three parameter sets at the p < .05 level.  
Second Life Simulation 

Given the differences between paramsEasy, paramsMed, 
and paramsHard on the three types of task environments, it 
may be appropriate, and even essential, to establish which 
parameter set is best in a high-fidelity task environment. A 
Second Life simulation was set up as a proof of concept. 
Figure 2 is an accurate representation of the modeling setup, 
with a connection through the intermediary web server, with 
the models being represented as mice in a maze, with 
random poles and boxes (serving as landmarks), and three 
possible goals: swiss cheese, cheddar cheese, and water 
bowl. The complexity of the task, as well as its fidelity, was 
augmented with a greater number of objects and the 
presence of dynamic objects (other mice). The model was 
minimally altered so as to receive perceptual information 
from Second Life, and send motor commands back (the 
perception and action functions from Simulation 1 were 
reused).  

The focus here is (1) to point out that choosing a task 
environment for cognitive modeling is not trivial (2) that 
Second Life, in theory, is an appropriate environment for 
task simulations, and (3) that Second Life, in practice, can 
be successfully interfaced with cognitive models. On the 
latter point, the model ran once with each of the three 
parameter sets, each run consisting of ten bins, where each 
bin comprised finding the three goals, one at a time, in 
random order. Early results (see Figure 5) suggest that the 
three parameter sets eventually converge, but this may take 
an extremely long time (≈27 walks through the maze, 
which, at worst, is almost 3000 steps). The average number 
of steps taken to reach a goal is 35.9 for paramsMed, 99.4 
for paramsEasy, and 148.5 for paramsHard.  

These results are not interpretable without more data, nor, 
even if the trend should continue, could we assume that the 
medium difficulty maze shown in Figure 4B may be used in 
place of high-fidelity task environments. Instead, the 
suggestion is that these task environments should be used in 
combination: one to quickly test many models and 
parameter values, the other to test whether a model could 
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scale up to the complexities of dynamic and uncertain 
worlds.  

 

 
Figure 5. Second Life simulation results from three different 

sets of parameter values. 

Summary 
In sum, Second Life may be an important tool for cognitive 
modeling. It provides a better balance of real-world 
complexity and constraints than simpler simulation 
environments, less hassle and financial investment than 
robotics work, and it stands out from other 3D virtual world 
with a rich, massive-multiuser environment, and extensive 
technical support. The Second Life environment may be 
easily interfaced with cognitive architectures, as described 
in Simulation 1, or with closed form models, as described in 
Simulation 2. As Simulation 2 suggests, Second Life 
modeling work can help to answer questions as to the 
fidelity of various cognitive mechanisms and/or parameter 
values whose performance may vary in different task 
environments.  

Future work will address rigorous statistical comparison 
of model performance in Second Life versus other task 
environments. Other plans include implementation of long-
distance visual scanning coupled with head-movements, and 
exploration of a greater variety of tasks (e.g. soccer, 
building blocks, hide and seek).  
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Abstract 
This project created virtual patients who can respond to 
hypothetical therapeutic interventions in an agent-based 
model of dementia management. We evaluated the overall 
response of patients by collecting statistics and observing 
their group behaviour.  In this model virtual patients were 
actively seeking treatment for symptoms of depression 
associated with dementia. Responses to hypothetical 
therapeutic interventions consisted of both generic (common 
to all patients) and individual (modified for each patient) 
components. The preliminary results show that even simple 
sets of rules governing behaviour of virtual patients can lead 
to quite complex responses at the group level. Furthermore, 
the lessons learned from monitoring the group behaviour 
provided valuable feedback which is now being used to 
modify the creation of individual virtual patients e.g. 
implementation of histories of previous successful and 
unsuccessful treatments. 

Keywords: Virtual Patients, Dementia Management, 
Decision Support. 

Introduction 
Computer models are now frequently applied in medicine 
and public health policy. For example forecasting of 
prevalence and incidence of specific diseases is performed 
routinely with the aid of computer tools. The application of 
agent-based modelling is not yet as popular but potential 
benefits of such approaches have already been recognised in 
such areas as computational biology, computerised clinical 
guidelines and modelling of specific symptoms in disease 
conditions (Kitano, 2002). . 

Virtual patients as intelligent reactive agents 
Implementation of software-generated agents as virtual 
patients in computer simulations is now well established 
(Huang, Reynolds & Candler, 2007). There is still an 
ongoing debate about what constitutes intelligent behaviour 
but it is reasonably well accepted that autonomous agents 
which are able to respond to changing environment can be 
classified as ‘intelligent'. However, more precise definitions 
are needed in particular with the onset of modelling of 
social behaviours (Decety & Grezes, 2006). It has been 
demonstrated experimentally that important physiological 
characteristics of real patients can be mapped and modelled 

accurately (Grinberg, Anor, Madsen, Yakhot & 
Karniadakis, 2008). Various attempts have been made in the 
past two decades to also include more complex social 
behaviours. In such models an expected range of behaviours 
may include perception of emotional and cognitive states of 
other agents (Meyer, 2006). In real life, decisions made by 
individual patients in response to a changing environment 
and severity of symptoms can be complex and 
interdependent. In clinical settings for example the onset of 
depression symptoms in dementia patients may trigger a 
sequence of events leading to hospitalisation which in turn 
may trigger further changes to a patient’s life.  Such a chain 
of events may be reversible in some individuals but in 
others may lead to severe limitation of future life choices. It 
would be advantageous to have similar complexities 
reflected by a set of rules describing behaviour of virtual 
patients in computer modelling projects. 

Group behaviour in an agent-based model 
The definition of group behaviour is not clear and different 
researchers put emphasis of different aspects of behaviour 
that are not predicted beforehand (Wu, Hu, Zhang & Fang, 
2008). In its simplest form it is just the ‘average’ behaviour 
of the group, no more than sum total of the entire 
population. However if virtual patients become more  
autonomous e.g. their trajectory reflects their past history of 
symptoms, then their behaviour may become much less 
predictable. Health policy makers are predominantly 
interested in the overall response of larger populations to 
treatment options. They want to estimate the potential health 
and economic benefits of future health initiatives (Edge, 
2008).  It is generally accepted by health policy makers that 
the group is a collection of “typical” individuals; therefore 
what is therapeutically beneficial to the group will also be 
beneficial to the average individual. 

Predicting outcomes of therapeutic interventions 
Treatment of symptoms of depression in dementia patients 
is complex and factors causing symptoms are often 
unknown. Therapeutic interventions fall broadly into two 
groups: pharmacological, e.g. antidepressant medication, 
and non-pharmacological, e.g. cognitive-behavioural 
therapy, environmental improvement or increased 
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interactions with others in daily activities (Zec & Burkett 
2008). Depression is frequently associated with dementia 
and around 20-50 % of patients will suffer from depression 
at various levels of severity and duration during the course 
of their decline (Zubenko, Zubenko, McPherson, & Spoor, 
2003). It is beneficial to diagnose depression early and treat 
symptoms effectively. The costs associated with treatment 
can be modest if a patient is just given an antidepressant. 
However, delayed or inappropriate treatment can interfere 
with recovery, which can be costly in personal and financial 
terms. Therefore only well proven treatments are accepted 
for implementation. However there is uncertainty about how 
effective different therapeutic strategies are for individual 
patients and if they have any cumulative effect or 
synergistic action when two different interventions are 
combined. Not all patients respond equally to even well 
proven pharmacological interventions (Bains, Birks & 
Dening, 2002). Similarly patient responses to less effective 
but long lasting treatments such as environmental changes 
and psychological interventions are even less predictable. 
Accurate projections of outcomes derived from such 
interventions are very difficult to make. Therefore clinicians 
and health policy makers could benefit from forecasts made 
with an aid of computer models. 

Aims 
The aim of this project was to test the following 
assumptions: (a) essential parameters of therapeutic 
interventions can be implemented into an agent-based 
model as a cluster of global variables and simultaneously 
available to all agents in the model, (b) the short and long 
term outcomes of hypothetical therapeutic interventions can 

be detected and estimated from the emergent behaviour of a 
large group of virtual patients. These assumptions were 
tested in the laboratory setting by using an existing model of 
dementia management and introducing an optional 
functionality of virtual treatment intervention. This paper 
presents interim results and hopes to contribute to the future 
design of virtual patients. 

Methodology 
The AnyLogic simulation software was used as a 
programming tool to build the model (http: 
//www.xjtek.com). Ten thousand virtual patients were 
initialised at the start of the experiment with characteristics 
such as age, gender, severity of dementia and severity of 
depression. Each patient was initialised with a different set 
of parameters according to probability distribution tables 
specific to the population of people with dementia in 
Australian context. The time-step of the model was 1 week 
and the model was allowed to run for maximum 1500 steps 
which is equivalent of around 30 years. The virtual patients 
behaved with relative autonomy and were able to respond to 
changes in their environment, most importantly to the 
introduction of new therapeutic interventions. The computer 
interface was developed as part of the BPSD management 
project at Dementia Collaborative Research Centre, Faculty 
of Medicine, UNSW Sydney (http://bpsd.dementia.unsw. 
edu.au/models). 

Virtual Patient 
The blueprint for the patient’s behaviour was expressed by 
statecharts, variables and functions as shown on Figure 1. It 
covered such characteristics as age, gender, severity of 

Figure 1. An example of the statechart with variables (V) and functions (F) 
which govern the behaviour of each individual patient. 
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dementia, severity of depression, chronic health status and 
place of residence. At the time of initialisation of the model 
each patient was allocated with randomly selected 
characteristics. During the run time of the model patients 
acted autonomously and they were constantly re-evaluating 
their own status e.g. rules and all functions were called to 
recalculate variables and send messages. The AnyLogic 
simulation engine which underpinned the computer 
simulation took care of synchronisation and parallel 
execution of all agents and their interaction with the 
environment. Figure 1 illustrates some of the components of 
the virtual patients that relate to the symptoms of depression 
and acceptance of treatment interventions. The overall 
design of virtual patients included five other statecharts with 
numerous functions and variables used to determine agent 
behaviour and graphical display during animation. 
 
The transitions between states were driven by a set of rules 
which were identical for each patients therefore leading to a 
generic response. As time progresses each patient modifies 
his or her own characteristics according to choices made in 
previous steps resulting in individualised responses. 
Therefore the overall response of the patient is a mixture of 
both generic and individual components with increasingly 
variable behaviour. 

Therapeutic intervention 
Dynamic changes in virtual patients’ behaviours were 
triggered by access to therapeutic interventions. The goal of 
each patient was to reduce the severity of depression if 
treatment was available. Two hypothetical interventions 
were available in the model: intervention TxA being 
equivalent to non-pharmacological treatment of depression 
e.g. training of nursing staff on how to increase social 
participation of patients, and intervention TxB representing 
pharmacological treatment e.g. prescription of an 
antidepressant such as sertraline (Bains, Birks & Dening, 
2002). Intervention TxA had a weaker therapeutic effect 

(0.3) but was applied for much a longer period of time than 
intervention TxB, which had larger effect size (0.5) but was 
available only for a maximum of 12 weeks within a period 
of 3 years (Bains, Birks & Dening, 2002). The virtual 
patient had a choice of accepting the treatment and 
benefiting from it at the rate specified by an initial setting 
through the user interface as illustrated on Figure 2. The 
accuracy of modelling therapeutic interventions strongly 
depended on the accuracy of the parameters that were used 
to characterise different aspects of these interventions. For 
example it is known from the literature that depressed 
patients respond differently to treatment when their 
symptoms are at different severity levels. The speed of 
recovery may be initially very fast and then may slow down 
with the patient remaining mildly depressed for a longer 
period of time or may even stop responding to treatment 
(Bains, Birks & Dening, 2002). The user interface also 
included options to enable spontaneous improvement and/or 
spontaneous deterioration. Each patient was assigned with a 
randomly selected probability of responding to such 
improvement or deterioration.  

Interaction between virtual patients and 
therapeutic interventions 
10,000 virtual patients  were initialised at the beginning of 
the experiment and each patient acquired general 
characteristics common to all. The required characteristics 
were either taken from look-up tables or were randomly 
allocated if appropriate. For example the initial severity of 
depression was randomised but mortality rates were taken 
from a table according to patient’s age group. Once 
initialised, all agents behaved autonomously. In the current 
version of the model virtual patients do not communicate 
with each other but they communicate with the 
environment. They actively seek treatment if the severity of 
their symptoms is above a certain threshold. Each virtual 
patient can accept therapy if the required therapy is 
available during the patient’s lifetime. Figure 3 illustrates 

Figure 2. The user interface for setting up attributes of two therapeutic interventions.  
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this process of periodic checks of the availability of 
treatment. The group behaviour of patients was monitored 
continuously during the experiment by acquiring relevant 
statistics from each patient, for example, the overall number 
of patients was monitored at each level of symptom 
severity. Results were plotted simultaneously and analysed 
for differences. The availability of TxA and TxB was 
switched on and off via a button on the user screen but it 
could also be triggered by a timer at specific time intervals. 
The characteristics of therapeutic interventions were 
expressed as a cluster of global variables which the 
experimenter could modify before running the model. 

Results 
Only preliminary results of the experiments are presented in 
this paper. They consist of responses of five groups of 
patients selected by the increased level of severity of 
symptoms. At the time of initialisation of the model 
allocation of the patient to each of the severity levels was 
39% with no symptoms of depression, 30 % with mild, 20 
% with moderate, 10 % with severe and 1% with depression 
so severe that it required urgent intervention. Each virtual 
patient who responded to treatment contributed to the 
statistics for these levels as they either improved or 
deteriorated with their symptoms. Patient who did not 
respond to treatment remained at the same level unless they 

randomly responded to spontaneous improvement or 
deterioration. 
 
Response without therapeutic intervention 
 
A graph presented in Figure 4 shows the generic behaviour 
of virtual patients over time in the absence of any 
therapeutic intervention. The number of patients with a 
particular level of severity remains almost the same through 
1500 steps (weeks) of the model’s runtime. Some variability 
of the numbers is associated with the stochastic nature of the 
patient’s behaviour. For example new patients were 
constantly initialised according to projected increases in 
population, while other patients were dying in accordance 
with age-dependent mortality rates. Spontaneous 
deterioration and spontaneous improvement in symptoms of 
depression were also contributing to small changes in 
baseline percentages. It is important to mention that all 
virtual patients had the capacity to make decisions e.g. 
accept the treatment and to decrease symptoms of 
depression over time. However such decisions could not be 
made until the therapeutic intervention was available.  For 
example if the patients belief was indicating preference of 
TxA (non-pharmacological treatment) and no such 
intervention was made available or only TxB was available, 
the patient continued without treatment . The same situation 
would occur in the case of preference for TxB when only 

Figure 3. Sequence of steps in communication leading to therapeutic response. 
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TxA was provided. Therefore the results in Figure 4 would 
be the same when another therapeutic intervention was 
available but none of the patients accepted it. 
  

 
 
Figure 4. Percentage of virtual patients with different levels 
of symptom's severity. 
 

Response to therapeutic intervention 
The response of virtual patients to the introduction of 
therapeutic intervention was certainly not homogenous and 
at the group level changes are clearly visible. Figure 5 
shows changes in five groups of patients according to their 
level of symptom’s severity.  
  
 

 
 
Figure 5. Response of virtual patients to therapeutic 
intervention TxB. 
  
An improvement in moderate and severe groups (20% and 
10% baseline) is indicated by a decrease in number of 
patients at these levels. However the numbers of patient 
with mild or no symptoms show strong increases. This can 
be easily explained when we consider that when patients 
with severe symptoms improve they “move’ to the moderate 
group, and if improvement continues they move again to the 
group with mild depression. A similar situation occurs with 
patients at moderate and mild levels. However when the 
patient improves and reaches the mild severity level 
intervention TxB becomes less effective. Therefore many 
more patients remain mild instead of reaching the top level 

without any symptoms. When the intervention is no longer 
available then there is a slow reversal of improvement and 
after some considerable delay all levels return to their 
baseline values. This delay is in itself an interesting 
phenomenon driven primarily by mortality of the patients 
who previously improved but no longer contribute to the 
statistics after dying. Therefore initialisation of newly 
diagnosed patients with symptom severity assigned 
according the distribution of 39, 30, 20, 10 and 1 percent 
will gradually return the distribution to a baseline level. 

Discussion 
There is an increasing demand for new methods for 
evaluation of therapeutic interventions and in particular 
their effectiveness at the population level over time. The 
incidence of depression is on the increase therefore 
foreseeing outcomes of potential interventions could have 
beneficial effects on future policy making and costs. The 
preliminary results of our experiments indicate that such 
evaluations are plausible and that estimates could be made 
long before any real-life clinical trials are implemented. The 
value of virtual experiments will be in selecting the most 
probable clinical scenarios for therapeutic interventions e.g.  
single vs. combined interventions which are implemented 
over longer or shorter periods of time. 

 
Computer models are effective tools for making forecasts 
and are routinely used in marketing and economics. 
However they are less popular in medicine mainly due to 
much greater complexity and unpredictable nature of human 
behaviour. We tested the possibility of conducting 
experiments on populations of virtual patients and 
foreseeing outcomes of hypothetical interventions. Most 
exciting was the possibility of monitoring a large population 
of virtual patients and their group or ‘collective’ response to 
the same event. We made the distinction between general 
response and individual response. The difference was in the 
amount of specific rules by which a virtual patient made the 
decision of accepting and responding to particular type of 
treatment. In real life that is indicated by personal beliefs 
which patients may have e.g. strong preference for one type 
of therapy.  
 
The agent-based model was stable in performance and fast 
enough to accommodate a large number of virtual patients. 
This gives us the possibility of further development of much 
more complex rules governing patient behaviour and 
designing much more realistic environments where key 
players such as doctors, nurses and hospital services are also 
modelled. The next step in the development of the virtual 
patients will be introduction of history of responses to 
therapeutic interventions and linking them with decision 
making algorithms.  
 
There are number of limitations in the design of this study 
and ways in which these experiments were conducted. First, 
there is a question regarding the ‘autonomy’ of patients in 
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this model. It is essential to emphasise that the set of rules 
governing behaviour was identical for each agent.  
Individual behaviour was shaped by the decisions made by 
each agent during the runtime of the model. Some of these 
decisions where based on randomly assigned values e.g. 
probability of spontaneous recovery and other decisions 
were expressions of patient’s beliefs e.g. preference for 
pharmacological interventions when symptoms were 
moderate or severe. Second, the environmental trigger in a 
form of a message ‘Therapy TxB is available right now’ 
was continuously monitored by each agent but did not 
automatically invoke change in behaviour.  
 
Third, validation of the model is an issue that can’t be easily 
resolved. Our primary effort was in modelling individual 
response to the therapeutic interventions. We know quite a 
lot about individual responses from published medical 
literature. However there is little understanding of group 
treatment behaviour in this domain. In contrast validation of 
consumer behaviour in marketing models can be done by 
using sales figure and attributes of the purchased products.  
Unfortunately there is no data which will accurately 
describe what the group behaviour of real patient choices 
under a particular treatments should look like. In fact the 
whole purpose of building the model and conducting virtual 
experiments was to get better understanding of what this 
group behaviour might be. Perhaps our effort in this 
modelling project will be rewarded in future by the next 
generation of research projects which originated from the 
results of virtual experiments. By showing clinicians what 
the plausible future might be we could expect that real-life 
clinical trials will be strongly influenced and guided by the 
results of in-silico experiments. 
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Introduction
This work investigates a novel computational model of pre-
verbal infant word learning in an attempt to create a more ro-
bust speech recognition system. Currently, the state-of-the-art
can be extremely accurate when used in its optimal environ-
ment. However, when taken out of its comfort zone accuracy
significantly deteriorates and does not come anywhere near
human speech processing abilities, even for the simplest of
tasks. We take inspiration from the ease with which new-
borns are able to learn words, with no apparent difficulty, and
develop into expert communicators of their native language.

In order to learn words, the young language learner must
be able to segment speech into useful units and then asso-
ciate them to visual referents from within their environment
(Smith & Yu, 2008). The model described here, the Acous-
tic DP-ngrams, attempts to solve the word-to-world mapping
problem through cross-modal (acoustic & visual) associative
learning set within an interactive framework, as illustrated in
figure 1 (for a more technical description of the system see
(Aimetti, 2009)).

Initial results show that there is significant potential with
the current algorithm, as it segments in an unsupervised man-
ner and does not rely on a predefined lexicon or acous-
tic phone models that constrain current Automatic Speech
Recognition (ASR) methods. The learning process concurs
with current cognitive views of early language acquisition
(Jones, Hughes, & Macken, 2006; Saffran, Aslin, & Newport,
1996; Saffran, Werker, & Werner, 2006; Smith & Yu, 2008),
and the key word detection experiments exhibit similar be-
haviours apparent in developing preverbal infants (Gomez &
Gerken, 2000; Kuhl, 2004; Newman, 2008).

The Computational Model
There are two key processes occurring within our learning
agent (LA):

1. Automatic Segmentation: Acoustic DP-ngrams is used
to automatically segment the speech, directly from the acous-
tic signal, into important lexical fragments by discovering
similar repeating patterns. This approach uses a dynamic pro-
gramming (DP) technique, dynamic time warping (DTW), to
accommodate the temporal distortion present in speech. The
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Figure 1: Word-to-World mapping set within an interactive
carer-learner framework. LA’s internal memory is inspired
by current cognitive views (Jones et al., 2006).

advantage of this approach is that it uses an accumulative
scoring system to measure the quality and length of the dis-
covered fragments. This method is similar to the Segmental
DTW algorithm developed to summarise recordings of aca-
demic lectures (Park & Glass, 2008).

2. Word-to-World Mapping: Figure 1 shows the inter-
action between LA and its parent (carer). During training
the carer incrementally feeds LA with cross-modal stimuli;
the acoustic stream consists of continuous speech, as sam-
pled data, and the visual stream consists of crisp tags, rep-
resenting the visual referents within the utterance. Internal
representations of the visual referents is achieved through the
co-occurring events from both modalities, as suggested by
Smith and Yu (2008). Each class is therefore emergent and
constantly evolves with the accumulation of exemplar tokens,
thus allowing the system to gradually become more robust to
the variation present in speech.
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Experiments
LA is trained with 480 cross-modal utterances from a single
female speaker (F1); each utterance is passed to the system as
sampled acoustic data in parallel with the crisp visual tag(s),
representing the key word(s) that lie within it. To test the
emergence and robustness of internal representations, LA is
faced with a recurrent key word detection task throughout de-
velopment. This is carried out as probe moments which occur
every 20 utterances. LA is temporarily frozen and tested on
320 unobserved utterances from the known female speaker
(F1) and 320 unobserved utterances from an unknown male
speaker (M1). Only the acoustic part of the input is processed
and LA must recognise the key word(s), responding with the
correct visual referent(s).

