
Topics in Cognitive Science 7 (2015) 243–258
Copyright © 2015 Cognitive Science Society, Inc. All rights reserved.
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12132

Beyond Single-Level Accounts: The Role of Cognitive
Architectures in Cognitive Scientific Explanation

Richard P. Cooper,a David Peeblesb

aCentre for Computation, Cognition and Modelling, Department of Psychological Sciences, Birkbeck,
University of London

bDepartment of Behavioural and Social Sciences, University of Huddersfield

Received 12 September 2013; received in revised form 15 July 2014; accepted 15 July 2014

Abstract

We consider approaches to explanation within the cognitive sciences that begin with Marr’s com-

putational level (e.g., purely Bayesian accounts of cognitive phenomena) or Marr’s implementation-

al level (e.g., reductionist accounts of cognitive phenomena based only on neural-level evidence)

and argue that each is subject to fundamental limitations which impair their ability to provide ade-

quate explanations of cognitive phenomena. For this reason, it is argued, explanation cannot proceed

at either level without tight coupling to the algorithmic and representation level. Even at this level,

however, we argue that additional constraints relating to the decomposition of the cognitive system

into a set of interacting subfunctions (i.e., a cognitive architecture) are required. Integrated cognitive

architectures that permit abstract specification of the functions of components and that make contact

with the neural level provide a powerful bridge for linking the algorithmic and representational level

to both the computational level and the implementational level.

Keywords: Cognitive architecture; Explanation; Algorithmic and representational level; Bayes’

rule; Cognitive neuroscience

Explanation within cognitive science has frequently been argued to require multiple

domains or levels, and several distinct multi-level accounts of cognitive scientific expla-

nation have been proposed (e.g., Chomsky, 1965; Cummins, 1983; Marr, 1982; Newell,

1982). The account of Marr, however, has received perhaps the most attention. A central

tenet of Marr’s analysis is that a complete explanation of a device’s behavior requires an

account of that behavior at what he terms the computational level (CL), the algorithmic

and representational level (ARL), and the implementation level (IL). While Marr argued
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that an account at each of the three levels was required for a complete explanation, he

also emphasized the primacy of the most abstract of his levels, the CL. Specifically, he

argued that while “algorithms and mechanisms are empirically more accessible, [. . .] the
level of computational theory [. . .] is critically important from an information-processing

point of view [. . . because . . .] the nature of the computations that underlie perception

[and, by extension, cognition] depends more upon the computational problems that have

to be solved than upon the particular hardware in which their solutions are implemented”

(Marr, 1982, p. 27). This position has face validity, particularly with respect to naturally

intelligent systems where the particular hardware in which the solutions are implemented

is shaped by evolutionary factors, and so will arguably be well-suited, or perhaps even

optimized, for the computational problems that an evolved agent such as ourselves must

solve (though see Jacob, 1977).

Marr was critical of approaches to the understanding of cognitive systems that were not

rooted in the CL. For example, in discussing the work of Newell and Simon (1972) on the

application of production systems to problem-solving, he wrote that “mechanism-based

approaches are genuinely dangerous. The problem is that the goal of such studies is mimicry

rather than understanding, and these studies can easily degenerate into the writing of pro-

grams that do no more than mimic in an unenlightening way” (Marr, 1982, p. 347).1

But is the primacy afforded by Marr to the CL justified? One could make plausible

arguments for the primacy of Marr’s two other levels. Surely, for example, the IL pro-

vides a privileged starting point because we can directly study the operation and connec-

tivity of neurons in different brain structures and regions—and in different species—and

knowing how neurons function and interact can give us insights into the operation of

small-scale neural networks, which in turn can allow us to understand the capabilities of

larger scale networks and structures. We will argue below that this purely reductionist

strategy is likely to be of limited utility—in part because of the difficulties of “reverse

inference” (inferring function from neural-level activation). Similarly, one might argue

that a privileged role should be accorded to the ARL, given the role that information-pro-

cessing models continue to play in the development of cognitive theory. This is the argu-

ment that we develop, though we do so in the context of cognitive architectures—
theories of the organization and interaction of the hypothesized subsystems subserving

cognition.