Figure 2 displays the key word detection accuracy during
the learning period, which is shown as the percentage of cor-
rect key word detections over the number of utterances ob-
served. The blue plot with circles shows the F1 probe, the
green plot with squares shows the M1 probe and the red dis-
continuous plot shows the chance level of a correct guess.
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Figure 2: LA’s key word detection accuracy throughout de-
velopment. Probing is carried out every 20 utterances where
LA is tested on a known (F1) and unknown (M1) speaker.

Internal representations can be seen to emerge very quickly
from the plot in figure 2. After only 20 utterances LA is
already able to detect key words well above chance level,
achieving 54% for F1 and 31% for M1. Robust representa-
tions for F1 develop after 180 utterances, where key word de-
tection accuracy reaches a plateau of 92%(±1%). However,
internal representations for M1 seem to plateau after only 40
utterances and limited to a maximum of 49%.

Discussion & Future Work
This paper introduces a computational model of early word
learning abilities in preverbal infants. The algorithm is able
to successfully learn words in a cognitively plausible fashion.

It is clear to see from the results that LA quickly builds up ac-
curate representations to a familiar speaker F1, but is also still
able to generalise above chance level to an unknown speaker
M1 across gender with 40%to50% accuracy. This shows that
without observing other speakers, the system is not able to
build robust internal representations that can reliably gener-
alise across speakers, as suggested by Newman (2008).

One downside to this technique is that it is unable to run on
a large data-set as the exemplar tokens being stored in mem-
ory are unbound and tend to infinity. Currently, the authors
are investigating a method to automatically build prototype
representations for the most efficient units within the learn-
ers native language (i.e. with Hidden Markov Models). This
agrees with current thinking that infants begin learning lan-
guage attending to too much detail within their native lan-
guage, and that prototype representations (an average of ex-
emplar units stored in memory) occur with experience from a
greater variety of speakers (Kuhl, 2004; Newman, 2008).
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Abstract

Although the Elman network is so powerful that it can deal
with a variety of language processings, there exist some short
comings about its ability. For example, the original Elman
net cannot always deal with a long distance dependency ap-
propriately, which is a number agreement between nouns and
verbs with many relative pronouns in a sentence. This limi-
tation might cause from the constraints of its structure of the
context and the hidden layer, which can preserve only one time
previous state of the network. Here, we propose an extension
of the Elman network. The extended Elman network can pre-
serve the n-th generations of inner states. When the model
processed the corpus consisted of many relative pronouns with
multi-center embeddings structure, it could deal with the long
distance number agreement adequately. This model can be re-
garded as a natural extension of the Elman network in order to
deal with complex structures of language.

Keywords: Elman network; memory capacity; number agree-
ment; long distance dependency.

The structure of the Elman network
The network proposed by Elman (Elman, 1990; Elman, 1991)
was a simple recurrent neural network (SRN). This network
has an input layer in order to deal with the current input sig-
nals, and has a context layer which maintain past states. The
contents dealt in the hidden layer at time t depend on both
current inputs and past states of the hidden layer at time t−1.
Therefore, it means that the context layer in the Elman net-
work can maintain the whole history of all the past inputs. As
a result, the state of the network at time t depends on both
current inputs and the set of all the history of past inputs.

Since there exists a computational limitation (a limitation
of precision), SRN can only represent finite regions in a prob-
lem space. Therefore, a number of discussions revealed that
SRN cannot overcome the limitation of finite state machines.
It is known that any attempts to let SRN learn context de-
pendent grammar have, more or less, a limitation that SRN
cannot reach the same result as generalized finite state ma-
chines. However, here we will try to show one of possible
solutions to tackle this problem.

The device to deal with the language which has center em-
beddings must have memory stores to maintain complex time
sequential information. A number of experimental studies re-
vealed that SRN could recognize and learn regular languages
(eg. Giles et al.,1992). The Elman network is simple but
powerful in order to deal with the context dependent gram-
mar by the ability of time development (see Fig.1). However,
there is a limitation in the Elman network. It cannot deal
with complex structure such as a long distance dependency
like a number agreement between nouns and verbs in sen-
tences with many relative pronouns (a nested center embed-
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Figure 1: The time development of the Elman network

ding structure). Although Elman found that the Elman net-
work can deal the number agreement in center embedded sen-
tences, it might be impossible to deal with many relative pro-
nouns in multi-center embedded sentences by the limitation
of the capacity or the state of the hidden and the context lay-
ers. Consider the sentence:

(1) The girl who chases Mary who feeds the girls who see the
cat feeds.

The subject in this sentence ‘girl’ must agree a number with
the verb (the last word ‘feeds’). But there are three verbs
(‘chases’, ‘feeds’, and ‘see’) between the subject and the
predicate. The network to process this sentence properly must
maintain the information of the number of the subject at the
head of the sentence. The original Elman network might be
difficult to maintain this kind of a long distance dependency
information because of memory limitation.

Extension of context layers
The possible ways to overcome this problem are to extend
volumes and contents of context layers in the network. There
are two possibilities to extend context layers: (1) the exten-
sion of the number of units in the hidden and the context lay-
ers and (2) the extension of generations of context layers (Fig.
2). The extension of the number of units in the context layer
is a simple solution for the network to find the solution of
the complex time information such as long distance depen-
dencies. But the network cannot necessarily get the precise
information which occurred the past. Although the extension
of the number of the units in the context layer can enrich the
information in the hidden and context layers, this extension
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might not result in a realistic solution of the long distance de-
pendency. On the other hand, the extension of the number of
generations in context layers is a direct way to deal with past
n-th generations of contents in the inner state of the network.
The n-th generations of context layers can receive exactly the
same information of n− 1-th generations of context layers.
The extension of the number of generations in context layers
might deal with this problem (multi-center embedded struc-
ture) adequately. Since the n-th context layer can receive the
contexts of the n−1-th context layer directly, the network can
deal with the information which occurred long time ago (n-th
generation ago).

output layer

input layer

hidden layer

context2 context3context1

Figure 2: The extension of number of generations in context
layers

Numerical experiment
In order to confirm the ability of the network with the exten-
sion of the number of generations in context layers, a numeri-
cal experiment was performed. The sentences were generated
in accordance with the grammar which was almost the same
as the one which Elman (1991) used (see Table 1). Total 25
words included EOS (End Of Sentence) consisted of the 25
input and output units.

The normal Elman network which has 20 hidden and con-
text units and the extended Elman network with 5 context lay-
ers were compared. The output of the normal Elman network
with 20 hidden and context units is for example:
Mary(girl) feeds(who) lives walks. Mary(boy) who(walks).
Mary lives. Mary(cats) who(hear) . The words in the paren-
theses indicate the correct answers. The number agreement
between nouns and verbs preserved in shorter sentences. For
example, Mary(girl) who lives(chases) cat sees. However, in
case of longer sentences which have many relative pronouns,
there was a tendency to show incorrect words, which means
that the error words did not consist with the parts of speeches
as the correct words. On the other hand, the extended Elman
network with the 5 generations context layers could deal with
the long distance dependency, for example Mary(boy) who
hears cat(Mary) sees Mary.

Conclusion
Although there was no significant difference in the sense of
the quantity in total performance between the normal El-

Table 1: The grammar used in the experiment.

S → NP VP “.”
NP → PropN | N | N RC
VP → V (NP)
RC → who V | who V NP | who V (NP)
N → boy | girl | cat | dog |

boys | girls | cats | dogs
PropN → Mary | John
V → chase | feed | walk | live

chases | feeds | walks | lives
see | hear | sees | hears

Additional restrictions:
1. number agreement between N & V within clause, and
(where appropriate) between head N & subordinate V
2. verb arguments:
chase, feed → require a direct object
see, hear → optionally allow a direct object
walk, live → preclude a direct object
(observed also for head/verb relations in relative clauses)

man network and the extended Elman network, there was a
quality difference in errors in the sentences with many rel-
ative pronouns. The extended Elman network with multi-
context layers could process sentences with many relative
pronouns properly in the meaning that it could deal with long
distance dependencies with multi-center embeddings. This
might mean a potential ability of the extension in the number
of generations in context layers.

In formal language theory, it is well-known that context
free grammar can be processed by finite state automata, there-
fore, there exists a parsing algorithm. On the other hand, con-
text dependent grammar is in general undecidable. Therefore,
it is required to develop a parsing algorithm to deal with con-
text dependent grammar. The extended Elman network with
multi-context layers proposed hear could be one of the pos-
sible candidates to deal with such complex problems. This
model can be regarded as a natural extension of the simple re-
current neural network with multi-memory storage. It could
also be analogous with a human model of language informa-
tion processing.
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Introduction 
 

Perceptual Control Theory (hereafter PCT) has been 
successfully employed in modelling skilled performance 
(Marken, 2001) and prescribing errors (Marken, 2003). Here 
we model the draws-to-decision (DTD) behaviour of 
participants on the “beads-in-the-jar” task (see Fine et al., 
2007).  

PCT is a control theory approach to explaining human 
behaviour, derived from negative-feedback loops used in 
engineering and developed for the application to Psychology 
since the latter half of the last century (Powers, 1973). The 
theory states that all behaviour is purposeful and is intended 
to control specific environmental variables. A system of 
hierarchical control directs behaviour through 
interconnected control systems at multiple levels. Higher 
level systems set reference values for immediately 
subservient systems and these systems also feedback 
information regarding their current state. First order systems 
act on, perceive and feedback the state of the controlled 
variable to the system hierarchy. 

“Beads in the jar task” 
Participants were told there were two jars, (jar R 60:40 red 
to green and jar G 60:40 green to red beads) and that up to 
20 beads would be drawn randomly from one of the jars, 
with a 50% chance of either jar being chosen. The task 
required subjects to choose after the first draw and on every 
subsequent draw either which jar the beads were coming 
from or to draw another bead. They were instructed only to 
decide when they were sure which jar the beads were 
coming from. The number of draws participants chose 
before deciding was the draws-to-decision (DTD) measure. 

 
Method 

 
Behavioural data was collected from 39 participants in the 
“beads-in-the-jar” task under three conditions: High Cost 
Condition (HCC) where participants could win £4 by 
deciding the correct jar on the first draw, and then lost 20p 
for every subsequent draw; Low Cost Condition (LCC) 
initial winnings £2 on the first draw and then 10p lost for 
every draw; and the No Cost Condition (NCC) where no 
winnings or drawing costs were applied.  

Participants’ mean DTD was significantly lower in 
the HCC than in the two other conditions, and 
significantly lower in the LCC than the NCC (figure 1). 

 
Figure 1: Mean conditional DTDs and associated standard 
error. Significant differences found between all conditions. 

Model 
Our PCT model of the DTD behaviour employed two 
competing control systems at the same level: 1) participants 
were controlling for how much drawing was costing, 2) 
participants perceived how sure they were of which jar the 
beads were being drawn from. This fed into a comparator 
that outputted a decision when they were surer of it being 
jar R or jar G than how much they perceived it cost them to 
draw another bead. We modelled these using winnings 
versus the perceived likelihood of the jars (exp. 1) and 
perceived total cost versus jar uncertainties (exp. 2). 

 
 
 

Results 

Experiment.1  
We accounted for all possible DTD results in the HCC and 
the 18/20 LCC using a perceived likelihood measure based 
on red and green bead counts and optimising the gain on the 
winnings only using a deterministic linear optimisation for 
each DTD value (equations.1-3). 
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𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁.𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑁𝑁𝑁𝑁.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
 (1) 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑁𝑁𝑁𝑁.𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
= {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 [𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)]
− 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 [𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)]} ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

 
 
 
(3) 

Using 1000 random randomly generated bead sequences 
60:40 in favour of red, the model was tested for robustness 
across all 20 DTD scores in the HCC and LCC. The mean 
squared error for DTD values was calculated based on the 
error for each novel sequence on each DTD draw (figure 2).  

 
Figure 2: MSE for each DTD using 1000 random bead sequences. 

Experiment.2  
Here we aimed to model all participants’ results in all three 
conditions. We optimised Gain Factors through iterations of 
the HCC and the LCC simultaneously and finally across all 
three conditions. We calculated jar “uncertainty” using a 
maximum bead count of 20 for each jar and taking one away 
each draw depending on the bead colour. We also optimised 
an “internal cost” value across the conditions 
simultaneously, for the perceived cost (equations 4-6). 
𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

∗ (𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
− 𝑁𝑁𝑁𝑁.𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 

 (1) 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ (𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

− 𝑁𝑁𝑁𝑁.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
 (2) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ) +  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 (3) 

The model produced: exact expected values for 12/39 
participants, an error of ±1 DTD for 32/39 participants 
and accounted for all participants with an error margin of 
±2 DTD for the HCC and LCC. When applied to all three 

conditions the model perfectly accounted for 2/39 
participants and 35/39 with an error of ±6 DTD. 

 
Discussion 

The model was more successful in the HCC than the LCC in 
experiment 1, both in terms of modelling more DTD results 
and a lower MSE for each. This could be due to the 
applicability of the model to these different situations. When 
the winnings for a correct answer and the cost per draw are 
higher, participants’ behaviour will be more influenced by 
these factors and less by other factors such as boredom with 
the task causing them to draw early. We therefore 
hypothesise that in future experiments if the initial winnings 
and costs per draw were even higher, then this model would 
be a better predictor of participants’ performance. 

This argument is also partially supported by the results 
from experiment 2: using the same gains and internal costs 
across conditions, the model was most successful when 
there was a cost for a draw: in the HCC and LCC. However 
when the NCC was introduced much larger errors resulted.  

It would be unrealistic to suggest that all 39 participants 
were using the same mental model to compute which draw 
they would make a decision. However, the reliability of our 
model in the two cost conditions suggests that cost for 
drawing is an important factor for determining the DTD.  

The reliable effect for delusional subjects to “jump-to-
conclusions” (Fine et al., 2007) may then be, to some 
degree, due to a higher internal cost for making extra draws 
in the task for these participants. This cost could be anxiety 
to finish the task early or an over-compensation to want to 
appear intelligent to the experimenter. Future studies asking 
participants post-experiment which factors caused them to 
make their decision will help to clarify this hypothesis. 

The partial success of the PCT framework for this task 
implies its viability for modelling reasoning behaviour. 
Future work may consider how higher level systems interact 
with lower systems, and how these higher levels could serve 
as a regulator for which mental model participants 
preferentially employ for probability estimation, cost 
perception and other reasoning processes. 

Acknowledgments 
I fully acknowledge and gratefully thank the Medical 
Research Council for supporting me throughout this project.  

References 
Marken, R. (2001). Controlled variables: Psychology as the 

centre fielder views it. American Journal of Psychology, 
114, 259-281. 

Marken, R. (2003). Error in skilled performance: A control 
model of prescribing. Ergonomics, 46, 1200-1214. 

Powers, W. (1973). Behavior: The control of perception. 
Chicago: Aldine. 

Fine, C., Gardner, M., Craigie, J. and Gold (2007). 
Hopping, skipping or jumping to conclusions? Clarifying 
the role of the JTC bias in delusions. Cognitive 
Neuropsychiatry, 12, 46-77. 

0

1

2

3
High Cost Condition

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Draws-to-Decision

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Low Cost Condition

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

435



 Mathematical Modeling of Human Brain Behavior as an Adaptive Complex System  
 

 Maryam Esmaeili  (maryam.esmailee@gmail.com) 

Department of Informatics, Lugano, Switzerland 

 

Abstract 

The aim of this paper is modeling of brain as a multi-agent 
system and then theoretical study of game-theoretic solution 
concepts in competitive and cooperative multi-agent 
interactions in this system. Brain as a cognitive function 
implementer is composed of large-scale neural networks of 
cognition (neurocognitive networks) which are considered as 
expert agents that do what they think in their on best 
expertness. Neurocognitive networks implement the cognitive 
functions in brain and thorough understanding of cognition is 
not possible without knowledge of how they operate 
individually and socially. In this study dynamic interaction 
among those expert agents are formulated as competitive and 
cooperative behaviors. We obtain the equilibrium behavior in 
the long run, and characterize the collective behavior of these 
expert agents as responsible of intricacies of cognition. By 
this work, it was shown how complex collective behavior of 
brain can emerge from the locally optimal behavior of each 
agent. In the end we will see how these neural networks 
organize themselves in a way that the collective behavior will 
be intelligent. It will be shown that the best structure in brain 
for having intelligent behavior is multilevel hierarchical 
organization with nesting structures.  

Keywords: multi-agent system, cooperative behavior, 
competitive behavior, self-organization, neurocognitive 
network 

 Introduction 

The gap between knowledge of the brain and of the mind can only 

be bridged with understanding of neural system’s behavior that 

performs cognitive operations.  Neurocognitive networks are large-

scale systems of distributed and interconnected neuronal 

populations in the central nervous system organized to perform 

cognitive functions. We consider neurocognitive networks to be 

flexibly adaptive to the rapidly changing computational demands 

of cognitive Processing  [1,2,3,4]. The large-scale anatomical 

connectivity of the cerebral cortex provides a richly intricate 

structure within which the constituent local area networks have an 

enormous potential for coordination in a multitude of different 

patterns. The theory of coordination dynamics [5,6] provides 

insight into the dynamic characteristics of such interacting 

complex neural systems.  

The ambition of this work is modeling cognitive development 

through studying the competitive and cooperative behavior in 

interacted agents (neurocognitive network) in brain. In this study 

we try to understand how to set up the architecture of an agent as a 

component of a complex system to be suitable for evolution, how 

self-interested behavior in every agent evolves to cooperative 

behavior, and how the goal structure of each agent can be self-

modified in order to achieve the common goal of the system. In 

this work we represent a recursive definition of agent in this way 

that neurocognitive networks as a particular autonomous entity is 

considered as agents and also brain as a whole system is 

considered as an agent. In this way, we put things together and call 

them an agent and they have a recursive structure. In a hierarchical 

organization, an agent could be made up of a number of other 

agents with many different levels. The recursive organization 

would allow us to build a complex adaptive system like brain at 

different levels of granularity. In the end we will discuss why and 

how neurocognitive networks as self-interested agents form their 

organization.   

Modeling of Competitive and Cooperative Behavior of 

Agents 

The notion of self-interested behavior and self-motivated is the 

foundation of many fields of research. Agents are self- motivated 

in the sense that they only do the tasks, which are expert in, and are 

in their own best interest, as determined by their own goals and 

motivation. Each expert agent has its own expertness or goal, 

which is expressed in term of a function. In this work, it was 

supposed that the goal of every agent (cognitive networks) is 

improving learning process.  

The learning progress function of each neurocognitive network as 

an agent in brain depends on its prediction, state and all the other 

agent’s states. At each time period, each agent faces the problem of 

choosing strategy and anticipating next state in order to maximize 

its own learning progress function. To fulfill its long-term interest 

or expert, every agent seeks a sequence of strategies, which 

maximizes the accumulated learning progress function defined 

over an infinite time horizon.  

The functions of the neurocognitive network are expressed in real 

time by the coordinated actions of cooperating areas, with the 

states of coordination changing dynamically [6]. So cooperation 

among these agents can be a very important factor for analyzing 

the behavior of this complex adaptive system. The key element 

that distinguishes a common goal from an agent's individual goal is 

that it requires cooperation. By a common goal, we also mean one, 

which is not achievable by any single agent alone, but is 

achievable by a group of agents. The self-interested behavior of 

each agent must be coordinated to achieve globally consistent and 

efficient collective actions. In this work, we define such a common 

object as the summation of the strategies of the individual agents in 

a society.  

Intelligent as an Emergent Behavior 

The most important point here is that how can extract intelligence 

by deriving the implicit cooperative behavior of each self-

interested and non-intelligent agent. We described the competitive 

interactions among agents as the basis for cooperative interactions 

learnable through imitation. In our model every agent 

(neurocognitve network) makes decisions on the basis of imperfect 

information about other agents' activities. Now we are going to 

consider how the evolution of cooperation proceeds?  

We need to understand how the competitive behavior of each agent 

evolves to implicit cooperative behavior. Implicit cooperative 

behavior of each agent is defined in terms of the effect on other 

agents. At each time the expert based on the current state of 

corresponding expert and the other expert make one prediction. 

Every agents try do make an action that can minimize the 

prediction error which makes its competitive behavior. The 

cooperative behavior of agents is modeled as the set of strategies 

optimizing the summation of the action functions of all agents.  

Regarding the collective behavior emerging from competitive 

interaction, we have the following interesting observation. If the 
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number of agents is small, the summation of the learning progress 

increases as the number of the agents increases, after a certain 

number of agents is reached it decreases if the number of agents 

increases, and it converges to zero as the number of agents 

becomes very large. It means that special number of 

neurocognitive networks can learn a cognitive function and the 

objective interaction between these agents is limited to the number 

of agents. We can approximate the number of the neurocognitive 

networks, which can have interaction to learn a specific skill. It is 

possible to approximate the number of the agents, which can learn 

a specific skill. By having this number and making a group based 

on this number and considering the sum of progress in learning of 

every agent and the sum of learning of all agents in that group and 

subtracting them the amount we achieve represents the effect of 

cooperative between the agents of this group. The emergent 

Intelligence is based on this cooperation between the 

neurocognitive networks that are not able to produce intelligent 

behavior alone.  

The Self-Organization Process 

In this section, we investigate why and how neurocognitive 

networks form their organization and produce especial structures in 

brain and cortex. The first question is that why every high level 

cognitive function is done by a special part of brain with a specific 

shape and structure? The answer is that neurioocognitive networks 

do cognitive functions and as was shown before for having 

intelligent behavior they need to make organization and have 

cooperation with each other.  They may form an organization 

because of their joint interest in efficient resource acquisition or 

allocation [16]. We show that their organization can emerge 

through competitive interactions motivated by self-interested 

agents. We consider two types of organization, the flat 

organization, and the hierarchical organization. The collective 

learning progress at competitive equilibrium and cooperative 

equilibrium in these two different organizations is computed and 

the results are compared. By comparing these results we consider 

that each agent receives a higher utility by forming a hierarchical 

organization. They may form a hierarchical organization because 

of their joint interest in efficient resource allocation, and the self-

interested agents benefit from a hierarchical organization with a 

nesting structure where they can improve their own objects.   

Conclusions  

We have argued here that the neural underpinning of cognition is 

best understood through the study of neurocognitive networks. We 

tried to model the behavior of these neural networks by some 

classic rules in social science and game theory. When examined 

from this perspective, cognition is seen as a dynamic process that 

rapidly evolves through a series of informational consistent 

coordination states. In each moment of cognitive processing, there 

are two types of behavior that cause transition from one cognitive 

state to another. These two types of behavior are two common 

behaviors in social science and society: Competitive behavior 

based on self-benefit and interest and cooperative behavior.    