1. The role of the computational level

Part of Marr’s justification for CL explanation was a reaction against early AI com-

puter programs that did not take seriously “the distinction between what a program did

and how it did it” (Marr, 1982, p. 28), thereby obscuring a mechanism’s purpose, but

Marr was equally clear that a CL explanation should address two questions: “what a

device does and why” (p. 22). The “what” question might be answered by a specific

mathematical function (i.e., by set-theoretic descriptions of the inputs and outputs and a

mapping from inputs to outputs), but to answer “why” questions requires additional
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machinery—typically appealing to over-arching background theories such as (in the case

of the cognitive sciences) evolution. “Why” questions are undoubtedly critical for expla-

nation, but, at least with respect to explanations of cognitive functioning, their potential

answers are generally more speculative and far more difficult to address in concrete,

unequivocal terms than “what” questions (see Anderson, 2015). A pragmatic approach is

therefore to de-conflate “what” and “why” and approach them (where possible) as inde-

pendent questions.

Answering “what” questions requires a suitable language in which to phrase the

answers. Over the last 15 years, CL theorizing within the cognitive sciences has come to

be dominated by approaches in which behavior is understood in probabilistic terms, with

appeal to Bayes’ theorem in order to determine the posterior probability of an event,

given evidence and prior probabilities (e.g., Griffiths, Kemp, & Tenenbaum, 2008).

Bayesian approaches have been particularly successful in providing putative accounts of

behavior that may be broadly characterized as inductive, such as categorization (Tenen-

baum & Griffiths, 2001) and reasoning (Oaksford & Chater, 2001), but it is important to

recognize that there are alternative frameworks within which CL explanations might be

developed. Marr (1982) used differential equations, but other feasible CL languages

include formal logics (such as first-order predicate logic, various modal logics, defeasible

logics—see Baggio, van Lambalgen & Hagoort, 2015—attribute-value logic, and combi-

natory logic), information theory (Shannon & Weaver, 1949), category theory (Phillips &

Wilson, 2010), graph theory (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, &

Christiansen, 2013), and even the problem-space theory of Newell and Simon (1972).

From the perspective of Marr’s CL, Bayesian accounts do not have any a priori superior-

ity over accounts expressed in any of these other frameworks.2

The critical issue for cognitive science methodology is not so much the specific for-

malism in which CL theories should be stated, but what role (if any) CL statements

should play in explaining cognition or developing cognitive theory. For Marr, the role of

the CL was to formulate the computational problem under consideration precisely such

that one might then consider how that problem might be addressed at the ARL. Critically,

Marr was concerned not with the abstract computational problem faced by an agent

(which, with respect to vision, might be expressed in Bayesian terms as being to deter-

mine the most likely interpretation of the current visual input), but with the computational

problems faced by subcomponents (such as the retina or the primary visual cortex) of that

agent. Thus, Marr characterized the function of the retina as computing ∇2 and its time

derivative of the retinal image (cf. Marr, 1982, p. 337). From this perspective, the pri-

mary role of the CL is to constrain the ARL by specifying the overall function that must

be computed at that level.

2. Limitations of purely computational-level explanations

A critical feature of CL explanation is that it abstracts away from details of processing

and implementation. To illustrate, consider the motivation given by Xu and Tenenbaum
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(2007) in developing their Bayesian account of word learning. The authors’ aim is “to

understand in functional terms how implicit knowledge and inferential machinery guide

people in generalising from examples—rather than to describe precisely the psychological

processes involved” (p. 251). In other words, their aim is to present an account of their

domain of interest (learning the meanings of words) that captures behavioral regularities

while abstracting away from specific algorithmic and representational commitments. Sim-

ilar appeals to the utility of CL explanation are common in the Bayesian literature (see,

e.g., Norris, 2006). The emphasis is generally on how the CL account may serve as a

highly abstract statement of theory that deliberately avoids lower level commitments. This

appeal to abstraction is also apparent in Marr’s original account of CL explanation. Spe-

cifically, his attack on the insufficiency of early AI programs as explanations included the

complaint that “particular data structures, such as lists of attribute value pairs called prop-

erty lists in the LISP programming language, were held to amount to theories of the rep-

resentation of knowledge” (Marr, 1982, p. 28). By abstracting away from specific

representational devices (such as LISP data structures), CL accounts side-step representa-

tional debates (including, e.g., that underlying the connectionist/symbolic divide).