We understood that simple local interactions between 

neurocognitive networks could produce complex and purposive 

global behavior as a cognitive skill. We formulated and analyzed 

the competitive and cooperative behaviors of these self-interested 

agents in a dynamic environment. We described a way of 

organizing the set of multiple agents into a structured organization. 

Based on this model we can say that every neurocognitive network 

has a simple goal that in this model was progressing of learning 

that we modeled it by a linear and simple activation function. By 

this local goal the agents try to have interaction and the 

cooperation behavior emerge by these local simple interactions. 

We showed that with a hierarchical structure the behavior of 

organization can be more intelligent and so neurocognitive 

networks should organize themselves in hierarchical structures to 

produce more intelligent behavior. In a hierarchical organization, 

an agent could be made up of a number of other agents with many 

levels. We can conclude that the growth of neural system starts 

from the set of the unstructured flat organization of neurocognitive 

networks that we considered them as some self-interested agents.  

These self-interested agents are left to self organize themselves 

into the whole organization to have more and more progress in 

learning. 
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Introduction 
This paper builds upon a study of how people find 
faults in a simple device and a corresponding 
cognitive model (Ritter & Bibby, 2008). This 
existing model, Diag, was implemented in Soar 6 
and is based on the idea that learning consists of 
procedural, declarative, and episodic learning. Diag 
was developed to analyze human behavior while 
solving a simple diagrammatic problem (Ritter & 
Bibby, 2008), a task with similarities to many 
important real world problem solving tasks. 
Because Diag predicted astonishing results and is 
implemented in a version of Soar that is no longer 
supported, an implementation in an up-to-date 
cognitive architecture is necessary to make the 
model available again and more flexible to future 
changes.  

We maintained Diag’s basic structure while 
reimplementing it in a high-level behavior 
representation language, Herbal, that generates Soar 
models and can generate different variants more 
quickly that in Soar directly. Herbal compiles into 
Soar 9, which allows not only that the model can be 
used again for further research with current Soar 
models but it is also made accessible to more 
researchers. This newly implemented model, called 
Diag-H, was validated by comparing its predictions 
to the existing data. It could be shown that Diag-H 
creates almost the same results as Diag but also 
incorporates the advantages of Herbal. 

Diag task and results 
The Diag task is called fault-finding task (FFT) and 
builds upon an interface with 4 switches and 7 light 
that represent an electrical circuit with 7 different 
components that are connected via switches. The 
task consists of a combination from interface 
information and circuit condition to determine 
which component is faulty.  

Diag was implemented with the effort to predict 
human reaction times and learning behavior while 
solving the Diag task. The models strategy is based 
on the energy flow running through the circuit. A 
light gets selected based on its position in the 
circuit and tested by the position of the switches 
and if its lit up or not. On the Problem Space 
Computational Model (PSCM) (Lehman, Laird, & 
Rosenbloom, 1996; Newell, Yost, Laird, 
Rosenbloom, & Altmann, 1991) level, Diag 

consists of problem spaces that are hierarchically 
ordered to solve the FFT by testing the components 
stepwise.  

For validating the Diag model, a user study with 
10 participants was run. The participants were 
instructed how the circuit components are 
connected, how the components are represented on 
the interface, and what their task is. While solving 
the FFT the participants had to recall the circuit 
diagram from memory, combine it with the 
presented interface constellation, and identify the 
faulty component. The results showed that the 
average proportion of variability in problem-
solving time per participant was 79%. The task, the 
study, and the results are described in detail in 
Ritter and Bibby (2008). 

Diag-H 
The reimplementation of Diag was done in Herbal 
(Haynes, Cohen, & Ritter, 2009), a high-level 
language based on the PSCM that produces models 
that can run in Soar and Jess. Because of the use of 
Herbal the reimplementation required an 
understanding of the PSCM and visual modeling 
techniques. This serves as an example of how 
Herbal can provide modelers that have no strong 
programming background access to the complicated 
machinery used by cognitive architectures that may 
traditionally be out of their reach. 

Because Diag-H is a reimplementation of the 
Diag structure, the most important effort was to 
copy the structure accurately. Diag-H uses the same 
structure of problem spaces and strategy to solve 
the FFT. The reimplementation process was 
supported by Herbal because of the direct 
implementation of the PSCM. This means Herbal 
models implement problem spaces directly and 
assign them hierarchically.  

The task knowledge in Diag-H is stored in 
operators. An operator in Herbal is a combination 
of generic conditions and actions that can be 
combined as required. 93 conditions and 56 actions 
were modeled and combined to 85 operators. 
Herbal compiles Diag-H into 187 Soar rules. 

Diag-H predictions and the existing data 
To validate Diag-H, we used the data from Ritter 
and Bibby (2008). The number of Soar model 
cycles with learning turned on was used to predict 
solution times from Diag-H. Using linear regression 
between Diag-H predictions and the existing user 
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data, an average motor output time (B = 1.42 s) and 
an average time as slope of decision cycles (0.187 
ms) was calculated. To determine how accurate the 
model predicts individual behavior, the predicted 
times (as slope of decision cycles * decision cycles 
+ intercept = 0.187 ms * decision cycles + 1.42s) 
were compared to the observed problem solving 
times. 

Each participant saw a different order of the 20 
faults. Figure 1 shows the individual problem-
solving time for participant 8 and the predicted 
times aggregated over this stimulus predicted by 
Diag-H. This example shows how well the Diag-H 
predictions fit to the user data. 
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Figure 1: The observed and predicted problem-
solving times over 20 trials for participant 8. 

 
To compare the Diag-H predictions further to the 

user data, each set of model cycle per run was 
regressed to the problem-solving times for each 
participant individually. The average proportion of 
variability in problem-solving time per participant 
accounted by Diag-H was r² = 72.2%. By removing 
two non significant participants from the analysis 
the significance reaches r² = 87%. 

These comparisons showed that Diag-H was able 
to predict the existing participant performance to a 
good extent. Similar to Diag, Diag-H also has 
problems in predicting the performance of 
participants P5 and P7. However, when comparing 
the correlations for the predictions per fault, per 
trial, and per participant Diag-H is constantly 5% 
less accurate than Diag.  

Summary 
We have described the use of a high level behavior 
representation language, Herbal, to reimplement 
Diag, a model that solves a diagrammatic reasoning 
task. The reimplementation, Diag-H, was validated 
by testing whether it creates the same predictions as 
Diag. Diag-H uses the same strategy and reaches 
almost the same results by predicting human 
behavior and combines this with Herbal 
advantages. A Herbal model can predict similar 
results to a Soar model but has a shorter 
implementation time. The generic Herbal structure 
allows quick adaptations to future requirements and 
further development of models. These results allow 

proceeding with research on the Diag task 
supported by the Diag-H model.  

Diag-H offers several new possibilities for 
research. One aspect is implicated by two 
participants (P5 & P7) that did not fit either the 
existing Diag predictions or the updated Diag-H 
predictions. Because these participants’ error rates 
were not significantly higher than the average, the 
results suggest that they used a different strategy 
than Diag-H. Therefore, the development of several 
strategies will be necessary for a detailed analysis 
of the performance of these two participants. 
Through the use of Herbal as implementation 
language the process of creating new strategies will 
be simplified. In the future even Herbal compiled 
ACT-R models will be available (Paik, Kim, & 
Ritter, 2009). 
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Categorization in Cognitive Psychology and  
the Prototypes-Exemplars Debate 

The main theories (Murphy, 2002) concerning the study of 
categorization and the nature of concepts are: the classical 
theory also known as Aristotelian, the prototypes theory, the 
exemplars theory and theory-theory. The theories of 
prototypes and exemplars, jointly taken, constitute the so 
called typicality view on concepts. In fact, both theories, 
even if in contrast, are based on experimental evidences that 
as a whole they show the existence of a “phenomenon” of 
typicality in categorization processes (see “Typicality as 
phenomenon” in Murphy; 2002 pg. 28). Prototypes and 
exemplars theories supersede the limitations and the 
experimental inadequacy of the classical theory, based on 
logical predicates, but when considered separately turn out 
to be incomplete and unsatisfactory (Murphy, 2002; pg. 4). 
Nevertheless, in the past thirty years some literature 
concerning experimental psychology focused on the 
comparison between prototypes theory and exemplar theory 
and carrying out experiments in order to demonstrate the 
correctness of one theory or the other one. For example we 
can consider the following two papers in conflict (Minda, 
Smith, 2002) and (Zaki et al., 2003). In the former is 
supported prototypes theory, while in the latter the 
exemplars theory, even if they make use of the same data 
set. As matter of fact, the research line related to the diatribe 
of prototypes vs. exemplars appears to be a dead end 
because it is fruitless and not decisive and also because it is 
based on the naïve epistemology of pursuing a so called 
experimentum crucis. 

Theories of Categorization and Machine Learning 
The ultimate aim of the researches about categorization is 
the understanding of representations of categories (Murphy, 
2002; pg. 3) that we build, the concepts, and by which we 
perform different cognitive tasks. A common aspect of 
prototypes theory and exemplar theory is the idea that each 
category is represented by instances belonging to the class: 
in one case the instances are the prototypes abstracted from 
observations, and in the other case are the same previously 
observed instances. In the field of machine learning (Witten, 
Frank, 2005) (Duda, Hart, Stork, 2000) and automatic 
classification, one of the learning methodologies known in 
literature is the so called instance based learning, for which 
the classes, learnt by the classifier system, are represented 
by instances of the corresponding class. Therefore, the field 
of machine learning, and in particular of instance-based 

learning, is the natural context where to study the theories of 
human categorization based on prototypes or exemplars, 
from both the theoretical viewpoint of the computational 
statistics, and the empirical viewpoint of the synthetic 
method (Cordeschi, 2001), consisting in the realization of 
classifier systems which embody theories of categorization. 
Within instance-based learning it is possible to connect the 
characteristics of robustness and sensibility of a classifier 
system with categories representation based, respectively, 
on prototypes or exemplars. In fact, prototypes based 
classifiers, such as the Nearest Prototype Classifier (NPC) 
and the Nearest Multiple-Prototype Classifier (NMPC), 
construct the representative instances of the class, called 
prototypes, as the barycentres of an observations subset. 
These systems obtain robust classifications, that is, not 
sensitive to noisy and atypical observations. On the other 
way, classifiers based on exemplars, such as the Nearest 
Neighbour Classifier (NNC) and its well known 
generalization k-NNC, use as the set of representative 
instances the whole set of observations of classes, without 
any elaboration or abstraction. These systems, which are 
entirely based on the ability to save all observations in 
memory, obtain classifications extremely sensible and not at 
all robust. In the family of instance-based systems the 
classifiers NPC and NNC represent the limit cases of 
maximum robustness and maximum sensibility respectively 
and they use types of classes representations that can be 
related to the theories of prototypes and of exemplars, 
respectively. As it is well known in computational statistics 
a classifier system, whether natural or artificial, is the result 
of the trade-off between the two contrasting requisites of 
robustness and sensibility. More formally this problem is 
linked with the Bias-Variance theorem and with the Bias-
Variance dilemma, e.g. (Duda, Hart, Stork, 2000, Chap.9). 
Thus Prototype-Theory and Exemplar-Theory have not to be 
considered as two conflicting theories, but they are two limit 
cases of a same technique to categorize called Instance-
Based Learning. This technique is used both by natural 
systems as human minds, and by some artificial systems as 
instance-based classifier systems. From these simple 
theoretical considerations it is then clear that it is absolutely 
groundless to assert the correctness of one of the two 
theories against the other; a theory which subsumes both of 
them should be sought just in the trade-off between 
robustness and sensibility. In fact there are some classifier 
systems, such as the Varying Abstraction Model 
(Vanpaemel, 2005), the Mixture Model (Rosseel, 2002) or 
the Prototype-Exemplar Learning Classifier (Gagliardi, 
2008), which are able to subsume both the prototypes and 
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exemplars theories and, hence, they can help to realize a 
theory of typicality which would explain the phenomenon of 
typicality. In summary, we can affirm that when framing the 
problem of categorization in the field of machine learning, 
the prototypes-exemplars diatribe reveals completely 
unfounded for the general theoretical considerations about 
the bias-variance dilemma, and also for experimental 
evidences due to the existence of some hybrid classifier 
systems. Therefore, the aforementioned diatribe is ill-posed, 
because of a poor formalization of the subject and the naïve 
epistemology of experimentum crucis. These drawbacks 
could be superseded, by using results of machine learning 
and computational statistics, and by embracing the synthetic 
method, as it would be required by the interdisciplinary 
nature of the categorization problem. 

Machine Learning and  
Cognitive Plausibility of Representations 

Classification algorithms strongly depend on the kind of 
classes’ representation that they infer from data, known as 
concepts description (Witten, Frank, 2005; pg. 42) and that 
they then use to classify new instances. In fact, in the field 
of machine learning, one can distinguished different family 
of classifier systems according to the kind of used 
representations (e.g. instances, decision trees, logical 
predicates, support vectors, etc.). As it is known in cognitive 
psychology, the instance-based representation is the only 
one that coheres with both the prototypes and exemplars 
theories and therefore, it is the representation to be used in 
accordance with the typicality view. Instead, the most used 
type of knowledge representation in the machine learning is 
the one based on rules or decision trees: “Induction of 
decision trees is probably the most extensively researched 
method of machine learning used in data mining” (Witten, 
Frank, 2005; pg. 199), although these kinds of 
representations lack of a true cognitive plausibility, in fact 
they can be thought as models of the classical theory of 
categorization, since they represent concepts as logical 
predicates. As matter of fact, many researches in machine 
learning as well as machine learning handbooks completely 
neglect the connections with cognitive psychology and 
ignore concepts theories, or they do it, let say, in a 
“superficial” manner. This attitude is well exemplified by 
Witten and Frank who affirm, with regard to the different 
possible categories representations that: “instances do not 
really «describe» the patterns in data” (Witten, Frank, 
2005; pg. 79) and with regard to the instances based 
categories learning that: “in a sense this violates the notion 
of «learning»” (Witten, Frank, 2005; pg. 79). This position, 
followed till its extreme consequences, leads to the 
paradoxical idea that humans, since represent categories by 
instances, do not have real learning abilities and do not 
really have concepts; conversely these abilities are hold only 
by machines that represent the classes in a anti-
psychological way, as for example, with rules and decisions 
trees. Machine learning researches underestimate possible 
theoretical and applicative involvements with cognitive 

sciences although it seems natural that who studies artificial 
learning of categories should do it in parallel with, or at 
least not ignoring, the studies about natural learning of 
categories.  

Concluding Remarks 
In the previous sections we put in evidence how the “mono-
disciplinary” use of cognitive psychology and machine 
learning produces disappointing results. In fact, from a 
hand, cognitive psychology produced thirty years of an 
unfruitful prototypes-exemplars diatribe, which could be 
avoided if one had not limited oneself to a superficial use of 
mathematics for the development of cognitive theories, 
instead of a more foundational use of it, based on machine 
learning and synthetic method. On the other hand, the field 
of machine learning disdains the experimental evidences 
produced by the psychological research. These errors have 
to be ascribed to a very disciplined and closed 
methodological praxis, inside the respective scientific 
communities, in an almost “corporatist” way. Instead, the 
problem of categorization, as for many of the problems dealt 
in cognitive sciences, is the same whether one considers 
natural systems, as human minds, or artificial systems so an 
interdisciplinary approach in the study of categorization is 
the natural setting to conduct researches and it is able to 
progress both field.  

References 
Cordeschi, R. (2001), The Discovery of the Artificial. 

Behavior, Mind and Machines Before and Beyond 
Cybernetics. Kluwer, Dordrecht. 

Duda, R., Hart, P., Stork, D. (2000) Pattern Classification 
(2nd Ed). John Wiley & Sons, New York, NY.  

Gagliardi, F. (2008) A Prototype-Exemplars Hybrid 
Cognitive Model of “Phenomenon of Typicality” in 
Categorization. In Proceedings of the 30th Conference of 
the Cognitive Science Society. Austin, TX. Pp. 1176–
1181. 

Minda, J.P., Smith, J.D. (2002) Comparing prototype-based 
and exemplar-based accounts of category learning and 
attentional allocation. Journal of Experimental 
Psychology: Learning, Memory, Cognition. 28:275–292. 

Murphy, G.L. (2002). The big book of concepts. MIT Press, 
Cambridge, MA. 

Rosseel, Y. (2002) Mixture models of categorization. 
Journal of Mathematical Psychology. 46: 178-210. 

Vanpaemel, W., Storms, G., Ons, B. (2005) A Varying 
Abstraction Model for Categorization. In Proceeding of 
the XXVII Conference of the Cognitive Science Society. 
Pp. 2277-2282. 

Witten, I.H., Frank, E. (2005). Data Mining: Practical 
Machine Learning Tools and Techniques with Java 
Implementations. (2nd Ed.) Kaufmann, San Francisco, CA. 

Zaki, S.R., Nosofsky, R.M., Stanton, R.D., Cohen, A.L. 
(2003) Prototype and Exemplar Accounts of Category 
Learning and Attentional Allocation: A Reassessment.  
J Exp Psychol Learn Mem Cognit. 29(6), pp. 1160–1173 

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

441



Unifying syntactic theory and sentence processing difficulty through a
connectionist minimalist parser

Sabrina Gerth (gerth@ling.uni-potsdam.de)
Department of Linguistics, Karl-Liebknecht-Str. 24-25

14476 Potsdam, Germany

Peter beim Graben (p.r.beimgraben@reading.ac.uk)
School of Psychology and Clinical Language Sciences, Whiteknights, PO Box 217,

Reading, RG6 6AH, United Kingdom

Keywords: Computational psycholinguistics; Modeling hu-
man sentence processing; Minimalist Grammars; Connection-
ist architecture;

Introduction
Syntactic theory provides a rich array of representationalas-
sumptions about linguistic knowledge and processes. Such
detailed and independently motivated constraints on gram-
matical knowledge ought to play a role in sentence com-
prehension. However most grammar-based explanations of
processing difficulty in the literature have attempted to use
grammatical representations and processes per se to explain
processing difficulty. They did not take into account that
the description of higher cognition in the mind encompasses
two levels: On the one hand, at the macrolevel, symbolic
computation is performed, and on the other hand, at the mi-
crolevel, mathematical computation is achieved through pro-
cesses within a dynamical system. One critical question is
therefore how linguistic theory and dynamical systems can
be unified to provide an explanation for processing effects.
Here, we present such a unification for a particular account
to syntactic theory: namely a parser for Stabler’s Minimalist
Grammars, in the framework of Smolensky’s Integrated Con-
nectionist/Symbolic architectures. In simulations we demon-
strate that the connectionist minimalist parser produces pre-
dictions which mirror empirical findings from psycholinguis-
tic research.

Method
Materials In contrast to English, the word order in Ger-
man is relatively free, which offers the opportunity to vary
syntactic processing difficulties for the same lexical items
by changing their morphological case. For this study mild
garden-path sentences in German (subject-object vs. object-
subject) sentences were used which are known for eliciting
a P600 in an event-related brain potential (ERP) experiment
(Frisch, Schlesewsky, Saddy, & Alpermann, 2002). Consider
the following example sentences in German:

(1) Der
The

Detektiv
detectiveMASC|NOM

hat
has

die
the

Kommissarin
investigatorFEM|ACC

gesehen.
seen.

‘The detective has seen the investigator.’

(2) Die
The

Detektivin
detectiveFEM|AMBIG

hat
has

den
the

Kommissar
investigatorMASC|ACC

gesehen.
seen.

‘The detective has seen the investigator.’

(3) Den
The

Detektiv
detectiveMASC|ACC

hat
has

die
the

Kommissarin
investigatorFEM|NOM

gesehen.
seen.

‘The investigator has seen the detective.’

(4) Die
The

Detektivin
detectiveFEM|AMBIG

hat
has

der
the

Kommissar
investigatorMASC|NOM

gesehen.
seen.

‘The investigator has seen the detective.’

The sentences (1)-(2) have subject-object order whereas (3)-
(4) have object-subject order. Previous work (Weyerts,
Penke, M̈unte, Heinze, & Clahsen, 2002) has shown, that
sentence (3) is harder to process than sentence (1) due to the
scrambling operation which has to be applied to the object of
sentence (3) and leads to higher processing load. A second
effect for these syntactic constructions in German is that (2)
and (4) contain a case ambiguous nominal phrase (NP). Bader
and Meng (1999) found that readers assume that the first NP
is a subject when it is case-ambiguous; Frisch et al. (2002)
showed in an event-related brain potentials study that sen-
tences like (4) lead to a mild garden-path effect. This work is
able to model both effects - the scrambling operation as well
as the disambiguation effect.

Symbolic Representation The symbolic representations of
human sentence processing are well-established in the lin-
guistic literature covering a wide range of grammatical for-
malisms e.g. lexical-functional grammars (LFG), head-
driven phrase grammars (HPSG), tree-adjoining grammars
(TAG), Minimalist Grammars (MG) and so on. Until now,
the present work is the first study which uses the Minimalist
Grammars formalism for German, so far it has been only ap-
plied to English (Stabler, 1997; Harkema, 2001; Hale, 2003).
In order to use MG for a language with relatively free word
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order, a new pair of features was introduced into the formal-
ism. These scrambling feature expands the movement opera-
tion, thereby accounting for the possibility to rearrange argu-
ments of the sentence signaled by morphological case.

Mathematical Representation The second part of this
study deals with the encoding of the particular parse steps
carried out by the grammar formalism. The minimalist tree
of each parse step is mapped onto the fractal tensor product
encoding as follows: role vectors represent the positions in
the binary minimalist tree (root, left child, right child),while
fillers account for the symbols of the tree and the minimal-
ist features of the lexicon entries (e.g.>, <, +acc, -acc, d,
=d etc.). The tensor product (Smolensky & Legendre, 2006)
is calculated by the binding of role and filler which results
in a tensor product representation of each parse step. In other
words each symbolic representation will be presented as a nu-
merical value in an activation space and can be visualized ina
coordination system by trajectories. These trajectories visual-
ize the sentence processing difficulties by exploring different
areas in the vector space.
Finally the numerical values of the encoding are used as input
to a neural network. This study will use Tikhonov-Hebbian
learning to simulate the underlying language processes with
the help of autoassociators.

Results
Figure 1 shows the trajectories of sentence (1) and (3) which
only differ in the scrambling operation for (3). Both graphs
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Figure 1: Time series for the scrambling operation.

start with different initial conditions and converge untilparse
step 6. At this point the second NP is moved (scrambling)
at which the trajectories diverge significantly reflecting the
disambiguation process and a high syntactic processing diffi-
culty.

Figure 2 shows the trajectories for the sentences (2) and
(4). The trajectories start with the same initial conditions and
proceed equally because both sentences are parsed equally
(following the subject preference strategy) until parse step 5.
At that point the graphs diverge significantly which can be
interpreted as processing difficulties as encountering thesec-
ond NP (disambiguation). The scramble operation becomes
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Figure 2: Time series for the garden-path effect.

inevitable for sentence (4) and requires a reanalysis of the
built syntactic structure. Further the trajectory for sentence
(4) breaks down at parse step 7 simulating the garden-path
effect.

By modeling these kinds of processing difficulties (Gerth
& beim Graben, submitted; beim Graben, Gerth, & Va-
sishth, 2008) on both levels–macrolevel and microlevel–this
approach bridges the gap between the symbolic computation
and the mathematical representation and combines the func-
tionalities of established linguistic theories.
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A Tale of Two Theories 

Activation and Micro-Lapses 

We have been developing a computational theory of the 

effects of fatigue (especially sleep-related fluctuations in 

alertness) on the human cognitive system, implemented 

through mechanisms that impact existing components of the 

ACT-R architecture (Gunzelmann, Gluck, Kershner, Van 

Dongen, & Dinges, 2007; Gunzelmann, Gross, Gluck, & 

Dinges, 2009). These mechanisms include the suppression 

of activation in the declarative knowledge system, as well as 
brief breakdowns in the central production execution cycle, 

which we call micro-lapses. 

Through an iterative series of mechanistic architectural 

modifications, model implementations, and goodness-of-fit 

evaluations in task contexts like the Psychomotor Vigilance 

Test (PVT – Dinges & Powell, 1985) and the Walter Reed 

Serial Addition/Subtraction Task (SAST – Thorne, Genser, 

Sing, & Hegge, 1985), the theory has evolved to a state in 

which we have some confidence in its appropriateness. In 

other words, we feel increasingly confident that the 

mechanisms we are using to replicate and explain relevant 

empirical results are both sufficient and necessary for that 

purpose (Estes, 2002). This gives us a measure of 

confidence that it is reasonable, perhaps even advisable, to 

use the theory to make novel performance predictions in 

task contexts beyond those used for originally developing 

and evaluating the theory. So far, we have promising results 
from fatigued performance predictions in both the context of 

dual-tasking (Gunzelmann, Byrne, Gluck, & Moore, 2009) 

and also in the context of simulated driving (Gunzelmann, 

Moore, Salvucci, & Gluck, submitted). 

Cognitive Slowing 

A popular alternative theory of fatigue is one commonly 
referred to as cognitive slowing. Though typically presented 

as a verbal-conceptual theory that describes an important 

category of empirical results from the sleep research 

community, cognitive slowing has inspired at least one prior 

computational implementation that explicitly moderated the 

processing of a simulated cognitive system by literally 

slowing it down (Jones, Laird, & Neville, 1998). To 

introduce fatigue effects into their model, Jones et al. 

modified Soar’s mechanisms to introduce artificial delays in 

processing, thereby having the effect of slowing overall 

system performance. Indeed, one of our very first 

conjectures regarding plausible mechanisms for 

implementing a theory of the effects of fatigue on cognitive 

processing involved a focus on “cognitive slowing” 

implemented as changes in the Default Action Time (DAT) 

of the production cycles in ACT-R, which controls the 

speed of central cognition in the architecture. 

Does It Matter? 

Despite what we consider to be convincing theoretical and 

empirical evidence that a cycle time-based account is less 

valid than our preferred “activation and micro-lapses” 

theory, we have been left to wonder whether the different 

theories would actually produce meaningfully different 

predictions in a more complex, dynamic, realistic context 

like aircraft maneuvering. This is more than just idle 

curiosity. It speaks to the core justification for pursuing 
basic computational cognitive modeling research – that the 

details matter – not only in the arena of theoretical 

constructs, but also in the arena of applied cognitive 

technologies. 

Sleepy Pilot Performance Forecasts 

We incorporated the fatigue mechanisms into a cognitive 

model that flies basic maneuvers with a Predator Synthetic 

Task Environment, in order to simulate the effects of 
extended sleep deprivation on pilot performance. Gluck, 

Ball, and Krusmark (2007) described the basic maneuvering 

task and cognitive model implementation in detail, and 

space considerations preclude repeating that material here. 

We will note, however, that for purposes of the pilot 

performance forecasts reported here we used Maneuver 7 

(which requires simultaneous constant rate of change 

adjustments to airspeed, altitude, and heading over a 90-

second trial) and we used the Control Focus and 

Performance variant of the pilot model, which is our most 

valid replication of expert-level performance on the basic 

maneuvering tasks.  
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With that model as a baseline, we implemented our set of 

mechanisms in to the model, and used parameter values 

derived from previous fatigue modeling efforts using the 

SAST, to arrive at principled values for the “Activation and 

Micro-Lapses” account. We also derived predicted DAT 

values for the “Cognitive Slowing” account using values 

estimated to account for dual-task performance. Though 

imperfect, the mechanisms and parameter values reflect an 

honest effort to faithfully implement and parameterize both 
accounts. To evaluate the alternatives, we ran the model 110 

times at each of four levels of sleep deprivation: Baseline 

(no sleep deprivation), 1, 2, and 3 days of sleep deprivation.  

Results are presented in Figure 1. 
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Figure 1: % failed basic maneuvering trials by fatigue 

theory, across four levels of sleep deprivation 

 

The forecasts show nearly identical performance up to 

two days of sleep deprivation, followed by a dramatic 

difference in predicted performance level after three days 

without sleep. The obvious implication of this result is that 

it suggests that it does matter what the details are in your 

implementation of a theory of fatigue in the human 

cognitive system, at least in the extreme. However, this 

result also raises an assortment of more subtle issues 
associated with the challenges we face as we begin trying to 

make real, no kidding, a priori performance predictions in 

transfer contexts. Some of these questions include: 

 

1. How sensitive are the predictions to variations in 

the model parameters? 

2. How valid are the results? 

3. Would we be comfortable using these results to 

inform policy decisions? 

 

We hope to discuss and debate possible answers to 

these questions with attendees at ICCM 2009. 

Discussion 

The good news story is that we have reached a state in our 

research where we can make forecasts of this sort in 

complex, dynamic domains and have some confidence in 

the accuracy of those predictions. This is a desirable state 

for cognitive science in general, and for us in particular. 

The bad news story is that we have no expectation of 

being able to directly evaluate the accuracy of the model 

predictions against empirical human data. It is logistically 

difficult and expensive to run the necessary sleep protocols 

with this task. It is an interesting conundrum that we are just 

beginning to face in computational cognitive science. 
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Introduction 

As we, the ICCM community, continue to expand the scope 

of our cognitive modeling ambitions, we increasingly face 

computational requirements that are an impediment to 

progress. Computational complexity grows quickly with 

increases in the granularity of models, the fidelity of the 

models’ operating environment, and the time scales across 

which these models interact. Additional processing demands 

are encountered when studying the breadth of a cognitive 

model’s performance capabilities such as through observing 

the model's sustained fitness while varying the environment 

or conducting sensitivity analyses of interactions between 

internal model parameters in a controlled experiments. Such 

computational demands are not unique to the cognitive 

modeling community. Other scientific fields 

(bioinformatics, meteorology, physics, etc.) have already 
pioneered a variety of platforms and methodologies for 

dealing with similarly computationally complex problems. 

We will achieve faster progress toward the broader 

scientific objectives of cognitive modeling and the specific 

goals of particular research projects if we pay attention to 

the lessons learned and capabilities developed in other 

computational sciences. 

Volunteer Computing 

An exciting methodological development of the past decade 

has been the rise of volunteer computing as a means of 

acquiring access to large numbers of computer processors 

distributed across the internet. Volunteer computing 

represents a huge and increasingly powerful computational 

resource due to the continuous growth rate of end-user 

processing capability around the world. The first volunteer 

computing project was SETI@Home. It was established in 

1999 for the purpose of demonstrating the utility of 

“distributed grid computing” by providing a mechanism for 

analysis of massive amounts of observational radio 

telescope data. The scientific Search for Extra-Terrestrial 

Intelligence rapidly caught and held the public imagination, 

and SETI@Home remains the longest running and one of 

the most popular volunteer computing projects in the world. 

This actually is an impressive feat, given that the volunteer 

computing concept has caught on in an assortment of other 

scientific communities and there are now approximately 

three dozen volunteer computing projects available to those 

interested in donating their idle processor time to scientific 

pursuits. Most of them, including SETI@Home, run on a 

software architecture called the Berkeley Open 

Infrastructure for Network Computing (BOINC). Some of 

the other large BOINC-based scientific volunteer computing 

projects include: Climateprediction.net (sensitivity analyses 

of models that predict Earth’s climate up to 2080), 
MilkyWay@Home (investigating optimization methods for 

Internet-based computing and developing 3-dimensional 

models of the Milky Way galaxy), and Einstein@Home 

(searching for pulsars in data from the LIGO gravitational 

wave detector). In total, as of April 14, 2009 (the 

submission date for ICCM 2009), BOINC-based volunteer 

computing projects include 291,956 active volunteers, 

offering 531,174 computer hosts. That level of volunteerism 

is producing an average computational throughput, across 

all projects, of 1,368 TeraFLOPS.  

The largest existing volunteer computing project does not 

run on the BOINC platform. It is called Folding@Home and 

is dedicated to understanding protein folding. 

Folding@Home currently, as of the submission date, has 

more than 4 million volunteered computers and is producing 

a throughput of 4,782 TeraFLOPS. By comparison, the 

world’s current fastest centrally-managed High Performance 
Computing system, at the United States Department of 

Energy’s Oak Ridge National Laboratory, has a peak 

processing capacity of 1,640 TeraFLOPS, so clearly there is 

a lot of computational power and potential scientific return 

available through distributed, volunteer grid computing. It 

will benefit computational cognitive scientists to begin 

taking advantage of this platform. Happily, there are now 
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two cognitive science-related volunteer computing projects. 

One, called Artificial Intelligence System, is an AI project 

hoping to achieve large scale artificial intelligence by 

reverse engineering the brain. The other is 

MindModeling@Home. 

MindModeling@Home 

Launched in March of 2007, and still (intentionally) in Beta 

status, MindModeling@Home focuses on utilizing 

computational cognitive process modeling to better 

understand the human mind and to improve on the scientific 

foundations that explain the mechanisms and processes that 

enable and moderate human performance and learning. It 

accomplishes this goal using the BOINC software 

augmented with in-house development of web-based user 

interfaces and community portals. Together these tools 

attempt to bridge the gap between the complex engineering 

challenges of large scale computing and the domain specific 

requirements of the cognitive science research community.  
Since its inauguration two years ago, the system has 

completed over 50 jobs — most of which involve millions 

of model runs — which substantially contributed to various 

research efforts both within and external to our organization.  

Most of these jobs were completed exclusively by 

volunteers donating computing time from over 3000 

machines (typically 200 to 900 at any given moment in 

time). However, MindModeling@Home is not limited to 

volunteers, as we have also achieved integration with local 

resources as well as several high performance computer 

clusters. 

There are many lessons learned and remaining challenges 

associated with using heterogeneous computational 

resources beyond those faced when attempting to use 

homogenous computing clusters. Some challenges include 

how to schedule work with virtually no consistent 

expectation of availability, how to gauge progress and report 
status to customers, how to ensure that models are written 

properly and behave appropriately on Linux, Windows and 

Mac OS X, how to recover when those resources fail, and 

how to ensure the level of data integrity required for 

scientific publications. These are non-trivial engineering 

efforts, and it behooves the computational cognitive science 

community to leverage existing work in this space. 

MindModeling@Home currently supports Common Lisp-

based cognitive models. Work has begun to support models 

written in other languages such as Java, Python and Scheme. 

The hope of this expansion is to open the door for different 

types of cognitive research to be supported by this 

framework; thereby making the computational resource pool 

available to a broader cross-section of the cognitive 

modeling community. Other future work includes the 

exploration of special purpose processors such as the 

Graphics Processing Units (GPUs) which have enormous 
computational ability but do not support general process 

calculations currently used in the models of 

MindModeling@Home. Also, an effort is underway to 

better parallelize model component pieces. The ability to 

parallelize not only experiment parameterization 

configurations but also the cognitive model and 

environment itself provides the ability to support modeling 

efforts at a depth not possible in single processing 

environments.  

Our attempts to address cognitive modeling’s growing 

computational demands are not limited to acquiring 

computational resources. The problem is also being tackled 

through research in exploration and search algorithms. 
MindModeling.org already incorporates an experimental 

“adaptive mesh refinement” (AMR) algorithm to 

intelligently prune and interpolate parameter spaces, and as 

a result of some very recent research efforts (Best et al., 

submitted), a smoothing algorithm has been added to help 

reduce resampling requirements. Integrating intelligent 

algorithms in the context of large scale computing has 

proven to be surprisingly challenging, but we see these 

challenges as opportunities for active involvement by the 

broader cognitive modeling and computational sciences 

communities. 

A long range goal of MindModeling.org is to abstract 

away the challenges of using large-scale resources (and 

using large-scale resources well) for cognitive modelers.  

Unlike most volunteer computing projects, in which a single 

research project/team/center drives all of the computational 

demands, we would prefer to turn MindModeling@Home 
into a cognitive modeling community resource, enabling 

cognitive modelers all over the world to harness the power 

of the system by submitting their own cognitive model 

batch runs. We believe the distributed power of 

computational resources available to a distributed 

MindModeling community will facilitate new advances in 

computational cognitive process modeling otherwise not 

possible.  
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Introduction 
Today’s most important constraint on practical application 
of cognitive modeling as evaluation method is the high 
cost/low benefit ratio caused by a lack of support tools for 
modeling and by high requirements on sophisticated 
knowledge in cognitive psychology as well as artificial 
intelligence programming. The development of high-level 
languages to model human cognition based on low-level 
cognitive architecture is a current matter in the cognitive 
research community (see Ritter et al., 2006).   

To open cognitive modeling to a wider user group and 
make the developing task easier and more accessible, the 
Hierarchical Task Analysis Mapper approach (HTAmap) 
has been developed. The main idea behind HTAmap is 
modeling on a higher level of abstraction. The foundation of 
the HTAmap approach is determined by: 

• HTAmap modeling process: A formalized modeling 
process to minimize the transformation-gap between 
semi-formal, high-level sub-goal template task models 
(SGT; Ormerod & Shepherd, 2004) and formal, low-
level ACT-R models (Anderson et al., 2004). 

• HTAmap modeling language: An XML-based  
representation of task- and device-related knowledge 
within an integrated ACT-R model as well as strategies 
for model reuse and adaptation with regard to  
dynamic task environments and  user skills. 

• HTAmap editor: A Java-based software tool for 
systematic and semi-automated ACT-R modeling 
based on predefined model fragments. 

The HTAmap modeling approach delivers cognitive 

modeling functionality based on predefined and modifiable 
cognitive activity patterns (CAP). Options for integrating 
separately defined device models of complex dynamic task 
environments (ACT-R graphical interface, AGI) as well as 
interfaces for embedded perception and action-models (AGI 
strategies) are also possible. 

HTAmap modeling process 
A large part of the cognitive model building process is 
transformed into a more simple pattern-oriented 
modification task. Figure 1 shows an overview of the 
different modeling steps. The output of the SGT method is 
the formal decomposition of the task and its re-description 
in terms of sub-goal templates, which represent a 
nomenclature for stereotypical operator tasks (TMSGT). This 
re-description is the starting point for building the XML 
based HTAmap model (TMHTAmap) and its automated 
transformation into ACT-R code (TMACT-R). In comparison 
to existing macro compilation approaches like ACT-Simple, 
G2A or ACT-Stitch (see Ritter et al., 2006 for an overview), 
that are widely limited to model user behavior in static task 
environments, HTAmap focuses strongly on simulations of 
dynamic task environments and their simplified coupling 
with ACT-R (IMAGI IMAGImap  IMACT-R).  

HTAmap modeling language 
The transformation gap between both levels of description is 
closed by the HTAmap modeling language. CAPs are being 
used to solve the mapping-problem from high-level to low-
level description (SGT and ACT-R models). A CAP 
represents a generalized solution for the execution of an 
operator task (e.g. observe, scan, monitor, de-/activate, 
adjust, evaluate) using resources (i.e., declarative and 
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Figure 1: Overview of the HTAmap Modeling Process. 
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procedural memory as well as perception and action 
modules) to tackle a recurrent problem in a specific context. 
In general, CAPs describe the specific applications of 
identified SGT information handling operation at a less 
abstract level of ACT-R. In detail, a CAP comprises the 
necessary ACT-R declarative and procedural structures (i.e., 
production and chunks) and provides interfaces for 
parameterization regarding various tasks and environments. 
Elementary cognitive activity patterns (eCAP) are the basic 
building blocks for tasks. Compound cognitive activity 
patterns (cCAP) are used to represent the hierarchical 
structure of tasks. Complex task structures are represented 
via nesting of cCAPs: a cCAP can contain several eCAPs 
and/or other cCAPs (see Heinath & Urbas, 2007 for an 
overview). An activity is the combination of a CAP and task 
relevant knowledge. The HTAmap model itself is the 
combination of activities and task control knowledge (see 
Figure 2, right side). The kind of execution of activities is 
specified by their order-types which strongly refer to the 
plan concept of the SGT method: fixed, free or contingent 
sequence and simple choice. 

HTAmap modeling editor 
To proof the concept and reduce the entry level in cognitive 
modeling, a HTAmap editor has been implemented. Figure 2 
shows a screenshot. The editor consists of three main parts: 
A Model Editor is used to define the repositories with the 
predefined model fragments (e.g., CAPs, AGI strategies, 
etc.), the AGI interface specification of the technical 
environment and the activity structure as result of the SGT 
task analysis. Secondly, task specific information are set in 
the Property Editor. Thirdly, the resulting HTAmap model - 
in XML syntax - is shown in the Model Code View. The 
transformation of HTAmap models into ACT-R code is 
realized automatically via the software tool HTAtrans that 
has been also integrated in the HTAmap modeling editor.  

Conclusion and Outlook 
HTAmap extends the modeling process to a wider user 
group. Main scope is the simplification of ACT-R modeling, 
the reuse of model fragments and consequently an increase 
of model application in the context of usability evaluation of 
Human-Machine Systems. The HTAmap model can be seen 
as a first approximation to model human behavior in ACT-R 
and provides a good starting point for further refinements. 
Currently, only a subset of CAPs is specified. The transfer 
of more ‘associated’ production rules into CAPs requires 
further verification and validation steps in the future.  
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How do people interleave attention when multitasking? One 
dominant account is that the completion of a subtask serves 
as a cue to switch tasks (e.g., Salvucci, 2005). But what 
happens if switching solely at subtask boundaries led to 
poor performance? In this paper, we investigate how drivers 
allocate their attention to a secondary phone dialing task 
while driving. We use a computational model to explain 
why we expect a particular pattern of task interleaving. 
These predictions are collaborated with empirical data of 
how participants dialed a UK-style number while driving.  

A number of studies have investigated how drivers 
interleave dialing and driving (e.g., Brumby, Salvucci, & 
Howes, 2009; Salvucci, 2005). These studies have found 
that drivers dial in bursts, dialing several digits at a time 
before returning their attention to the road in between each 
burst. The manner in which the digits are dialed corresponds 
to the representational structure of the number in memory 
(i.e. xxx-xxx-xxxx for a US number). This supports the idea 
that the completion of a discrete subtask acts as a natural 
cue to switch from one task to another (Salvucci, 2005).  

An alternative account of this behavior is that drivers 
complete as much of the secondary dialing task as possible 
while maintaining a stable lane position. Brumby et al. 
(2009) show that dialing three or four digits at a time is a 
particularly efficient task interleaving strategy: Any more 
interleaving incurs additional costs without significant 
improvement in lane keeping performance, and less 
interleaving sacrifices safety.  

A limitation of previous data though is that it has focused 
almost exclusively on having participants dial US numbers. 
This is problematic because these numbers are made up of 
chunks of three and four digits each. Here we redress this 
issue by having participants dial a telephone number that 
has many more digits per chunk; namely, the xxxxx-xxxxxx 
representational structure that is used in parts of the UK. If 
drivers were to dial this number by interleaving only at the 
chunk boundaries, then they would have to dial five or six 
digits at a time. In the next section, we use Brumby et al.’s 
(2009) model to derive predictions for different task 
interleaving strategies, which are then compared to data 
from a study that investigates how participants dial a UK-
style number while driving.  

Model Exploration of Strategies 
The model focuses on how different strategies for 
interleaving tasks affect critical performance metrics, 
namely, dial time and driver safety. We model a situation 
where the driver has to dial an eleven-digit number with 

chunks of five and six digits. We fit a parameter in the 
model that represents the amount of time it takes to dial 
each digit based on the human single-task baseline data 
(described below). Based on these data, key presses took 
800 ms to execute, with the exception of the first key press 
of a chunk of digits, which took 1,200 ms to execute. We 
assumed that switching attention from driving to dialing, 
and back again, took 200 ms to execute. Furthermore, we 
assumed that disrupting the chunk structure of the dialing 
task carries an additional time cost of 100 ms to retrieve 
relevant state information from memory.  

We used the above model to predict how a relevant subset 
of task interleaving strategies would perform. Each strategy 
differed in the number of digits that was dialed before 
attention was returned to driving. We use a simple 
convention to describe each strategy. A cross represents a 
key press and a dash represent a point where the model 
would interrupt dialing to return attention to the road. The 
strategies we evaluated were:   

S1: xxxxxxxxxxx      S5: xx-xxx-xx-xx-xx 
S2: xxxxx-xxxxxx      S6: x-xx-xx-xx-xx-xx 
S3: xxxxx-xxx-xxx      S7: x-x-x-x-x-x-x-x-x-x-x 
S4: xx-xxx-xxx-xxx      

Of these S2 is notable because it interleaves only at the 
chunk boundary of the telephone number. Whereas, S3-S7 
disrupt the chunk structure by interleaving more frequently, 
and as a result incur additional switch costs. We next give 
performance predictions for each strategy.  