In abstracting away from mechanism and process, CL explanations are generally held

to be idealizations. Thus, processing constraints (e.g., working memory limitations) may

mean that the actual function computed by a specific algorithm or implementation is only

an approximation of the CL function. Again, Marr (1982) makes this point, citing Chom-

sky’s distinction between linguistic competence and linguistic performance within trans-

formational grammar (Chomsky, 1965) as corresponding to the difference between a CL

explanation and an ARL one, with performance factors modulating the competence the-

ory. The same point has been made more recently with respect to Bayesian CL theories

(e.g., Bowers & Davis, 2012; Oaksford & Chater, 2007; Rogers & Seidenberg, 2011).

What does not appear to have been realized is the implications of this distinction between

competence and performance for the evaluation of CL theories. Franks (1995) argued

that, in the absence of a performance theory, competence theories have limited predictive

utility. More precisely, any competence theory prediction could be undermined by perfor-

mance factors. Consequently, competence theories (and hence CL explanations) are not

falsifiable in the standard Popperian sense.

Popperian falsifiability is not necessarily a requirement for scientific theorizing (Laka-

tos, 1970), but the implications of the argument concerning performance factors are illus-

trated by the simulations of Cooper, Yule, and Fox (2003), who compared the behavior

of three classes of model—Bayesian, associationist, and hypothesis testing—with that of

subjects on a sequential category-learning task (medical diagnosis). During the task, sub-

jects completed a series of trials where they were able to query the presence/absence of a

virtual patient’s symptoms (e.g., headache, temperature, etc.) before making a diagnosis.

Initially subjects were only able to guess, but feedback allowed them to learn the symp-

tom/disease associations (which were probabilistic). Subjects were also encouraged to

minimize the number of symptoms queried on each trial when making their diagnoses.

Good performance on the task required that, for each virtual patient, subjects query those

symptoms that were most informative, adjusting the order of their queries on the fly
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based on the information they received in response to their queries. The authors found

that all three classes of model, when supplemented with appropriate performance factors,

were able to replicate the key behavioral effects. Thus, for the Bayesian model it was

necessary to assume that the initial probabilities (priors) of each symptom given each dis-

ease were less than 0.5 and that symptoms where queried based on an information-theo-

retic measure which embodied a confirmation bias. In contrast, the associationist model

required strong negative initial associations between symptoms and diseases together with

a form of recency bias implemented by adding low levels of noise to associations on each

trial. For the hypothesis testing model, subject performance was simulated by the use of a

confirmatory strategy supplemented with moderate time-based decay of the contents of

working memory. In summary, while the performance factors differed across the classes

of model, the net result was one of indistinguishability. The work is particularly apposite,

given that Xu and Tenenbaum (2007), in their study of word learning discussed above,

argue strongly for a Bayesian model and against associationist or hypothesis testing

accounts of word learning. Cooper et al.’s result suggests that, once performance factors

are incorporated into each class of model, Xu and Tenenbaum’s argument does not hold:

At the behavioral level, a Bayesian model may be coerced into mimicking the perfor-

mance of an associationist model by, for example, judicious choice of priors and the

weighting of old and new evidence, just as an associationist model may be coerced into

mimicking a Bayesian model by, for example, judicious choice of initial weights.

A related limitation of CL accounts of behavior is that they cannot make direct contact

with one of the key traditional measures of the cognitive psychologist, namely response

times. Given that CL accounts are concerned with what function is carried out by a sys-

tem rather than how that function is computed, this may be justified, but it is a further

barrier to relating CL accounts to behavior.

A focus on function is also more easily justified when an argument can be made that

the processes under investigation can be decomposed into a linear chain of processing, as

in Marr’s conception of vision whereby the input is represented and re-represented in a

sequence of stages as it is transformed from a retinal map via first the primal sketch and

then a 2½ dimensional viewer-centered sketch to a three-dimensional, object-centered

representation. A linear chain of this kind supports feedback between successive stages

(and hence allows for necessary interactions between top-down and bottom-up process-

ing), but it is still feasible to view each stage in the chain as performing a self-contained

function. Moreover, one end of the chain at least is anchored in the external observable

world. While this may be an appropriate decomposition for vision, it is less clear that

higher cognitive functioning can be decomposed so neatly into stage-wise processing.

Thus, ARL accounts of cognitive processes generally conceive of observable behavior as

the product of multiple interacting subsystems (such as working memory, attention, goal

generation, and maintenance, etc.), with the interactions between those subsystems not

being amenable to linearization. This poses a fundamental dilemma for CL accounts of

the cognitive system that hypothesize such subsystems. Specifically, should a CL account

be directed toward the cognitive system as a whole or to the various hypothesized unob-

servable subsystems? Just as importantly, one cannot justifiably ask the “why” question
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of the functioning of subsystems without first addressing why the system as a whole

might comprise those subsystems. For example, one cannot ask why working memory

carries out such-and-such a function or should be optimized in such-and-such a way with-

out first addressing why the cognitive system might comprise a working memory subsys-

tem interacting with a range of other subsystems.3

The above criticisms of purely CL explanations go beyond recent critiques of Bayesian

accounts of cognition (e.g., Bowers & Davis, 2012; Jones & Love, 2011; Marcus &

Davis, 2013). They reflect general concerns about explanations pitched solely at the CL,

regardless of whether those explanations are phrased in probabilistic, logical, or set-theo-

retic terms.

3. The role of neuroscience evidence

We have argued that CL accounts, in the absence of ARL accounts, are limited in their

explanatory force. But could one not study the operation of the brain directly with neuro-

science evidence alone? Notwithstanding Marr’s analysis, some might argue that this

approach has been successful in understanding the functioning of peripheral systems (with

low-level visual processing being perhaps the most celebrated success; Hubel & Wiesel,

1962). However, application of the reductionist approach to higher cognitive processes,

such as those involved in reasoning, decision-making, planning, problem-solving, and lan-

guage, is problematic for several reasons.

Neuroscience offers a great variety of methods that might be deployed to investigate

higher cognitive processes. These include methods that are entirely neurophysiological in

nature (mapping neural pathways and connectivity), methods for tracking neural activity

while performing a task (including numerous forms of functional neuroimaging with dif-

fering temporal and spatial resolution, as well as single cell recording in behaving pri-

mates, and, very occasionally, humans), and methods based on the analysis of the effects

of brain lesions (including temporary lesions created via TMS and permanent lesions due

to organic damage). Yet even with all of these methods at neuroscientists’ disposal, an

understanding of higher cognitive processes at the neural level remains elusive. Is it just

a matter of time?

Consider the case of propositional reasoning. The neurophysiological/implementation

level appears to be the wrong level to begin an analysis of a complex ability such as this.

It is unclear where one would start. Simply scanning subjects while they attempt reason-

ing tasks (with no cognitive-level theory of how such tasks are solved) is unlikely to

yield informative results. In fact, there are many neuropsychological and neuroimaging

studies of reasoning (see Shallice & Cooper, 2011, pp. 464–478 for a review). The na€ıve
observer might expect that these would have informed cognitive-scientific understanding

of the ability. Yet the studies present a confused picture, with a complex network of fron-

tal and parietal cortical regions implicated across a range of reasoning tasks, and, while

clearly defined reasoning deficits arise in some neuropsychological patients, one cannot

easily infer a theory of reasoning from the neural data. Indeed, the neural data have low
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discriminative power, with ongoing debates suggesting that the data are not even able to

differentiate convincingly between existing cognitive-level theories (cf. Coltheart, 2006,

2011). Perhaps just as critically, Goel (2007) argues that interpretation of the neural data

from reasoning experiments requires a re-evaluation of psychological theories of reason-

ing, with the neuroscience evidence indicating that human reasoning involves separate

systems for dealing with (a) familiar and unfamiliar material, (b) conflicting information

and belief bias, and (c) certain and uncertain information. The evidence from functional

neuroimaging to support these dissociations is far from conclusive, and, as Shallice and

Cooper (2011) point out, dual-system theories of reasoning were proposed long before

neuroimaging evidence was available. Those theories draw on the same distinctions dis-

cussed by Goel (see, e.g., Evans, Barston, & Pollard, 1983). So in this domain at least

neuroscience evidence does not allow one to “explain” reasoning behavior, nor does it

trigger the complete re-evaluation of cognitive theory that Goel (2007) suggests.

What then is the role of the neuroscience evidence? Consider first neuroimaging in its

various guises. Coltheart (2006, 2011) argues forcefully that neuroimaging evidence has

not informed psychological theory. His specific concern is in the use of neuroimaging

evidence to discriminate between competing psychological theories, and he provides six

case studies where neuroimaging has, contrary to the various researchers’ explicitly stated

intentions, failed to have any discriminating force. Coltheart’s arguments against the util-

ity of neuroimaging in cognitive theorizing are not arguments in principle, and it is con-

ceivable that future imaging studies will support the kind of theory discrimination that

Coltheart seeks. In this respect the model-based methods discussed by Love (2015)

appear particularly promising. Note, though, that those methods are not reductionist—crit-

ically they require specification of a cognitive-level theory that might be coupled to neu-

ral-level data.