Model Predictions  
Figure 1 shows the predicted lane deviation and dial time 
for each task interleaving strategy. There is a clear 
speed/accuracy trade-off between the time taken to complete 
the dialing task and vehicle lateral deviation. The important 

Figure 1: Model (dots) and human (triangle) data for 
total dialing time against lateral deviation 
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Figure 2: Data from empirical study. (A) inter-key press intervals on the single task, (B) inter-key 
press intervals on the dual task, and (C) relative change in lateral position on the dual task. 

point to note here is the shape of the trade-off curve (linking 
S1 through S7). More frequent task interleaving carries the 
benefit of improved lane keeping but at the cost of increased 
time. However, at some point in this trade-off curve the 
improvements that are to be had in lane keeping become 
smaller with increased interleaving. Strategies that disrupt 
the chunk structure of the telephone number to dial three or 
four digits at a time (i.e., S3-S5) appear to cluster around the 
point where relatively safe driving performance is achieved 
while completing the dialing task relatively quickly. In 
contrast, the performance of the strategy that interleaves 
only at the chunk boundaries (S2) is in a region of relatively 
unsafe driving performance. These modeling results show 
that incurring the additional costs of disrupting the chunk 
structure of the telephone number is clearly worthwhile in 
terms of the improvement that is to be had for safety on the 
primary driving task. In the next section, we test the 
prediction that drivers should break up the chunk structure 
of a UK-style number in dual-task settings for improved 
safety.  

Experiment 
Twelve participants drove at a constant speed of 55 mph in a 
desktop based driving simulator that was projected on a 30-
inch monitor. The driving environment consisted of a three-
lane highway with safety cones placed on both sides of the 
centre lane to encourage staying inside lane boundaries. For 
dialing participants used a real mobile phone (Nokia 6300). 

Participants started the experiment by learning the to-be-
dialed number in a way that reinforced the intended chunk 
structure (i.e., xxxxx-xxxxxx). The number was shown on 
the monitor, but only digits from the current chunk were 
visible. Xs replaced the digits of the other chunk.  

After training, participants completed 10 single-task 
dialing trials where they entered the number as quickly as 
possible (from memory). Participants then completed 10 
single-task driving trials, and 20 dual-task trials (dialing 
while driving). For the dual-task trials, participants were 
instructed to drive as safely as possible while dialing. Each 
trial ended once the participant had dialed the number 
correctly, or after 60 seconds. To reinforce safe driving, 

feedback on average lane deviation was given after each 
trial. Error trials were excluded from the analysis.  

Results 
Figure 2a shows the average time to dial each key in the 
single-task context. These data suggest that when 
participants dialed the number as quickly as possible there 
were extended delays when entering the first and the sixth 
key of the number. These extended delays correspond to the 
first key of each new chunk of digits, presumably reflecting 
the time taken to retrieve the chunk of digits from memory. 
In the dual-task condition this pattern changes, however.  

Figure 2b shows that while all key presses become 
elevated in the dual-task condition, there are extended 
delays at the third, sixth, and ninth digits. Figure 2c 
provides evidence that participants were choosing to 
suspend dialing at these points in order to bring the car back 
to the centre of the road (i.e., negative values indicate 
movement towards lane centre). Taken together these data 
suggest that participants were choosing to interleave dialing 
and driving in a manner akin to strategy S4.  

Conclusion 
Model and human data combined suggest that secondary 
subtask structure can be actively reconfigured to allow for 
more interleaving. Dialing is not necessarily interleaved at 
chunk boundaries instead people are willing to disrupt the 
explicit chunk structure of a secondary task when it is 
beneficial to do so in dual-task settings. This study is part of 
our ongoing effort to identify the influence of cognitive and 
environmental constraints on strategy adaptation in 
multitask situations. Future work should point out how 
increased or decreased demands on both types of constraints 
alter interleaving. 
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Introduction 
The claim of “cognitive plausibility” is applied to cognitive 
models, Artificial Intelligence systems, and social 
simulations. All three research communities use the term but 
have different grounds for justifying their use. Can the 
semantics of the term be rationalized across all three 
disciplines?   

The purpose of this poster is to advance the discussion of 
the meaning of cognitive plausibility started at the  
Cognitive Science Society annual meeting in 2008 (W. G. 
Kennedy, 2008) and continued within the International 
Journal for Social Robotics (William G. Kennedy, Bugajska, 
Harrison, & Trafton, 2009).  

Different Views of Cognitive Plausibility 
The three fields of cognitive modeling, Artificial 
Intelligence, and social simulation have different views of 
what constitutes acceptable justification for the use of the 
desired trait descriptor cognitive plausible.  

Cognitive Plausibility in Cognitive Modeling 
In cognitive modeling, the focus is primarily on replicating 
the observed behavior of a single individual and researchers 
believe theories, experiments, and models matching 
experimental data are needed to claim cognitive plausibility. 
With an interest in the make up of cognition, cognitive 
modeling is focused on experiments that demonstrate 
overall performance and experiments that isolate 
components of cognition, such as memory and reasoning. 
For cognitive modeling, matching human performance data 
includes matching the errors humans make.  

Cognitive Plausibility in Artificial Intelligence 
The argument of researchers in the field of Artificial 
Intelligence is that if the inputs and outputs of the system 
are comparable to those of humans, then the system is 
cognitively plausible. The field is less concerned with the 
cognitive plausibility of the internal components or 
processes because eventually all the components or 
processes are implemented in silicon. Hence the black box 
analogy with no cognitive plausibility claims about the inner 
working/components/subsystems, i.e., how the outputs are 
generated. The focus here is on the functional performance 
of the system. Artificial Intelligence is also not limited to 
demonstrating the performance of an individual, but is quiet 

happy to apply multiple and distributed intelligent agents to 
obtain cognitive performance. Finally, it should also be 
noted that the goal of AI research is not simply replicating 
human performance, but understanding the mathematical 
principles behind it as demonstrated by the building of 
systems that match and may one day surpass human 
performance.  

Cognitive Plausibility in Social Simulations 
The social sciences have the challenge that they cannot 
conduct experiments on real societies. As a result, social 
simulations have long relied on functions describing the 
behavior of rational individuals and behavior of small and 
large groups as a whole. These formulations go back to 
difference equations describing the effects of the number of 
combatants and weapons (e.g., swords and shields or bows 
and arrows) on one side reducing the number of combatants 
on the opposing side in each of a series of exchanges 
(Lanchester, 1916). However, even with the development of 
much more sophisticated social simulations, the “homo 
economicus” assumptions of perfectly rational behavior 
have been criticized by many including Herbert Simon and 
the community now recognizes a need for better cognitive 
plausibility in their models of human behavior (Sun, 2006), 
but is without a definition of what that means.  

Common Ground 
To find common ground, Nobel prize winner Richard 
Feynman is instructive. Richard Feynman lectured that “All 
other aspects and characteristics of science can be 
understood directly when we understand that observation is 
the ultimate and final judge of the truth of an idea.” 
(Feynman, 1998) But cognitive plausibility would then be 
dependent on “observing” cognition. While we may be 
getting close to observing cognition directly (Anderson, 
2007), simulation has been suggested as a third branch of 
science, adding to theoretical and experimental branches. 
Herbert Simon wrote that simulation can be of help to 
understand the natural laws governing the inner workings of 
a system from the top down “because the behavior of the 
system at each level is dependent on only a very 
approximate, simplified, abstracted characterization of the 
system at the level next beneath” (Simon, 1969). He also 
noted that this approach is similar to the foundations for the 
entire subject of mathematics.  

In proposing a unified theory of cognition, Allen Newell 
proposed several levels within the human cognitive 
architecture (Newell, 1990) which Ron Sun, and others, 
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simplified to: the sociological level, the psychological level, 
and the physiological level  (Sun, 2006). Finally, John Laird 
presented an organization to cognitive architectures based 
on their goal and basis in his plenary presentation at the 
Cognitive Science Society in 2007. Combining these 
concepts provides a basis for unifying the various uses of 
cognitive plausibility for these three areas of research.  

Differentiating Cognitive Plausibility 
The old problem with the definition of intelligence was that 
if it was defined in terms of something human did, then no 
artifact could ever be intelligent and intelligence was not 
acceptably defined without reference to humans. Similarly, 
for a cognitive model or system to be worthy of belief, i.e., 
plausible, is needs to convince us that it is performing 
cognition. To avoid the arguments about the validity of the 
Turing Test, a basis for differentiating the uses of cognitive 
plausibility is proposed here based on observed performance 
and system levels. 

Consider a cognitive system as being made up of one or 
more layers of systems. I propose defining the cognitive 
plausibility of any system or layer as: 

 
Proposal for discussion:  to be considered “cognitively 
plausible,” a system must be capable of performing as 
well as humans do on cognitive tasks or be plausibly 
built on components that have met this test.  
 
To perform “as well as humans do” means matching human 
performance data. Of course, what it means to match human 
data is a separate discussion and has been discussed 
elsewhere, see (Fum, Del Missier, & Stocco, 2007) and 
(Gluck, Bello, & Busemeyre, 2008)  Ron Sun (Sun & Ling, 
1997) has proposed three “types of correspondence between 
models and cognitive [systems]”: behavioral outcome 
modeling (roughly the same behavior), qualitative modeling 
(same qualitative behavior), and quantitative modeling 
(“exactly the same” behavior).  

Note that this does not address matching human errors in 
performing cognitive tasks. Being able to match human 
behavior, both successes and errors, is proposed to be 
beyond the basic concept of cognitive plausibility. I suggest 
describing the ability of a system to match human 
performance including errors as being “genuinely cognitive 
plausible”. Further, to address construction of systems from 
cognitively plausible subsystems, I propose that cognitively 
plausibility can be “deep” or “shallow”. “Shallow cognitive 
plausibility is cognitive plausibility at only one layer of a 
cognitive architecture and “deep cognitive plausibility” is 
cognitive plausibility across more than one layer. 

For social simulations, cognitive plausibility can be based 
on using cognitively plausible models for individuals at the 
next lower level, i.e., for the individuals that make up the 
society. Using the proposed definition of cognitively 
plausible, the field of AI can base its use of the term on 
meeting or exceeding human-level performance. Finally, 
cognitive model researchers can base their use of the same 

term on the cognitive plausibility of matching human 
performance or on a plausible construction of cognitively 
plausible modules. All fields can clarify their cognitive 
plausibility as shallow, deep, or genuine. This is the subject 
of discussion for this poster. 
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Abstract 
IDA is a new architecture that combines data analysis and 
operator model creation and simulation.  It enables the 
development of operator models by finding causality patterns 
in recorded machine operation data. A new symbolic 
constraints based reasoning system is used to accurately and 
robustly segment data. These segments can then be used to 
discover an operator strategy expressed as hierarchical set of 
Tasks. 

Keywords: Operator Modeling, Cognitive Model, Data 
Analysis, Data Segmentation, Autodig, Wheel Loader. 

Introduction 
To assess the design of a new machine design, Caterpillar 
relies on an interactive simulation of machine, soil and 
human operator.  The operator model must reproduce the 
levers, steering and pedals commands in response to 
environmental inputs, as a human operator would do when 
performing particular tasks. 
The expertise for conventional cognitive models is usually 
obtained through an interview process with domain experts. 
While still useful for operator models, interviews alone are 
not sufficient as a large part of the behavior is unconscious. 
Fortunately, operator activities can be scrutinized in great 
details through recorded data of machine operation. 
Machines are routinely instrumented with various sensors, 
and a large amount of data is available. 

Data Collection 
To develop an operator model, we need to collect all data 
related to the operator-machine interactions. Operator 
commands are usually directly measured and many 
perception stimuli can be inferred from various sensor data. 
The bucket position of a wheel loader, for example, can be 
determined by the various cylinders extension of the 
linkage. Other visual information, such as the position of the 
bucket in relation to a pile of dirt, can be deduced from the 
force exerted by the soil on the bucket (calculated from 
cylinder pressure). When analyzing the data with the 
appropriate tool some patterns start to emerge. These 
patterns, in turn can be used to identify some general 
principles of machine operation that can be used to create an 
operator model. 
Looking at gigabytes worth of data can be an intimidating 
task. Common practice is to isolate one occurrence of the 
particular action intended to be modeled (for example a dig 
operation) and analyze it in detail. This approach however 

does not provide the distinction between random actions and 
regular patterns. To really understand the trends, a large 
number of digs must be analyzed and compared side by 
side. 

Data Segmentation 
The first step is to identify the part of the data that relate to 
the operation to be studied. A skilled engineer can do this by 
recognizing some patterns of cylinders extension and a few 
other sensors in time series data. Yet, automating this 
segmentation has been an elusive goal, suffering in time 
accuracy and having false positive or false negative 
detections. Recognizing the importance of such automated 
data segmentation, we designed our operator-modeling tool, 
named IDA, to integrate a new data visualization and 
segmentation tool. 
Constraints Based Segmentation 
IDA uses a concept of constraints based reasoning to 
perform segmentation. A segment is defined by a set of 
constraints chosen from eight possible types of constraints.  
IDA uses a special display to show numerical data channels 
and symbolic data channels simultaneously. Each Symbolic 
channel is displayed as a thick line where each segment 
appears as a colored rectangle corresponding to the color 
associated with this type of segment. Figure 1 shows an 
example of the data display and constraints definition for a 
dig segments during truck loading operation with a wheel 
loader. 

 

 
 

Figure 1: symbolic channels for data segmentation. 
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Numerical channels can also be calculated with user 
provided or predefined functions, such as filters or 
derivatives. Complex segmentations involve dozens of 
symbolic channels, each defined by its own set of 
constraints that refer to other symbolic channels or 
numerical channels. By combining numerical and symbolic 
processing it becomes possible to create segmentation that 
are both accurate and robust. 

Finding Patterns In Data 
Once particular segments of interest have been identified, 
IDA provides another view to show all the segments of a 
given type side by side. Figure 2 show a segmented view of 
dig segments for an operator. In this view, a regular pattern 
is visible for both tilt and lift command.  
 

 
 
Figure 2: Tilt and Lift commands for an operator during dig 

 
The view has been reduced to fit the available space in this 
paper. A large display would show more segments at a time 
and thus reinforce the side-by-side comparison. Finally, the 
horizontal scroll bar, at the bottom of the display, provides a 
quick way to browse hundreds of segments. Any irregular 
segment would stand-out and could be analyzed further. We 
believe that showing the data with an appropriate view 
enables the operator model developer to discover new 
patterns that would not be apparent with a more 
conventional data display.  
Automated Pattern Discovery 
A special type of function, called an aggregate function, is 
used to calculate a single value for each segment. This kind 
of data reduction can be used, for example, to calculate the 
energy spent on each dig by using an integral function  (an 
aggregate function) applied to the power delivered by the 
cylinders over time. Another example of an aggregate 
function is the “begin_value” function that simply reports 
the value of a numerical channel at the beginning of a 
segment. When applied to the gear channel for dig 
segments, it shows the gear at the beginning of each dig. 
Figure 3 shows the begin values for gear, speed and throttle. 
Data channel values at the beginning of a segment present a 
particular interest when searching for causality of the 
initiation of a type of task (like digging in our example). If 
the operator starting the dig action once the machine had 
reached a specific speed during the deceleration caused by 
contacting the pile, we would expect to see a consistent 
value at the beginning of each dig.  

 

 
 

Figure 3: gear, speed and throttle values at the beginning of 
each dig segment 

 
By calculating automatically the begin values for all the 
numerical channels available and sorting them by increasing 
order of their coefficient of variation, the most promising 
candidate for causality would start to emerge. By applying 
this calculation on a very large number of data, it is possible 
to automatically discover some general trends. 

Conclusion 
IDA, which stands for Integrated Development and 
Analysis, is currently used as an internal tool at Caterpillar 
for data analysis and operator model creation and 
simulation. The combination of both analysis and operator 
model building in the same architecture opens new 
possibilities for the creation of operator models. The models 
are, in a sense, created from the data and compared to actual 
data at different stages of their development. 

The operator modeling approach in IDA relies on serial 
process definitions related to COGNET (Zachary, LeMentec 
& Loiederman 1999) and GOMS (Card, Moran & Newell 
1983). The concept of data driven modeling could also be 
applicable to other cognitive modeling systems that rely on 
production rules such as ACT-R (Anderson & Lebiere 
1998) or SOAR (Newel 1990) as long as observable data are 
available. 
In the future, the IDA architecture could be extended to 
implement knowledge representation for different purposes.  
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Background
Within the community engaged in Soar-based cognitive mod-
eling (Newell, 1990), some work has focused on parsing nat-
ural language input text. An early version of the system
(Lewis, 1993) performed syntactic analysis based largely on
the Government & Binding (aka Principles & Parameters)
framework, including X-bar theory for constituency.

The system, called NL-Soar, receives lexical input word-
by-word, and lexical access is performed for each word in
turn. The system then attempts to integrate the incoming
words and their related information incrementally into lin-
guistic models: a syntactic X-bar parse tree (which will be
the focus of this paper), as well as semantic and discourse
structures (that will not be addressed here). All potential
and possible syntactic material is considered in piecing to-
gether licit constructions. Constraints operate to rule out at-
tachments that do not follow standard principles. In certain
cases, some types of limited structure can be undone and re-
formulated when ongoing hypotheses prove untenable in the
presence of new incoming words.

NL-Soar was later updated to retrieve knowledge from
WordNet (Fellbaum, 1998) that provides relevant morpholog-
ical and syntactic information for all of the senses and homo-
graphs of the word in question (Lonsdale & Rytting, 2001).

In more recent work (Lonsdale, 2006) following on di-
rectly from Lewis’ prior contribution, we replaced the
GB-style syntactic model with one more closely reflecting
assumptions of the Minimalist Program (MP) (Chomsky,
1995). Though cognitive modeling has been pursued with
other syntactic theories, Minimalism has not seen the same
scrutiny, though some parsing and psycholinguistic research
has been done within the MP (e.g. (Fong & Hirose, 2005))
and cognitive modeling within MP has been called for
(Edelman & Christiansen, 2003). Our work has included
adding more functional projections, feature checking, and
movements. In addition, two hierarchies of projections—one
for clausal structure and one for nominal structure—are avail-
able to specify and license construction of hierarchical layers
in the syntactic model.

To simplify the work for this paper, no sentences with ad-
junction, coordination, or complex clauses are considered.
We ignore movement of constituents, such as a subject’s pu-
tative movement from its original position in the specifier of
vP to its final position in the specifier of TP, due to the Ex-

tended Projection Principle. Finally, intransitives are treated
identically whether unergative or unaccusative.

Ongoing work has focused on whether the new syntactic
mechanism is capable of supporting incremental processing,
and at what cost. In this paper we summarize work done to as-
sess how two different parsing control strategies support pars-
ing in as incremental a fashion as possible. We also attempt
to quantify resource usage necessary to parse different types
of sentences according to the two different processes.

General remarks

Our study of this question involved running several sentences
through the system and running various statistical profiling
processes to measure processing load. We are using the
newest version of the Soar cognitive modeling system, which
represents a substantial revision of the basic NL-Soar code
base, not all of which has been converted to date.

The system is agent-based, and information enters from the
exterior environment. In our case, incoming words are col-
lected serially into a buffer until they are attended to. Atten-
tion involves a lexical access operator which retrieves asso-
ciated information from WordNet and other lexical resources
at the system’s disposition. After lexical access, processing
proceeds differentially depending on the strategy employed.

At the current time in this version of the system, learning
is turned off. Hence the pursuit of hierarchical goals is not
enabled, and the agent’s only task is to solve the sentence.

The project/attach strategy

The first strategy retains some of the assumptions of the orig-
inal GB-based theory. For example:

• Lexical categories are projected as completely as possible
as soon as possible. Zero-level nodes are projected to XP
nodes via one operator.

• Projections (except v) only grow when lexically licensed .

• Structures are extended via the hierarchy of projections as
soon as possible.

• Attaching complements and specifiers into pre-existing
structure is performed as a last resort, and only when li-
censed.

• New words aren’t attended to until all possible structure is
built incrementally.
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Thus, in processing a simple intransitive sentence, the
agent posits structure as soon as possible, completing the sub-
ject’s NP and then DP structure before the verb is encoun-
tered. Once the verb is attended to, it is projected up to a TP
per information provided via operators that consult the clausal
hierarchy of projections. The subject is then attached into the
specifier position of the TP node.

Processing is similar for transitive verbs, with an additional
step to attach the direct object into the complement position
of the V-bar node. For ditransitive verbs, the first object is
attached into the specifier of the VP node as soon as it is com-
pleted; the second object is attached into the complement of
the V-bar node as is done with transitive verbs.

The bottom-up merge strategy
This strategy follows recent assumptions for minimalist anal-
ysis (Adger, 2003). In particular:

• Structure is only projected when licensed at any stage.

• Projections (except v) only grow when lexically licensed .

• There are separate operators for projecting nodes at the in-
termediate (X-bar) and phrasal (XP) levels.

• Separate operators perform First Merge (incorporating
complements) and Second Merge (incorporating speci-
fiers).

• Projection to XP is only possible when licensed.

• Merge can only occur when licensed via features that need
to be checked and deleted.

• New words aren’t attended to until all possible structure is
build incrementally.

In this case, the agent projects only as much structure as
possible, one node at a time, as licensed. Intransitive verbs
are constructed in a fashion largely similar to the previously
mentioned strategy. However, with transitive verbs the V-bar
node is not built until the direct object’s structure has been
completed. Similarly, the TP node is not constructed until the
subject can be combined into the specifier position of a T-bar
root node. More interestingly, ditransitive instances require
that no V-bar node can be constructed until the second object
has been completed. Only then can it undergo First Merge to
combine with the lexical verb. Then the first object combines
with the V-bar node (i.e. in its specifier) via Second Merge to
create a VP.

Results
The second strategy required substantial resource usage, es-
pecially for ditransitive constructions. This is because verb
phrasal structure must be held in abeyance until both internal
arguments are completed.

A post-hoc analysis of the processing statistics showed that
almost all of the changes in working memory are due to lexi-
cal access and the data retrieved at that time.

Figure 1 shows memory usage over time (measured in de-
cision cycles) for the three canonical types of sentences (in-
transitive, transitive, and ditransitive).
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Figure 1: Working memory usage across decision cycles for
intransitives, transitives, and ditransitive sentences.

Conclusions
Though only representing a core set of syntactic possibilities
for sentences, this work has shown that the two strategies en-
tail different amounts of resource usage, which can be quan-
tified via profiling in the cognitive modeling system.
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 The ability to visualize spatial information from verbal 
descriptions is an important component of human cognition. 
A common example is generating a ‘mental picture’ of 
driving directions.  Such directions can be given either from 
an external viewpoint, as if viewing a map (exocentric 
description, e. g. ‘Left’ is always West), or from the point of 
view of a traveler moving along the path (egocentric 
description, e.g. ‘take a right, go 1 block, then turn left…’). 