One reason why neuroimaging evidence is limited in the extent to which it can inform

psychological theory is the “reverse inference” problem: Can one infer the involvement

of cognitive-level processes from activation at the neural level (or to be more precise,

from differences in the BOLD response at the neural level)? Even if one had a clear

understanding of the relation between the firing of neurons and the BOLD signal as mea-

sured by fMRI (and we do not; Maier et al., 2008), it remains possible that a single cog-

nitive function might be implemented by a network of neural regions, or that a single

region might implement multiple cognitive functions. For this reason cognitive neuropsy-

chology—the investigation of cognitive deficits following neural damage or degeneration—
provides an invaluable complementary source of neural-level evidence. Cognitive neuro-

psychology allows one to draw conclusions about the function of the intact cognitive

system from patterns of behavior following breakdown of that system. Shallice and

Cooper (2011) argue that neuroimaging and neuropsychology make different inferential

assumptions linking function to structure. While those assumptions may not be valid in

any specific case, inferences that are supported by both neuroimaging and neuropsycho-

logical evidence are likely to be robust because in the event that the assumptions of both

methods are violated, there is no reason why they should then yield a consistent localiza-

tion of the function under consideration.
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An alternative approach to solving the reverse inference problem has been developed

by Poldrack and colleagues (e.g., Lenartowicz, Kalar, Congdon, & Poldrack, 2010; Yark-

oni, Poldrack, Nichols, Van Essen, & Wager, 2011). This approach automatically

extracts activation foci (coordinate representations of brain regions showing activation or

deactivation in one task relative to a control task) from reported studies and associates

these with keywords in the corresponding write-up of the study. Machine learning tech-

niques are then used to discover commonalities between studies associated with the same

keyword and discriminate these from studies associated with other keywords. While the

approach introduces many sources of noise into the process (e.g., by not differentiating

between activation and deactivation of a region and by not carefully examining the

reported contrasts and classifying them appropriately), this noise is countered by

the large database of imaging studies that has developed over the last 25 years, and the

approach has been successful at drawing distinctions between the neural activity associ-

ated with a range of keywords. Thus, Yarkoni et al. (2011) report that the neural regions

extracted for, for example, the keywords “attention” and “executive” discriminate

between studies of attention and studies of executive function with a mean classification

accuracy of 64% (which is significantly above the chance level of 50% at the p = .001

level on the dataset used).

This automated meta-analytic approach attempts to understand brain function without

recourse to either the ARL or the CL. While it draws upon cognitive constructs such as

“attention” and “executive,” it does so in an informal way without attempting to charac-

terize those constructs in any way beyond their use in psychological discourse. While the

approach might serve as a useful first step in relating cognitive function to neural struc-

ture, it fails to advance understanding of cognitive function in the Marr sense for several

reasons. Firstly, it is necessarily coarse in its discriminations. While Yarkoni et al. (2011)

consider 25 keywords, those keywords refer to very broad concepts (“pain,” “emotion,”

“imagery,” etc.), and any attempt to focus in on more specific or more clearly defined

subfunctions will be met with major difficulties in detecting a signal amid the many

sources of noise in the data. Furthermore, even with broad concepts, the discrimination

accuracy, while statistically significant, is low. More critically, however, even if discrimi-

nation accuracy was high, the method would only allow one to answer “where” questions

(i.e., where is function X computed?). It cannot answer true IL questions (i.e., how do

neurons in the identified regions compute the function?), or directly answer the “what,”

“why,” or “how” questions that characterize Marr’s higher levels.

Suppose, though, that neuroscience was to yield a complete understanding of the neu-

ral basis of behavior, such that, for a simple task (say choice reaction time), we under-

stood how neural firing in low-level perceptual areas ultimately led to neural firing in

peripheral motor neurons. Such an “explanation” would still be incomplete if it did not

abstract away from the neural hardware of the individual. More than that, however, the

explanation would need presumably to abstract away from neural hardware altogether if

we are, for example, to be able to reimplement the relevant functioning in different hard-

ware. In other words, the explanation would need to operate at a level above the IL.

Thus, the critical “multiple realisability” argument made by Marr (1982) against
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reductionist neuroscience—namely that there is no reason to believe that a cognitive sys-

tem could not be realized in any number of different computational substrates—still

holds. The flip side of this argument is the claim (which we accept may be more an arti-

cle of faith than an empirical fact) that cognitive-level constructs, whether they be beliefs

and goals (in reasoning and problem-solving), phonemes or morphemes (in linguistic the-

ory), or action schemas (in routine action selection) are causally efficacious and therefore

cognitive theory, operating at the level of such constructs, provides a level of abstraction

that is critical to understanding common function across individuals and across species.

4. Beyond single-level explanations: The role of cognitive architectures

One way to address the limitations of purely CL explanations is to develop ARL mod-

els that instantiate (at least to a first approximation) relevant CL principles and that are

therefore able to approximate solutions provided by CL analyses. For example, one might

develop a Bayesian CL explanation into an ARL model by introducing a mechanism that

instantiates Bayesian inference. The benefit of such an approach would come from the

explicit mapping between ARL mechanisms and Bayes’ rule, which would allow such

models to impose constraints on the assumptions of the latter and suggest explanations of

suboptimal observed behavior.

This approach has recently been adopted by Bayesian theorists in the form of “rational

process models” (Griffiths, Vul, & Sanborn, 2012; Sanborn, Griffiths, & Navarro, 2010;

Shi, Griffiths, Feldman, & Sanborn, 2010). The proposed models use Monte Carlo algo-

rithms (e.g., importance sampling, particle filters, Markov Chain Monte Carlo methods)

which approximate Bayesian inference by sampling from a probability distribution. The

predictions of rational process models can be degraded from the optimal Bayesian solu-

tion to suboptimal (i.e., human-like) performance by, for example, reducing the number

of samples taken.

While lauding the efforts of Bayesian theorists to acknowledge their critics and address

the question of links to the ARL, the approach has several limitations. First, the direction

of influence in this approach remains entirely top-down, with no constraints being placed

by the rational process model upon, for example, the priors of the Bayesian model; the

sole purpose of rational process models is to sample a probability distribution from the

Bayesian model, with the ARL model being post hoc.

Second, Monte Carlo methods are a class of algorithms specified at an abstract level

which omit details of how sampling is achieved. This degree of abstraction places the

key claim that ARL approximations of CL solutions are achieved by sampling from a

probability distribution alongside the claims that problem-solving is a search over a prob-

lem space or that learning is a gradient descent on an error surface; high-level character-

izations of processes that may be implemented by numerous different algorithms. What

unites them is their agnosticism about cognitive architecture; they contain no claims

about the structure of the mechanisms involved or the nature of the limits of those

mechanisms.
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While such agnosticism might be justified if behavioral measures cannot distinguish

between more detailed characterizations of the processes, specifying such detailed

hypotheses of representations and mechanisms is the aim of ARL models, and it is this

level of detail that allows them to account for additional behavioral measures, such as

strategy differences and response times. An alternative, potentially more unifying

approach to bridging the ARL and CL therefore would be to take existing ARL frame-

works or models and to consider how they can be related to Bayesian inference (or some

other CL principle).

One move in this direction is the “computational rationality” approach (Howes, Lewis,

& Vera, 2009; Lewis, Howes, & Singh, 2014), which applies Russell and Subramanian’s

(1995) notion of bounded optimality for artificial intelligence agents to the analysis of

human behavior. The underlying assumption of this approach is that human behavior is

generated by cognitive processes that are adapted not only to the structure of the envi-

ronment but also to the (bounded) cognitive architecture, and it is this latter feature

which determines suboptimal human performance compared to an optimal Bayesian CL

solution. Computational rationality differs significantly therefore from the rational pro-

cess models approach in requiring not only the specification of a task environment but

also a cognitive architecture and a set of programs to execute behaviors to be specified

at the ARL.

A second approach has been followed by Bayesian modelers who have sought to iden-

tify memory mechanisms that implement the Monte Carlo algorithms of rational process

models. This has resulted in recent demonstrations that the importance sampling algo-

rithm can be implemented by exemplar-based memory mechanisms (Abbott, Hamrick, &

Griffiths, 2013; Shi & Griffiths, 2009; Shi et al., 2010). These mechanisms approximate

sampling from the prior distribution by retrieving memories (hypotheses) according to

their degree of similarity to the current context and then weighting them by the likelihood

function to obtain an approximation to the posterior distribution.