Directions for driving imply a horizontal-plane, two-
dimensional mental image, but one can also describe paths 
through 3D space.  We have studied the capacity of people 
to visualize complex 2D and 3D paths using the Path 
Visualization (PV) task, which provides an objective 
measure of visualization accuracy.  We developed an ACT-
R model of visualization capacity for exocentrically-
described paths (Lyon, Gunzelmann & Gluck, 2008). 
According to this model, the capacity to visualize an 
exocentric path description is limited primarily by decay 
and spatial interference in an exocentric-viewpoint image 
constructed in visuospatial working memory.  

Here we extend this model to account for people’s 
ability to visualize complex egocentrically-described paths.  
We suggest that the primary internal representation used for 
egocentric-path visualization is the same as in the exocentric 
case -- an exocentric-viewpoint mental map.  This implies 
that egocentric descriptors would need to be converted to an 
exocentric reference frame before they could be added to the 
map. If this conversion process involves additional 
cognitive operations, and these operations take time, then 
items in spatial working memory should undergo more 
time-based activation decay for egocentric descriptors than 
for exocentric descriptors.  Thus we hypothesized that 
accuracy for egocentrically-described paths would be lower 
than accuracy for exocentrically-described paths. 

Model Predictions 
Since our hypothesis was that egocentric-to-exocentric 

conversion time would be the primary cause of any accuracy 
difference between exocentric and egocentric conditions, we 
developed a model of egocentric path visualization by 
starting with the exocentric-case model and adding an 
egocentric-to-exocentric conversion process.  We then 
conducted a rather strict test by using all of the same 
parameter values that were used in the model for exocentric 
descriptors, and adding only one parameter – the execution 
time of the egocentric-to-exocentric conversion process – to 
the model for the egocentric case.  As shown below, the 
additional time required by this process does indeed cause 
the model to predict that visualizing egocentrically-

described paths will be less accurate than the exocentric-
description case.  

Method 
 Each of thirteen participants completed ten 30-trial PV 
sessions, five with exocentric path descriptions, five with 
egocentric. On each trial, 15 unit-length path segment 
descriptions (e.g. ‘Left 1’) were presented for 2 sec. each. In 
the exocentric condition, directions were relative to a fixed 
reference frame, so that ‘Left’ would always refer to the left 
side of an imaginary 5 x 5 x 5 three-dimensional space 
within which the paths were generated. In the egocentric 
condition, directions were relative to the current facing of a 
hypothetical traveler on the path. In both conditions, the 
participant read each path segment description, decided 
whether the endpoint of that segment intersected with any 
previously presented part of the path, and responded yes or 
no with a keypress. Half of the paths could wander 
randomly through three dimensions; the other half were 2D 
paths constrained to either a coronal (‘picture’), sagittal, or 
horizontal plane through the center of the space. 

Results 
As predicted, paths described exocentrically were 

visualized more accurately than paths described 
egocentrically (F(1,12)=18.5, p<0.001).  There was no 
overall effect of path type. Model predictions fell close to 
human overall accuracy for both exocentric and egocentric 
conditions (Figure 1). The egocentric model fit was 
obtained using an egocentric-to-allocentric conversion time 
of 700 msec. 

 
Figure 1. Visualization accuracy for exocentrically- and 
egocentrically-described 3D and 2D paths. 
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Although the model accounts well for the overall 

difference in accuracy between egocentric and exocentric 
conditions, it does not track human accuracy for different 
path types within the egocentric condition. In particular, the 
model predicts better performance for 3D paths than for 2D 
paths, whereas people certainly do not find 3D paths easier.  
A possible explanation for this discrepancy is that many 
paths in the 3D condition require particular kinds of ego-to-
allo transformations that people find especially difficult.  
For example a virtual traveler on the path in the 3D 
condition would often be head-down, or in some other 
unusual body orientation, making it difficult for people to 
translate terms such as ‘up’, or ‘left’ into an absolute 
reference frame.   

We tested the relative difficulty of different kinds of 
ego-allo transformations in an ancillary study in which 
movements through the same 5 x 5 x 5 virtual grid were 
visually depicted (from an egocentric perspective), rather 
than verbally described.  Participants were allowed all the 
time they needed to accomplish each ego-to-allo translation, 
visualize the next segment, and produce a response.  The 
data reveal a generally systematic increase in response time 
as either facing direction or body axis direction deviated 
from a forward-facing, upright alignment.  People took an 
average of about 250 additional msec. per 90 deg. of facing 
misalignment.  For body axis orientation, the time required 
for each 90 deg. of misalignment was roughly equal to three 
90-deg. ‘steps’ of facing misalignment, or 750 msec. 

We therefore modified the model by refining ego-to-
allo translation into two components: (1) a perspective-
taking process that requires additional time as body axis and 
facing misalignment from upright-forward increases, and (2) 
a segment generation process that requires a constant 
amount of time.  The average total time for these processes 
was constrained by the previous model fitting to be 700 
msec.  By default, the generation process required one 50-
msec. ACT-R cognitive cycle, leaving 650 msec. for the 
perspective-taking process.  Because the average number of 
perspective misalignment ‘steps’ was 4, each step time was 
set at 650/4 (approx. 162 msec.).  This change required an 
adjustment in retrieval threshold from -0.9 to -0.7 to 
maintain overall accuracy comparable to the human data.   

The difference between the 250-msec step time 
obtained in the ancillary study and the 162-msec time used 
by the model in the main study is probably due to the 2-sec. 
deadline imposed for responses in the latter.  This deadline 
was necessary to assure that performance was driven by 
factors (such as decay and interference) that influence 
spatial visualization itself, and not by non-spatial strategies 
that could conceivably be used given unlimited time. 

This model resulted in a substantially better (but not 
ideal) fit to the data for different sub-conditions (Figure 2).  
A better fit might have been obtained by optimizing the 
division between perspective-taking and segment generation 
processes, but this would have required another parameter.   

Human Data

Model

 
Figure 2. Human data vs. revised model for 3D paths and 
different kinds of 2D paths. 

Conclusions 
Human capacity to construct a mental image of new, 

complex spatial material is sharply limited.  In particular, 
when people try to visualize a verbally described path, 
capacity limits are well-described by a model in which the 
activation of each new segment decays with time, and 
segments that are nearby in imaginary space interfere with 
each other (Lyon, Gunzelmann & Gluck, 2008).   

Here we have shown that path visualization accuracy 
depends on the nature of the path description.  If the path is 
described in exocentric terms, using fixed reference 
directions external to the path itself, accuracy is higher than 
if it is described in egocentric terms, from the point of view 
of a traveler on the map, in which the absolute direction of 
‘left’ and ‘right’, etc. depend on the direction the traveler is 
imagined to be facing.    

The success of the model in the egocentric case 
suggests that the basic processes that limit visualization 
accuracy (decay and interference) operate for both kinds of 
descriptions.  The key difference is that egocentric 
descriptions require a translation process to convert them to 
fixed, exocentric directions.  Under the conditions of this 
study, ego-allo translation required, on average, about 700 
msec., but the time varied considerably depending upon the 
degree of misalignment of a virtual traveler on the path from 
an upright, forward-facing orientation. 
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Perceptual Control Theory (PCT; Powers, Clar
McFarland, 1960; Powers, 1973, 2005) is a self-regul
framework developed from control system engineering
theory has been widely applied across the social an
sciences (see pctweb.org) yet it is not popularly recog
or understood within academic circles. The neg
feedback loop, depicted below (Carey (2008) is integ
PCT.  

The negative feedback loop functions to maintain a va
(qi) at, or close to, some reference value (r) despit
environmental disturbances (d) that tend to vary it.
variable is converted to neuronal signals (i) which
substracted from r to form an error (e) which drive
output of the system (o) to modify the controlled va
(cv) through actions (a) on that variable.    

PCT proposes that human information processin
achieved through the functioning of multiple neg
feedback loops and their organization with respect to
another. More specifically, the loops are organised wit
hierarchical organisation. Higher level goals are ach
through setting the reference values (equivalent to goal
lower level systems that in turn set reference value
lower order systems, and so on (see Figure 2; Ru
2003). In other words, a higher order goal never has a 
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Conference on Cognitive Modeling
. The 
d life 
nised 
ative 
ral to 

riable 
e the 
 The 
 are 
s the 
riable 

g is 
ative 
 one 
hin a 
ieved 
s) for 
s for 
nkel, 

direct 

Within PCT, the lowest systems control the intensity of a 
perceptual signal. The systems increase in the complexity of 
perception with higher levels. The highest levels are 
concerned with maintaining principles (e.g. loyalty) and, in 
turn above, system concepts (e.g. the self in the world).  

Any living system will have control hierarchies for many 
variables, and so the system as a whole needs to balance and 
regulate multiple lower level systems so that they each 
achieve their ends; in other words - so that they do not 
experience prolonged error. In order to manage this, the 
system leads to be able to modify its internal properties at 
the appropriate locations throughout the control hierarchies. 
For example, the gain of a system is a parameter that 
determines how much the error affects its output (output = 
error x gain). By changing the gain of different systems, 
they vary in the extent to which they exert control over 
specific variables. It is possible that at high levels in the 
system this may be felt by the individual as the 
reprioritisation of goals. Therefore, an optimization process 
called reorganisation is hypothesised to create variation in 
the properties of the control systems until error is reduced 
(Marken & Powers, 1989).  
PCT considers chronic conflict between control systems as 
they key cause of psychological distress (see Mansell, 
2005). Internal conflict occurs when two control systems 
attempt to control the same variable within different ranges. 
internal conflict is most likely to occur in these higher level 
systems where incompatible reference signals are set.  
 

 
Testing PCT 
 
There are many ways that PCT has been tested within 
computer models (see pctweb.org). They have essentially 
involved building a PCT model of a specific system and 
then evaluating the match between the model and the 
observations of how the real system works.  
 
For example, Bourbon (1995) developed a PCT model of a 
simple tracker task that matched observed behaviour to a 
very high level (r > .95) over a period of five years within 
an individual. Marken (2001) describes a PCT model of 
catching fly balls in baseball that demonstrates of closer 
match with observed behaviour than alternative approaches. 
His model utilizes two parallel control systems – one that 
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controls the vertical 
velocity of the image of 
the ball on the retina, and 
another that controls the 
lateral displacement of this 
image. These simulations 
provide a close match to 
data collected through 
mounting a portable video 
camera on the shoulder of 
a baseball fielder. In his 
latest book, Powers (2008) 
provides a wide range of 
different computer 
demonstrations of PCT.  

Current Research 
Directions 

The current research 
direction taken in my 
research group at the 
University of Manchester 
is to use PCT to model 
human psychological 
function and dysfunction, 
with particular relevance 
to psychopathology 
(Mansell, 2005). We are 
using PCT to model the 
jumping-to-conclusions 
bias (Dudley & Over, 
2003) in probabilistic 
reasoning through the 
implementation of two 
control systems in conflict. 
Through differential weighting of the gains within these 
systems, the system can simulate every possible outcome 
demonstrated by individual data.  
 
In a second project, a control system model will be used to 
simulate a model of bipolar disorder (Mansell, Morrison, 
Reid, Lowens, & Tai, 2007). The computer model will be 
designed to illustrate how mood swings can develop from 
two control systems in conflict, and that reorganization of 
the weighted outputs from a higher level system to these 
conflicted systems and a separate non-conflicted system can 
reduce mood swings, simulating successful recovery.  
 
Further work in development includes working with a 
control systems engineer to model reorganization using 
MATLAB, using PCT model conflicting goals over access 
to psychological therapy, the development of sensimotor 
control within children with learning disabilities, and an 
online interactive therapy that promotes reorganization of 
higher level goals. 
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Introduction
As computing becomes ubiquitous, it is possible for systems
to sense their context of use and adapt their behavior ac-
cordingly. Using an appropriate context model that relates
the users’ cognitive contexts with specific activities can make
ubiquitous computing systems more convenient and effective
for their users. Recent work has explored the use of struc-
tural models for representing, sharing and reasoning com-
plicated, dynamic and interrelated context information, e.g.
Context Toolkit (Dey, Salber, & Abowd, 2001) , extended
Object Role Model(ORM) (Henricksen, Indulska, & Rako-
tonirainy, 2003), and ontology-based context models (Strang,
Linnhoff-Popien, & Frank, 2003; Serrano, Serrat, & Galis,
2006). However, human activities and preferences tend to
be diverse and dynamically changing, depending upon mate-
rial and social circumstances. Current context models usually
concentrate on the computational representations of contexts
which can be tracked and recorded, but ignore cognitive prop-
erties that are essential to human activities and decisions.

Theories from sociology and philosophy, especially eth-
nomethodology and phenomenology, suggest that user expe-
rience, such as subjective perception of system features and
past experience of similar contexts, may influence current ac-
tivity (Dourish, 2004). Ignoring human cognition in context
analysis is therefore likely to frustrate and disorient users. In
this paper, we present a cognitive context modeling frame-
work that analyzes the diversity and dynamics of context-
aware behavior by capturing and representing human cogni-
tion of context information, from objective settings, explicit
user activities, to implicit user preferences, for a given task.

The Cognitive Context Modeling Framework
Context, according to Dewey (Dewey, 1960), has two compo-
nents: 1) background, which is both spatial and temporal and
is ubiquitous in all thinking; 2) selective interest, which con-
ditions the subject matter of thinking. Computational tasks
operate in a set of contexts, and the selection of contexts for
monitoring and sensing is subject to computational, techni-
cal, and social constraints. Therefore, we classify the context
information of a task into two major categories: Objective
Context(ObjCt) and Cognitive Context(CogCt). ObjCt refers
to the contemporary settings within which a course of action
emerges or the objective state of an activity, e.g., who, what,
when, and where, which can be automatically sensed with
a certain level of accuracy; while CogCt refers to a set of

beliefs belonging to an individual or a community, e.g., pur-
poses and preferences, which answers ”why” a piece of infor-
mation should be considered as ”context” and ”how” it affects
the result.

Figure 1: The Framework of Cognitive Context Model

Figure 1 shows our framework for modeling human cogni-
tion on a context-aware task. There are three key components
in this framework: task, objective context(ObjCt) and cog-
nitive context(CogCt). An task can be interpreted as a flow
of operations for transforming the object into an outcome.
The process of the transformation, e.g., when and where to
execute which operation, is affected by the state of a set of
ObjCts. The ObjCts for a task are the detectable surround-
ings during the task process, e.g., time, location, device, etc.
The cognitive selection of ”interesting” Ob jCts of a task is
specified in the CogCt component by context views drawn
from end-users or communities. Each view contains a set of
Ob jCts, which are relatively ranked according to their rele-
vance to the task.

Case Study: Power Saving Schedule
The cognitive context model structures the representation of
task and its contexts from end-users’ perspective. We con-
ducted case study on a power saving task to illustrate the use
of cognitive context model for context identification and anal-
ysis.

Shutting down the computer when it is not in use con-
tributes to energy saving. Figure 2 shows a cognitive con-
text model for the power saving task, in which each plot line
represents one context view, and for each view, the x-axis
represents the time contexts and the y-axis represents their
relevance to the power-off state. The model is built by moni-
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Figure 2: The diversity of context views on power saving

toring the power state of desktop computers used by staff and
graduate students in our department, and the score is calcu-
lated by the power-off ratio (the total number of power-offs
divided by the total number of observations).

Figure 3: K-means clustering on context views (k=3)

The model exhibits the diversity of context views on the
power saving task, i.e., the power state varies with time and
views. The structure and data provided by this model also
allow numerical analysis on the variance of human cognition
and context-aware behavior. Figure 3 shows the result of K-
means clustering we conducted on the context views in the
model. With clustering, the context views are classified into
three categories (the ’+’ lines): (1) almost never power-off,
(2) always power-off, and (3) power state varies with time.
The dashed lines in the figure represent the standard deviation
values of each cluster. A low standard deviation value implies
low diversity among context views in the cluster.

Since the context views in cluster(3) exhibit conscious-
ness of power-saving activities, by assigning higher weights
on these views, we generated an optimized context view for
the power-saving task with AHP calculation (Saaty, 1994),
as shown in Figure 4. The y-axis value indicates the relative

Figure 4: Optimized context view

importance/relevance of each time context to the power-off
state. The optimized view integrates all the context views in
cognitive context model and optimizes the relevance value of
each context element, which can thus be used as an input to
adaptation engine for context-aware task execution and re-
configuration.

Conclusions
This paper presents a cognitive context modeling framework
for capturing and analyzing end-users’ cognition of context-
aware behavior. The performance of this framework is illus-
trated with a case study on computer power saving. It shows
that with cognitive context modeling, various context views
of a given task can be captured and visualized, which provides
efficient support on checking the variance of human cognition
and reducing bias in decision making.
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Introduction 
A central question in perceptual and cognitive psychology 

is the nature of the processes that combine the multiple 
sources of environmental information in order to support the 
subjective, unitary percepts of objects. Characterization of 
these processes, at a general level, has been a goal of 
perceptual and cognitive sciences for more than a century. 
One of the more promising extant approaches is known as 
general recognition theory (GRT; Ashby & Townsend, 
1986). GRT provides formal, mathematically-specified 
definitions of the ways in which perceptual dimensions 
(e.g., the various elements of a face) can interact during 
perception and identification, and generalizes the signal-
detection-based distinction between perceptual and 
decisional effects to multidimensional stimuli.  

Mean-Shift Integrality 
One situation in which information about the internal 
perceptual and decision spaces may be difficult to obtain is 
when a mean-shift occurs in a set of stimuli (see, e.g., 
Maddox & Ashby, 1992). This particular situation is one in 
which a change in level of one dimension of a 
multidimensional stimulus results in a shift of the internal 
representation such that all relative distances are preserved 
(Figure 1). Here the equal-likelihood contours for bivariate 
distributions 2 and 4 have been shifted upwards yet their 
relationship is identical to that for distributions 1 and 3. 
Here, the distance (or marginal d') between distributions 2 
and 4 is the same as that between distributions 1 and 3, and 
for both pairs, the decision bound lies in the same relative 
location. In such a situation, the decision bound can shift in 
a piecewise (left panel) or continuous (right panel) manner. 
A continuous decision bound gives rise to correlations in 
observable responses to the two dimensions: as the evidence 
pertinent to dimension x increases (for example responses to 
y increasingly fall below the decision bound (see Figure 1). 

 
Figure 1: Illustration of mean-shift integrality. Left panel: 
Piecewise decision bound. Right panel: Continuous decision 
bound. 
 

Mean-shift could arise if changing the level of one 
dimension produces a complete shift in the information for 
the other dimension, as has been hypothesized to be the case 
in a number of classic phenomena in face perception (e.g., 
the Thatcher illusion). This possibility has been 
acknowledged to be problematic for standard methods of 
estimating the nature of the perceptual space from standard 
behavioral data (Ashby & Townsend, 1986; Thomas, 2001). 
In addition, the ability to identify the presence of a mean 
shift takes on substantive importance in experimental 
contexts that rely on the diagonal distances within the 
perceptual evidence space (e.g., the difference between the 
two diagonal distances as an index of holistic processing. In 
such situations, it is easily possible to arrive at erroneous 
conclusions regarding either these diagonal distances or the 
more-standard marginal distances, absent critical additional 
converging evidence for the nature of the perceptual space 
(as provided in, e.g., Kadlec & Hicks, 1998; Wenger & 
Ingvalson, 2003). 

 
Multiple Measures 

The present project was intended as a first step in assessing 
the extent to which it is possible to reduce inferential errors in 
the context of mean-shift integrality by augmenting standard 
methods with statistical methods that to date have not been 
applied to this problem. The standard approach is based on a 
set of marginal measures of sensitivity and bias, drawn from 
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classic signal detection theory (Ashby & Townsend, 1986; 
Kadlec & Townsend, 1992), and these approaches are shown 
to have elevated Type II error rates in identifying the 
conditions for mean-shift integrality.  

The first of the novel methods is an approach developed by 
DeCarlo (2003) in which probit models are used to determine 
signal detection measures in multidimensional stimulus 
space. For each distribution, in each dimension, a probit 
model is implemented: , where y* is the 
dependent variable (response) and x is the explanatory 
variable (correct response). Such models can be used to 
determine d’ (from β), c (the threshold for the outcome, y*) 
and bivariate correlations (revealed in the residuals, µ).  

The second novel method is drawn from methods of 
categorical data analysis, specifically estimates of polychoric 
and tetrachoric correlations based on response frequencies. In 
particular, we assume that the entire response space is 
sampled from a bivariate normal distribution with a single 
response threshold on each of the two dimensions. Given a 
2x2 response contingency table, we estimate both the 
tetrachoric correlation and response thresholds with 
maximum likelihood estimation (Olsson, 1979). A mean-shift 
will give rise to correlation between response frequencies 
because the change in decision bound causes systematic 
variation, particularly in response frequencies from 
diagonally opposite distributions. These correlations will 
result in a non-zero tetrachoric correlation within the bivariate 
distribution of the response space. 

Approach and Outcomes 
We evaluated these methods using simulated data sets, 

representing the absence and presence (in varying magnitude) 
of mean shifts. Using the sets of measures, alone and in all 
possible combinations, we estimated the relative frequency of 
inferential errors. The standard approach, as expected, 
produced regular inferential  (Type II) errors in the presence 
of mean-shift integrality. However, when augmented with the 
new methods, the rate of such errors was substantially 
decreased.  

Like the traditional approach, the probit model provides 
relative information about marginal d’s and cs. The outputs 
from each approach are largely in agreement, barring a 
conservative bias for bivariate correlations in the traditional 
method and a liberal bias for differences in d's in the probit 
models. Because both methods provide relative estimates 
they cannot be used to detect mean-shift integrality directly. 
However, unlike the traditional approach, the probit model 
method includes the estimation of residuals, which allows a 
direct test for bivariate correlations within the underlying 
perceptual distributions. When a mean-shift in distributions 
is accompanied by a continuous shift in the decision bound, 
the probit models identify bivariate correlations of the same 
sign and similar magnitude across all distributions. They 
also identify any shift in decision bound relative to the 
distributions. Such evidence of mean-shift indicates a need 
for a direct test using the polychoric correlation method. 

Tetrachoric correlations applied to data sampled from 
mean-shift distributions accompanied by a continuous 
decision bound shift revealed significant non-zero 
correlations in the response space when the mean-shift is of 
medium to large magnitude. These estimates are sensitive to 
the magnitude of the mean shift, and inferential errors based 
on correlation alone increase as mean-shift magnitude 
decreases. 

Neither the probit nor the polychoric correlation approaches 
can identify a piecewise shift in the decision bound, because 
relative locations are maintained, such that response 
frequencies remain unaffected and do not exhibit correlations. 
The results suggest that, although mean-shift integrality can 
pose a serious inferential challenge, a multi-measure 
approach can reduce the potential for inferential errors. As 
such, the approach is consistent in spirit with the original 
(Ashby & Townsend, 1986) multi-measure approach to 
estimating GRT models.  
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Herbal (Haynes, Cohen, & Ritter, 2009) represents human 
behavior based on the Problem Space Computational Model 
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). The 
PSCM is a theory of cognition that defines human behavior 
as movement through problem spaces using operators. To 
represent models, Herbal uses XML as basis forms of high-
level language, and Herbal compiles them into low-level 
rule-based representations that execute within a cognitive 
architecture, Soar, and intelligent agent architecture, Jess. 
Users can create them with a GUI or directly in XML.  

Herbal is implemented as an Eclipse plug-in, which 
provides a popular graphical development environment. It 
uses Eclipse’s powerful functions for creating and 
maintaining agents, so it enables model creators to make 
models more easily. 

We have started to create an ACT-R compiler in Herbal 
because of these features. Although several easy to use 
frameworks exists to develop ACT-R models, such as ACT-
Simple (Salvucci & Lee, 2003), and G2A (St. Amant & 
Ritter, 2004), they cannot represent more than KLM-GOMS 
or GOMS models. 

Matching the Herbal Components with ACT-R 
Components 

We developed the ACT-R compiler based on the Jess 
compiler, because the Jess compiler compiles into 
declarative knowledge and procedural knowledge, and its 
output has a Lisp-like syntax similar to ACT-R. The current 
version of Herbal has 6 basic components, Agent, Problem 
Space, Operator, Condition, Action, and Type. These can all 
be mapped onto ACT-R components as shown in Table 1, 
which includes their Jess correspondences as well.   

 
Table 1: Herbal components and their implementation in 

Jess and ACT-R. 
 

Herbal Jess ACT-R 
Agent Agent Model 

Problem Space Defmodule Slot of Goal buffer 
Operator Defrule Production 
Condition Condition of defrule Condition of rule 

Action Action of defrule Action of rule 
Type 

- Field 
Deftemplete 

- Slot 
Chunk-type 

- Slot 

We added an additional component, called Declarative 
Memory, in the Herbal environment. With this component, 
users can represent hierarchical or sequential tasks in an 
ACT-R model easily. The Declarative Memory consists of 6 
components: library, element name, parent name, first child 
name, next sibling name, and action name. Through these 
components, users can layout their whole task hierarchically 
or sequentially, and the relations among tasks are shown in a 
tree form in the bottom of the user interface. Based on these 
relationships, the productions are made by ACT-R compiler.  

To explore the flexibility of this high-level compiler 
approach, we added a user expertise compiler flag to Herbal. 
It leads to compiling either a novice or an expert user 
model. The expert model does not retrieve declarative 
memory items when it executes subtasks. However, the 
novice model retrieves declarative memory items to move to 
the next task step according to the goal hierarchy in 
declarative memory. Figure 1 shows the difference between 
Expert and Novice model.  

 

 
 

Figure 1: The Structure of the Expert and Novice model. 

Experiment 
We use a simple dialing number task to show a simple 
model. This task is decomposed into a set of hierarchical 
subtasks to dial each component and then the numbers in 
each component. It consists of four subtasks: Long Distance 
Code, Area Code, Exchange, and Extension. Each subtask 
has its own subtasks (the buttons to press), and all of these 
subtasks are related with other tasks and subtasks as a 
parent, child, or sibling.  
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We chose to dial 1 (814) 865–4455, so the Long Distance 
has a subtask, press-1, and the Area Code has subtasks, 
press-8, press-1, and press-4. The Exchange and Extension 
have similar subtasks. So, the total number of tasks is 11 
leaf nodes, 4 sub nodes, and one task node, and these tasks 
are stored as 16 declarative memory type nodes in the 
Herbal environment. 

Using the ACT-R compiler with the user expertise 
compiler flags, we generated expert and novice models. The 
expert model produces the next task without retrieving a 
declarative memory using 17 rules and 16 chunks, however, 
the novice model retrieves a declarative memory to produce 
the next task using 8 rules and 16 chunks.  

We simulated 10 trials per model to get mean prediction 
times. The default ACT-R parameters were used (these are 
carried in the compiler). The expert model’s predicted 
times, shown in Table 2, did not have any variance with the 
ACT-R default values, however, there exist differences 
among the trials in the novice model.  In addition to the 
ACT-R cognitive modules’ times, we added keystroke times  
(typing random letter) to each model to get total predicted 
time (we do not yet use ACT-R/PM for motor output).  

For comparison, this task was analyzed using the KLM-
GOMS theory (Card, Moran, & Newell, 1983). For the 
keystroke operator, we use the same time of “typing random 
letter”, 0.50 s. The number of keystrokes is 11. Thus, the 
total time spent in key stroking is 5.5 s (as used above). For 
each mental operator, we use the default preparation time 
(TM) of 1.35 s. A user mentally prepares what numbers to 
press, what to retrieve from memory, and what to do for the 
next step. In this task, a mental preparation for each subtask 
was counted: Long Distance Code, Area Code, Exchange, 
and Extension. Thus, the total time spent in mental 
preparation is 5.4 s. Therefore, the total execution time from 
the KLM is 10.9 s (Texecute = TK +TM = 5.5 + 5.4). Table 2 
shows above result with respect to prediction time, and the 
number of rule firings. 

 
Table 2: The mean, standard deviations of prediction 

time, and the number of rule firings in each model, and 
KLM model for the simple dialing number task (N=10). 
 

 KLM Novice Expert 
Mean 10.9 s 13.48 s 6.35 s 

SD 0 s 0.79 s 0 s 
Rule firings - 20 16 

 
The Herbal/ACT-R novice model is a bit slow compared 

to the KLM predictions, as it should be.  The Herbal/ACT-R 
expert model is a bit fast.  It is the case, that the Herbal 
ACT-R compiler makes different predictions across the 
expert and novice models, and it may be the case that 
subjects when they perform this task are best represented by 
a model between these two extremes, or by a distribution of 
user models, as John (1996) proposed . 

Discussion and Conclusion 
We started to develop an ACT-R compiler and declarative 
memory component in the Herbal environment. This 
compiler takes knowledge represented as a PSCM model in 
Herbal, and in addition to compiling it in Soar and in Jess, 
compiles it into ACT-R.  This compilation process was 
tested and appears to show some promise for creating more 
sophisticated models more easily.   

We added a declarative memory pane for representing 
hierarchical task analyses. This representation is not 
currently pretty, but allows users to represent tasks in a 
GOMS-like language. As part of this component, we 
included a way (a compiler flag) to generate both novice 
and expert models from the same knowledge set. The novice 
model accesses the declarative memory elements to generate 
behavior. The expert model is compiled so that the rules 
apply directly and keep the state on the goal.  (This compiler 
flag is not yet used by the Soar or Jess compilers.)    

The model of simple dialing number task was compared 
with a GOMS model with respect to predicted time. The 
GOMS model’s prediction time is located between our 
expert and novice model. The novice model of this task 
fired 20 rules, and the expert model fired 16. If a task has 
more hierarchical levels in it, the number of rule firings 
between these two model types will be more different. 
Because this task has a hierarchical structure (3 levels), 
there was a noticeable difference.    
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Abstract

We view association of concepts as a complex network and
analyse its structure. We observe that concept associationnet-
work is scale-free and has small-world properties. We also
study two large scale properties of these networks — clus-
ters and paths. First, we present an algorithm for cluster-
ing these networks which generate qualitatively better clus-
ters than those generated by spectral clustering, a conventional
mechanism used for graph partitioning. Next, we study paths
generated by human traversals on these networks and contrast
it with random walks and shortest distance paths. Our results
are a first step towards viewing human cognitive abilities inthe
light of complex network analysis.

Concept Association Networks(CAN)
Concept associations can be intuitively understood as
thoughts that occur in conjunction with each other. Typi-
cally, networks of such associations are built by presenting
concepts to subjects and recording their output on the basis
of ‘what comes to your mind first’in response to a cue. Such
co-occuring cue-response concept pairs are considered to be
cognitively associated.

Thus in a concept graphG = (V,E), V the vertex
set represents labelled nodes(concepts), andE the edge
set represents co-occuring concepts. For our study we
use word associations from USF Free Association Norm
(http://w3.usf.edu/FreeAssociation) as it is more comprehen-
sive than other databases and has also been studied earlier
from a complex network prespective (Steyvers & Tenenbaum,
2005). Complex networks are graph abstractions to represent
and analyse real world interacting systems like World-Wide-
Web and social networks. A list of important structural prop-
erties of the concept network built based on this database is
shown in table 1.

Table 1: Some salient network properties of CAN

nodes: 10618 avg degree: 12.01 max degree: 332
edges: 63788 edge density: 0.001131
diameter: 7 γ ∼ 2.6 CC: 0.1871

A power law degree distribution and high clustering co-
efficient(CC) are indicative of the similarity of concept as-
sociation network to other widely studied complex networks
such as World-Wide-Web, Social networks etc. (Albert &
Barabási, 2002). Thus studying the properties of these con-
cept interactions in the light of complex networks is justified.
In this work we study two macro structres of concept net-
works, namely clusters –partitions of the network, and paths

–traversals in the network, and relate its possible implications
on cognition.

Clustering of Concepts - Algorithm
Clustering is an important aspect of generalization that helps
in reducing intrinsically different things into broad groups for
the sake of simplicity. Given that we learn concepts by relat-
ing to other similar concepts already known, it makes sense
to cluster concept association networks into broader abstract
entities. Such clusters would be useful if they can effectively
represent human organisation of knowledge.

In this regard, we present a clustering algorithm and
explain its usefulness in the context of cognition. We
consider high degree hub nodes as the starting points. To
begin withn hub nodes are labelled as belonging to its own
clusterCi (i = 1to n wheren = 10 for this study). For each
unlabelled nodeu in the graph its neighbourhood is explored
to find the node with the highest degreev (say). If v is
labelled, we assign the same label tou. If not, we perform
the neighborhood exploration process onv. The recursion
stops either when a hub node is hit or when no node with
higher degree is present in the neighbourhood. In the former
case, the node is assigned the hub node’s cluster and in the
latter, we assign it to adefaultcluster. Nodes assigned to the
default cluster are finally assigned to the hub that is at the
shortest distance in terms of path length. A stylistic version
of the algorithm is given below.

neigh(u): Set of nodes formed by the immediate

neighbors of node u. deg(u): degree of node u
nodedegmax(S): node with max degree in the set of

nodes S. label(u): label of node u ∈ {C1,C2, . . . ,Cn}

Init: Identify n hub nodes and label them C1, . . . ,Cn

for each unlabelled node u
S1: let v← nodedegmax(neigh(u))

if deg(v) ≥ deg(u)

if label(v) = Ci , then label(u)← Ci

continue

if label(v) 6= Ci , ∀ i ∈ {1, . . . ,n}
then u← v, GOTO S1

else label(u)← C0

Comparison and Discussions

A comparison between spectral clustering (Ng, Jordan, &
Weiss, 2001) and and our algorithm is shown in Figure 1 as
log-log plots of cluster degree distribution. It is clear from
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Figure 1: degree distribution of clusters: proposed Vs spectral

the figure that spectral clustering does not preserve scale-free
characteristics within clusters. Moreover, the sizes of clus-
ters are uneven. On the other hand, our algorithm splits the
original graph into roughly equal sized clusters and each one
has scale-free distribution with the same power-law exponent
that applies to the whole graph. Thus the clusters from our ap-
proach are self-similar to the whole network. In effect our al-
gorithm imparts a hierchical view to the whole network. This
is in accordance with the the general hierarchical organisation
of human knowledge.

Spectral clustering is a series of random walks to estimate
cluster boundaries — walks are contained with in strongly
connected components and rarely tend to take connecting
bridges. One starts with various ‘seeds’ to begin the ran-
dom walk and see the nodes that are reached eventually and
thereby identify clusters. We believe that the difference in
cluster properties between the two algorithms is because ran-
dom walks are an unnatural means to navigate the cognitive
space. This is further explored in the next section.

Concept Traversals - Observations
There are two extremes to (source,target) traversals: Short-
est path from the source to the destination and Random
walk starting from the source and proceeding till the target
is reached. To quantify the properties of human generated
paths1, we compare them with both these extremes. It is intu-
itively clear that human generated paths must lie in the mid-
dle of these two strategic extremes. We identify a non-trivial
property –the difference in degree of adjacent nodes in the
paths– to offer a formal explanation for this intuition.

Figure 2 shows the difference of successive degrees of first
two edges for shortest, random and human paths. Shortest
paths show a steeper degree difference whereas for the ran-
dom walk, the degree differences are smaller than those from
human paths. The rationale for this is as follows.

1For our analysis, we asked 60 participants to perform con-
cept traversals from source to targets for 183 concept pairslike
(POWER,MONTH), (FAMILY,AREA) etc. Our observations are
based on these subject generated paths.

|deg(node1)-deg(node2)| |deg(node2)-deg(node3)|

|deg(node3)-deg(node4)|

Figure 2: distribution of absolute degree difference

Given the structure of the concept graph –high CC imply-
ing dense neighbourhoods– degrees of successive nodes are
expected to be similar. On such graphs random walks typ-
ically spends longer durations ‘dwelling’ in concept neigh-
bourhoods rather than reaching the destination. Whereas
shortest paths make incoherent conceptual jumps to reach the
destination. In comparison, human traversals are a mix of
smooth transitions and conceptual leaps and lie in the middle
of these two extremes.

Conclusions
We proposed a clustering algorithm that exploits the struc-
tural properties of concept association network to produce
self similar clusters that are arguably better than those pro-
duced by conventional clustering approaches. Then we com-
pared concept traversals for human, random and shortest
paths and quantified their differences in terms of the degree
difference of adjacent nodes present in such paths. We ob-
served that this network property can explain the intuitive
idea that human paths are inbetween random and shortest
paths –cogent yet amenable to conceptual leaps.
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Abstract 

Recognizing expressions are a key part of human social 

interaction, and processing of facial expression information 

is largely automatic for humans, but it is a non-trivial task 

for a computational system. In the first part of the 

experiment, we develop computational models capable of 

differentiating between two human facial expressions. We 

perform pre-processing by Gabor filters and dimensionality 

reduction using the methods: Principal Component 

Analysis, and Curvilinear Component Analysis. 

Subsequently the faces are classified using a Support Vector 

Machines. We also asked human subjects to classify these 

images and then we compared the performance of the 

humans and the computational models. The main result is 

that for the Gabor pre-processed model, the probability that 

an individual face was classified in the given class by the 

computational model is inversely proportional to the 

reaction time for the human subjects. 

Introduction 

In this work we compare the performance of human subjects 

classifying facial expressions, with the performance of a 

variety of computational models.  We use a set of 176 face 

images, half of which express anger and the other half have 

a neutral expression. The images are from the 

BINGHAMTON BU-3DFE database (Yin, Wei et al. 2006) 

and some examples are shown in Figure 1.   

Pre-Processing Methods and Classification 

This section describes how the computational model 

classifies angry faces and neutral faces. High dimensional 

data such as face images are often reduced to a more 

manageable low dimensional data set. We perform 

dimensionality reduction using both Principal Component 

Analysis (PCA) and Curvilinear Component Analysis 

(CCA).  PCA is a linear projection technique but it may be 

more appropriate to use a non linear Curvilinear Component 

Analysis (CCA) (Demartines and Hérault 1997). Gabor 

filters are also often used for extracting features of images, 

and they are thought to mimic some aspects of human visual 

processing (Daugman 1985). Classification is performed 

using a Support Vector Machines (SVM). An SVM 

performs classification by finding the maximum margin 

hyper-plane in a feature space.  The relative distance of an 

instance from this hyper-plane can be interpreted as its 

probability of belonging to the appropriate class. We have 

used the LIBSVM-2.86 tool (Chang and Lin 2001).  

Experiment 

Two sets of experiments were performed. Part A - 

Computational models. Part B - Classification performed by 

human subjects.  

Part A- Computational Models 

The data was divided into four subsets, and training/testing 

took place with a leave one out strategy, so that results are 

averages over four independent runs.  Once a training set 

had been selected the two parameters of the SVM were 

optimized by cross-validation. Six variations of data 

processing are tested as detailed in Table 1. 

 

                     
(a)                                             (b) 

 

Figure 1: Example face images. a) Angry b) Neutral  

Computational Model Results 

For PCA, the first 97 components of the raw dataset and 22 

components in the Gabor pre-processed dataset account for 

95% of the total variance. For CCA, we reduce the data to 

its Intrinsic Dimension. The intrinsic dimension of the raw 

faces was approximated as 5 and that of the Gabor pre-

processed images was 6.   

The results in Table 2 indicate the overall classification 

accuracy is not very good; however, classifying angry faces 

is a difficult task for computation models (Susskind 2007) 

and can be seen from the results. Nevertheless, the SVM 

performs well with an average of 84.09% accuracy with raw 

face images 

. 
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Table 1: Types of Computational Models 

 

Name model Type of Input Dimensionality 

Reduction 
Model 1 Raw faces None 

Model 2 Raw faces PCA 

Model 3 Raw faces CCA 

Model 4 Gabor pre-processed None 

Model 5 Gabor pre-processed PCA 

Model 6 Gabor pre-processed CCA 

 

Table 2: SVM classification Results 

 

Accuracy TEST 

SET 4  

TEST 

SET 3  

TEST 

SET 2  

TEST 

SET 1 

Average  

  
Model 1 79.54% 93.18% 79.54% 84.09% 84.09% 

(35/44) (41/44) (35/44) (37/44)  

Model 2 

(PCA97) 

68.18% 77.27% 70.45% 65.91% 70.45% 

(30/44) (34/44) (31/44) (29/44)  

Model 3 

(CCA5) 

68.18% 59.09% 63.64% 63.64% 63.64% 

(30/44) (26/44) (28/44) (28/44)  

Model 4 68.18% 79.55% 72.73% 81.82% 75.57% 

(30/44) (35/44) (32/44) (36/44)  

Model 5 

(PCA22)  

61.36% 79.55%  75% 72.73% 72.16% 

(27/44) (35/44) (33/44) (32/44)  

Model 6 

(CCA6) 

63.64% 70.45% 68.18% 63.64% 66.48% 

(28/44) (31/44) (30/44) (28/44)  

 

Part B - Human subjects 

The 184 raw images were used in this experiment. 

Twenty individuals took part in the study.  

Method 

A total of 16 images were used in the pre-view block and 

the remaining 168 images were divided into 6 balanced 

blocks of 28 images each. We used a tool called as 

TESTBED (Taylor 2003) which is a response test generator 

program to record the classification and the Response Time 

(RT) of individuals.   

Human Subject Results 

Humans correctly classified the target expression with a 

mean of 82.86% (SD = 0.174) and the average RT was 

1.132 seconds (SD = 0.714). The average RT ranges 

between a maximum value of 1.792sec and a minimum 

value of 0.714sec.  

Discussion 

We use the Bi-Variate Correlation to find any correlation 

between the average RT for human subjects and the class 

membership probability for the computational models. The 

results are considered to be significant at the level of 0.05, 

or below. The results of comparison are shown in 

correlation matrix of Table 3. 

 

 

Table 3:  The Bi-Variate Correlation Results  

 

Model Correlation 

value 

Significance value 

Model 1 -0.005 0.391 

Model 2 +0.002 0.645 

Model 3 -0.022 0.126 

Model 4 -0.045 0.016 

Model 5 -0.028 0.065 

Model 6 -0.003 0.597 

 

Interestingly all but one of the correlations are negative, 

but only for Model 4 (Gabor filtered images with no 

dimensionality reduction) was this correlation significant, 

with the probability of the null hypothesis being 0.016. The 

correlation is negative with value -0.045.  This negative 

correlation indicates large average RT (which presumably 

indicates that the subjects found it hard to classify), 

correlates with smaller class membership probability for the 

model.  The results are interesting and encouraging 

(suggestive of Gabor filtering is similar to human face 

processing) and our next step is extending these experiments 

to other expressions. 
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Abstract

The question addressed in this work is ’What do people exactly
typically do, if they interact strategically in games they have
not much experience with?’. It is certain that human behavior
in strategic interactions and games deviates from predictions of
game theory. But, it is also certain that this behavior must have
some kind of explanation. Eventually, people do not behave in
a fully unpredictable way. This work considers general strate-
gic interactions with untrained subjects. It does not consider
human performance in well-known games like chess or poker.
A very basic scenario is used to investigate human behavior.
This scenario is a repeated zero sum game with imperfect in-
formation. An experiment with subjects is conducted and the
data is analyzed using a set of different machine learning al-
gorithms. As the result, a way of using machine learning is
given. Finally, designing a formalism for representing human
behavior is discussed.
Keywords: Game Theory, Data Mining, Artificial Intelli-
gence, Domain-Specific Languages

Introduction

Typical human behavior in games is not optimal and deviates

from game theoretic predictions (F.Camerer, 2003). Conceiv-

able reasons are the bounded computational resources and

the (seeming) absence of rationality. One can say without

any doubt that if a human player is trained in a concrete

game, he performs close to optimal. But, a chess master

does not also play poker perfectly and vice versa. On the

other side, a game theorist can find a way to compute an

equilibrium for a game, but it does not make a successfull

player out of him. For most of games, we are not trained.

That is why it is more important to investigate our behavior

in general game playing than game playing in concrete game.

This work is about the common human deviations from

predicted equilibria in games, for which they are not trained.

Modeling typical human behavior in general games needs a

represention formalism which is not specific to a concrete

game. An example-driven development of such a formalism

is the challenge addressed in this paper. The example

introduced in this work are repeated two-player zero-sum

games with no pure strategy equilibria (Tagiew, 2009). Each

player has a couple of actions called strategies. The solution

of such games is to use mixed strategy equilibrium (MSE).

An MSE is defined through a distribution over strategies,

according to which the strategies are to be chosen.

The related works (Gal & Pfeffer, 2007) and (Marchiori

& Warglien, 2008) use following approach. First, they

construct a model, which is based on theoretical consider-

ations. Second, they adjust the parameters of this model

to the experimental data. This makes the human behav-

ior explainable using the concepts from the model. On

repeated zero sum games with more than two strategies,

the correctness does not exceed 45% for all evaluated models.

Results

The seven evalutated games are related to paper-scissors-

stone and have at least one MSE. The games denoted

through IDs 31 till 61 have the following MSE solu-

tions - 31⇒ {( 1
3
,

1
3
,

1
3
)}, 41⇒ {(0,

1
2
,0,

1
2
),( 1

2
,0,

1
2
,0)},

51⇒ {( 1
9
,

1
9
,

1
9
,

1
3
,

1
3
)}, 52⇒ {( 1

7
,

1
7
,

1
7
,

2
7
,

2
7
)}, 53⇒

{( 1
7
,

1
7
,

1
7
,

2
7
,

2
7
)}, 54⇒ {(0,

1
2
,0,

1
2
,0),( 1

4
,

1
4
,

1
4
,

1
4
,0)} and

61⇒{(0,
1
2
,0,

1
2
,0),( 1

4
,

1
4
,

1
4
,

1
4
,0)}.