A similar approach to bridging CL and ARL theories also does so by memory retrieval

mechanisms based on relevance to the current context (Anderson, 2007; Lebiere et al.,

2013; Thomson & Lebiere, 2013). Implemented within the ACT-R cognitive architecture,

this method assumes that declarative knowledge chunks in long-term memory have a

level of activation that determines their probability of retrieval. In this conception, chunk

activation is proportional to log-likelihood, and a chunk’s activation is updated (the likeli-

hood function) from its initial base level (prior) to its final level (posterior) according to

its similarity to the current context. This mechanism is essentially identical to the exem-

plar-based models of importance sampling mentioned above (although a formal equiva-

lence has not been demonstrated), opening the possibility that many mechanisms exist

that exhibit the same properties.

Given this possibility, the question then arises as to how one should compare and eval-

uate these alternatives. One obvious criterion is the number and nature of the constraints

each mechanism imposes on the CL theory. In contrast to the exemplar-based models

which are relatively simple in their representational and algorithmic assumptions, the

other two approaches are both embedded within the broader theoretical commitments of a
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cognitive architecture (ACT-R) that imposes strong constraints on declarative and

procedural learning and the learning of activation and utility values. These ARL con-

straints severely limit the number and nature of the hypotheses at the CL and therefore

the kinds of inferences that can be made. In addition, the mechanisms determining these

learning and control processes are consistent with both behavioral and neural data

(Lebiere et al., 2013; and see below), leading to the possibility that through these connec-

tions to both the CL above and the IL below, cognitive architectures like ACT-R can pro-

vide a bridge that unites Marr’s three levels.

One can make many arguments for the utility of developing cognitive models within a

cognitive architecture (see, e.g., Cassimatis, Bell, & Langley, 2008; Newell, 1990), but

adopting the concept of cognitive architecture is in fact highly consistent with Marr’s ori-

ginal approach to vision. His decomposition of visual processing into a series of stages

effectively specifies a visual processing architecture. Importantly, Marr does not provide

a CL account of vision as a whole. Rather he argues for the provision of CL (and ARL

and IL) accounts of each component of his visual processing architecture. There is, there-

fore, a critical difference in the starting point of Marr and that of many Bayesian

approaches to cognitive processing, such as those of Norris (2006) or Griffiths et al.

(2008). Trying to provide a CL account of the organism as a whole fails to take account

of the (assumed) functionally modular substrate that supports cognitive processing. Cog-

nitive architectures decompose the cognitive system into interacting functional subcompo-

nents, and, following Marr, it is these components that are most usefully characterized at

the CL, ARL, and IL.4 At the same time, a cognitive architecture by itself does not nor-

mally uniquely determine how a specific task might be accounted for at the ARL. The

strength of the “computational rationality” approach of Howes, Lewis, and colleagues dis-

cussed above is that it addresses this relationship. At the same time, the approach of

Lebiere and colleagues described above aims to provide task-independent CL accounts

(with links to the IL) of the functional subcomponent(s) responsible for retrieval from

long-term memory.

Work involving those cognitive architectures in which functional subcomponents are

associated with neural regions or structures also promises to help bridge the neuroscience

and psychological levels. For example, over the last decade Anderson and his colleagues

have attempted to map the core modules of the ACT-R cognitive architecture onto brain

regions via fMRI data relating to the BOLD response (e.g., Anderson, 2005; Anderson,

Qin, Sohn, Stenger, & Carter, 2003; Qin et al., 2003, 2004). This has led to the identifi-

cation of the five core processing modules of ACT-R with associated brain regions. The

mapping of elements between two levels in this manner has allowed models and data

from each to influence the other. Thus, in fMRI studies of the development of children’s

algebra skill, a computational model of eye movement sequences, memory retrievals,

problem-solving steps, and responses was able to account for the relative changes in pat-

terns of activation in different brain regions due to learning. The direction of influence is

not just in the direction of ARL to IL. In Anderson’s work, imaging data have also

influenced developments in the cognitive architecture. For example, the original ACT-R

architecture contained a single goal buffer containing both control knowledge and
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problem state knowledge. BOLD response patterns suggested, however, that changes in

the former correlated with activity in the anterior cingulate, while changes in the latter

corresponded to activity in a parietal region. This led to a separation in the cognitive

architecture between the goal buffer for control state knowledge and an “imaginal” buffer

for problem state knowledge (Anderson, 2005).5

While the mapping between the IL and the ARL within ACT-R is arguably too

coarse (e.g., at the time of writing there are regions of cortex, as well as subcortical

structures, with no associated ACT-R module, and the ACT-R mapping assumes that

all IL processes are organized bilaterally), the work illustrates the profitable interac-

tion between the ARL and the IL. The architectural approach also addresses a key

limitation of Poldrack’s approach to reverse inference as discussed in Section 3.