This work follows the so called black box approach. The

black box in this case is the human player. The input are the

game rules and previous decisions of players. The output is

the current decision. Finding a hypothesis which matches

the behavior of the black box is a typical problem called

supervised learning (Mitchell, 1997). There is already a

big amount of algorithms for supervised learning. Each

algorithm has its own hypothesis space. For a Bayesian

learner i.e., the hypothesis space is the set of all possible

Bayesian networks. There are many different types of

hypothesis spaces - rules, decision trees, Bayesian models,

functions and so on. A concrete hypothesis is a relationship

between input and output described by using the formal

means of the corresponding hypothesis space.

Which hypothesis space is most appropriate to contain

valid hypotheses about human behavior? That is a machine

learning version of the question about a formalism for human

behavior. The most appropriate hypothesis space contains

the most correct hypothesis for every concrete example of

human behavior. A correct hypothesis does not only perform

well on the given data (training set), but it performs also well

on new data (test set). Further, it can be assumed that the

algorithms which choose a hypothesis perform alike well for

all hypothesis spaces. This assumption is a useful simplifica-

tion of the problem for a preliminary demonstration. Using

it, one can consider the algorithm with the best performance

on the given data as the algorithm with the most appropriate

hypothesis space. The standard method for measurement

of performance of a machine learning algorithm or also a

classifier is cross validation.

The data of the experiment is transformed to sets of tuples

for every game. Every tuple has the length 3 + 3 + 1 = 7

(3 last pairs of turns and current turn). The size of a set

is 540 tuples for games 31 till 53 and 340 for game 61.

Implementations of classifiers provided by WEKA (Witten &

Frank, 2005) are used for the cross validation on the sets of

tuples. The task is to find a relationship between the last three

players’s decisions (6 items) and the current decision. There

are 45 classifiers available, which can handle multi-valued

nominal classes. Strategies in games are nominal, because

there is no order between them. A cross validation of all 45

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

472



0

0,1

0,2

0,3

0,4

0,5

31 41 51 52 53 54 61

Correctness
Maximal observed probability

Kappa value

Figure 1: Average correctness in cross validation.

classifiers on all 7 sets of tuples is performed. The number of

subsets for crossvalidation is 10.

There is no classifier which performs best on all games.

Further even the highest average correctness is very low.

Fig.1 shows the results. The gap between the highest

observed probability of a strategy and the highest average

correctness is different depending on the game. The Kappa

value is a measure for the deviation of a classifier from

random. In game 51, all classifiers completely fail to find a

hypothesis in subsets better than ’always certain strategy’.

The best classifiers for games with a significant gap (game

ID in a box) between average correctness in cross valida-

tion and maximal probability of a gesture predictions are

sequential minimal optimization (SMO) (Platt, 1998) for 31,

multinomial logistic regression (L) (Cessie & Houwelingen,

1992) for 41 and Bayesian networks for 53.

Which classifier is the most robust? One can choose two

criteria - highest minimum performance or highest average

performance. In game playing conditions, if the correctness

of prediction is 5 percentage points higher, one gets a 5%

higher payoff. To find the classifier with the most robust

usability in game playing conditions, the difference between

average correctness and probability of equal distribution

( 1
|Strategies|

) is calculated for each classifier and game. SMO

has the highest minimum difference and a simple variant of

L (SL) has the highest average difference. On the other side,

L has the the highest average Kappa value and voting feature

intervals classification (VFI) has the highest minimum Kappa

value. Fig.2 shows the average correctness of these classifiers

on the datasets. Three of these four classifiers have functions

as hypothesis space. The problem of functions is that most of

them can not be verbalised. Consequently, the first question

from the abstract can be answered using natural language.

On the other side, the success of function based classifiers

means that we can not explain our behavior in our natural

language. However, the correctness achieved for game 31 is

about 46% and it is slightly higher than in the related work.

It is doubtful, wether one can define an algorithm which

predicts exactly general human strategic behavoir at all.

The single rule classifier (OneR), which is also included

in the histogram on fig.2, produces a hypothesis which

contains only one single rule. Using this classifier, one can

Figure 2: Cross validation

find out that 43.15% of the data in game 31 matches the rule

’choose paper after choosing rock, scissors after rock and

rock after paper’. This rule is a very simple answer to the first

question in the abstract in this paper. Such rules of thumb are

not exact enough for explaining general human behavior. The

difficulty of finding a relationship between input and output is

the fact that the same input can cause different outputs. Even

using the instance based approach K* which is validated

on training data, one achieves only 80.37% correctness in

game 31. Strategography and strategophony are possible

future directions in understanding general human strategic

behavior - if we can not verbalise our strategic behavior, can

we represent it as images or music?
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Abstract 

The cortex is modeled as a net of minicolumns. A cell 
assembly in layer IV of a minicolumn is defined as a 
“cognit”. Higher level cognits integrate lower level cognits. 
The minicolumn is able to form cognits and extract 
determinant cognit time series as perceptual symbols.  A 
frame is a set of determinant cognit time series, and 
simulation is the partially retrieval of these determinant cognit 
time series. This model can fulfill the requirements for the 
perceptual symbol system proposed by Barsalou in 1999. I am 
trying to build neural network simulating this net. It is 
potentially a Cognitive architecture bearing connectionism. 

Keywords: perceptual symbol system, minicolumn, cortex, 
connectionism, neural network 

Introduction 

 

On the standard view, perception and cognition are two 

distinct processes and the concepts in cognition are 

represented by amodal symbols. This viewpoint is 

challenged by the theory of perceptual symbol systems 

(Barsalou, 1999). They argued that there is no evidence for 

the existence of an amodal symbol system and symbols are 

intrinsically perceptual.  

  According to the work of Barsalou (1999), the kernel ideas 

of perceptual symbol system are: 

1. A perceptual symbol is defined as a record of the neural 

activation during perception, while it is componential, 

multimodal, dynamic, and schematic. 

2. A concept is equal to a simulator, which is composed of 

“an underlying frame that integrates perceptual symbols 

across category instances, and the potentially infinite set of 

simulations that can be constructed from the frame”. A 

frame is object-centered and composed of multiple 

subregions, with four basic properties: predicates, attribute-

value bindings, constraints, and recursion. The simulations 

must ensure categorization and categorical inferences, 

cognitive penetration, and stable conceptualization. 

  This article proposes a hypothesis of how cortex may 

fulfill these requirements and actualize the perceptual 

symbol system, and discuss the potential of building a 

cognitive architecture based on it. 

Foundation from Neuroanatomy 

 

Horizontally the cortex is composed of six layers. Layer IV 

contains different types of stellate and pyramidal cells, and 

is the main target of thalamocortical and intrahemispheric 

corticocortical afferents (input). Layer III contains 

predominantly pyramidal cells and is the principal source of 

corticocortical efferents (output) (Creutzfeldt, 1995). 

Vertically neocortex is columnar organized with elementary 

module minicolumn (Mountcastle, 1997).  

Minicolumn Model 

 

 
Figure 1: A Modeled Minicolumn 

 

The simplified model for a minicolumn is shown in Fig 1. It 

is viewed as a recursive neural network. Layer IV composes 

of both excitatory and inhibitory neurons and is the principle 

area for external input. Layer III composes of excitatory 

neurons only and is the principle area for external output. 

The transmission delay among neurons between layer III 

and IV is considered. A cell assembly formed in layer IV 

through Hebbian learning (Hebb, 1949) represents a most 

basic piece of knowledge, called a “cognit” here. 

Cortex Model 

  

The whole cortex is viewed as a net with each node a 

minicolumn. The nodal connection is from excitatory 

neurons in layer III of one minicolumn to excitatory neurons 

in layer IV of another minicolumn. 

  The cortex is organized with “vague hierarchy”. The 

minicolumns receiving thalamus inputs which transmit 

information directly encoded by sensory organs are regarded 

as level 1. The minicolumns receiving inputs from level 1 

minicolumns are regarded as level 2. So on and so forth, 

minicolumns receiving inputs from level n minicolumns are 

regarded as level n+1. Notice this hierarchy is not perfect as 

many minicolums can receive inputs from multiple 

minicolumns of different levels.  
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Information Processing and Learning 

   

Any perception and cognition starts with sequential inputs 

from sensory organs.  These inputs are viewed as discrete 

time series of states. Information processing has two 

aspects: information extraction is to represent each state by 

cognits (cognit formation) in level 1 minicolumns and 

associate cognit A to cognit B if pattern (A, B) repeatedly 

occurs (sequence prediction); information integration is to 

link higher level cognits to combination of lower level 

cognits spacially and temporally. Thus a higher level cognit 

may refer to a spaciotemporal combination of information 

and have very abstract meaning. 

  Learning occurring within a minicolumn (intra-

minicolumnar) actualizes information extraction (Wang, 

2008). Learning occurring among minicolumns (inter-

minicolumnar) may actualize information integration. 

Fulfillment of Perceptual Symbol System  

 

A perceptual symbol is a time series of cognits in which any 

cognit predicts its follower (a determinant segment of the 

entire time series of cognits). 

  Componential: Any cognit (other than level 1) is a 

spaciotemporal combination of cognits.  

  Multimodal: One cognit can integrates information from 

cognits of minicolumns belonging to different modalities. 

  Dynamic: The learning modifies the system’s behaviors. 

  Schematic: An individual is parsed into cognit series each 

of which represents a specific aspect of it. When perceiving 

a new individual, same cognit series can be retrieved 

(controlled by selective attention) if it shares a common 

specific aspect of the old one, enabling partial information 

retrieving. 

  A frame is simply a set of determinant cognit time series. 

This set stands for an (concrete or abstract) object, and the 

minicolumns containing these time series are subregions. 

  Predicates: this set itself is a predicate, as it defines the 

properties of the object. 

  Attribute-value Bindings: A specific specialization 

evokes specific determinant cognit time series in 

corresponding minicolumns. 

  Constraints: The many cognit time series identifying a 

specific specialization are integrated gradually through the 

hierarchy of the minicolumns, until a single cognit time 

series in one minicolumn represents this specialization. 

Feedback interminicolumnar connections enable the ability 

to retrieve all the attribute values of this specialization and 

prevent mismatches. 

  Recursion: multiple cognit time series of a frame can be 

integrated into a single cognit time series in a higher level 

minicolumn, which can in turn form an element (attribute) 

of a new frame. 

  A simulation is the partially retrieval of these determinant 

cognit time series. It ensures: 

  Categorization and Categorical Inferences: The 

specializations are put into a category if they share common 

attribute values. Thus one specialization can be put into 

multiple categories viewing from different aspects. 

Categorical inference is achieved by finding the frame from 

one attribute and retrieving this frame’s other attributes. 

  Cognitive Penetration: When selective attention is paid to 

retrieving the attribute values of a specialization in higher 

level frames, the original representation in corresponding 

lower level frames can be suppressed and modified. 

  Stable Conceptualization: Concepts formed in this way 

have stable commonality among different individuals as the 

representation in level 1 minicolumns are same (similar) 

defined by genes. The formation of higher level 

representation is essentially a data mining process, concepts 

not derivable from level 1 representation cannot form, but 

only a small portion of information is mined out by an 

individual. Thus knowledge of individuals may differ, but 

there is no difficulty for them to communicate and 

understand others. 

Potential for Building a Cognitive Architecture 

 

 The idea is to build a neural network with minicolumns as 

basic functional units. Each subnetwork for a minicolumn 

actualizes information extraction. The connection among 

subnetworks actualizes information integration. 

  The neural network for a minicolumn is already built. Its 

learning strategy needs to consider the transmission delay, 

threshold dynamic, and the overlapping problem (Wang, 

2008). The strategy for inter-minicolumnar learning should 

be inspired from the molecular guidance for axon growth, 

synaptic elimination, etc. during neural development 

(Dickson, 2002; Lo, Poo, 1991; Purves, Lichtman, 1980).  
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Abstract 
In this paper we used a holographic memory system to model 
Zbrodoff’s (1995) findings on the problem size effect, a well-
known effect in the area of Math Cognition. The data showed 
the effects of manipulating both frequency and interference.    

Keywords: fan effect; frequency; holographic memory; 
interference; arithmetic 

 
The Dynamically Structured Holographic Memory system 
(DSHM) uses holographic representations as a way of 
modeling human memory. It is based on Jones and 
Mewhort’s BEAGLE lexicon model. The details of DSHM 
and the similarities to BEAGLE are discussed in Rutledge-
Taylor & West (2007). One function that DSHM models 
well is memory interference. Rutledge-Taylor & West 
(2008) showed that the fan effect (Anderson, 1974) falls 
naturally out of the DSHM architecture. 

The fan effect is a term used to describe a memory 
phenomenon in which the time needed to verify a fact is 
related to the number of other facts in memory that include 
concepts in common with the target fact  (Anderson, 1974).  
The fan refers to how many facts share memory elements 
with the target. For example, if a person’s declarative 
memory contained three propositions: “the hippie is in the 
park”, “the lawyer is in the store”, and “the lawyer is in the 
bank”, then the fan of the terms ‘hippie’, ‘park’, ‘store’, and 
‘bank’ are one, while the fan of the term ‘lawyer’ is two. As 
first demonstrated by Anderson (1974), larger fans cause 
slower reaction times in human subjects. This result is 
consistent with the theory that similar facts cause 
interference in the retrieval process. 

The DSHM model has been used to model the fan effect 
(Rutledge-Taylor & West, 2008). However, the fan effect 
addresses only the effect of inter-fact ‘interference’ on the 
efficiency of fact retrieval.  But, there is another factor that 
also strongly impacts retrieval speed/efficiency: the person’s 
frequency of exposure to that fact.  For example, if a 
participant reads “the lawyer is in the store” once and “the 
lawyer is in the bank” four times, the fans of ‘store’ and 
‘bank’ are each still one.  However, one would expect that 
the association between ‘lawyer’ and ‘bank’ to be stronger 
than the association between ‘lawyer’ and ‘store’.  Thus, 
both fan effects and frequency effects impact the efficiency 
of fact retrieval. To test the interaction of frequency and fan 
in DSHM we modeled the data of Zbrodoff (1995), who 
manipulated both of these in the context of learning alphabet 
arithmetic facts (e.g., A + 3 = D, which indicates that the 
number three letters past A is D). Zbrodoff repeatedly 

represented these facts and measured true/false response 
reaction times across trials to study learning. 

In Experiment 4 all of the problems were presented with 
equal frequency. To model this, each problem, including the 
answer and whether the answer was true or false, was 
represented as a random vector and entered into the DSHM, 
so that one entry equaled one presentation to a subject. 
There were two ways the model could decide if a question 
was true. One was to submit a question vector with the 
problem plus the answer and a blank for whether it was true 
or false. The model would then return whether or not it 
believed the question was true or false. The second way was 
to submit the question with the answer as a blank and 
whether or not it was true filled in with true. In this case the 
model would return what it believed to be the correct 
answer (note, the model can make errors but this data is not 
presented here).  

The second method fit the data better than the first, 
suggesting that people were recalling the answers to see if 
the questions were true or false. In this case the model 
makes the same predictions for true and false questions. 
Consistent with this, the human data was very similar for 
the true and false questions. To get accurate reaction times 
from the model the inverse of the activation levels were 
scaled up by a factor of 400. Note that this represents a 
claim that the activation levels of the model translate 
directly into reaction times. Figure 1 presents the results.  

Experiment 3 was the same as Experiment 4 except that 
frequency was manipulated so that the questions with the 
smaller numerical addends were presented more frequently. 
The model used here was exactly the same as the one used 
to model Experiment 4. No parameters were altered! Figure 
2 shows the human data and the simulation results. Overall, 
the model does a good job of accounting for the results. The 
only exception occurs in the later blocks (not shown on the 
graphs) where the model continues to have the addends 2 
and 4 close together with the addend 3 higher. In contrast, in 
the human data, the addend 4 moves back up closer to the 
addend 3. This result is difficult to interpret. It could be that 
the model does not predict well for long term learning, 
although it did accurately predict long-term learning for 
Experiment 4. Another possibility is that subjects were 
using a rehearsal strategy between sessions. If subjects were 
recalling the questions and checking them by calculation, or 
rehearsing them, it could produce this effect since the 
addend-4 questions would be harder to recall due to the low 
frequency of presentation (for random recall without a cue, 
interference should not play a role).  
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Figure 1: Data and Simulation for Experiment 4 
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Introduction 

 
  File replication is the most popular approach used to 

promote system reliability and file availability in a network-

based environment (Purdin, et al. 1987; Son, 1987; 

Rodrigues, et al., 2002). However, all of the distributed file 

systems equipped with the functionality of file replication 

require their users to determine how important their files are 

in order to assist systems in making decisions regarding 

how many replicas should be made and distributed in the 

networks (Blair, et al., 1983). As such, system users are 

inevitably burdened with this potential responsibility. The 

problem can be partially alleviated if systems can take more 

responsibility for their users on determining file importance. 

To achieve this goal, however, we need to better understand 

how system users cognitively make decisions regarding 

determining file importance. In this paper, we quantitatively 

compare the performance of three decision-making models 

popularly used in juror decision-making (Pennington & 

Hastie, 1981) to examine how satisfactorily they model the 

process of determining file importance. The three models 

are the linear weighting model, the Bayesian model, and the 

Poisson model. 

 

 

The Three Decision-Making Models 

 
The Linear Weighting Model 

 
 The linear weighting model postulates that file 

importance can be determined by linearly combining those 

weighted pieces of information (referred to as predictors in 

this paper) during the session of determining file importance. 

The set of weights associated with the predictors identified 

can be determined in such a way that predicted file 

importance is optimally correlated with observed file 

importance using multiple regression analysis (Rawlings, 

1988). 

 

The Bayesian Model 

 
 The Bayesian model postulates that file importance can 

be determined by a series of simple inferences, in which 

importance is revised according to the direct impact of the 

predictors identified independently. In other words, the 

determination of file importance using the model is 

concerned with determining the posterior odds for 

importance (Rn), which is defined in terms of determining 

the ratio of the probability of importance given all the 

predictors identified, to the probability of unimportance 

given all the predictors identified. Once Rn is determined, it 

is compared with the decision criterion (dc) adopted by the 

system user to judge if the file under consideration is 

important (if Rn ≥ dc) or not (if Rn < dc). 

 

The Poisson Model 

 
 The Poisson model postulates that determining file 

importance is a Poisson process. In the process, it assumes 

that there exists an apparent weight of predictors (w) 

important to the file under consideration. The apparent 

weight accumulates constantly with time during the session 

of determining file importance until either a critical 

predictor is identified or the end of the session is 

encountered. The apparent weight accumulated (wa) is then 

compared with the decision criterion (dc) adopted by the 

system user to judge if the file under consideration is 

important (if wa ≥ dc) or not (if wa < dc). 

 

 

Data Collection And The Experiment 
 
 Five predictors were systematically identified in this 

study for model comparison: the number of characters 

keyed, the computer cost spent, file length, file dependency, 

and the frequency of file access. Correlation coefficients 

between observed and predicted file importance were used 

to quantitatively evaluate the performance of the three 

models. A computer program, written in C++, was designed 

and implemented on a laptop to collect data for observed 

file importance and the five predictors. The data collected 

were classified into five importance ratings (from important 

to unimportant) and mapped proportionally to an importance 

rating scale (from 1 to 5, respectively). There were 41 

subjects (randomly selected in an academic environment) 

participating in the experiment. These subjects accessed a 

total of 169 files. Since the subjects were asked to randomly 

pick up their files created by them, the sample may contain 

various types of file contents. 
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Model Comparison 

 
Correlation Coefficients 

 
 The correlation coefficients computed for each of the 

models suggest that the linear weighting model and the 

Bayesian model with dc = 1 perform much more 

satisfactorily than the Poisson model using the empirical 

data collected in the study. The poor performance of the 

Poisson model may be resulted from the following three 

possible sources of errors: (1) the data collected may not be 

representative; (2) the assumptions made in this study may 

not hold for the model; (3) the model itself is inferior. More 

studies are needed to clarify the issue. 

 

Nature of File Importance Determination 

 
 The linear weighting model is characterized by the 

nature of determining file importance slightly different from 

the Bayesian model and the Poisson model. The former 

model determines how important the file under 

consideration is (a rated outcome), while the latter models 

determine whether or not the file under consideration is 

important (a binary outcome). Moreover, the linear 

weighting model associates file importance ratings directly 

with predictor ratings in determining file importance. On the 

other hand, the Bayesian model and the Poisson model 

convert predictor ratings into predictor appearance 

probability, which may not be directly related to file 

importance ratings. As such, the linear weighting model 

provides more information about how each of the predictors 

is correlated with each other, and how each of the predictors 

is weighted by the subjects. 

 
Implementation Efficiency 

 
 There is no noticeable performance difference in model 

implementation and file importance determination using the 

three models. All of the three models need an order of 

O(n×m) accesses to various data items for model 

implementation and an order of O(m) accesses to determine 

predicted file importance, where n = the number of files 

created by a subject and m = the number of predictors each 

file has. 

 

Decision-Making Processes 

 
 The three models studied have quite different decision-

making processes, reflecting how system users cognitively 

make decisions regarding determining file importance. The 

linear weighting model postulates that determining file 

importance is a process consisting primarily of two phases: 

predictor collection and predictor evaluation. In the 

predictor collection phase, all possible predictors are 

collected. The predictors collected are then assigned weights 

in the predictor evaluation phase and combined linearly to 

determine file importance. 

 

 The Bayesian model postulates that in the process of 

determining file importance, once a predictor is identified, it 

will be evaluated to examine how likely the predictor is the 

one identified, given that the file under consideration is 

important and unimportant, respectively. The likelihood 

ratios thus computed constitute a series of inferences, in 

which posterior odds for importance is revised according to 

the direct impact of the predictors identified independently. 

At the end of the process, the revised posterior odds is 

compared with the decision criterion adopted by the subject 

to determine whether or not the file under consideration is 

important. 

 

 The Poisson model postulates that there exists an 

apparent weight of predictors important to the file under 

consideration. The apparent weight accumulates constantly 

with time in the process of determining file importance until 

either a critical predictor is identified or the end of the 

process is encountered. In the process, once a predictor is 

identified, it is judged by the subjects to examine if it is a 

critical predictor. The apparent weight accumulated up to 

the time when the critical predictor appears or the process 

ends is compared with the decision criterion adopted by the 

subject to determine whether or not the file under 

consideration is important. 
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