Recall that this approach aims to map structure to function by determining, across a

very large database of functional neuroimaging studies, the brain regions or networks

that allow one to discriminate between studies of cognitive-level constructs such as

attention and executive function. A significant concern is that, as operationalized by

Poldrack and colleagues, those cognitive-level constructs are described informally.

However, this may be addressed by the development of process models within a cog-

nitive architecture for the tasks in question, thus ensuring that one has robust hypoth-

eses concerning how different architectural functions or components are implicated in

different tasks.

To summarize, then, while neuroscience evidence cannot be used in a purely bottom-

up fashion to understand cognitive functioning, it may still provide a valuable comple-

ment to cognitive (i.e., algorithmic and representational) level theorizing, providing sup-

porting evidence for specific theories of the functional organization of some faculty,

particularly when neuroimaging and neuropsychology provide converging evidence for

cognitive-level subfunctions, or when a theory of the organization of the cognitive archi-

tecture can bridge the ARL and the IL.

5. Conclusion

In the 30+ years since Marr proposed his tri-level hypothesis, significant theoretical

advances have been made at each level of analysis. However, in our view the most criti-

cal advance has been the development of plausible cognitive architectures that decompose

the cognitive system into interacting functional components. Given such a decomposition,

one might begin to develop CL, ARL, and IL accounts of the components. However, this

would not be sufficient for neural-level data to inform cognitive theory. For this, it is

necessary to develop ARL accounts of performance on the tasks used to generate the neu-

ral-level data. We suggest this is most likely to be productive when attempted within a

putative cognitive architecture in which the functional components of the architecture

have CL descriptions or explanations. Such an approach will ground the function of the

architectural components while allowing cognitive explanations to be linked to behavioral
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data, and neuroimaging and neuropsychological studies to inform our understanding of

the neural instantiation of architectural components.

Notes

1. Certainly “explanation,” however defined, would seem to require more than mere

mimicry, but equally to label Newell and Simon’s seminal work on problem-solving

as “unenlightening” would seem churlish. Marr’s criticism might be valid if Newell

and Simon were just concerned with mimicry (i.e., data-fitting), but, in accounting

for human problem-solving behavior, Newell and Simon developed the problem

space computational model (PSCM)—an account of the computational problem that

problem-solving is required to solve. Thus, a key claim of the work of Newell and

Simon was that problem-solving should be understood as the selection of a sequence

of operators that would transform a given state into a goal state. While Newell and

Simon may not have been explicit about it, this level of theorizing frames the prob-

lem (of understanding human problem-solving) squarely on Marr’s CL.

2. It is tempting to suggest that Bayesian accounts simultaneously address the “what”

and the “why” question. If this were true, it would enhance the plausibility of any

Bayesian account. However, as Bowers and Davis (2012) argue, Bayesian accounts

do not necessarily do this. Indeed, Bowers and Davis characterize many such

accounts as “just-so” theories, a view consistent with that developed by Marcus

and Davis (2013).

3. Note that decomposing the overall function effected by a system into a function of

subsystems invokes algorithmic concepts because it expresses constraints on the

order of processing and on intermediate results. Strictly speaking, therefore, this

decomposition already requires going beyond the CL.

4. In addition to the standard arguments for cognitive architectures, Simon (1962)

argued that hierarchically organized systems (i.e., systems composed of subsys-

tems) provide a kind of stability of subfunction that supports evolutionary pro-

cesses. So the concept of a cognitive architecture is consistent with the kind of

evolutionary analysis of the human cognitive system that many contemporary pro-

ponents of CL-first accounts espouse.

5. ACT-R is used here as a well-worked example, but in principle the comments

apply equally to any cognitive architecture that attempts to bridge higher levels

with the IL. Thus, the SAL hybrid multi-level architecture of Jilk, Lebiere, O’Reilly,

and Anderson (2008) provides a further example.
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